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Distributed Networked Real-Time Learning

Alfredo Garcia

Abstracti—Many machine learning algorithms have been
developed under the assumption that datasets are already
available in batch form. Yet, in many application domains,
data are only available sequentially overtime via compute
nodes in different geographic locations. In this article, we
consider the problem of learning a model when stream-
ing data cannot be transferred to a single location in a
timely fashion. In such cases, a distributed architecture
for learning which relies on a network of interconnected
“local” nodes is required. We propose a distributed scheme
in which every local node implements stochastic gradient
updates based upon a local data stream. To ensure ro-
bust estimation, a network regularization penalty is used to
maintain a measure of cohesion in the ensemble of models.
We show that the ensemble average approximates a sta-
tionary point and characterizes the degree to which individ-
ual models differ from the ensemble average. We compare
the results with federated learning to conclude that the
proposed approach is more robust to heterogeneity in data
streams (data rates and estimation quality). We illustrate
the results with an application to image classification with
a deep learning model based upon convolutional neural
networks.

Index Terms—Asynchronous computing, distributed
computing, networks, nonconvex optimization, real-time
machine learning.

[. INTRODUCTION

TREAMING datasets are pervasive in certain application

domains often involving a network of compute nodes lo-
cated in different geographic locations. However, most machine
learning algorithms have been developed under the assumption
that datasets are already available in batch form. When the
data are obtained through a network of heterogeneous compute
nodes, assembling a diverse batch of data points in a central pro-
cessing location to update a model may imply significant latency.
Recently, an architecture referred to as federated learning (FL,
see, e.g., [1], [2]) with a central server in proximity to local nodes
has been proposed. In FL, each node implements updates to a
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machine learning model, which is kept in the central server. This
allows collaborative learning while keeping all the training data
on nodes rather than in the cloud. In general, schemes that avoid
the need to rely on the cloud for data storage and/or computation
are referred to as “‘edge computing.”

With high data payloads, such architecture for real-time
learning is subject to an accuracy versus speed tradeoff due to
asymmetries in data quality versus data rates, as we explain in
what follows.

Consider nodes i€ {1,...,N} generating data points
(@in,Yin), n € NT at different rates p; > 0, which are used
for the instantaneous computation of model updates 0, k € N
(striving to minimize loss ¢). This setting could correspond, for
example, with supervised deep learning in real time wherein gra-
dient estimates (with noise variance O’Z-Q > () are computed via
backpropagation in a relatively fast fashion. Without complete
information on o7 > 0, updating the model parameters based
upon every incoming data point yields high speed but possibly at
the expense of low accuracy. For example, if the nodes producing
noisier estimates are also faster at producing data, it is highly
unlikely that an accurate model will be identified at all.

To illustrate this scenario, in Fig. 1, we depict the performance
of FL for deep convolutional neural networks (CNNs) with
the Modified National Institute of Standards and Technology
(MNIST) database. In these simulations, each one of N =5
nodes sends data according to independent Poisson processes
with 49 = 8 and p1; = 1,4 € {1,...,4}. The fastest node com-
putes gradient estimates based upon a single image, whereas the
slower nodes compute gradient estimates based upon a batch of
64 images. This tradeoff between speed and precision is miti-
gated in a distributed approach to real-time learning subject to a
network regularization (NR) penalty. In such an approach, each
one of the N > 1local nodes independently produces parameter
updates based upon a single (locally obtained) data point, which
speeds up computation. Evidently, with increased noise, such
a scheme may fail to enable the identification of a reasonably
accurate model. However, by adding a NR penalty (which is
computed locally), a form of coordination between multiple
local nodes is induced so that the ensemble average solution is
robust to noise.' Specifically, we show that the ensemble average
solution approximates a stationary point and that the approxi-
mation quality is O( E%i ol ), which compares quite favorably
with FL, which is highly sensitive to fast and inaccurate data
streams. We illustrate the results with an application to deep
learning with CNNSs.

