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Abstract: Minimum free energy prediction of RNA secondary structures is based on the Nearest1

Neighbor Thermodynamics Model. While such predictions are typically good, the accuracy can2

vary widely even for short sequences, and the branching thermodynamics are an important factor3

in this variance. Recently, the simplest model for multiloop energetics — a linear function of4

the number of branches and unpaired nucleotides — was found to be the best. Subsequently,5

a parametric analysis demonstrated that per family accuracy can be improved by changing the6

weightings in this linear function. However, the extent of improvement was not known due7

to the ad hoc method used to find the new parameters. Here we develop a branch-and-bound8

algorithm that finds the set of optimal parameters with the highest average accuracy for a given set9

of sequences. Our analysis shows that the previous ad hoc parameters are nearly optimal for tRNA10

and 5S rRNA sequences on both training and testing sets. Moreover, cross-family improvement11

is possible but more difficult because competing parameter regions favor different families. The12

results also indicate that restricting the unpaired nucleotide penalty to small values is warranted.13

This reduction makes analyzing longer sequences using the present techniques more feasible.14

Keywords: secondary structure; NNTM; multiloops; branching parameters15

1. Introduction16

Accurate prediction of RNA base pairings from sequence remains a fundamental17

problem in bioinformatics. While new methods continue to advance the ribonomics18

research frontier [1–9], experimentalists still obtain useful functional insights from the19

classical minimum free energy (MFE) secondary structure predictions [10] under the20

Nearest Neighbor Thermodynamic Model (NNTM). Given the on-going popularity of21

such predictions, we focus here on characterizing accuracy improvements from one22

of the smallest possible changes to this approach: modifying only three of over 8,00023

NNTM parameters [11]. As will be explained, these three parameters govern the entropic24

cost of branching, which is a critical aspect of the overall molecular configuration. More-25

over, they are some of the few not based on experimental data, and so are reasonable26

candidates for such a targeted reevaluation. Here, we consider two families of RNA27

molecules: transfer RNA (tRNA) and 5S ribosomal RNA (rRNA). Their sequence lengths28

are amenable to our current methods, while providing two different branching config-29

urations to analyze. This enables us to confirm the extent of accuracy improvement30

possible on a per family basis, while also illustrating the challenges of obtaining such31

improvements simultaneously over two (or more) families.32

An RNA secondary structure is a set of intra-sequence base pairs. For thermody-33

namic prediction purposes, the target pairings are typically canonical, i.e. Watson-Crick34

or wobble, and pseudoknot-free. (Removing these constraints, especially the latter, are35

active areas of research in the field.) Given a secondary structure, its free energy change36

from the unfolded sequence can be approximated under the NNTM; this model and the37
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evolution of its many parameters (nearly all of which are for the special cases of small38

internal loops) are cataloged in an online database [11]. Under the NNTM, when given39

a sequence, an MFE secondary structure can be computed efficiently using dynamic40

programming [12–15].41

Historically, the prediction accuracy is high on average for sequences of length42

700 nucleotides or less [16]. In particular, it was found that an average (with standard43

deviation) of 83.0% (±22.2) of pairings in 484 transfer RNA (tRNA) secondary structures,44

totaling 10,018 base pairs (bp) and 37,502 nucleotides (nt), were predicted correctly. Like-45

wise, 77.7% (±23.1) of pairings in 309 5S ribosomal RNA (rRNA) secondary structures,46

totaling 10,188 bp and 26,925 nt, were predicted correctly. While this clearly supports the47

value of MFE predictions, it also highlights that even at this scale of sequence lengths,48

i.e. ∼76 nt for tRNA and ∼120 for 5S rRNA, the prediction accuracy for an individual49

sequence can be low.50

Recent results have demonstrated that it is possible to obtain a statistically signifi-51

cant increase in MFE prediction accuracy on a diverse training set of 50 tRNA sequences52

and 50 5S rRNA by changing the thermodynamic cost of branching [17]. Recall that53

an RNA secondary structure is composed of different substructures, which are scored54

by different components of the NNTM objective function. The substructures known55

as multiloops (or branching junctions) have three or more helices which radiate out as56

branches. A tRNA molecule has one central multiloop with four branches, while 5S57

rRNA has one with three. Although these branching loops are a critical aspect of the58

overall molecular conformation, they remain one of the most difficult aspects to predict59

accurately [18,19].60

Previously, mathematical techniques from discrete optimization and geometric61

combinatorics were used to completely characterize all the secondary structures which62

were optimal for all possible combinations of different branching parameters on the63

chosen training sets [17]. It was found that 89% of tRNA and 90% of 5S rRNA predictions64

could be improved by altering the branching parameters from the default values. (Those65

which did not improve already had an accuracy well above average.) Critically, though,66

achieving this improvement simultaneously, i.e. for the same set of new parameters, is not67

possible; the intersection of all the “best possible” set of parameters for each sequence is68

empty.69

At the time, an ad hoc combinatorial method was used to identify large combina-70

tions of non-empty intersections among the individual “best possible” sets for a given71

collection of training sequences. It was demonstrated that the branching parameters72

obtained in this way yielded a statistically significant improvement in MFE prediction73

accuracy over the existing values on tRNA, on 5S rRNA, and on the total 100 sequence74

training set, respectively. However, a significant gap remained between the average75

