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Abstract: Minimum free energy prediction of RNA secondary structures is based on the Nearest
Neighbor Thermodynamics Model. While such predictions are typically good, the accuracy can
vary widely even for short sequences, and the branching thermodynamics are an important factor
in this variance. Recently, the simplest model for multiloop energetics — a linear function of
the number of branches and unpaired nucleotides — was found to be the best. Subsequently,
a parametric analysis demonstrated that per family accuracy can be improved by changing the
weightings in this linear function. However, the extent of improvement was not known due
to the ad hoc method used to find the new parameters. Here we develop a branch-and-bound
algorithm that finds the set of optimal parameters with the highest average accuracy for a given set
of sequences. Our analysis shows that the previous ad hoc parameters are nearly optimal for tRNA
and 55 rRNA sequences on both training and testing sets. Moreover, cross-family improvement
is possible but more difficult because competing parameter regions favor different families. The
results also indicate that restricting the unpaired nucleotide penalty to small values is warranted.
This reduction makes analyzing longer sequences using the present techniques more feasible.

Keywords: secondary structure; NNTM; multiloops; branching parameters

1. Introduction

Accurate prediction of RNA base pairings from sequence remains a fundamental
problem in bioinformatics. While new methods continue to advance the ribonomics
research frontier [1-9], experimentalists still obtain useful functional insights from the
classical minimum free energy (MFE) secondary structure predictions [10] under the
Nearest Neighbor Thermodynamic Model (NNTM). Given the on-going popularity of
such predictions, we focus here on characterizing accuracy improvements from one
of the smallest possible changes to this approach: modifying only three of over 8,000
NNTM parameters [11]. As will be explained, these three parameters govern the entropic
cost of branching, which is a critical aspect of the overall molecular configuration. More-
over, they are some of the few not based on experimental data, and so are reasonable
candidates for such a targeted reevaluation. Here, we consider two families of RNA
molecules: transfer RNA (tRNA) and 5S ribosomal RNA (rRNA). Their sequence lengths
are amenable to our current methods, while providing two different branching config-
urations to analyze. This enables us to confirm the extent of accuracy improvement
possible on a per family basis, while also illustrating the challenges of obtaining such
improvements simultaneously over two (or more) families.

An RNA secondary structure is a set of intra-sequence base pairs. For thermody-
namic prediction purposes, the target pairings are typically canonical, i.e. Watson-Crick
or wobble, and pseudoknot-free. (Removing these constraints, especially the latter, are
active areas of research in the field.) Given a secondary structure, its free energy change
from the unfolded sequence can be approximated under the NNTM; this model and the
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evolution of its many parameters (nearly all of which are for the special cases of small
internal loops) are cataloged in an online database [11]. Under the NNTM, when given
a sequence, an MFE secondary structure can be computed efficiently using dynamic
programming [12-15].

Historically, the prediction accuracy is high on average for sequences of length
700 nucleotides or less [16]. In particular, it was found that an average (with standard
deviation) of 83.0% (£22.2) of pairings in 484 transfer RNA (tRNA) secondary structures,
totaling 10,018 base pairs (bp) and 37,502 nucleotides (nt), were predicted correctly. Like-
wise, 77.7% (£23.1) of pairings in 309 55 ribosomal RNA (rRNA) secondary structures,
totaling 10,188 bp and 26,925 nt, were predicted correctly. While this clearly supports the
value of MFE predictions, it also highlights that even at this scale of sequence lengths,
i.e. ~76 nt for tRNA and ~120 for 55 rRNA, the prediction accuracy for an individual
sequence can be low.

Recent results have demonstrated that it is possible to obtain a statistically signifi-
cant increase in MFE prediction accuracy on a diverse training set of 50 tRNA sequences
and 50 55 rRNA by changing the thermodynamic cost of branching [17]. Recall that
an RNA secondary structure is composed of different substructures, which are scored
by different components of the NNTM objective function. The substructures known
as multiloops (or branching junctions) have three or more helices which radiate out as
branches. A tRNA molecule has one central multiloop with four branches, while 55
rRNA has one with three. Although these branching loops are a critical aspect of the
overall molecular conformation, they remain one of the most difficult aspects to predict
accurately [18,19].

Previously, mathematical techniques from discrete optimization and geometric
combinatorics were used to completely characterize all the secondary structures which
were optimal for all possible combinations of different branching parameters on the
chosen training sets [17]. It was found that 89% of tRNA and 90% of 55 rRNA predictions
could be improved by altering the branching parameters from the default values. (Those
which did not improve already had an accuracy well above average.) Critically, though,
achieving this improvement simultaneously, i.e. for the same set of new parameters, is not
possible; the intersection of all the “best possible” set of parameters for each sequence is
empty.

At the time, an ad hoc combinatorial method was used to identify large combina-
tions of non-empty intersections among the individual “best possible” sets for a given
collection of training sequences. It was demonstrated that the branching parameters
obtained in this way yielded a statistically significant improvement in MFE prediction
accuracy over the existing values on tRNA, on 55 rRNA, and on the total 100 sequence
training set, respectively. However, a significant gap remained between the average
(known to be unobtainable) of the maximum attainable individual accuracies with
modified branching parameters, and the best ad hoc values found.