!'Similar NR methods have been used in multitask learning to account for
inherent network structure in datasets (see, e.g., [3]-[7]). See Section IL.D.
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The structure of this article is as follows. In Section II, we
introduce the distributed scheme that combines stochastic gra-
dient descent with NR. In Section I1I, we analyze the scheme and
show that it converges (in a certain sense) to a stationary point,
we also compare its performance with FL. Finally, in Section IV,
we report the results from a testbed on deep learning application
to image processing, and in Section V, we offer conclusion.

II. NETWORK REGULARIZED APPROACH TO
REAL-TIME LEARNING

A. Setup

We consider a setting in which data are made available sequen-
tially overtime vianodes i € {1,..., N} indifferent geographic
locations. We denote the ith stream by {(@; ,,,yi ) : n € NT}
and assume these data points are independent samples from a
joint distribution P;.

We also assume that the data streams are independent but
heterogeneous, i.e., P; # P;, i # j. Each node strives to find a
parameter specification § € © C RP that minimizes the perfor-
mance criteria Ep, [£(x;, y;; 0)], where the loss function £(-) >
0 is continuously differentiable with respect to 6. Though data
are distributed and heterogeneous, we consider a setting in which
nodes agree on a common learning task. This is formalized in
the first standing assumption. Let g; (0) £ Vo L(x;, y;; 0) denote
the gradient evaluated at (x;,y;) ~ P;, and assume g;(0) is
uniformly integrable.

Assumption O: For all § € ©,and i € {1,...,N}

Epi [gi (9)] = EP]‘ [gj (9)]

Let ¢£(0) denote the (ensemble) average expected loss

N
(6) & > B [,y 0)].
i=1

By uniform integrability, VoEp,L(xz;,yi;0) = Ep,g:(0).
Assumption 0 thus implies that Ep, [g;(6)] = V(@) for all 7 and
0. Let £;(0) = g;(0) — v£(6), then it holds that E[g;(8)] = 0.
We further assume the following.

Assumption 1:Forall §; € ©, the random variables {e;(0;) :
i €{1,...,N}} are independent and

E[e:(6:)]|"] < o7
Define 0% = Zf\il o2. By independence of data streams
Ele:(0)Te;(0)] = Elei(0)]"Ele;(0)] = 0

foralld € ©,5 € {1,..., N}/ {i}. Streams generate data over
time according to independent Poisson processes D;(t) with
rate y; > 0 and D;(0) = 1. We assume that the time required to
compute gradient estimates and/or exchange parameters locally
among neighbors or with the central server are negligible com-
pared to the time in between model updates. In what follows,
we make use of a virtual clock that produces ticks according
to an aggregate counting process D(t) = Ef\i 1 D;(t) with rate
w= Zf\il ;. Let k € NT denote the index set of ticks associ-
ated with the aggregate process. Since we assume the parameter
isupdated once a data point arrives, the kth iteration is completed
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Fig. 1. Performance comparison for deep learning on MNIST with
learning rate v = 0.01. The 95% percentile is depicted with green lines.

at the kth tick. Index k denotes the kth step in the schemes
described below.

B. Federated Real-Time Learning

In FL, gradient estimates are communicated to a central server
where a model is updated as follows:

N
Op41 =0 — W’Z 1, 19: (k) (D

i=1

where «y is the learning rate, 1; j, is an indicator of whether node ¢
performs an update: 1; ;, = 1if the next gradient estimate comes
from the 7th stream and 1; ;, = 0 otherwise.

The algorithmic scheme described in (1) was first analyzed
in [8] for data in batch form and has been used in the recent
literature on asynchronous parallel optimization algorithms (see,
for example, [9], [10], and [11]). As Fig. 1 suggests, with
heterogeneous data streams, the scheme in (1) tradeoff speed in
producing parameter updates at the expense of heterogeneous
noise in gradient estimates. In what follows, we introduce a
distributed approach that relies on an NR penalty to ensure the
ensemble average approximates a stationary point (i.e., a choice
of parameters with null gradient). We will show that in such a
networked approach, the tradeoff between precision and speed
is mitigated.