(known to be unobtainable) of the maximum attainable individual accuracies with76

modified branching parameters, and the best ad hoc values found.77

The new method and associated results presented here eliminate that gap by giving78

a branch-and-bound algorithm, and an effective implementation, for finding parameters79

with the optimal MFE prediction accuracy across the given collection of RNA sequences.80

Somewhat surprisingly, we find that the improvement in prediction accuracy between81

the new branch-and-bound (BB) parameters and previous ad hoc (AH) ones is not82

statistically significant. To test this conclusion, we computed the prediction accuracies83

for the different branching parameters under consideration on a much larger set of 55784

tRNA and 1283 5S rRNA sequences [20] from the Mathews Lab (U Rochester). We again85

saw no significant difference between the AH and BB parameters in MFE prediction86

accuracy for the testing sequences.87

Moreover, we also confirmed that the new parameters give a statistically significant88

improvement over the current ones on the type of testing sequences, i.e. tRNA, 5S rRNA,89

or both, for which the parameters were trained. In conjunction, these results suggest90

that there may be a relatively large set of branching parameters which yield equivalent91
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prediction accuracies that improve over the current ones. To move forward in identifying92

the scope of these parameters, we confirm that the current empirical strategy of focusing93

on the trade-off between two of the three branching parameters is well-substantiated by94

our analysis. This is especially useful as such a reduction in the dimension will enable95

the approach to be applied to longer sequences than those considered here.96

2. Materials and Methods97

We briefly sketch some background in the parametric analysis of RNA branching98

relevant to the current work before giving the new branch-and-bound algorithm. We99

conclude with information about the training and testing sequences used.100

2.1. Parametric analysis of RNA branching101

An RNA secondary structure decomposes into well-defined substructures. Our fo-102

cus here is on the ones known as multiloops or branching junctions. Such a substructure103

has 3 or more helical arms which radiate out as branches. The classical tRNA cloverleaf104

has a single multiloop with four branches, while the single 5S rRNA one has only three.105

A parametric analysis seeks to understand how the MFE prediction depends on the106

parameters used in the thermodynamic optimization. Here we focus on the three which107

govern the entropic cost of loop branching. The goal of this targeted reevaluation is to108

characterize the impact that the branching parameters have on the prediction accuracy109

of the two families considered, as well as highlight the interplay between optimizing for110

each family.111

2.1.1. Branching parameters112

We use the term branching parameters to refer to the three (learnt) parameters (a, b, c)113

in the initiation term in the multiloop scoring function:114

∆Ginit = a + b · [number of unpaired nucleotides] + c · [number of branching helices].
(1)

The initiation term, together with the "stacking" energies of adjacent single-stranded115

nucleotides on base pairs in the loop, is used to approximate the multiloop stability116

under the NNTM. The stacking energies are based on experimental measurements [16,117

21], but the linear form of the initiation term was originally chosen for computation118

efficiency [21]. This simple entropy approximation has been shown to outperform other119

more complicated models for multiloop scoring in MFE prediction accuracy [22]. In120

this work we focus on possible improvements of the MFE prediction by changing the121

branching parameters.122

2.1.2. Standard branching parameters123

The NNTM has evolved over time, and the loop initiation parameters have changed124

with each major revision. Here they will be denoted T89 [21], T99 [16], and T04 [22]125

as in Table 2. On the two families considered, the T99 values were the most accurate126

overall, so they will be the primary point of comparison for the results. The older and127

newer values are also listed, and some trade-offs among the three will be addressed in128

the discussion.129

2.1.3. Precision of branching parameters130

For technical reasons, the parametric analysis is performed over the rationals with131

very high precision. However, all current thermodynamic optimization methods use132

rather low precision by comparison. In particular, the branching parameters are specified133

to one decimal place. For the presentation of results and discussion of their implications,134

the new branching parameters used were first rounded to one decimal place.135
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2.1.4. Branching polytopes136

The focus here is on the NNTM branching parameters, but the building blocks of137

our analysis are mathematical objects known as branching polytopes. The key point is138

that once such a branching polytope is computed for a given RNA sequence, it competely139

determines a division of the parameter space into regions where the (a, b, c) combinations140

from each region yield the same MFE predictions.141

Branching polytopes were introduced in [23], and are the foundation of this para-142

metric analysis of the NNTM branching parameters [17,24]. For a given RNA sequence,143

its branching polytope is a 4D geometric object which encloses points, called branching144

signatures, that correspond to all the different possible secondary structures. Since we145

are concerned here with parameters rather than polytopes and signatures, we refer an146

interested reader to [17] for a more complete description of the latter.147

Through a duality from convex geometry, to the branching polytope we associate a148

subdivision of the 3D parameter space into convex regions. These regions are of great149

significance to analyzing the effects of varying the branching parameters in the NNTM.150

