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Distributed Networked Real-Time Learning
Alfredo Garcia , Senior Member, IEEE, Luochao Wang , Jeff Huang, and Lingzhou Hong

Abstract—Many machine learning algorithms have been
developed under the assumption that datasets are already
available in batch form. Yet, in many application domains,
data are only available sequentially overtime via compute
nodes in different geographic locations. In this article, we
consider the problem of learning a model when stream-
ing data cannot be transferred to a single location in a
timely fashion. In such cases, a distributed architecture
for learning which relies on a network of interconnected
“local” nodes is required. We propose a distributed scheme
in which every local node implements stochastic gradient
updates based upon a local data stream. To ensure ro-
bust estimation, a network regularization penalty is used to
maintain a measure of cohesion in the ensemble of models.
We show that the ensemble average approximates a sta-
tionary point and characterizes the degree to which individ-
ual models differ from the ensemble average. We compare
the results with federated learning to conclude that the
proposed approach is more robust to heterogeneity in data
streams (data rates and estimation quality). We illustrate
the results with an application to image classification with
a deep learning model based upon convolutional neural
networks.

Index Terms—Asynchronous computing, distributed
computing, networks, nonconvex optimization, real-time
machine learning.

I. INTRODUCTION

S
TREAMING datasets are pervasive in certain application

domains often involving a network of compute nodes lo-

cated in different geographic locations. However, most machine

learning algorithms have been developed under the assumption

that datasets are already available in batch form. When the

data are obtained through a network of heterogeneous compute

nodes, assembling a diverse batch of data points in a central pro-

cessing location to update a model may imply significant latency.

Recently, an architecture referred to as federated learning (FL,

see, e.g., [1], [2]) with a central server in proximity to local nodes

has been proposed. In FL, each node implements updates to a
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machine learning model, which is kept in the central server. This

allows collaborative learning while keeping all the training data

on nodes rather than in the cloud. In general, schemes that avoid

the need to rely on the cloud for data storage and/or computation

are referred to as “edge computing.”

With high data payloads, such architecture for real-time

learning is subject to an accuracy versus speed tradeoff due to

asymmetries in data quality versus data rates, as we explain in

what follows.

Consider nodes i ∈ {1, . . . , N} generating data points

(xi,n, yi,n), n ∈ N
+ at different rates µi > 0, which are used

for the instantaneous computation of model updatesθk, k ∈ N
+

(striving to minimize loss �). This setting could correspond, for

example, with supervised deep learning in real time wherein gra-

dient estimates (with noise variance σ2
i > 0) are computed via

backpropagation in a relatively fast fashion. Without complete

information on σ2
i > 0, updating the model parameters based

upon every incoming data point yields high speed but possibly at

the expense of low accuracy. For example, if the nodes producing

noisier estimates are also faster at producing data, it is highly

unlikely that an accurate model will be identified at all.

To illustrate this scenario, in Fig. 1, we depict the performance

of FL for deep convolutional neural networks (CNNs) with

the Modified National Institute of Standards and Technology

(MNIST) database. In these simulations, each one of N = 5
nodes sends data according to independent Poisson processes

with µ0 = 8 and µi = 1, i ∈ {1, . . . , 4}. The fastest node com-

putes gradient estimates based upon a single image, whereas the

slower nodes compute gradient estimates based upon a batch of

64 images. This tradeoff between speed and precision is miti-

gated in a distributed approach to real-time learning subject to a

network regularization (NR) penalty. In such an approach, each

one of theN > 1 local nodes independently produces parameter

updates based upon a single (locally obtained) data point, which

speeds up computation. Evidently, with increased noise, such

a scheme may fail to enable the identification of a reasonably

accurate model. However, by adding a NR penalty (which is

computed locally), a form of coordination between multiple

local nodes is induced so that the ensemble average solution is

robust to noise.1 Specifically, we show that the ensemble average

solution approximates a stationary point and that the approxi-

mation quality is O(
∑N

i=1
σ2

i

N2 ), which compares quite favorably

with FL, which is highly sensitive to fast and inaccurate data

streams. We illustrate the results with an application to deep

learning with CNNs.

1Similar NR methods have been used in multitask learning to account for
inherent network structure in datasets (see, e.g., [3]–[7]). See Section II.D.
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The structure of this article is as follows. In Section II, we

introduce the distributed scheme that combines stochastic gra-

dient descent with NR. In Section III, we analyze the scheme and

show that it converges (in a certain sense) to a stationary point,

we also compare its performance with FL. Finally, in Section IV,

we report the results from a testbed on deep learning application

to image processing, and in Section V, we offer conclusion.

II. NETWORK REGULARIZED APPROACH TO

REAL-TIME LEARNING

A. Setup

We consider a setting in which data are made available sequen-

tially overtime via nodes i ∈ {1, . . . , N} in different geographic

locations. We denote the ith stream by {(xi,n, yi,n) : n ∈ N
+}

and assume these data points are independent samples from a

joint distribution Pi.

We also assume that the data streams are independent but

heterogeneous, i.e., Pi �= Pj , i �= j. Each node strives to find a

parameter specification θ ∈ Θ ⊂ R
p that minimizes the perfor-

mance criteria EPi
[L(xi, yi; θ)], where the loss function L(·) ≥

0 is continuously differentiable with respect to θ. Though data

are distributed and heterogeneous, we consider a setting in which

nodes agree on a common learning task. This is formalized in

the first standing assumption. Letgi(θ) � ∇θL(xi, yi; θ)denote

the gradient evaluated at (xi, yi) ∼ Pi, and assume gi(θ) is

uniformly integrable.