The new method and associated results presented here eliminate that gap by giving
a branch-and-bound algorithm, and an effective implementation, for finding parameters
with the optimal MFE prediction accuracy across the given collection of RNA sequences.
Somewhat surprisingly, we find that the improvement in prediction accuracy between
the new branch-and-bound (BB) parameters and previous ad hoc (AH) ones is not
statistically significant. To test this conclusion, we computed the prediction accuracies
for the different branching parameters under consideration on a much larger set of 557
tRNA and 1283 55 rRNA sequences [20] from the Mathews Lab (U Rochester). We again
saw no significant difference between the AH and BB parameters in MFE prediction
accuracy for the testing sequences.

Moreover, we also confirmed that the new parameters give a statistically significant
improvement over the current ones on the type of testing sequences, i.e. tRNA, 55 rRNA,
or both, for which the parameters were trained. In conjunction, these results suggest
that there may be a relatively large set of branching parameters which yield equivalent
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prediction accuracies that improve over the current ones. To move forward in identifying
the scope of these parameters, we confirm that the current empirical strategy of focusing
on the trade-off between two of the three branching parameters is well-substantiated by
our analysis. This is especially useful as such a reduction in the dimension will enable
the approach to be applied to longer sequences than those considered here.

2. Materials and Methods

We briefly sketch some background in the parametric analysis of RNA branching
relevant to the current work before giving the new branch-and-bound algorithm. We
conclude with information about the training and testing sequences used.

2.1. Parametric analysis of RNA branching

An RNA secondary structure decomposes into well-defined substructures. Our fo-
cus here is on the ones known as multiloops or branching junctions. Such a substructure
has 3 or more helical arms which radiate out as branches. The classical tRNA cloverleaf
has a single multiloop with four branches, while the single 55 rRNA one has only three.
A parametric analysis seeks to understand how the MFE prediction depends on the
parameters used in the thermodynamic optimization. Here we focus on the three which
govern the entropic cost of loop branching. The goal of this targeted reevaluation is to
characterize the impact that the branching parameters have on the prediction accuracy
of the two families considered, as well as highlight the interplay between optimizing for
each family.

2.1.1. Branching parameters

We use the term branching parameters to refer to the three (learnt) parameters (a,b, c)
in the initiation term in the multiloop scoring function:

AGipit = a + b - [number of unpaired nucleotides| + ¢ - [number of branching helices].
@
The initiation term, together with the "stacking" energies of adjacent single-stranded
nucleotides on base pairs in the loop, is used to approximate the multiloop stability
under the NNTM. The stacking energies are based on experimental measurements [16,
21], but the linear form of the initiation term was originally chosen for computation
efficiency [21]. This simple entropy approximation has been shown to outperform other
more complicated models for multiloop scoring in MFE prediction accuracy [22]. In
this work we focus on possible improvements of the MFE prediction by changing the
branching parameters.

2.1.2. Standard branching parameters

The NNTM has evolved over time, and the loop initiation parameters have changed
with each major revision. Here they will be denoted T89 [21], T99 [16], and T04 [22]
as in Table 2. On the two families considered, the T99 values were the most accurate
overall, so they will be the primary point of comparison for the results. The older and
newer values are also listed, and some trade-offs among the three will be addressed in
the discussion.

2.1.3. Precision of branching parameters

For technical reasons, the parametric analysis is performed over the rationals with
very high precision. However, all current thermodynamic optimization methods use
rather low precision by comparison. In particular, the branching parameters are specified
to one decimal place. For the presentation of results and discussion of their implications,
the new branching parameters used were first rounded to one decimal place.
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2.1.4. Branching polytopes

The focus here is on the NNTM branching parameters, but the building blocks of
our analysis are mathematical objects known as branching polytopes. The key point is
that once such a branching polytope is computed for a given RNA sequence, it competely
determines a division of the parameter space into regions where the (a, b, ¢) combinations
from each region yield the same MFE predictions.

Branching polytopes were introduced in [23], and are the foundation of this para-
metric analysis of the NNTM branching parameters [17,24]. For a given RNA sequence,
its branching polytope is a 4D geometric object which encloses points, called branching
signatures, that correspond to all the different possible secondary structures. Since we
are concerned here with parameters rather than polytopes and signatures, we refer an
interested reader to [17] for a more complete description of the latter.

Through a duality from convex geometry, to the branching polytope we associate a
subdivision of the 3D parameter space into convex regions. These regions are of great
significance to analyzing the effects of varying the branching parameters in the NNTM.
Namely, the branching parameters (a, b, ¢) from the same region yield the same MFE
structures, while for parameters from different regions the model produces different
predictions.