Namely, the branching parameters (a, b, c) from the same region yield the same MFE151

structures, while for parameters from different regions the model produces different152

predictions.153

2.2. Branch-and-bound algorithm154

We fix an ordering of the testing sequences and for each of them, we order the155

regions of the associated subdivision of the parameter space. The average number of156

regions for the training data is: 517 for tRNA and 2109 for 5S rRNA. We use Reg(i, j)157

to denote the j-th region for the i-th sequence. The part of the parameter space that158

contains the optimal parameters for the training set can be found by considering all the159

intersections that can be formed by taking one region from each sequence. Due to size,160

exhaustive search for the optimal region is not feasible - we use a branch-and-bound161

algorithm instead. We first present the basic idea behind the algorithm and how the162

merging and pruning steps are performed for two sequences. Then we explain how this163

idea can be extended to a larger training set. The straightforward extension, however,164

is not efficient for 50 sequences, so we perform merges along a binary tree. We also165

explain how performing certain pre-processing steps which require initial overhead time166

significantly improve the total running time.167

2.2.1. Basic idea behind the algorithm168

Suppose we are optimizing the parameters for the first two RNA sequences. In169

this case, we are interested in all the pairwise intersections Reg(1, j1) ∩ Reg(2, j2) of the170

regions that correspond to the two training sequences. Most of the intersections are171

empty and should thus be discarded. However, checking for nonempty intersections172

is computationally expensive. Therefore, before we compute intersections, we check173

whether the intersection could possibly provide an improvement in the prediction.174

The inputs for the algorithm are the polytope for each sequence, the optimal struc-175

tures that correspond to the vertices of each of the polytopes, and a lower bound L for176

the best average accuracy. Better lower bounds improve the running time - we used177

the accuracy we knew we could achieve with the ad hoc parameters. For i = 1, 2, let178

Acci(Reg(i, j)) denote the prediction accuracy for sequence i when parameters from its179

j-th region are used. This value can be computed from the input by exhaustive search180

through the possible optimal structures. We order the regions for each sequence by181

decreasing accuracy. Let Ui = Acci(Reg(i, 1)) be the maximal attainable accuracy for182

sequence i. The region Reg(1, j) can be discarded from consideration in the search for183

optimal parameters unless184

Acc1(Reg(1, j)) + U2 ≥ 2L, (2)
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If (2) is satisfied, we say Reg(1, j) passes the pruning test. Note that since the regions185

for the first sequence are listed by accuracy, once j is large enough so that the pruning186

test fails, we can conclude that it would fail for all remaining regions for that sequence187

and we remove them from future consideration.188

If Reg(1, j) passes the pruning test, in the next step we consider which of its in-189

tersections Reg(1, j) ∩ Reg(2, k) with regions from the second sequence are nonempty190

and yield accuracy better then L. We consider these candidate regions starting with191

the lowest j and, for a fixed j, we check for k in increasing order. The first nonempty192

intersection found, say Reg(1, j0)∩Reg(2, k0), is a region for which the average accuracy193

is (Acc1(Reg(1, j0)) + Acc2(Reg(2, k0)))/2, so we update our lower bound L. Since the194

regions of the second sequence are listed by accuracy, we start checking for the next195

value of j. Then before we compute other candidate regions Reg(1, j) ∩ Reg(2, k), we196

check whether197

Acc1(Reg(1, j)) + Acc2(Reg(2, k)) > 2L

and only do polytope calculations if this inequality is satisfied. Each time we find a new198

nonempty intersection, the value L is updated as before. At the end, the value L is the199

best attainable accuracy and the last nonempty intersection that was computed is the200

part of the parameter space that yields this accuracy.201

Note that the time spent at the beginning for ordering the regions according to202

accuracy saves time in performing polytope intersections later.203

2.2.2. Extending to N sequences204

When we have more than two sequences, the intersections of interest can be formed205

by sequentially intersecting all the regions of the first sequence with all the regions of the206

second sequence, then taking all the nonempty pairwise intersections and intersecting207

them with the regions of the third sequence, etc. Figure 1 is an illustration of the linear208

order in which these intersections can be formed in the simplest version of the algorithm.209

1 2 3 4 5 6 7 8

12 123 1234 12345 123456 1234567 12345678

Figure 1. Order of merges under the basic branch-and-bound algorithm.

When checking which regions from the first sequence should be considered in210

forming the intersections, the criterion (2) is replaced with211

Acc1(Reg(1, j)) +
N

∑
i=2

Ui ≥ NL, (3)

where U(i) is the maximal attainable accuracy for the i-th sequence, computed from the212

input data.213

In the first merge illustrated in Figure 1, for each Reg(1, j) which passes this pruning214

test, we consider regions Reg(2, k) from the second sequence. If215

Acc1(Reg(1, j)) + Acc2(Reg2, k)) +
N

∑
i=3

Ui > NL, (4)

we check whether Reg(1, j) ∩ Reg(2, k) is nonempty, and if so we consider it in the216

next merge, etc. In the final merge, similarly to the case of 2 sequences, we can exploit217

the fact that we know that the accuracy for a nonempty intersection ∩N
i=1Reg(i, ji) is218

∑
N
i=1 Acci(Reg(i, ji))/N, so each time we find a nonempty intersection, we update the219
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value of L and use this new value to prune some of the remaining candidates before we220

actually perform polytope calculations.221

In fact, the polytope calculations being the most time consuming part of the process,222

it turns out that it pays off to invest time in finding better upper bounds to replace the223

Ui’s in the pruning steps. Therefore, before we start the merges, we compute the maximal224

attainable accuracy for sequence i for each region Reg(1, j), denoted by Maxi(Reg(1, j)).225

In order to do this, we identify which intersections Reg(1, j) ∩ Reg(i, k) are nonempty226

and take the maximal Acci(Reg(i, k)). The pruning test (3) is then replaced by227

Acc1(Reg(1, j)) +
N

∑
i=2

Maxi(Reg(1, j)) ≥ NL, (5)

while (4) is replaced by

Acc1(Reg(1, j)) + Acc2(Reg(2, k)) +
N

∑
i=3

Maxi(Reg(1, j)) > NL, (6)

etc.228

2.2.3. Binary merge229

When merging regions for k tRNA sequences, we need to consider intersections of230

k regions, so it is important that we maximize the number of those that can get pruned231

before any polytope calculations are performed. Therefore, in our implementation we232

replace the linear merge from Figure 1 by a binary merge order, illustrated in Figure 2.233

Each node of the tree represents a step in which intersections of regions from two sets of234

sequences are being considered.235

1 2 3 4 5 6 7 8

12 34 56 78

1234 5678

12345678

Figure 2. Improved merging order.