Assumption 0: For all θ ∈ Θ, and i ∈ {1, . . . , N}

EPi
[gi(θ)] = EPj

[gj(θ)].

Let �(θ) denote the (ensemble) average expected loss

�(θ) �
1

N

N
∑

i=1

EPi
[L(xi, yi; θ)].

By uniform integrability, ∇θEPi
L(xi, yi; θ) = EPi

gi(θ).
Assumption 0 thus implies that EPi

[gi(θ)] = ��(θ) for all i and

θ. Let εi(θ) � gi(θ)− ��(θ), then it holds that E[εi(θ)] = 0.

We further assume the following.

Assumption 1: For all θi ∈ Θ, the random variables {εi(θi) :
i ∈ {1, . . . , N}} are independent and

E[‖εi(θi)‖
2] ≤ σ2

i .

Define σ2 =
∑N

i=1 σ
2
i . By independence of data streams

E[εi(θ)
ᵀεj(θ)] = E[εi(θ)]

ᵀ
E[εj(θ)] = 0

for all θ ∈ Θ, j ∈ {1, . . . , N}/ {i}. Streams generate data over

time according to independent Poisson processes Di(t) with

rate µi > 0 and Di(0) = 1. We assume that the time required to

compute gradient estimates and/or exchange parameters locally

among neighbors or with the central server are negligible com-

pared to the time in between model updates. In what follows,

we make use of a virtual clock that produces ticks according

to an aggregate counting process D(t) =
∑N

i=1 Di(t) with rate

µ =
∑N

i=1 µi. Let k ∈ N
+ denote the index set of ticks associ-

ated with the aggregate process. Since we assume the parameter

is updated once a data point arrives, thekth iteration is completed

Fig. 1. Performance comparison for deep learning on MNIST with
learning rate γ = 0.01. The 95% percentile is depicted with green lines.

at the kth tick. Index k denotes the kth step in the schemes

described below.

B. Federated Real-Time Learning

In FL, gradient estimates are communicated to a central server

where a model is updated as follows:

θk+1 = θk − γ

N
∑

i=1

1i,kgi(θk) (1)

where γ is the learning rate,1i,k is an indicator of whether node i
performs an update: 1i,k = 1 if the next gradient estimate comes

from the ith stream and 1i,k = 0 otherwise.

The algorithmic scheme described in (1) was first analyzed

in [8] for data in batch form and has been used in the recent

literature on asynchronous parallel optimization algorithms (see,

for example, [9], [10], and [11]). As Fig. 1 suggests, with

heterogeneous data streams, the scheme in (1) tradeoff speed in

producing parameter updates at the expense of heterogeneous

noise in gradient estimates. In what follows, we introduce a

distributed approach that relies on an NR penalty to ensure the

ensemble average approximates a stationary point (i.e., a choice

of parameters with null gradient). We will show that in such a

networked approach, the tradeoff between precision and speed

is mitigated.

C. Distributed Approach With NR

In the NR scheme, we consider a network of local compute

nodes, which we model as a graph G = (N , E), where N =
{1, . . . , N} stands for the set of nodes and E ⊆ N ×N is the

set of links connecting nodes. Let A = [αij ] ∈ R
N×N be the

adjacency matrix of G, where αij ∈ {0, 1} indicates whether

node i communicates with node j: αij = 1 if two nodes can

exchange local information and αij = 0 otherwise.

In this scheme, each local node i performs model updates

according to a linear combination of local gradient estimate and

the gradient of a consensus potential

F(θ) =
1

4

∑

i

∑

j �=i

αij‖θi − θj‖
2
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where θ
ᵀ

t = (θᵀ1,t, . . . , θ
ᵀ

N,t) ∈ R
p×N . The consensus potential

is a measure of similarity across local models.2 The update

performed by node i is of the form

θi,k+1 = θi,k − γ1i,k[gi(θi,k) + a�Fi,k] (2)

where a > 0 is a regularization parameter, and

�Fi,k � ∇θiF(θk) =
∑

j �=i

αij(θi,k − θj,k).

Note that the basic iterate (2) can be interpreted as a stochastic

gradient approach to solve the local problem

min
θi

[EPi
(θi) + aF(θ)]

in which the objective function is a linear combination of loss

and consensus potential.3 When a = 0, each local node ignores

the neighboring models. For large values of a > 0, the resulting

dynamics reflect the countervailing effects of seeking to mini-

mize consensus potential and improving model fit. With highly

dissimilar initial models, each local node largely ignores its own

data and opts for updates that lead to a model that is similar

to the local average. Once approximate consensus is achieved,

local gradient estimates begin to dictate the dynamics of model

updates.

In what follows, it will be convenient to rewrite (2) as follows:

θi,k+1 = θi,k − γ1i,k [��(θi,k) + a�Fi,k + εi,k] . (3)

Given that local nodes independently update and maintain their

own parameters, the network regularized scheme is not subject

to the possibility of biased gradient estimates stemming from

update delays in FL (see [15]).

D. Literature Review

The scheme proposed in (2) has already been considered in the

machine learning literature. In a series of papers (see [4]–[7]),

the authors consider an approach to multitask learning based

upon an NR penalty, as in (2). This article focuses on distributed

single-task learning. In contrast to the papers referred earlier,

we consider a nonconvex setting with heterogeneous nodes

asynchronously updating their respective models at different

rates over time.

The scheme proposed in (2) is also related to the literature

on consensus optimization (see, e.g., [10], [16], and [17]).