2.2. Branch-and-bound algorithm

We fix an ordering of the testing sequences and for each of them, we order the
regions of the associated subdivision of the parameter space. The average number of
regions for the training data is: 517 for tRNA and 2109 for 5S rRNA. We use Reg(i, j)
to denote the j-th region for the i-th sequence. The part of the parameter space that
contains the optimal parameters for the training set can be found by considering all the
intersections that can be formed by taking one region from each sequence. Due to size,
exhaustive search for the optimal region is not feasible - we use a branch-and-bound
algorithm instead. We first present the basic idea behind the algorithm and how the
merging and pruning steps are performed for two sequences. Then we explain how this
idea can be extended to a larger training set. The straightforward extension, however,
is not efficient for 50 sequences, so we perform merges along a binary tree. We also
explain how performing certain pre-processing steps which require initial overhead time
significantly improve the total running time.

2.2.1. Basic idea behind the algorithm

Suppose we are optimizing the parameters for the first two RNA sequences. In
this case, we are interested in all the pairwise intersections Reg(1, j1) N Reg(2, j») of the
regions that correspond to the two training sequences. Most of the intersections are
empty and should thus be discarded. However, checking for nonempty intersections
is computationally expensive. Therefore, before we compute intersections, we check
whether the intersection could possibly provide an improvement in the prediction.

The inputs for the algorithm are the polytope for each sequence, the optimal struc-
tures that correspond to the vertices of each of the polytopes, and a lower bound L for
the best average accuracy. Better lower bounds improve the running time - we used
the accuracy we knew we could achieve with the ad hoc parameters. Fori = 1,2, let
Acc;(Reg(i,j)) denote the prediction accuracy for sequence i when parameters from its
j-th region are used. This value can be computed from the input by exhaustive search
through the possible optimal structures. We order the regions for each sequence by
decreasing accuracy. Let U; = Acc;(Reg(i,1)) be the maximal attainable accuracy for
sequence i. The region Reg(1, j) can be discarded from consideration in the search for
optimal parameters unless

Accy(Reg(1,/)) + Uy > 2L, (2)
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If (2) is satisfied, we say Reg(1, j) passes the pruning test. Note that since the regions
for the first sequence are listed by accuracy, once j is large enough so that the pruning
test fails, we can conclude that it would fail for all remaining regions for that sequence
and we remove them from future consideration.

If Reg(1,j) passes the pruning test, in the next step we consider which of its in-
tersections Reg(1, j) N Reg(2, k) with regions from the second sequence are nonempty
and yield accuracy better then L. We consider these candidate regions starting with
the lowest j and, for a fixed j, we check for k in increasing order. The first nonempty
intersection found, say Reg(1, jo) N Reg(2, ko), is a region for which the average accuracy
is (Accq (Reg(1,jo)) + Accp(Reg(2,ko))) /2, so we update our lower bound L. Since the
regions of the second sequence are listed by accuracy, we start checking for the next
value of j. Then before we compute other candidate regions Reg(1, j) N Reg(2, k), we
check whether

Acci(Reg(1,])) + Acca(Reg(2,k)) > 2L

and only do polytope calculations if this inequality is satisfied. Each time we find a new
nonempty intersection, the value L is updated as before. At the end, the value L is the
best attainable accuracy and the last nonempty intersection that was computed is the
part of the parameter space that yields this accuracy.

Note that the time spent at the beginning for ordering the regions according to
accuracy saves time in performing polytope intersections later.

2.2.2. Extending to N sequences

When we have more than two sequences, the intersections of interest can be formed
by sequentially intersecting all the regions of the first sequence with all the regions of the
second sequence, then taking all the nonempty pairwise intersections and intersecting
them with the regions of the third sequence, etc. Figure 1 is an illustration of the linear
order in which these intersections can be formed in the simplest version of the algorithm.

1 2 3 4 5 6 7 8

AN

Figure 1. Order of merges under the basic branch-and-bound algorithm.

12 123 1234 —— 12345 — 123456 — 1234567 - 12345678

When checking which regions from the first sequence should be considered in
forming the intersections, the criterion (2) is replaced with

N
Accy(Reg(1,/)) + )_ U; > NL, ©)
i=2
where U(i) is the maximal attainable accuracy for the i-th sequence, computed from the
input data.
In the first merge illustrated in Figure 1, for each Reg(1, j) which passes this pruning
test, we consider regions Reg(2, k) from the second sequence. If

N
Accy(Reg(1,j)) + Accr(Regy, k) + ) U; > NL, 4)
i=3

we check whether Reg(1, j) N Reg(2, k) is nonempty, and if so we consider it in the
next merge, etc. In the final merge, similarly to the case of 2 sequences, we can exploit
the fact that we know that the accuracy for a nonempty intersection N Reg(i, j;) is
YN, Acci(Reg(i, j;)) /N, so each time we find a nonempty intersection, we update the
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value of L and use this new value to prune some of the remaining candidates before we
actually perform polytope calculations.