The improved upper bounds that we compute at the beginning in order to have236

more efficient pruning are Maxk(Reg(i, j)) - the maximal accuracy for sequence k under237

parameters from the region Reg(i, j). While it may seem like each of these values requires238

intersecting with each region of the k-th sequence, here we exploit the fact that the regions239

are ordered by accuracy, thereby significantly reducing the computing time. Namely,240

we consider intersections Reg(k, l) ∩ Reg(i, j) ordered by increasing l and when the first241

nonempty intersection is found, we can take Maxk(Reg(i, j)) = Acck(Reg(k, l)) .242

In fact, the values Maxi(Reg(k, j)) computed can be used before merges start to243

reduce the number of regions we consider for each sequence 1. This is another instance244

where we pay slight overhead at the beginning in order to save time on calculating245

polytope intersections later. Namely, in a pre-processing step at the beginning, right246

1 After this step, for L = 0.74, the average number of regions to be considered for each of tRNA sequence is 12 and the total running time for tRNA on

a machine with Intel R© Core
TM

i9-9900K, 32 GB SDRAM, is 2.5hrs. For L = 0.76, the average number of regions to be considered for each tRNA
sequence is 9 and the total running time is 1.5hrs.
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after the values Maxi(Reg(k, j)) are calculated, region Reg(i, j) is discarded from future247

consideration unless248

N

∑
k=1

Maxk(Reg(i, j)) ≥ NL. (7)

During merges, when the regions from sequences i ∈ I are being merged, the249

intersection ∩i∈IReg(i, ki) is not computed unless it passes the pruning test250

∑
i∈I

Acci(Reg(i, ki)) + ∑
j 6∈I

min
i∈I

Maxj(Reg(i, ki)) ≥ NL. (8)

If the intersection passes the test, then we check that it is nonempty before we save251

it to be considered in future merges. However, when training on 100 sequences this still252

leads to checking a prohibitively large number of intersections of a large number of poly-253

topes. For that reason, when the number of sequences being merged is at least ten, we254

use an additional test before we verify that ∩i∈IReg(i, ki) is nonempty. Namely, suppose255

the merge I comes from two branches, I = I1 ∪ I2. Then, by construction, ∩i∈I1
Reg(i, ki)256

and ∩i∈I2
Reg(i, ki) are both nonempty. However, Reg(i1, ki1) ∩ Reg(i2, ki2) = ∅ implies257

that the whole intersection is empty, even though the opposite is not true. Therefore,258

we verify which pairwise intersections Reg(i1, ki1) ∩ Reg(i2, ki2), for i1 ∈ I1, i2 ∈ I2,259

are nonempty for all the regions Reg(i1, ki1), Reg(i1, ki1) that appear in the two lists of260

intersections for the sequences from the sets I1 and I2, respectively, that are being merged261

at this step. We then check whether ∩i∈IReg(i, ki) can be declared empty based on this262

information, and if not, then we compute the intersection. Most pairwise intersections263

considered here are empty, and when |I| ≥ 10, the number of regions to be considered is264

small enough that the overhead time used to compute the pairwise intersections at the265

beginning of the merge is a good trade-off for the time saved in checking the nonempty266

intersections when the pruning test is passed.267

2.3. Data analysis268

Parameters obtained from the new branch-and-bound algorithm were trained on269

sequences from the previous study and tested on a much larger set available from the270

Mathews Lab (U Rochester) to determine the extent of possible improvement in MFE271

prediction accuracy by modifying the branching parameters.272

2.3.1. Accuracy measure273

To determine the accuracy of a prediction we compare with a pseudoknot-free274

native secondary structure S from which the noncanonical base pairings have been275

excluded. For an MFE prediction S′ for that RNA sequence, we score the accuracy as the276

F1-measure:277

F1(S, S′) = 2
|S ∩ S′|

|S|+ |S′|
,

where |S| and |S′| are the number of base pairs in S and S′, respectively, and |S ∩ S′|278

is the number of true positive base pairs common to both structures. The minimum279

value 0 means no accurately predicted base pairs, while 1 means perfect prediction. The280

accuracy of a multiloop initiation parameter triple for a sequence is the average over all281

possible MFE secondary structures for that fixed (a, b, c).282

2.3.2. Testing and training sequences283

Two sets of sequences were used in this study, one for training and one for testing.284

Both consisted of tRNA and 5S rRNA sequences. These are two of the best characterized285