However, the proposed approach cannot be interpreted as being

based upon averaging over local models as in consensus-based

optimization. In that literature, the basic iteration is of the form

θi,k+1 =
∑

j

Wi,j,kθj,k − γg(θi,k)

2This consensus potential has been used in the literature of opinion dynamics
(see, e.g., [12]).

3This interpretation is not novel (see, e.g., [13] and [14] for its use in swarm
(flocking) optimization and in multitask learning [4]–[7]).

where Wk ∈ R
N×N is doubly stochastic and g(θi,k) is a noisy

gradient estimate. Indeed, one can rewrite (2) as

θi,k+1 =
∑

j

Wi,jθj,k − γ1i,kgi(θi,k)

withWi,i = 1− γa
∑

j αi,j andWi,j = γa
∑

j αi,j . However,

the resulting matrix W is not doubly stochastic in general since

we only require a > 0. Thus, the approach to consensus in (2)

cannot be interpreted as being based upon averaging over local

models as in consensus optimization.

The algorithms proposed in [10] and [17] are designed for

batch data, whereas our approach deals with streaming data.

For example, in [10], each node uses the same minibatch size

for estimating gradients, whereas in our approach, gradient

estimation noise is heterogeneous. In addition, in the algorithms

proposed in [10] and [17], every node is equally likely to be

selected at each iteration to update its local model. In contrast,

in our approach, data streams are heterogeneous so that certain

nodes are more likely to update their models at any given time.

Finally, in [10], the objective function (loss) is defined with

respect to a distribution, which is biased toward the nodes that

update more often. This is in contrast to the objective function

defined in this article (i.e., �(θ)), where every node contributes to

the global distribution with the same weight regardless of their

updating frequency.

III. ANALYSIS

In this section, we show that the NR scheme converges (in

a certain sense) to a stationary point. To that end, we study

stochastic processes {θi,k : k > 0} associated with each one

of the N > 1 nodes in the network regularized approach. The

proofs are given in the Appendix. We make the following stand-

ing assumptions.

Assumption 2: The graph G corresponding to the network of

nodes is undirected (A = Aᵀ) and connected, i.e., there is a path

between every pair of vertices.

Assumption 3 (Lipschitz): ‖��(θ)− ��(θ′)‖ ≤ L‖θ − θ′‖
for some L > 0 and for all θ, θ′.

A. Preliminaries

The ensemble average θ̄k � 1
N

∑N
i=1 θi,k plays an important

role in characterizing the performance of the network regularized

scheme. To this end, we analyze the process {V k : k > 0}
defined as

V k �
1

N

N
∑

i=1

‖θi,k − θ̄k‖
2.

Let ei,k � θi,k − θ̄k and Vi,k � ‖ei,k‖
2, then

V k = 1
N

∑N
i=1 Vi,k. We now introduce some additional

notations. Let deg(i) denote the degree of vertex i in graph G
and d := maxi deg(i) . Let E[V k+1|θk] denote the conditional

expectation of V k+1 given θk . We define µmax = max{µi :
1 ≤ i ≤ N} and µmin = min{µi : 1 ≤ i ≤ N}. We first prove

two intermediate results.
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Lemma 1: Suppose Assumptions 0–2 hold. It holds that

V k+1 = V k −
2

N

N
∑

i=1

γeᵀi,k1i,k [��(θi,k) + a�Fi,k]

−
2

N

N
∑

i=1

γeᵀi,kεi,k1i,k +
1

N

N
∑

i=1

γ2‖δi,k‖
2

where δi,k = δfi,k + δgi,k + δni,k, and

δfi,k � ��(θi,k)1i,k − ��̄k, ��̄k �
1

N

N
∑

j=1

��(θj,k)1j,k

δgi,k � a(�Fi,k1i,k − �F̄k), δ
n
i,k � εi,k1i,k −

1

N

N
∑

j=1

εj,k1j,k

�F̄k �
1

N

N
∑

j=1

�Fj,k1j,k.

Lemma 2: Suppose Assumptions 0–3 hold. Let

ξ = µmax/µmin, then

E[V k+1|θk] ≤
(

1 +
κγ

N

)

V k +
4γ2ξ

N

∥

∥��(θ̄k)
∥

∥

2
+

γ2ξσ2

N2

where λ2 denotes the second-smallest of the Laplacian associ-

ated with graph G and

κ = 2(Lµmin − aλ2µmax) +
4γξ

N
(L2 + 2a2d

2
).

B. Convergence

We are now ready to state and prove the main theorem.

As in [18], convergence is described in terms of the expected

value of the average squared norm of the gradient in the first

K-updates. The ensuing corollary goes into further detail by

describing the same result in terms of real-time elapsed and not

just on a total number of iterations.

Theorem 1: Suppose Assumptions 0–3 hold. Choose

γ <min{γ̄1, γ̄2}, where

γ̄1 = N
2aλ2µmax − L(2µmin + ξ/2)

6ξ(L2 + 2a2d
2
)

and γ̄2 =
1

4L(2N + 1)

are positive by choosing a > 4µminL+ξL
4λ2µmax

. With scheme (2), it

holds that

E

[

1

K

K−1
∑

k=0

E[‖��(θ̄k)‖
2]

]

≤
1

ηK

[

�(θ̄0) + LV 0 +
KLγ2ξσ2

N2

(

1 +
1

2N

)]

where η = γξ
N
( 12 − 2γL(2 + 1

N
)).

The regularization penalty parameter a must be high enough

to ensure cohesion between local models. This condition is

weaker with a higher degree of connectivity (i.e., higher values

of λ2).