C. Distributed Approach With NR

In the NR scheme, we consider a network of local compute
nodes, which we model as a graph G = (N, &), where N =
{1,..., N} stands for the set of nodes and £ C N x N is the
set of links connecting nodes. Let A = [a;;] € RV*Y be the
adjacency matrix of G, where «;; € {0,1} indicates whether
node 4 communicates with node j: a;; = 1 if two nodes can
exchange local information and «a;; = 0 otherwise.

In this scheme, each local node ¢ performs model updates
according to a linear combination of local gradient estimate and
the gradient of a consensus potential

FO) =133 aullr — 65

=
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where 8] = (0] ;,...,0%,) € RP*V . The consensus potential
is a measure of similarity across local models.> The update
performed by node ¢ is of the form

Oike+1 = 0ik, —¥1ik[9:(0i k) + aVF; k] (2)

where a > 0 is a regularization parameter, and

VFik 2 Vo, F(0r) = ij(0ir — 0s1)-
Jj#i

Note that the basic iterate (2) can be interpreted as a stochastic
gradient approach to solve the local problem

min[Ep, (6;) + a7 (0)]

in which the objective function is a linear combination of loss
and consensus potential.> When a = 0, each local node ignores
the neighboring models. For large values of a > 0, the resulting
dynamics reflect the countervailing effects of seeking to mini-
mize consensus potential and improving model fit. With highly
dissimilar initial models, each local node largely ignores its own
data and opts for updates that lead to a model that is similar
to the local average. Once approximate consensus is achieved,
local gradient estimates begin to dictate the dynamics of model
updates.

In what follows, it will be convenient to rewrite (2) as follows:

Oir1 =0k —7Lig [VL(O; 1) +aVFip+eir). ()

Given that local nodes independently update and maintain their
own parameters, the network regularized scheme is not subject
to the possibility of biased gradient estimates stemming from
update delays in FL (see [15]).

D. Literature Review

The scheme proposed in (2) has already been considered in the
machine learning literature. In a series of papers (see [4]-[7]),
the authors consider an approach to multitask learning based
upon an NR penalty, as in (2). This article focuses on distributed
single-task learning. In contrast to the papers referred earlier,
we consider a nonconvex setting with heterogeneous nodes
asynchronously updating their respective models at different
rates over time.

The scheme proposed in (2) is also related to the literature
on consensus optimization (see, e.g., [10], [16], and [17]).
However, the proposed approach cannot be interpreted as being
based upon averaging over local models as in consensus-based
optimization. In that literature, the basic iteration is of the form

Oikr1 =Y Wijkbin —79(6i k)
i

2This consensus potential has been used in the literature of opinion dynamics
(see, e.g., [12]).

3This interpretation is not novel (see, e.g., [13] and [14] for its use in swarm
(flocking) optimization and in multitask learning [4]-[7]).

where W, € RV*¥ is doubly stochastic and g(6; 1) is a noisy
gradient estimate. Indeed, one can rewrite (2) as

Oi k1 = Z Wi ik — v1ikgi(0ix)
J

withW;;, =1—~a Zj a; jand Wi ; = va Zj «a; ;. However,
the resulting matrix W is not doubly stochastic in general since
we only require a > 0. Thus, the approach to consensus in (2)
cannot be interpreted as being based upon averaging over local
models as in consensus optimization.

The algorithms proposed in [10] and [17] are designed for
batch data, whereas our approach deals with streaming data.
For example, in [10], each node uses the same minibatch size
for estimating gradients, whereas in our approach, gradient
estimation noise is heterogeneous. In addition, in the algorithms
proposed in [10] and [17], every node is equally likely to be
selected at each iteration to update its local model. In contrast,
in our approach, data streams are heterogeneous so that certain
nodes are more likely to update their models at any given time.
Finally, in [10], the objective function (loss) is defined with
respect to a distribution, which is biased toward the nodes that
update more often. This is in contrast to the objective function
defined in this article (i.e., £(6)), where every node contributes to
the global distribution with the same weight regardless of their
updating frequency.