RNA families structurally while also having good diversity in MFE accuracy and other286

sequence characteristics. As will be discussed, sequence length was also an important287
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factor due to computational limitations in the original polytope calculations. We note,288

however, that both have well-documented factors, such as post-translational modifica-289

tions for tRNA and protein-binding for 5S rRNA, affecting the structure but which are290

not included in the NNTM. Despite these caveats, it is possible to improve their MFE291

prediction accuracy simply by modifying the three NNTM branching parameters.292

The training set consisted of the 50 tRNA and 50 5S rRNA sequences from the293

previous study [17]. (A complete list with Accession number is given in the Supplemen-294

tary data of the previous paper.) These sequences were obtained from the Comparative295

RNA Web (CRW) Site [25]. By design, they were chosen so that their MFE prediction296

accuracies and GC content are as uniformly distributed as reasonably possible. The297

GC content was used to ensure that sequences with very similar MFE accuracies were298

sufficiently different to generate a diverse training set.299

The second set was used for testing, and consisted of the 557 tRNA and 1283 5S300

rRNA sequences from a larger benchmarking set first used in [20,22], which supersedes301

previous ones [16]. Summary statistics for some characteristics like sequence length,302

MFE accuracy under the Turner99 branching parameters, GC content, and number of303

native base pairs (bp) for both data sets broken down by family are given in Table 1. Per304

family differences in means between the training and testing data sets for each sequence305

characteristic were evaluated by a t-test. While the differences in sequence length306

between the training and testing data were significant for both families (tRNA: p =307

0.0003, 5S rRNA: p < 0.0001), the differences in MFE accuracy were not (tRNA: p =308

0.0846, 5S rRNA: p = 0.2659). Differences in both GC content and number of base pairs309

were mixed; the former had p = 0.0018 for tRNA but p = 0.0883 for 5S rRNA, whereas310

the latter was p = 0.2707 and p < 0.0001. As will be seen in the results section, the311

training data seemed to represent well the testing sequences despite any differences in312

the composition of the sets.313

Table 1. Per family characteristics of the training and testing data sets.

Type Family Num Seq length MFE accuracy GC content Native bp
avg std avg std avg std avg std

Training tRNA 50 74.38 1.89 0.52 0.30 0.59 0.08 20.36 1.21
Training 5S rRNA 50 121.38 3.62 0.63 0.24 0.58 0.06 35.18 3.04

Testing tRNA 557 77.10 5.21 0.58 0.24 0.54 0.11 20.55 1.15
Testing 5S rRNA 1283 118.71 3.49 0.59 0.24 0.57 0.05 33.61 2.38

3. Results314

We first address the extent of improvement possible when the branching param-315

eters are trained on a specific family, either tRNA or 5S rRNA. We then consider the316

improvement possible across both training families simultaneously. The training results317

are tested against a much larger set of 1840 sequences, and the conclusions are found to318

hold. Importantly, this demonstrates that the method is not overfitted to the training319

data. Finally, the relevance of parameter precision to the results is addressed.320

3.1. Improving per family prediction accuracy321

Previously [17], mathematical methods were used to find the best of all possible322

combinations of branching parameters (a, b, c) for each individual training sequence.323

Averaging these per sequence accuracies over their family, or the whole training set,324

yields the “max” accuracy listed in Table 2. These numbers are an upper bound on325

the improvement possible by modifying the branching parameters for MFE prediction326

accuracy on these training (sub)sets. We note that the upper bound is known not to be327

achievable, since the common intersection (even within a family) of the best per sequence328

parameter values is empty.329
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A lower bound on the improvement was established [17] by ad hoc means, that is330

by identifying large sets of sequences from each family which did have such a common331

intersection. Seven such large sets were found for tRNA and four for 5S rRNA. These332

combinations of possible parameters were considered for each family, and the one with333

best average accuracy over the whole family was reported. We refer to these parameter334

combinations here as AHt and AHs, for the tRNA and 5S rRNA families respectively. It335

was found that the AHt and AHs accuracy on their respective family, listed in Table 2,336

was a statistically significant improvement over the T99 parameters.337

Table 2. Parameter values and MFE prediction for the 50 tRNA training sequences and the 50 5S

rRNA, as well as over both families.

Parameters tRNA 5S rRNA Both
a b c avg std avg std avg std

T89 4.6 0.4 0.1 0.41 0.25 0.69 0.24 0.55 0.28
T99 3.4 0 0.4 0.52 0.30 0.63 0.24 0.58 0.27
T04 9.3 0 -0.6 0.45 0.28 0.64 0.24 0.54 0.28

max n/a n/a n/a 0.91 0.10 0.81 0.09 0.86 0.11
AHt 10.9 -0.1 -2.6 0.74 0.24 0.52 0.21 0.63 0.25
AHs -8.5 0.3 4.5 0.36 0.18 0.71 0.22 0.53 0.27
BBt 17 -0.3 -4.5 0.75 0.22 0.45 0.17 0.60 0.25
BBs -5.7 0.2 3.5 0.37 0.19 0.73 0.21 0.55 0.27

AHb 12.2 0.2 -2.9 0.71 0.27 0.62 0.21 0.66 0.25
BBb 9.3 -0.1 -1.7 0.73 0.25 0.59 0.23 0.66 0.25

However, there was a sizable gap between the upper and lower bounds for the338

potential accuracy improvements for each family considered. The branch-and-bound339

algorithm presented here was implemented to determine where in this range the best340

possible per family accuracy lay. The new parameters are listed in Table 2 as BBt and341