In fact, the polytope calculations being the most time consuming part of the process,
it turns out that it pays off to invest time in finding better upper bounds to replace the
U;’s in the pruning steps. Therefore, before we start the merges, we compute the maximal
attainable accuracy for sequence i for each region Reg(1, j), denoted by Max;(Reg(1,j)).
In order to do this, we identify which intersections Reg(1, j) N Reg(i, k) are nonempty
and take the maximal Acc;(Reg(i, k)). The pruning test (3) is then replaced by

N
Accy(Reg(1,/)) + ) _ Max;(Reg(1,/)) > NL, (5)
=2

while (4) is replaced by

N
Accy (Reg(1,)) + Acca(Reg(2,k)) + Y Max;(Reg(1,j)) > NL, (6)
=3

1

etc.

2.2.3. Binary merge

When merging regions for k tRNA sequences, we need to consider intersections of
k regions, so it is important that we maximize the number of those that can get pruned
before any polytope calculations are performed. Therefore, in our implementation we
replace the linear merge from Figure 1 by a binary merge order, illustrated in Figure 2.
Each node of the tree represents a step in which intersections of regions from two sets of
sequences are being considered.

1 2 3 4 5 6 7 8
AN N NN
12 34 56 78
S~ S
1234 5678
\
12345678

Figure 2. Improved merging order.

The improved upper bounds that we compute at the beginning in order to have
more efficient pruning are Maxy (Reg(i, j)) - the maximal accuracy for sequence k under
parameters from the region Reg(i, j). While it may seem like each of these values requires
intersecting with each region of the k-th sequence, here we exploit the fact that the regions
are ordered by accuracy, thereby significantly reducing the computing time. Namely,
we consider intersections Reg(k, ) N Reg(i, j) ordered by increasing | and when the first
nonempty intersection is found, we can take Maxy (Reg(i,j)) = Acck(Reg(k,1)) .

In fact, the values Max;(Reg(k, j)) computed can be used before merges start to
reduce the number of regions we consider for each sequence . This is another instance
where we pay slight overhead at the beginning in order to save time on calculating
polytope intersections later. Namely, in a pre-processing step at the beginning, right

1

After this step, for L = 0.74, the average number of regions to be considered for each of tRNA sequence is 12 and the total running time for tRNA on

a machine with Intel® Core ™ i9-9900K, 32 GB SDRAM,, is 2.5hrs. For L = 0.76, the average number of regions to be considered for each tRNA
sequence is 9 and the total running time is 1.5hrs.
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after the values Max;(Reg(k, j)) are calculated, region Reg(i, j) is discarded from future
consideration unless

N
Y Max; (Reg(i, )) > NL. )
k=1
During merges, when the regions from sequences i € I are being merged, the
intersection N;cjReg(i, k;) is not computed unless it passes the pruning test

) Acci(Reg(i,k;)) + ) minMax;(Reg(i, k;)) > NL. (8)

il jg1 '€
If the intersection passes the test, then we check that it is nonempty before we save
it to be considered in future merges. However, when training on 100 sequences this still
leads to checking a prohibitively large number of intersections of a large number of poly-
topes. For that reason, when the number of sequences being merged is at least ten, we
use an additional test before we verify that N;cjReg(i, k;) is nonempty. Namely, suppose
the merge I comes from two branches, I = I; U I. Then, by construction, Njcy, Reg(i, k;)
and N;cp,Reg(i, k;) are both nonempty. However, Reg(iy, k;, ) N Reg(iz, k;,) = @ implies
that the whole intersection is empty, even though the opposite is not true. Therefore,
we verify which pairwise intersections Reg(i1, k;,) N Reg(io, k;,), for iy € I, iy € I,
are nonempty for all the regions Reg(i1, k;, ), Reg (i1, k;, ) that appear in the two lists of
intersections for the sequences from the sets I and I, respectively, that are being merged
at this step. We then check whether N;c;Reg(i, k;) can be declared empty based on this
information, and if not, then we compute the intersection. Most pairwise intersections
considered here are empty, and when |I| > 10, the number of regions to be considered is
small enough that the overhead time used to compute the pairwise intersections at the
beginning of the merge is a good trade-off for the time saved in checking the nonempty

intersections when the pruning test is passed.

2.3. Data analysis

Parameters obtained from the new branch-and-bound algorithm were trained on
sequences from the previous study and tested on a much larger set available from the
Mathews Lab (U Rochester) to determine the extent of possible improvement in MFE
prediction accuracy by modifying the branching parameters.

2.3.1. Accuracy measure

To determine the accuracy of a prediction we compare with a pseudoknot-free
native secondary structure S from which the noncanonical base pairings have been
excluded. For an MFE prediction S’ for that RNA sequence, we score the accuracy as the
Fi-measure:

ISNS|

F(58)=2—""1,
1SS =2 e

where |S| and |S’| are the number of base pairs in S and S, respectively, and |S N S|
is the number of true positive base pairs common to both structures. The minimum
value 0 means no accurately predicted base pairs, while 1 means perfect prediction. The
accuracy of a multiloop initiation parameter triple for a sequence is the average over all
possible MFE secondary structures for that fixed (a, b, c).