Fig. 2. Mean plot of the ensemble average computed under NR and FL
schemes in heterogeneous setting. Let the network to be fully connected
and set a = 10 and γ = 0.002 in (a) and γ = 0.004 in (b).

Note also that for fixed N > 0, when a → ∞, then γ ∝ 1/a.

So convergence, as characterized by Theorem 1, may be slower.

This is not necessarily the case since the conditions in Theorem 1

identify a wide range of choices for a and γ. For example,

simulations indicate that for fixed γ, higher values of a may

speed up convergence [see Fig. 3(c)].

C. Real-Time Performance

The analysis in Theorem 1 takes place in the time scale

indexed by k > 0 and associated with the clicks associated

with a Poisson process with rate µ > 0. To embed the result in

Theorem 1 in real time, recall that {D(t) : t ≥ 0} is the counting

process governing the aggregation of all data streams. Given

our assumption on computation times being negligible, the total

number of updates completed in [0, t) is also D(t). Let us define

the conditional average squared gradient norm ‖�̄�t‖
2 in the

interval [0, t) as follows:

E[‖�̄�t‖
2 |D(t)] �

1

D(t)

D(t)
∑

k=1

‖��(θ̄k)‖
2. (4)

Hence, the result in Theorem 1 can be reinterpreted by taking

expectation of (4) over D(t) as

E[‖�̄�t‖
2] = E

[

E[‖�̄�t‖
2|D(t)]

]

≤ E

[

1

ηD(t)

(

�(θ̄0)+LV 0

)

+
Lγ2ξσ2

ηN2

(

1+
1

2N

)]

=
(�(θ̄0) + LV 0)(1− e−µt)

ηµt
+
Lγ2ξσ2

ηN2

(

1+
1

2N

)

.

According to Theorem 1, and using γ ∼ 1
N

, the coupling of

solutions via the NR penalty implies the ensemble average
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Fig. 3. Mean plot of each node computed under NR scheme in hetero-
geneous setting. Let the network to be fully connected and set γ = 0.01

and a = 1 in (a) and a = 10 in (b). The mean plot of the ensemble
average under two choices of a is presented in (c).

approximates a stationary point in the sense that

lim sup
t→∞

E[‖�̄�t‖
2] = O

(

σ2

N2

)

.

The approximation quality is monotonically increasing in the

number of nodes. The convergence properties outlined earlier

are related to the ensemble average. It is, therefore, necessary to

examine the degree to which individual models differ from the

ensemble average. This is the gist of the next result.

Corollary 1: With the same assumptions and definitions in

Theorem 1, it holds that

E

[

1

K

K−1
∑

k=0

V k

]

≤
1

K|κ|

[(

N

γ
+

4Lγξ

η

)

V 0 +
4γξ

η
l(θ̄0)

]

+
4Lγ3ξ2σ2

η|κ|N2

(

1 +
1

2N

)

+
γξσ2

|κ|N
.

We embed the result in Corollary 1 in real time. Define the

conditional average of V̄k in the interval [0, t) as

E[V̄t|D(t)] �
1

D(t)

D(t)
∑

k=1

V̄k.

The random process {V̄t : t > 0} tracks the average distance

of individual models to the ensemble average. Similar to the

discussion of Theorem 1, the real-time result of Corollary 1 is

as follows:

E[V̄t] = E
[

E[V̄t|D(t)]
]

≤
1

D(t)|κ|

[(

N

γ
+

4Lγξ

η

)

V 0 +
4γξ

η
l(θ̄0)

]

+
4Lγ3ξ2σ2

η|κ|N2

(

1 +
1

2N

)

+
γξσ2

|κ|N

=
1− e−µt

µt|κ|

[(

N

γ
+

4Lγξ

η

)

V 0 +
4γξ

η
l(θ̄0)

]

+
4Lγ3ξ2σ2

η|κ|N2

(

1 +
1

2N

)

+
γξσ2

|κ|N
.

This implies the asymptotic difference between individual mod-

els and the ensemble average satisfies

lim sup
t→∞

E[V̄t] = O

(

σ2

N

)

.

The NR parameter a > 0 plays an important role in con-

trolling the upper bound in Corollary 1. For fixed N > 0,

when a → ∞, then γ, η ∝ 1/a and |κ| ∝ a2, it follows that

E[ 1
K

∑K−1
k=0 V k] ∝ 1/a. Hence, the upper bound in Corollary

1 can be made arbitrarily small by choosing large enough a.

D. Comparison to FL

We now present the counterpart convergence result regarding

to FL.

Proposition 1: Suppose Assumptions 0–3 hold. For scheme

(1), with a choice γ ∈ (0, 2
L
), it holds that

E

[

1

K

K−1
∑

k=0

‖��(θk)‖
2

]

≤
�(θ0)

η̃K
+

Lγ2

2η̃

N
∑

i=1

µi

µ
σ2
i

with η̃ = γ(1− Lγ
2 ) . To embed the process in Proposition 1 in

real time, let us define the average squared gradient norm ‖��̃t‖2

in the interval [0, t) as follows:

E[‖��̃t‖
2|D(t)] �

1

D(t)

D(t)
∑

k=1

‖��(θk)‖
2. (5)

Hence, the result in Proposition 1 can be reinterpreted by

taking expectation of (5) over D(t) as

E[‖��̃t‖
2] = E

[

E[‖��̃t‖
2|D(t)]

]

≤ E

[

�(θ0)

η̃D(t)
+

Lγ2

2η̃

N
∑

i=1

µi

µ
σ2
i

]

=
�(θ0)(1− e−µt)