BBs along with the corresponding accuracies.342

As a technical aside, the best possible (a, b, c) region for 5S is unbounded in the343

(−3, 0, 1) direction. The BBs parameters reported are the centroid of the finite 2D face.344

We also considered a strictly interior point BBs+(−3, 0, 1) = (−8.7, 0.2, 4.5), which gave345

nearly identical accuracy for tRNA. Interestingly, this new point is very close to AHs,346

with a distance of (0.2, 0.1, 0).347

It is worth noting that the signs of these family-optimal parameters are consistent348

within the family between the ad hoc and branch-and-bound combinations, but reversed349

between the two families. This suggests that (a, b, c) combinations which are optimal for350

different configurations, i.e. a tRNA cloverleaf versus a 5S rRNA Y-shape, may occupy351

different parts of the 3D parameter space. It is also relevant to future analyses that the352

range of the b parameters is very narrow (from −0.3 to 0.3) and distributed fairly evenly353

around 0.354

As evaluated by a two-sample t-test, the differences between the ad hoc and branch-355

and-bound parameter accuracies within the family on which the parameters were op-356

timized are not significant, with p = 0.7699 for tRNA and p = 0.7021 for 5S rRNA. In357

other words, the maximum possible accuracy per family over the training set sequences358

is essentially the best ad hoc accuracy, and far from the average over the per sequence359

maximums. This closes the gap from the previous analysis, while opening the door to360

new questions as discussed in the next section.361

3.2. Improving cross family prediction accuracy362

It was observed before that the accuracy of the new AHt and AHs parameters on363

the other family is clearly worse than the Turner parameters. Consequently, a “best both”364

combination, denoted here AHb, was also identified from among the 11 possible ad hoc365

ones considered, 7 for tRNA and 4 for 5S rRNA. As evaluated by a two-sample t-test, the366
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improvement over the T99 parameters on the whole training set accuracy is significant367

(p = 0.0200). This is due entirely to tRNA; the AHb parameters raise the tRNA accuracy368

by an amount statistically indistinguishable (t-test p = 0.5243) from AHt, while the AHb369

accuracy for the 5S rRNA training sequences was indistinguishable (t-test p = 0.7308)370

from T99. This is interesting because it demonstrates that, in terms of trade-offs in371

prediction accuracy between tRNA and 5S rRNA, the former can be improved without372

negatively affecting the latter. We note that only per family ad hoc parameters were373

considered at the time, so it seemed plausible that a better parameter combination could374

be found when both tRNA and 5S rRNA were considered concurrently.375

However, this turned out not to be the case when the branch-and-bound algorithm376

was run on the full 100 sequence training set. The parallelization is implemented in377

such a way that three combinations of “near optimal” parameters were detected, along378

with the absolute best one. When the parameters are rounded to 1 decimal precision, 3379

of the 4 combinations give identical 0.66 average accuracy when rounded to 2 decimal380

places, and the fourth is only 0.02 less. Given this, we report as the BBb parameters the381

combination with 0.66 average accuracy which was most dissimilar to AHb. The other 2382

combinations were AHb +(−0.3, 0, 0.1) and +(−0.1, 0, 0), although AHb was originally383

optimized for tRNA and not the full training set. The fourth was more similar to BBb but384

the combination (9.7,−0.2,−1.8) was noticeably worse for 5S by 0.05 with only a 0.01385

improvement for tRNA.386

These results illustrate that, while it is possible to improve over the current T99387

prediction accuracy by a statistically significant amount, doing so simultaneously over388

two different families is more challenging than improving the per family accuracy.389

Additionally, the best possible accuracy over the full training set is the same as the390

previous ad hoc one.391

3.3. Results for testing data392

Table 3. MFE prediction accuracies for testing data set from Mathews Lab (U Rochester) with 557

tRNA sequences and 1283 5S rRNA. Table 2 parameters repeated for completeness.

Parameters tRNA 5S rRNA Both
a b c avg std avg std w-avg w-std

T89 4.6 0.4 0.1 0.48 0.22 0.65 0.26 0.56 0.26
T99 3.4 0 0.4 0.58 0.24 0.59 0.24 0.59 0.24
T04 9.3 0 -0.6 0.53 0.25 0.62 0.25 0.57 0.25

AHt 10.9 -0.1 -2.6 0.74 0.22 0.47 0.20 0.61 0.25
AHs -8.5 0.3 4.5 0.43 0.17 0.66 0.26 0.54 0.25
BBt 17 -0.3 -4.5 0.72 0.20 0.40 0.11 0.56 0.23
BBs -5.7 0.2 3.5 0.45 0.17 0.66 0.25 0.56 0.24

AHb 12.2 0.2 -2.9 0.73 0.22 0.53 0.24 0.63 0.25
BBb 9.3 -0.1 -1.7 0.73 0.23 0.52 0.22 0.62 0.25

We note that the summary statistics for “Both” families in Table 3 were computed393

as a weighted average and standard deviation, so that each family contributed 50% to394

the statistic although there were more than twice as many 5S rRNA as tRNA sequences395

in the testing set. With a total of 1840 sequences, the difference in accuracy over the396

whole data set for the T99 parameters versus the AHb or BBb is significant; the Tukey397