2.3.2. Testing and training sequences

Two sets of sequences were used in this study, one for training and one for testing.
Both consisted of tRNA and 55 rRNA sequences. These are two of the best characterized
RNA families structurally while also having good diversity in MFE accuracy and other
sequence characteristics. As will be discussed, sequence length was also an important
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factor due to computational limitations in the original polytope calculations. We note,
however, that both have well-documented factors, such as post-translational modifica-
tions for tRNA and protein-binding for 55 rRNA, affecting the structure but which are
not included in the NNTM. Despite these caveats, it is possible to improve their MFE
prediction accuracy simply by modifying the three NNTM branching parameters.

The training set consisted of the 50 tRNA and 50 5S rRNA sequences from the
previous study [17]. (A complete list with Accession number is given in the Supplemen-
tary data of the previous paper.) These sequences were obtained from the Comparative
RNA Web (CRW) Site [25]. By design, they were chosen so that their MFE prediction
accuracies and GC content are as uniformly distributed as reasonably possible. The
GC content was used to ensure that sequences with very similar MFE accuracies were
sufficiently different to generate a diverse training set.

The second set was used for testing, and consisted of the 557 tRNA and 1283 55
rRNA sequences from a larger benchmarking set first used in [20,22], which supersedes
previous ones [16]. Summary statistics for some characteristics like sequence length,
MEFE accuracy under the Turner99 branching parameters, GC content, and number of
native base pairs (bp) for both data sets broken down by family are given in Table 1. Per
family differences in means between the training and testing data sets for each sequence
characteristic were evaluated by a t-test. While the differences in sequence length
between the training and testing data were significant for both families (tRNA: p =
0.0003, 55 rRNA: p < 0.0001), the differences in MFE accuracy were not (tRNA: p =
0.0846, 55 rRNA: p = 0.2659). Differences in both GC content and number of base pairs
were mixed; the former had p = 0.0018 for tRNA but p = 0.0883 for 55 rRNA, whereas
the latter was p = 0.2707 and p < 0.0001. As will be seen in the results section, the
training data seemed to represent well the testing sequences despite any differences in
the composition of the sets.

Table 1. Per family characteristics of the training and testing data sets.

Type Family =~ Num  Seqlength  MFE accuracy GC content  Native bp
avg std avg std avg  std avg  std

Training tRNA 50 7438 1.89 052 0.30 059 0.08 2036 1.21
Training 5S rRNA 50 121.38 3.62 0.63 0.24 0.58 0.06 3518 3.04

Testing tRNA 557 7710 521 058 0.24 054 011 2055 1.15
Testing 5SrRNA 1283 11871 349 0.59 0.24 057 0.05 33.61 238

3. Results

We first address the extent of improvement possible when the branching param-
eters are trained on a specific family, either tRNA or 55 rRNA. We then consider the
improvement possible across both training families simultaneously. The training results
are tested against a much larger set of 1840 sequences, and the conclusions are found to
hold. Importantly, this demonstrates that the method is not overfitted to the training
data. Finally, the relevance of parameter precision to the results is addressed.

3.1. Improving per family prediction accuracy

Previously [17], mathematical methods were used to find the best of all possible
combinations of branching parameters (a, b, ¢) for each individual training sequence.
Averaging these per sequence accuracies over their family, or the whole training set,
yields the “max” accuracy listed in Table 2. These numbers are an upper bound on
the improvement possible by modifying the branching parameters for MFE prediction
accuracy on these training (sub)sets. We note that the upper bound is known not to be
achievable, since the common intersection (even within a family) of the best per sequence
parameter values is empty.
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A lower bound on the improvement was established [17] by ad hoc means, that is
by identifying large sets of sequences from each family which did have such a common
intersection. Seven such large sets were found for tRNA and four for 55 rRNA. These
combinations of possible parameters were considered for each family, and the one with
best average accuracy over the whole family was reported. We refer to these parameter
combinations here as AHt and AHs, for the tRNA and 55 rRNA families respectively. It
was found that the AHt and AHs accuracy on their respective family, listed in Table 2,
was a statistically significant improvement over the T99 parameters.

Table 2. Parameter values and MFE prediction for the 50 tRNA training sequences and the 50 5S
rRINA, as well as over both families.

Parameters tRNA 55 rRNA Both
a b c avg std avg std avg std

T89 46 04 01 041 025 069 024 055 028
T99 3.4 0 04 052 030 063 024 058 027
T04 9.3 0 -0.6 045 028 064 024 054 028

max n/a n/a n/a 091 010 081 0.09 086 0.11
AHt 109 -01 -26 074 024 052 021 0.63 0.25
AHs -85 0.3 45 036 018 071 022 053 027
BBt 17 -03 -45 075 022 045 017 0.60 0.25
BBs -57 02 35 037 019 073 021 055 0.27

AHb 122 02 -29 071 027 062 021 066 0.25
BBb 93 -01 -17 073 025 059 023 0.66 0.25

However, there was a sizable gap between the upper and lower bounds for the
potential accuracy improvements for each family considered. The branch-and-bound
algorithm presented here was implemented to determine where in this range the best
possible per family accuracy lay. The new parameters are listed in Table 2 as BBt and
BBs along with the corresponding accuracies.