IIl. ANALYSIS

In this section, we show that the NR scheme converges (in
a certain sense) to a stationary point. To that end, we study
stochastic processes {0;  : k > 0} associated with each one
of the N > 1 nodes in the network regularized approach. The
proofs are given in the Appendix. We make the following stand-
ing assumptions.

Assumption 2: The graph G corresponding to the network of
nodes is undirected (A = AT) and connected, i.e., there is a path
between every pair of vertices.

Assumption 3 (Lipschitz): ||V{(0) — V(0] < L||0 — ¢
for some L > 0 and for all 6, 6'.

A. Preliminaries

The ensemble average 6, = % Zf\;l 6; 1 plays an important
role in characterizing the performance of the network regularized
scheme. To this end, we analyze the process {V} : k > 0}
defined as

N
Vil 23 [0k — 04
k*NZH ik — Ok|l”
i=1

Let €ik £ O — 0, and Vik £ ||€i,k||2, then
Vi = % vaz 1 Vik. We now introduce some additional
notations. Let deg(i) denote the degree of vertex 4 in graph G
and d := max; deg(i) . Let E[V;41|60] denote the conditional
expectation of Vk+1 given 0y . We define fiax = max{y; :
1 <1< N} and piin = min{y; : 1 <i < N}. We first prove

two intermediate results.
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Lemma 1: Suppose Assumptions 0-2 hold. It holds that

N

= 2
T . ) :
Vi — N ;'}’e“clz,k [Vf(gz’k) + anz,k]

9 N 1 N
T - . 2018, 112
N Z:A/ei’kgl’klz’k i N ;7 15l

Whereé,k—é +6lk+5lk,and

Vigr =

N
- - 1
0, 2 VO k) L — Ve, Vi 2 NZW(& k)L
j=1
1
87 & a(VFiplin — VFi), 0 = einlin — N Zjlsj»klj,k
j=
1
VJ:k; é N ZV}}’klj’k
j=1
Lemma 2: Suppose Assumptions 0-3 hold. Let
f = ,Ufmax/,ulmin, then
4 v2Eo?
EVir1l0x] < (14+5) Vi + == € ve@o| + ]52

where Ao denotes the second-smallest of the Laplacian associ-
ated with graph G and

4vE

= 2(L/~Lmin a)"Zﬂmax) + 7(L2 + 2a 2d )

B. Convergence

We are now ready to state and prove the main theorem.
As in [18], convergence is described in terms of the expected
value of the average squared norm of the gradient in the first
K-updates. The ensuing corollary goes into further detail by
describing the same result in terms of real-time elapsed and not
just on a total number of iterations.

Theorem 1: Suppose Assumptions 0-3 hold. Choose
v <min{¥, ¥, }, where

— L(2pmin +£/2) _ 1

2aM2 fhmax
e and %2 = T EN T

=N =
6€(L2 + 2a2d°)

are positive by choosing a > %A. With scheme (2), it
holds that
1 K-1
E[ve@)]*
k:O
< L 0@o) + vy + BECE (1,
= K |V 0 N2 2N

where n = 2 (3 — 29L(2+ £)).

The regularization penalty parameter ¢ must be high enough
to ensure cohesion between local models. This condition is
weaker with a higher degree of connectivity (i.e., higher values
of )»2).
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Fig.2. Mean plot of the ensemble average computed under NR and FL
schemes in heterogeneous setting. Let the network to be fully connected
and set a = 10 and v = 0.002 in (a) and v = 0.004 in (b).

Note also that for fixed N > 0, when a — oo, then v  1/a.
So convergence, as characterized by Theorem 1, may be slower.
This is not necessarily the case since the conditions in Theorem 1
identify a wide range of choices for a and ~. For example,
simulations indicate that for fixed v, higher values of a may
speed up convergence [see Fig. 3(c)].