η̃µt
+

Lγ2

2η̃

N
∑

i=1

µi

µ
σ2
i .
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TABLE I
EXPERIMENT HYPERPARAMETERS OF THE TWO SETTINGS, INCLUDING THE

DATA STREAM ID (STREAM ID), NUMBER OF NODES INVOLVED (# NODES),
THE NUMBER OF IMAGES ARRIVED AS A MINIBATCH (MINIBATCH SIZE), AND

THE POISSON RATE OF THE CORRESPONDING STREAM IS (µi)

To compare FL with NR, we also make γ ∼ 1
N

. The asymptotic

approximation quality is given by

lim sup
t→∞

E[‖��̃t‖
2] = O

(

1

N

∑

i

µi

µ
σ2
i

)

which suggests that the approximation quality is determined by

the faster data streams. This leads to unsatisfactory performance

whenever µi ∝ σ2
i (i.e., faster data streams are also less accu-

rate). Evidently, the opposite holds true when faster nodes are

also more accurate, i.e., µi ∝ 1/σ2
i . However, in many real-time

machine learning applications, this is not likely to be the case.

Obtaining higher precision gradient estimates requires larger

batches and/or increased computation. Thus, nodes with higher

precision are less likely to be the faster ones.

IV. TESTBED: REAL-TIME DEEP LEARNING

In this section, we report the results of NR [scheme (2)] to

distributed real-time learning from three aspects: the comparison

with FL [scheme (1)], the effects of the regularization parameter

a, and the effects of the network connectivity.

The specific learning task is to classify handwritten digits

between 0 and 9 digits as given in the MNIST dataset [19].

The dataset is composed of 10 000 testing items and 60 000

training items. Each item in the dataset is a black-and-white

(single-channel) image of 28 × 28 pixels of a handwritten digit

between 0 and 9.

In the first two experiments, we implement schemes in a

heterogeneous setting with 5 nodes, and the third experiment

with 20 nodes in a homogeneous setting. In the testbed, MNIST

streams according to independent Poisson processes. Gradient

estimates are obtained with different minibatch sizes. Evidently,

a smaller minibatch size implies noisier gradient estimates. The

detailed experimental settings are summarized in Table I. In the

heterogeneous setting, “node 0” is the fastest and noisiest in

producing gradient estimates.

We use the Ray platform (see [20]), which is a popular library

with shared memory supported, allowing information exchange

between local nodes without copying as well as avoiding a cen-

tral bottleneck. For low-level computation, Google TensorFlow

is used. We use a CNN with two 2-D convolutions each with

kernel size5× 5, stride 1 and 32, and 64 filters. Each convolution

layer is followed by a max-pooling with a 2× 2 filter and stride

of 2. These layers are then followed by a dense layer with 256

neurons with 0.5 dropout and sigmoid activation followed by ten

output neurons and softmax operation. Cross entropy is used as

Fig. 4. Mean plot of ensemble average computed under the scheme
of NR in the homogeneous setting. Set a = 10 and γ = 0.001.

a performance measure (i.e., loss).4 We present the experimental

results in mean plots with stand error bar. The means are com-

puted across ten trials under the same hyperparameters (namely,

γ and a).

A. Comparison to FL

In this experiment, we compare NR with FL in the hetero-

geneous setting. In Fig. 2, we plot the means of the ensemble

average of NR and FL with different learning rates.

We can observe from Fig. 2(a) that when the learning rate

is moderate, both FL and NR can converge, but the empirical

standard deviation of FL is much larger than that of NR. With

increased γ, FL fails to converge while NR still performs rela-

tively well, as shown in Fig. 2(b). We can see that NR is more

robust with respect to the learning rate.

B. Effects of Regularization Parameter

In this experiment, we look at the effects of changing the

regularization parameter a. In Fig. 3, we present the means of

each node as well as the ensemble average.

As we increase a from 1 to 10, we can observe from Fig. 3(a)

and (b) that the consensus among nodes increases and the

empirical mean standard deviation of the “node 0” decreases.

As presented in Corollary 1, the regularization parameter a
influences the degree of similarity between individual models

and the ensemble average. Note that we only identify a range

of values for a (lower bound) and γ (upper bound) for which

convergence is guaranteed so that a higher value of a does not

necessarily imply slower convergence, as shown in Fig. 3(c).

C. Effects of Network Connectivity

In the third experiment, we check the effect of increased

connectivity in the homogeneous setting by using a Watts–

Strogatz “small world” topology (see [21]), in which each node

is connected with two (or eight) nearest neighbors.

We can see from Fig. 4 that increasing the connectivity of the

topology only improves the performance slightly, meaning that

only a limited connectivity is needed for the network regularized

approach to enjoy a satisfactory rate of convergence.

4With max-pooling, the loss function is not differentiable in a set of measure
zero. If in the course of execution, a nondifferentiable point is encountered, Ten-
sorflow assumes a zero derivative. Details on the implementation are available
at: https://github.com/wangluochao902/Network-Regularized-Approach
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V. CONCLUSION

In many application domains, data streams through a net-

work of heterogeneous nodes in different geographic locations.

When there is high data payload (e.g., high-resolution video),

assembling a diverse batch of data points in a central processing

location in order to update a model entails significant latency.

In such cases, a distributed architecture for learning, relying on

a network of interconnected “local” nodes may prove advanta-

geous. We have analyzed a distributed scheme in which every

local node implements stochastic gradient updates every time

a data point is obtained. To ensure robust estimation, a local

regularization penalty is used to maintain a measure of cohesion

in the ensemble of models. We showed that the ensemble average

approximates a stationary point. The approximation quality is

superior to that of FL, especially when there is heterogeneity in

gradient estimation quality. We also showed that our approach

is robust against changes in the learning rate and network con-

nectivity. We illustrate the results with an application to deep

learning with CNNs.