As a technical aside, the best possible (a,b, c) region for 5S is unbounded in the
(—3,0,1) direction. The BBs parameters reported are the centroid of the finite 2D face.
We also considered a strictly interior point BBs+(—3,0,1) = (—8.7,0.2,4.5), which gave
nearly identical accuracy for tRNA. Interestingly, this new point is very close to AHs,
with a distance of (0.2, 0.1, 0).

It is worth noting that the signs of these family-optimal parameters are consistent
within the family between the ad hoc and branch-and-bound combinations, but reversed
between the two families. This suggests that (a,b, ¢) combinations which are optimal for
different configurations, i.e. a tRNA cloverleaf versus a 55 rRNA Y-shape, may occupy
different parts of the 3D parameter space. It is also relevant to future analyses that the
range of the b parameters is very narrow (from —0.3 to 0.3) and distributed fairly evenly
around 0.

As evaluated by a two-sample t-test, the differences between the ad hoc and branch-
and-bound parameter accuracies within the family on which the parameters were op-
timized are not significant, with p = 0.7699 for tRNA and p = 0.7021 for 55 rRNA. In
other words, the maximum possible accuracy per family over the training set sequences
is essentially the best ad hoc accuracy, and far from the average over the per sequence
maximums. This closes the gap from the previous analysis, while opening the door to
new questions as discussed in the next section.

3.2. Improving cross family prediction accuracy

It was observed before that the accuracy of the new AHt and AHs parameters on
the other family is clearly worse than the Turner parameters. Consequently, a “best both”
combination, denoted here AHb, was also identified from among the 11 possible ad hoc
ones considered, 7 for tRNA and 4 for 55 rRNA. As evaluated by a two-sample t-test, the
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improvement over the T99 parameters on the whole training set accuracy is significant
(p = 0.0200). This is due entirely to tRNA; the AHb parameters raise the tRNA accuracy
by an amount statistically indistinguishable (t-test p = 0.5243) from AHt, while the AHb
accuracy for the 55 rRNA training sequences was indistinguishable (t-test p = 0.7308)
from T99. This is interesting because it demonstrates that, in terms of trade-offs in
prediction accuracy between tRNA and 55 rRNA, the former can be improved without
negatively affecting the latter. We note that only per family ad hoc parameters were
considered at the time, so it seemed plausible that a better parameter combination could
be found when both tRNA and 55 rRNA were considered concurrently.

However, this turned out not to be the case when the branch-and-bound algorithm
was run on the full 100 sequence training set. The parallelization is implemented in
such a way that three combinations of “near optimal” parameters were detected, along
with the absolute best one. When the parameters are rounded to 1 decimal precision, 3
of the 4 combinations give identical 0.66 average accuracy when rounded to 2 decimal
places, and the fourth is only 0.02 less. Given this, we report as the BBb parameters the
combination with 0.66 average accuracy which was most dissimilar to AHb. The other 2
combinations were AHb +(—0.3,0,0.1) and +(—0.1,0,0), although AHb was originally
optimized for tRNA and nof the full training set. The fourth was more similar to BBb but
the combination (9.7, —0.2, —1.8) was noticeably worse for 5S by 0.05 with only a 0.01
improvement for tRNA.

These results illustrate that, while it is possible to improve over the current T99
prediction accuracy by a statistically significant amount, doing so simultaneously over
two different families is more challenging than improving the per family accuracy.
Additionally, the best possible accuracy over the full training set is the same as the
previous ad hoc one.

3.3. Results for testing data

Table 3. MFE prediction accuracies for testing data set from Mathews Lab (U Rochester) with 557
tRNA sequences and 1283 55 rRNA. Table 2 parameters repeated for completeness.

Parameters tRNA 55 rRNA Both
a b c avg std avg std w-avg w-std

T89 46 04 01 048 022 065 026 0.56 0.26
T99 3.4 0 04 058 024 059 024 0.59 0.24
T04 9.3 0 -0.6 053 025 062 025 0.57 0.25

AHt 109 -01 -26 074 022 047 0.20 0.61 0.25
AHs -85 03 45 043 017 066 026 0.54 0.25
BBt 17 -03 -45 072 020 040 0.11 0.56 0.23
BBs -57 02 35 045 0.17 066 025 0.56 0.24

AHb 122 02 -29 073 022 053 024 0.63 0.25
BBb 93 -01 -17 073 023 052 0.22 0.62 0.25

We note that the summary statistics for “Both” families in Table 3 were computed
as a weighted average and standard deviation, so that each family contributed 50% to
the statistic although there were more than twice as many 55 rRNA as tRNA sequences
in the testing set. With a total of 1840 sequences, the difference in accuracy over the
whole data set for the T99 parameters versus the AHb or BBb is significant; the Tukey
HSD Post-hoc Test following an ANOVA were both p < 0.0001 while the differences
between AHb and BBb were not (p = 0.5957). The AHb and BBb parameters performed
just as well on the tRNA testing sequences as on the training ones (ANOVA p = 0.9008),
although the 55 accuracy was less good (ANOVA p = 0.0051). A Tukey HSD Post-hoc
Test found significant differences between the AHD training accuracy and the testing one
(p = 0.0420) as well as the BBb testing one (p = 0.0156) for the 5S family, but the other



Version August 31, 2021 submitted to Genes 11 of 15

four pairwise comparisons were indistinguishable. We also note that the parameters
trained on 55 sequences have lower accuracy on the testing data.