C. Real-Time Performance

The analysis in Theorem 1 takes place in the time scale
indexed by k£ > 0 and associated with the clicks associated
with a Poisson process with rate 1+ > 0. To embed the result in
Theorem 1 in real time, recall that { D(¢t) : ¢ > 0} is the counting
process governing the aggregation of all data streams. Given
our assumption on computation times being negligible, the total
number of updates completed in [0, ¢) is also D(¢). Let us define
the conditional average squared gradient norm ||¢;||? in the
interval [0, t) as follows:

D(t)

E([ve* D] £ 5 lewek )% “

Hence, the result in Theorem 1 can be reinterpreted by taking
expectation of (4) over D(t) as

E[||V4:]|*) = E [E[|V£*[D(t))]

1 = — Ly%¢o? 1
< _— i
<E D0 (€(60)+LV o)+ N2 1455
_ (l(0o) + LVo)(1 —e ™)  Ly*¢o? 1y
N nut K 2N) "’

According to Theorem 1, and using v ~ %, the coupling of
solutions via the NR penalty implies the ensemble average
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Fig. 3. Mean plot of each node computed under NR scheme in hetero-
geneous setting. Let the network to be fully connected and set v = 0.01
and a=1in (a) and a =10 in (b). The mean plot of the ensemble
average under two choices of a is presented in (c).

approximates a stationary point in the sense that

(%)

The approximation quality is monotonically increasing in the
number of nodes. The convergence properties outlined earlier
are related to the ensemble average. It is, therefore, necessary to
examine the degree to which individual models differ from the
ensemble average. This is the gist of the next result.

Corollary 1: With the same assumptions and definitions in
Theorem 1, it holds that

SRAR TG

4L~3E%02 1 véo?
—_— 1+ — .
e UTan ) T

We embed the result in Corollary 1 in real time. Define the
conditional average of V, in the interval [0, ) as

lim sup E[[|7£|%]
t—00

476

) o]

Emuwné55§:%.

The random process {V; : t > 0} tracks the average distance
of individual models to the ensemble average. Similar to the
discussion of Theorem 1, the real-time result of Corollary 1 is
as follows:

E[V;] = E [E[V;|D(1)]]
s [(F 26 vy 28y
e (1 20) + 1
S [(N ) g )
ut|k| Y n n

This implies the asymptotic difference between individual mod-
els and the ensemble average satisfies

(%)

The NR parameter a > 0 plays an important role in con-
trolling the upper bound in Corollary 1. For fixed N > 0,
when a — oo, then 7,71  1/a and |x| o a?, it follows that
]E[% fz_ol V] o< 1/a. Hence, the upper bound in Corollary
1 can be made arbitrarily small by choosing large enough a.

lim sup E[V;]

t—00

D. Comparison to FL

‘We now present the counterpart convergence result regarding
to FL.

Proposition 1: Suppose Assumptions 0-3 hold. For scheme
(1), with a choice v € (0, 2), it holds that

l }:g | vVe(65) ||2]

— %) . To embed the process in Proposition 1 in
I

00)) I A
<) | TN~ Hige
nK 21 4

with 7 = ~(

real time, let us define the average squared gradient norm || ve,
in the interval [0, t) as follows:

E[[|vZ*|D(t) N2 55 Z [VE(0,)||. (5)

Hence, the result in Proposition 1 can be reinterpreted by
taking expectation of (5) over D(t) as

:Epwwmmeﬂ
0 )
D(t) 27} ; ‘ ]

_ UB)(1—e )
npt

E[| v ?]

g
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TABLE |
EXPERIMENT HYPERPARAMETERS OF THE TWO SETTINGS, INCLUDING THE
DATA STREAM ID (STREAM ID), NUMBER OF NODES INVOLVED (# NODES),
THE NUMBER OF IMAGES ARRIVED AS A MINIBATCH (MINIBATCH SIZE), AND
THE POISSON RATE OF THE CORRESPONDING STREAM IS (1)

Setting Stream 1D # Nodes  Mini-batch Size  py;
Do 1 1 8

Heterogeneous D1 — Dy 4 64 1
Homogeneous | All streams 20 4 1

To compare FL with NR, we also make v ~ % The asymptotic
approximation quality is given by

. ~ 1 i
lim sup E[||v4]2] =0 | = 252
wp E[IvEI7) = 0 | 5 35 ot

which suggests that the approximation quality is determined by
the faster data streams. This leads to unsatisfactory performance
whenever u; o 0? (i.e., faster data streams are also less accu-
rate). Evidently, the opposite holds true when faster nodes are
also more accurate, i.e., 1; < 1/ a?. However, in many real-time
machine learning applications, this is not likely to be the case.
Obtaining higher precision gradient estimates requires larger
batches and/or increased computation. Thus, nodes with higher
precision are less likely to be the faster ones.