HSD Post-hoc Test following an ANOVA were both p < 0.0001 while the differences398

between AHb and BBb were not (p = 0.5957). The AHb and BBb parameters performed399

just as well on the tRNA testing sequences as on the training ones (ANOVA p = 0.9008),400

although the 5S accuracy was less good (ANOVA p = 0.0051). A Tukey HSD Post-hoc401

Test found significant differences between the AHb training accuracy and the testing one402

(p = 0.0420) as well as the BBb testing one (p = 0.0156) for the 5S family, but the other403
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four pairwise comparisons were indistinguishable. We also note that the parameters404

trained on 5S sequences have lower accuracy on the testing data.405

Other than this lower accuracy for 5S rRNA, several patterns observed in Table 2406

also hold in Table 3. First, parameters which were trained on one family are markedly less407

accurate on the other one. When appropriately combined to weigh each family equally,408

this yields overall accuracies comparable to the Turner values. However, parameters409

chosen to raise the overall accuracy can achieve a statistically significant improvement410

over T99. Finally, branch-and-bound and ad hoc accuracies are remarkably similar over411

the families on which they were trained.412

3.4. Sensitivity to parameter precision413

As discussed in Section 2, the accuracy computations here focused on branching414

parameters specified to one decimal precision. We note that the “exact” parameters com-415

puted, that is ones specified as a rational number to the maximum precision allowable by416

the size of an integer in the computer algebra system used, always gave higher accuracy417

on the training (sub)set used. The largest difference seen was less that 0.035, which is418

not a statistically significant difference over data sets of this size with this amount of419

variance in the accuracy means.420

4. Discussion421

Previous results [17] demonstrated that it was possible to achieve a statistically422

significant improvement in MFE prediction accuracy by altering the three NNTM param-423

eters which govern the entropic cost of loop branching. This was shown on a set of 50424

tRNA sequences, on another of 50 5S rRNA, and on the full training set of both families425

combined. However, the extent of the possible improvement was unknown, although a426

lower bound was given by the ad hoc parameters identified — listed as AHt, AHs, and427

AHb respectively in Table 2. The “max” upper bound, known not to be attainable, was428

provided by the average maximimum accuracy (over any combination of parameters)429

for each individiual training sequence. Hence, the open questions was to establish the430

maximum simultaneous improvement over these training sets.431

Here we provide a branch-and-bound algorithm which takes as input a set of432

RNA branching polytopes [23] and finds the parameters with the best possible accuracy433

over the entire set. We describe implementation details needed to insure that the basic434

algorithm runs efficiently enough to be useful in practice, and give results on our435

original training set as well as a much larger testing set available from the Mathews436

Lab (U Rochester) with 557 tRNA and 1283 5S rRNA. The differences in MFE accuracy437

under the standard T99 parameters between the training and testings sequences are not438

significant, and we find that the general trends observed in the training data are borne439

out by the testing results.440

First, and most surprising, we find that the branch-and-bound parameters do not441

improve on the ad hoc ones in any significant way. Hence, we now know that the best442

possible MFE prediction accuracy for the tRNA training sequences is 0.75 on average and443

0.73 for 5S rRNA. The testing data achieves a comparable accuracy for tRNA, although444

the ad hoc AHt parameters are actually slightly better than the branch-and-bound BBt.445

The AHs and BBs accuracies for the 5S rRNA testing sequences are equivalent, if lower446

than the training ones (but not by a statistically significant amount).447

Overall, the average MFE prediction accuracy for the 5S rRNA testing sequences is448

consistently lower, by ∼5%, than the training accuracy for all parameter combinations449

considered. It is not obvious why this should be the case, since the GC content is450

equivalent and the length and number of native base pairs were actually lower on451

average for the testing sequences. In the future, it may be worthwhile to investigate452

what other sequence and/or structural characteristics might correlate with this training453

versus testing trend for 5S rRNA.454
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Returning to the accuracy improvement question, the branch-and-bound results455

for each family establish a much more realistic upper bound than the previous “max”456

values from Table 2. However, we also know that achieving this level of accuracy457

simultaneously across the two families is not possible. The testing data reinforces the458

point that parameters which are optimized only for one family perform much less well459

for the other. For the family-specific parameters, i.e. AHt, AHs, BBt, and BBs, this yields460

combined accuracies over both families which are on par with the Turner parameters for461

both training and testing data. In the case of the AHt paramaters, the improvement over462

T99 for the full testing set is statistically significant (p = 0.0187) but not for the training463

set (p = 0.1395).464

In contrast, when the parameters are chosen to maximize the accuracy of both465

families, a statistically significant improvement over T99 — which has the highest466

combined accuracy over the three Turner parameter sets — is achieved for both testing467

and training data. As described for the training results, there are multiple different468

parameter combinations that achieve essentially the same accuracy over both families.469

This conclusion holds true for the testing data as well. Such stability in the maximum470

combined accuracy strongly suggest that future studies should focus on “near optimal”471

parameter combinations. This is particularly appropriate when the parameters are472

commonly specified to 1 decimal precision.473

In general, we find that the AHb and BBb parameters are better for tRNA than for 5S474

rRNA, relative to the family-specific parameters. It is interesting to note that the Turner475

parameters with the highest 5S rRNA accuracy are the earliest ones which had b = 0.4,476

whereas the T99 and T04 parameters both have b = 0. The parameters trained only on477