In future work, we plan to study different localized model

averaging schemes. A careful selection of weights for computing

local average model ensures a reduction of estimation variance.

This is motivated by the literature on the optimal combination

of forecasts (see [22]). For example, weights minimizing the

sample mean square prediction error are of the form
σ̂−2

i∑N
j=1

σ̂−2

j

,

where σ̂2
i is the estimated mean squared prediction error of the

ith model.

APPENDIX

A. Proof of Lemma 1

Note that

θ̄k+1 =
1

N

N
∑

i=1

[θi,k − γ1i,k[��(θi,k) + a�Fi,k + εi,k]]

= θ̄k −
γ

N

N
∑

i=1

��(θi,k)1i,k

−
aγ

N

N
∑

i=1

�Fi,k1i,k −
γ

N

N
∑

i=1

εi,k1i,k.

Hence, ei,k+1 = θi,k+1 − θ̄k+1 = ei,k − γδi,k. Then

Vi,k+1 = (ei,k − γδi,k)
ᵀ(ei,k − γδi,k)

= eᵀi,kei,k − 2γeᵀi,kδi,k + γ2 ‖δi,k‖
2

= Vi,k − 2γeᵀi,k(δ
f
i,k + δgi,k + δni,k) + γ2 ‖δi,k‖

2

and

V k+1 = V k −
2γ

N

N
∑

i=1

eᵀi,k(δ
f
i,k + δgi,k + δni,k) +

γ2

N

N
∑

i=1

‖δi,k‖
2.

Finally, note that

N
∑

i=1

eᵀi,kδ
f
i,k =

N
∑

i=1

eᵀi,k
[

��(θi,k)1i,k − ��̄k
]

=

N
∑

i=1

eᵀi,k��(θi,k)1i,k

N
∑

i=1

eᵀi,kδ
g
i,k = a

N
∑

i=1

eᵀi,k(�Fi,k1i,k − �F̄k)

= a

N
∑

i=1

eᵀi,k�Fi,k1i,k

N
∑

i=1

eᵀi,kδ
n
i,k =

N
∑

i=1

eᵀi,k

⎛

⎝εi,k1i,k −
1

N

N
∑

j=1

εj,k1j,k

⎞

⎠

=

N
∑

i=1

eᵀi,kεi,k1i,k.

So, the result follows. �

B. Proof of Lemma 2

In light of Lemma 1, we have

E[V k+1|θk] = V k −
2γ

N

N
∑

i=1

µi

µ
eᵀi,k [��(θi,k) + a�Fi,k]

+
γ2

N

N
∑

i=1

‖δi,k‖
2.

Let ek = [ e
ᵀ

1,k, e
ᵀ

2,k, . . . , e
ᵀ

N,k ]
ᵀ and L = [lij ] be the Laplacian

matrix associated with the adjacency matrix A, where lii =
∑

j aij and lij = −aij when i �= j. For an undirected graph, the

Laplacian matrix is symmetric positive semidefinite. It follows

that

N
∑

i=1

eᵀi,k�Fi,k =
N
∑

i=1

N
∑

j=1,j �=i

αije
ᵀ

i,k(ei,k − ej,k)

= −
N
∑

i=1

N
∑

j �=i

lije
ᵀ

i,k(ei,k − ej,k) =

N
∑

i=1

N
∑

j �=i

lije
ᵀ

i,kej,k

= e
ᵀ

k(L ⊗ Ip)ek ≥ λ2

N
∑

i=1

‖ei,k‖
2
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where λ2 := λ2(L) is the second-smallest eigenvalue of L, also

called the algebraic connectivity of G [23]. Thus

E[V k+1|θk] ≤ V k −
2γ

N

N
∑

i=1

µi

µ
eᵀi,k��(θi,k)

−
2aλ2γ

N

N
∑

i=1

µi

µ
‖ei,k‖

2 +
γ2

N

N
∑

i=1

E[‖δi,k‖
2|θk]

= V k −
2γ

N

N
∑

i=1

µi

µ
(��(θi,k)− ��(θ̄k))

ᵀei,k

−
2aλ2γ

N

N
∑

i=1

µi

µ
‖ei,k‖

2+
γ2

N

N
∑

i=1

E[‖δi,k‖
2|θk].

By Cauchy–Schwarz inequality and Assumption 3, we can

obtain that

−(��(θi,k)− ��(θ̄k))
ᵀei,k ≤

∥

∥��(θi,k)− ��(θ̄k)
∥

∥ ‖ei,k‖

≤ L ‖ei,k‖
2 .

Define µ̄ = µ/N , and by the inequalities µmin

Nµ̄
≤ µi

µ
≤ µmax

Nµ̄
,

we can obtain

E[V k+1|θk] ≤ (1 +
2γ

Nµ̄
(Lµmax − aλ2µmin))V k

+
γ2

N

N
∑

i=1

E[‖δi,k‖
2 |θk].

(6)

We now simplify the last term in the right-hand side of (6). First,

we note that

E[‖δi,k‖
2|θk] = E[‖δfi,k + δgi,k‖

2|θk] + E[‖δni,k‖
2|θk]. (7)

The first term in the right-hand side of (7) can be further

described as follows:

γ2
E[‖δfi,k + δgi,k‖

2|θk]

= γ2
E

[

‖

(

1−
1

N

)

[��(θi,k) + a�Fi,k]1i,k .