IV. TESTBED: REAL-TIME DEEP LEARNING

In this section, we report the results of NR [scheme (2)] to
distributed real-time learning from three aspects: the comparison
with FL [scheme (1)], the effects of the regularization parameter
a, and the effects of the network connectivity.

The specific learning task is to classify handwritten digits
between 0 and 9 digits as given in the MNIST dataset [19].
The dataset is composed of 10 000 testing items and 60 000
training items. Each item in the dataset is a black-and-white
(single-channel) image of 28 x 28 pixels of a handwritten digit
between 0 and 9.

In the first two experiments, we implement schemes in a
heterogeneous setting with 5 nodes, and the third experiment
with 20 nodes in a homogeneous setting. In the testbed, MNIST
streams according to independent Poisson processes. Gradient
estimates are obtained with different minibatch sizes. Evidently,
a smaller minibatch size implies noisier gradient estimates. The
detailed experimental settings are summarized in Table I. In the
heterogeneous setting, “node 0” is the fastest and noisiest in
producing gradient estimates.

We use the Ray platform (see [20]), which is a popular library
with shared memory supported, allowing information exchange
between local nodes without copying as well as avoiding a cen-
tral bottleneck. For low-level computation, Google TensorFlow
is used. We use a CNN with two 2-D convolutions each with
kernelsize 5 x 5, stride 1 and 32, and 64 filters. Each convolution
layer is followed by a max-pooling with a 2 x 2 filter and stride
of 2. These layers are then followed by a dense layer with 256
neurons with 0.5 dropout and sigmoid activation followed by ten
output neurons and softmax operation. Cross entropy is used as

0.8
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0.4

0.2
W connected with 8 nearest neighbors

I connected with 2 nearest neighbors

10t 102 10°

Fig. 4. Mean plot of ensemble average computed under the scheme
of NR in the homogeneous setting. Set a = 10 and v = 0.001.

a performance measure (i.e., loss).* We present the experimental
results in mean plots with stand error bar. The means are com-
puted across ten trials under the same hyperparameters (namely,
v and a).

A. Comparison to FL

In this experiment, we compare NR with FL in the hetero-
geneous setting. In Fig. 2, we plot the means of the ensemble
average of NR and FL with different learning rates.

We can observe from Fig. 2(a) that when the learning rate
is moderate, both FL and NR can converge, but the empirical
standard deviation of FL is much larger than that of NR. With
increased ~y, FL fails to converge while NR still performs rela-
tively well, as shown in Fig. 2(b). We can see that NR is more
robust with respect to the learning rate.

B. Effects of Regularization Parameter

In this experiment, we look at the effects of changing the
regularization parameter a. In Fig. 3, we present the means of
each node as well as the ensemble average.

As we increase a from 1 to 10, we can observe from Fig. 3(a)
and (b) that the consensus among nodes increases and the
empirical mean standard deviation of the “node 0” decreases.
As presented in Corollary 1, the regularization parameter a
influences the degree of similarity between individual models
and the ensemble average. Note that we only identify a range
of values for a (lower bound) and v (upper bound) for which
convergence is guaranteed so that a higher value of a does not
necessarily imply slower convergence, as shown in Fig. 3(c).

C. Effects of Network Connectivity

In the third experiment, we check the effect of increased
connectivity in the homogeneous setting by using a Watts—
Strogatz “small world” topology (see [21]), in which each node
is connected with two (or eight) nearest neighbors.