Other than this lower accuracy for 55 rRNA, several patterns observed in Table 2
also hold in Table 3. First, parameters which were trained on one family are markedly less
accurate on the other one. When appropriately combined to weigh each family equally,
this yields overall accuracies comparable to the Turner values. However, parameters
chosen to raise the overall accuracy can achieve a statistically significant improvement
over T99. Finally, branch-and-bound and ad hoc accuracies are remarkably similar over
the families on which they were trained.

3.4. Sensitivity to parameter precision

As discussed in Section 2, the accuracy computations here focused on branching
parameters specified to one decimal precision. We note that the “exact” parameters com-
puted, that is ones specified as a rational number to the maximum precision allowable by
the size of an integer in the computer algebra system used, always gave higher accuracy
on the training (sub)set used. The largest difference seen was less that 0.035, which is
not a statistically significant difference over data sets of this size with this amount of
variance in the accuracy means.

4. Discussion

Previous results [17] demonstrated that it was possible to achieve a statistically
significant improvement in MFE prediction accuracy by altering the three NNTM param-
eters which govern the entropic cost of loop branching. This was shown on a set of 50
tRINA sequences, on another of 50 55 rRNA, and on the full training set of both families
combined. However, the extent of the possible improvement was unknown, although a
lower bound was given by the ad hoc parameters identified — listed as AHt, AHs, and
AHb respectively in Table 2. The “max” upper bound, known not to be attainable, was
provided by the average maximimum accuracy (over any combination of parameters)
for each individiual training sequence. Hence, the open questions was to establish the
maximum simultaneous improvement over these training sets.

Here we provide a branch-and-bound algorithm which takes as input a set of
RNA branching polytopes [23] and finds the parameters with the best possible accuracy
over the entire set. We describe implementation details needed to insure that the basic
algorithm runs efficiently enough to be useful in practice, and give results on our
original training set as well as a much larger testing set available from the Mathews
Lab (U Rochester) with 557 tRNA and 1283 55 rRNA. The differences in MFE accuracy
under the standard T99 parameters between the training and testings sequences are not
significant, and we find that the general trends observed in the training data are borne
out by the testing results.

First, and most surprising, we find that the branch-and-bound parameters do not
improve on the ad hoc ones in any significant way. Hence, we now know that the best
possible MFE prediction accuracy for the tRNA training sequences is 0.75 on average and
0.73 for 55 rRNA. The testing data achieves a comparable accuracy for tRNA, although
the ad hoc AHt parameters are actually slightly better than the branch-and-bound BBt.
The AHs and BBs accuracies for the 55 rRNA testing sequences are equivalent, if lower
than the training ones (but not by a statistically significant amount).

Opverall, the average MFE prediction accuracy for the 55 rRNA testing sequences is
consistently lower, by ~5%, than the training accuracy for all parameter combinations
considered. It is not obvious why this should be the case, since the GC content is
equivalent and the length and number of native base pairs were actually lower on
average for the testing sequences. In the future, it may be worthwhile to investigate
what other sequence and/or structural characteristics might correlate with this training
versus testing trend for 5S rRNA.
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Returning to the accuracy improvement question, the branch-and-bound results
for each family establish a much more realistic upper bound than the previous “max”
values from Table 2. However, we also know that achieving this level of accuracy
simultaneously across the two families is not possible. The testing data reinforces the
point that parameters which are optimized only for one family perform much less well
for the other. For the family-specific parameters, i.e. AHt, AHs, BBt, and BBs, this yields
combined accuracies over both families which are on par with the Turner parameters for
both training and testing data. In the case of the AHt paramaters, the improvement over
T99 for the full testing set is statistically significant (p = 0.0187) but not for the training
set (p = 0.1395).

In contrast, when the parameters are chosen to maximize the accuracy of both
families, a statistically significant improvement over T99 — which has the highest
combined accuracy over the three Turner parameter sets — is achieved for both testing
and training data. As described for the training results, there are multiple different
parameter combinations that achieve essentially the same accuracy over both families.
This conclusion holds true for the testing data as well. Such stability in the maximum
combined accuracy strongly suggest that future studies should focus on “near optimal”
parameter combinations. This is particularly appropriate when the parameters are
commonly specified to 1 decimal precision.