+
1

N

N
∑

j �=i

[��(θj,k) + a�Fj,k]1j,k‖
2|θk

⎤

⎦

=
γ2

N

[

(

1−
1

N

)2
µi

µ̄
‖��(θi,k) + a�Fi,k‖

2

+
1

N2

N
∑

j �=i

µj

µ̄
‖��(θj,k)+a�Fj,k‖

2

⎤

⎦ .

This leads to

N
∑

i=1

γ2
E[‖δfi,k + δgi,k‖

2|θk]

≤
γ2ξ

N

[

(

1−
1

N

)2 N
∑

i=1

‖��(θi,k)+a�Fi,k‖
2

+
1

N2

N
∑

i=1

N
∑

j �=i

‖��(θj,k)+a�Fj,k‖
2

⎤

⎦

≤
γ2ξ

N

N
∑

i=1

‖��(θi,k)+a�Fi,k‖
2 . (8)

Finally

γ2
N
∑

i=1

E[‖δni,k‖
2|θk]

=
γ2

N

[

(

1−
1

N

)2 N
∑

i=1

µi

µ̄
E[‖εi,k‖

2|θk]

+
1

N2

N
∑

i=1

N
∑

j �=i

µi

µ̄
E[‖εj,k‖

2|θk]

⎤

⎦

≤
γ2

N

(

µmax

µmin

) N
∑

i=1

E[‖εi,k‖
2|θk] ≤

γ2ξσ2

N
. (9)

We use inequalities (8) and (9) with (7) to obtain an upper bound

of (6) as follows:

E[V k+1|θk] ≤

(

1 +
2γ

N
(Lµmin − aλ2µmax)

)

V k

+
γ2ξ

N2

N
∑

i=1

‖��(θi,k) + a�Fi,k‖
2 +

γ2ξσ2

N2
.

Finally, we analyze the third term on the right-hand side of (10).

By Parallelogram law

‖��(θi,k) + a�Fi,k‖
2

= 2‖��(θi,k)‖
2 + 2‖a�Fi,k‖

2 − ‖��(θi,k)− a�Fi,k‖
2

≤ 2‖��(θi,k)‖
2 + 2‖a�Fi,k‖

2.

In addition

‖�Fi,k‖
2 = deg(i)2

∥

∥

∥

∥

∥

∥

N
∑

j=1,j �=i

αij(θi,k − θj,t)

deg(i)

∥

∥

∥

∥

∥

∥

2

≤ deg(i)

N
∑

j=1,j �=i

αij ‖θi,k − θj,k‖
2

≤ d̄

N
∑

j=1,j �=i

αij ‖θi,k − θj,k‖
2

which implies

N
∑

i=1

‖�Fi,k‖
2 ≤ d̄

N
∑

i=1

N
∑

j=1,j �=i

αij ‖θi,k − θj,k‖
2

≤ 2d̄
N
∑

i=1

N
∑

j �=i

αij(‖ei,k‖
2 + ‖ej,k‖

2)
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≤ 4d̄2
N
∑

i=1

‖ei,k‖
2 = 4Nd̄2V k.

Thus

N
∑

i=1

‖��(θi,k) + a�Fi,k‖
2

≤ 2

N
∑

i=1

‖��(θi,k)‖
2 + 8a2Nd

2
V k

≤ 4N
∥

∥��(θ̄k)
∥

∥

2
+ 4N(L2 + 2a2d

2
)V k.

(10)

The result follows by using the previous inequality to obtain an

upper bound for the right-hand side of (10). �

C. Proof of Theorem 1

By Taylor expansion and Lipschitz assumption

�(θ̄k+1) ≤ �(θ̄k) + ��(θ̄k)
ᵀ(θ̄k+1 − θ̄k) +

L

2

∥

∥θ̄k+1 − θ̄k
∥

∥

2

= �(θ̄k)−
γ

N

N
∑

i=1

��(θ̄k)
ᵀ��(θi,k)1i,k

−
aγ

N

N
∑

i=1

��(θ̄k)
T�Fi,k1i,k

−
γ

N

N
∑

i=1

��(θ̄k)
T εi,k1i,k +

L

2

∥

∥θ̄k+1 − θ̄k
∥

∥

2
.

Since
∑N

i=1 �Fi,k = 0, it follows that

E[�(θ̄k+1)
∣

∣θk]

≤ �(θ̄k)−
γξ

N2

N
∑

i=1

��(θ̄k)
T��(θi,k) +

L

2
E[

∥

∥θ̄k+1 − θ̄k
∥

∥

2
|θk]

≤ �(θ̄k)−
γξ

N2

N
∑

i=1

��(θ̄k)
T [��(θi,k)− ��(θ̄k)]

−
γξ

N

∥

∥��(θ̄k)
∥

∥

2
+

L

2
E[

∥

∥θ̄k+1 − θ̄k
∥

∥

2
|θk].