5S rRNA which produce the highest accuracy on that family, i.e. AHs and BBs, both had478

b > 0 while the opposite was true for tRNA. However, it was possible to achieve the479

same accuracy (to two decimal places) over the entire 100 sequences training set with480

either b = 0.2 or b = −0.1, and essentially the same for the 1840 sequence testing set.481

Over all the new parameter combinations considered, we found a small range of b482

values, roughly centered around 0. Furthermore, previous results [17] had found that483

the thermodynamic optimization was most sensitive in the b direction. In future work,484

we expect to specialize the b value in our parametric analysis to better focus on the a and485

c trade-offs. We have preliminary results which indicate that this is not too detrimental486

to the overall accuracy, and this reduction in complexity will certainly improve the time487

and memory needed to compute the branching polytopes.488

Recall that a weighs the number of multiloops while c scores the total number of489

branching helices. In terms of trade-offs between them, we note that the most recent490

Turner parameters have a significant increase in a and a c < 0 for the first time. All six491

new parameter combinations have opposite sign for a and c suggesting that there may492

be an important reward/penalty balance to be achieved. Not only did the 5S-specific493

parameters have b > 0 but they also both have a < 0 and c > 0, whereas the tRNA-494

specific had the exact opposite signs. Although the same accuracy could be achieved495

over the whole training data set with b either positive or negative, there were no “near496

optimal” parameter combinations found which had a < 0 and c > 0. Hence, it seems497

that there may be a greater range of (a, c) combinations which produce an acceptable 5S498

rRNA accuracy than there is for tRNA. In fact, BBb is quite close to T04, with a difference499

of (0,−0.1,−1.1). This small change produces a considerable improvement in tRNA500

accuracy, with a smaller corresponding decrease for 5S rRNA.501

In conjunction, these results suggest that there may be a relatively large set of502

branching parameters which yield equivalent prediction accuracies that improve over503

the current ones. To make progress on identifying the scope of these parameters, we504

confirm that the current empirical strategy of focusing on the trade-off between the505

a and c parameters is well-substantiated by this analysis. Moving forward, the goal506

is to expand the training set to include other RNA families, but this requires new507

algorithmic approaches to computing the branching polytopes. To date, the longest508
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sequence attempted (an RNase P of length 354 nt) took more than 2 months. However,509

focusing on the a,c trade-offs only should reduce the complexity substantially, yielding510

further insights into the advances possible and limitation faced when improving RNA511

branching predictions.512

5. Conclusions513

We conclude by putting the results reported here into a broader context. In demon-514

strating that a targeted reevaluation of the NNTM branching parameters can improve515

MFE prediction accuracy, we also highlight the challenges of doing so across more than516

one family simultaneously. This is relevant not only to thermodynamic methods for RNA517

secondary structure prediction, but also to machine learning approaches which require518

large enough training sets to parameterize all the new structural features proposed. It519

has been demonstrated that the risk of overfitting to the training data is real [26], but520

also that using thermodynamic information in a machine learning method can reduce521

the problem while still improving prediction accuracy [27].522

While the importance of training across different RNA families is well-known, to523

the best of our knowledge, this is the first time that the resulting parameters have been524

explicitly compared when trained on one family versus another, and then on both. In this525

way, we are able to characterize the effect on the maximum possible per family accuracy526

— which is now known — when optimizing the branching parameters over both of our527

training families. By focusing only on two families, this interplay can be clearly analyzed.528

We see an explicit trade-off between tRNA and 5S rRNA, and this suggests that it may529

be worthwhile to consider the trade-offs being made by other methods. In doing so, it530

is important that the training and testing data sets be balanced, i.e. where each family531

contributes equally to the accuracy. Otherwise, improvements in the dominant family532

will disproportionally affect the combined statistic.533

Moving forward, we plan to extend this approach to analyze the trade-offs in534

branching parameters among additional families. As a first step in that direction, we did535

consider the prediction accuracy under the ad hoc and branch-and-bound parameters536

for each of the other eight families from the Mathews data set [20,22,28]. For half of537

these families (small subunit ribosomal RNA domains, large subunit ribosomal RNA538

domains, group I self-splicing introns, and group II self-splicing introns), an ANOVA539

on the average family accuracy found no significant differences among T99, T04, AHb,540

and BBb. Hence, even though the new parameters were trained on two entirely different541

families, this did not negatively affect the accuracy. In the four families where there was542

a significant change (p < 0.05) in the ANOVA, two improved while two worsened —543

again highlighting the trade-offs in branching parameters between families. Interestingly,544

the former (RNase P and tmRNA) were “tRNA-like” in the sense that they performed545

as well under the AHt parameters (although not the BBt) whereas the latter (signal546

recognition particle RNA and telomerase RNA) were “5S rRNA-like” in the sense that547

they performed as well on AHs and BBs as on T99 and T04.548

In summary, analyzing the trade-offs in MFE prediction accuracy improvements549

possibly by modifying the NNTM branching parameters may yield improvements more550

generally. At the very least, it will characterize why obtaining such improvements551

simultaneously over different RNA families with distinct branching configurations has552

remained a challenge.553
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molecular biology: Branching polytopes for RNA sequences. In Algebraic and Geometric Methods in Applied Discrete Mathematics;

Heather A. Harrington, Mohamed Omar, M.W., Ed.; American Mathematical Society: Providence, RI, USA, 2017; Vol. 685,

Contemporary Mathematics, pp. 137–154.
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