We can see from Fig. 4 that increasing the connectivity of the
topology only improves the performance slightly, meaning that
only a limited connectivity is needed for the network regularized
approach to enjoy a satisfactory rate of convergence.

4With max-pooling, the loss function is not differentiable in a set of measure
zero. If in the course of execution, a nondifferentiable point is encountered, Ten-
sorflow assumes a zero derivative. Details on the implementation are available
at: https://github.com/wangluochao902/Network-Regularized- Approach
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V. CONCLUSION

In many application domains, data streams through a net-
work of heterogeneous nodes in different geographic locations.
When there is high data payload (e.g., high-resolution video),
assembling a diverse batch of data points in a central processing
location in order to update a model entails significant latency.
In such cases, a distributed architecture for learning, relying on
a network of interconnected “local” nodes may prove advanta-
geous. We have analyzed a distributed scheme in which every
local node implements stochastic gradient updates every time
a data point is obtained. To ensure robust estimation, a local
regularization penalty is used to maintain a measure of cohesion
in the ensemble of models. We showed that the ensemble average
approximates a stationary point. The approximation quality is
superior to that of FL, especially when there is heterogeneity in
gradient estimation quality. We also showed that our approach
is robust against changes in the learning rate and network con-
nectivity. We illustrate the results with an application to deep
learning with CNNs.

In future work, we plan to study different localized model
averaging schemes. A careful selection of weights for computing
local average model ensures a reduction of estimation variance.
This is motivated by the literature on the optimal combination

of forecasts (see [22]). For example, weights minimizing the
A2
sample mean square prediction error are of the form ﬁ
i=19j
where 67 is the estimated mean squared prediction error of the
1th model.

APPENDIX
A. Proof of Lemma 1
Note that

N
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Hence, €; p+1 = 0i k41 — Or+1 = €ix — 7¥0;,%. Then
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So, the result follows. ||

B. Proof of Lemma 2

In light of Lemma 1, we have

_ _ 9 ;
E[Vit1|04] = Vi — N” ’; el [V0(01) + aVFin]

i=1

72 &
2
+ﬁ2||5i,kll :
=

Leter = [€] ;€5 4s-- s €N ;)T and £ = [I;;] be the Laplacian
matrix associated with the adjacency matrix A, where l;; =
> j Gij and/;; = —a;; wheni # j. For an undirected graph, the
Laplacian matrix is symmetric positive semidefinite. It follows
that
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where Ay := Ao (L) is the second-smallest eigenvalue of £, also

called the algebraic connectivity of G [23]. Thus +% Z Z IV0(0;.1)+aV F s ”2
= = s
E[Vit1]0) < Vi — N ;elkvg(ei,k) 2 N
=t < WZ”W 0i k) +aVFi |- ®)

2aroy I 72
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By Cauchy—Schwarz inequality and Assumption 3, we can 1 NN U
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< L He ||2 < 12 Mmdx |0k] - 2€O' (9)
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1 = 1 1t Hmin M HEmax
Define [ —.u/N , and by the inequalities g < £t < Frex,
we can obtain

— 2 —
E[Vk+1|0k] S (]- + Ni’;(L,Ufmax - a)"ZNmin))Vk

We use inequalities (8) and (9) with (7) to obtain an upper bound
of (6) as follows:
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We now simplify the last term in the right-hand side of (6). First,
we note that Finally, we analyze the third term on the right-hand side of (10).
E[[6:,112164] = E[I6], + 62, 1216.) + E[157,]%10]. (7 BY Parallelogram law

2
The first term in the right-hand side of (7) can be further V(05 k) + aV Fikll
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5 N ) - Also
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(10) Substituting (13) and (12) into (11 ), we obtain
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upper bound for the right-hand side of (10). | + e [va(gk) H + (L2 +92¢2d )Vk} + N
(14)
C. Proof of Theorem 1
By Taylor expansion and Lipschitz assumption Consider the function £(6) + LV, From the inequalities in
(14) and Lemma 2, we obtain
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71 in the statement of Theorem 1, we have
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We conclude that
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D. Proof of Corollary 1 N
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