(11)

Using (10) from the proof of Lemma 2, we obtain

E[
∥

∥θ̄k+1 − θ̄k
∥

∥

2
∣

∣

∣θk]

=
γ2

N3

N
∑

i=1

µi

µ̄
‖��(θi,k) + a�Fi,k‖

2

+
γ2

N3

N
∑

i=1

µi

µ̄
E[‖εi,k‖

2|θk]

≤
4γ2ξ

N2

[

∥

∥��(θ̄k)
∥

∥

2
+ (L2 + 2a2d

2
)V k

]

+
γ2ξσ2

N3
. (12)

Also

− ��(θ̄k)
T [��(θi,k)− ��(θ̄k)]

=
1

2

∥

∥��(θ̄k)
∥

∥

2
+

1

2

∥

∥��(θi,k)− ��(θ̄k)
∥

∥

2
− ‖��(θi,k)‖

2

≤
1

2

∥

∥��(θ̄k)
∥

∥

2
+

L2

2

∥

∥θi,k − θ̄k
∥

∥

2
. (13)

Substituting (13) and (12) into (11 ), we obtain

E[�(θ̄k+1)
∣

∣θk]

≤ �(θ̄k)−
γξ

2N

∥

∥��(θ̄k)
∥

∥

2
+

L2γξ

2N
V̄k

+
2Lγ2ξ

N2

[

∥

∥��(θ̄k)
∥

∥

2
+ (L2 + 2a2d

2
)V k

]

+
Lγ2ξσ2

2N3
.

(14)

Consider the function �(θ̄k) + LV k. From the inequalities in

(14) and Lemma 2, we obtain

E[V k+1|θk] ≤ (1 +
κγ

N
)V k +

4γ2ξ

N

∥

∥��(θ̄k)
∥

∥

2
+

γ2ξσ2

N2

E[�(θ̄k+1) + LV k+1|θk]

≤ (�(θ̄k) + LV k)−
γξ

N

(

1

2
− 2γL(2 +

1

N
)

)

‖��(θ̄k)‖
2

+

[

κ+
Lξ

2
+

2γξ

N
(L2 + 2a2d

2
)

]

Lγ

N
V k

+
Lγ2ξσ2

N2
(1 +

1

2N
).

By choosing a > 4µminL+ξL
4λ2µmax

, γ̄1 > 0. Given the choice γ <
γ̄1 in the statement of Theorem 1, we have

κ+
Lξ

2
+

2γξ

N
(L2 + 2a2d

2
)

= − 2aλ2µmax + L

(

2µmin +
ξ

2

)

+
6γξ

N

(

L2 + 2a2d
2
)

≤ 0.

It follows that

γξ

N

(

1

2
− 2γL

(

2 +
1

N

))

‖��(θ̄k)‖
2

≤ �(θ̄k) + LV k − E
[

�(θ̄k+1) + LV k+1|θk

]

+
Lγ2ξσ2

N2

(

1 +
1

2N

)

.

Let η = γξ
N
( 12 − 2γL(2 + 1

N
)). By definition γ < γ̄2, we have

η > 0. Since the loss function is non-negative, l(·) ≥ 0 and V̄k ≥
0 for all k. Taking full expectation and summing from k = 0 to

k = K − 1 on both sides of the aforementioned inequality, we

obtain

E[η

K−1
∑

k=0

‖��(θ̄k)‖
2] ≤ �(θ̄0) + LV 0+

KLγ2ξσ2

N2

(

1 +
1

2N

)

.
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We conclude that

E

[

1

K

K−1
∑

k=0

E[‖��(θ̄k)‖
2]

]

≤
1

ηK

[

�(θ̄0) + LV 0 +
KLγ2ξσ2

N2

(

1 +
1

2N

)]

.

�

D. Proof of Corollary 1

Since γ < γ̄1, it follows that

κ < 2Lµmin − 2aλ2µmax

+
2

3

(

2aλ2µmax − L

(

2µmin +
ξ

2

))

=
2

3
Lµmin −

2

3
aλ2µmax −

ξL

3
< 0

and from Lemma 2

|κ| γ

N
V k ≤ V k − E[V k+1|θk] +

4γ2ξ

N

∥

∥��(θ̄k)
∥

∥

2
+

γ2ξσ2

N2
.

Taking full expectation and summing from k = 0 to k = K − 1
on both sides of the aforementioned inequality

E

[

1

K

K−1
∑

k=0

V k

]

≤
N

K|κ|γ
V 0

+
4γξ

|κ|

[

1

K

K−1
∑

k=0

∥

∥��(θ̄k)
∥

∥

2
+

σ2

4N

]

and using Theorem 1, we obtain the result. �

E. Proof of Proposition 1

By Assumption 3 and Taylor expansion

�(θk+1) ≤ �(θk) + ��(θk)
ᵀ(θk+1 − θk) +

L

2
‖θk+1 − θk‖

2

= �(θk)− γ��(θk)
ᵀ

N
∑

i=1

1i,kgi(θk) +
L

2
‖θk+1 − θk‖

2 .

Taking conditional expectation on both sides

E[�(θk+1)| θk]

≤ �(θk)− γ��(θk)
ᵀ

N
∑

i=1

µi

µ
E[��(θk) + εi]

+
L

2
E[‖θk+1 − θk‖

2 |θk]

= �(θk)− γ ‖��(θk)‖
2 +

L

2
E[‖θk+1 − θk‖

2 |θk].

Note that

E[‖θk+1 − θk‖
2 |θk] = E[‖γ

N
∑

i=1

1i,kgi(θk)‖
2|θk]

= γ2
N
∑

i=1

µi

µ
‖��(θk) + εi(θk)‖

2

≤ γ2

(

‖��(θk)‖
2 +

1

µ

N
∑

i=1

µiσ
2
i

)

it follows that

γ(1−
Lγ

2
)‖��(θk)‖

2 ≤ �(θk)− E[�(θk+1)|θk]

+
Lγ2

2µ

N
∑

i=1

µiσ
2
i .

The results follow by taking full expectation and summing

from k = 0 to k = K − 1 on both sides of the aforementioned

inequality. �
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