In general, we find that the AHb and BBb parameters are better for tRNA than for 55
rRNA, relative to the family-specific parameters. It is interesting to note that the Turner
parameters with the highest 5S rRNA accuracy are the earliest ones which had b = 0.4,
whereas the T99 and T04 parameters both have b = 0. The parameters trained only on
55 rRNA which produce the highest accuracy on that family, i.e. AHs and BBs, both had
b > 0 while the opposite was true for tRNA. However, it was possible to achieve the
same accuracy (to two decimal places) over the entire 100 sequences training set with
either b = 0.2 or b = —0.1, and essentially the same for the 1840 sequence testing set.

Over all the new parameter combinations considered, we found a small range of b
values, roughly centered around 0. Furthermore, previous results [17] had found that
the thermodynamic optimization was most sensitive in the b direction. In future work,
we expect to specialize the b value in our parametric analysis to better focus on the a2 and
c trade-offs. We have preliminary results which indicate that this is not too detrimental
to the overall accuracy, and this reduction in complexity will certainly improve the time
and memory needed to compute the branching polytopes.

Recall that 2 weighs the number of multiloops while ¢ scores the total number of
branching helices. In terms of trade-offs between them, we note that the most recent
Turner parameters have a significant increase in a and a ¢ < 0 for the first time. All six
new parameter combinations have opposite sign for a and c suggesting that there may
be an important reward /penalty balance to be achieved. Not only did the 5S-specific
parameters have b > 0 but they also both have a < 0 and ¢ > 0, whereas the tRNA-
specific had the exact opposite signs. Although the same accuracy could be achieved
over the whole training data set with b either positive or negative, there were no “near
optimal” parameter combinations found which had 2 < 0 and ¢ > 0. Hence, it seems
that there may be a greater range of (4, c) combinations which produce an acceptable 55
rRNA accuracy than there is for tRNA. In fact, BBb is quite close to T04, with a difference
of (0, —0.1, —1.1). This small change produces a considerable improvement in tRNA
accuracy, with a smaller corresponding decrease for 5S rRNA.

In conjunction, these results suggest that there may be a relatively large set of
branching parameters which yield equivalent prediction accuracies that improve over
the current ones. To make progress on identifying the scope of these parameters, we
confirm that the current empirical strategy of focusing on the trade-off between the
a and ¢ parameters is well-substantiated by this analysis. Moving forward, the goal
is to expand the training set to include other RNA families, but this requires new
algorithmic approaches to computing the branching polytopes. To date, the longest
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sequence attempted (an RNase P of length 354 nt) took more than 2 months. However,
focusing on the a,c trade-offs only should reduce the complexity substantially, yielding
further insights into the advances possible and limitation faced when improving RNA
branching predictions.

5. Conclusions

We conclude by putting the results reported here into a broader context. In demon-
strating that a targeted reevaluation of the NNTM branching parameters can improve
MEE prediction accuracy, we also highlight the challenges of doing so across more than
one family simultaneously. This is relevant not only to thermodynamic methods for RNA
secondary structure prediction, but also to machine learning approaches which require
large enough training sets to parameterize all the new structural features proposed. It
has been demonstrated that the risk of overfitting to the training data is real [26], but
also that using thermodynamic information in a machine learning method can reduce
the problem while still improving prediction accuracy [27].

While the importance of training across different RNA families is well-known, to
the best of our knowledge, this is the first time that the resulting parameters have been
explicitly compared when trained on one family versus another, and then on both. In this
way, we are able to characterize the effect on the maximum possible per family accuracy
— which is now known — when optimizing the branching parameters over both of our
training families. By focusing only on two families, this interplay can be clearly analyzed.
We see an explicit trade-off between tRNA and 55 rRNA, and this suggests that it may
be worthwhile to consider the trade-offs being made by other methods. In doing so, it
is important that the training and testing data sets be balanced, i.e. where each family
contributes equally to the accuracy. Otherwise, improvements in the dominant family
will disproportionally affect the combined statistic.

Moving forward, we plan to extend this approach to analyze the trade-offs in
branching parameters among additional families. As a first step in that direction, we did
consider the prediction accuracy under the ad hoc and branch-and-bound parameters
for each of the other eight families from the Mathews data set [20,22,28]. For half of
these families (small subunit ribosomal RNA domains, large subunit ribosomal RNA
domains, group I self-splicing introns, and group II self-splicing introns), an ANOVA
on the average family accuracy found no significant differences among T99, T04, AHb,
and BBb. Hence, even though the new parameters were trained on two entirely different
families, this did not negatively affect the accuracy. In the four families where there was
a significant change (p < 0.05) in the ANOVA, two improved while two worsened —
again highlighting the trade-offs in branching parameters between families. Interestingly,
the former (RNase P and tmRNA) were “tRNA-like” in the sense that they performed
as well under the AHt parameters (although not the BBt) whereas the latter (signal
recognition particle RNA and telomerase RNA) were “5S rRNA-like” in the sense that
they performed as well on AHs and BBs as on T99 and T04.

In summary, analyzing the trade-offs in MFE prediction accuracy improvements
possibly by modifying the NNTM branching parameters may yield improvements more
generally. At the very least, it will characterize why obtaining such improvements
simultaneously over different RNA families with distinct branching configurations has
remained a challenge.
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