THE SPACE OF ASYMPTOTICALLY CONICAL SELF-EXPANDERS OF
MEAN CURVATURE FLOW

JACOB BERNSTEIN AND LU WANG

ABSTRACT. We show that the space of asymptotically conical self-expanders of the mean
curvature flow is a smooth Banach manifold. An immediate consequence is that non-
degenerate self-expanders — that is, those self-expanders that admit no non-trivial normal
Jacobi fields that fix the asymptotic cone — are generic in a certain sense.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, > C R+
is a self-expander if

L
(1.1) Hy — — =0.
2
Here
HZ == AEX = —HEIIZ = —diVE(l’lz)l’lE

is the mean curvature vector, ny. is the unit normal, and x is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Y. is a self-expander if and only if the family of homothetic hypersurfaces

{Zt}t>0 = {\/%Z}DO

is a mean curvature flow (MCF), that is, a solution to the flow

ox\*
(5) =m

In particular, self-expanders may be thought of as the forward in time analog of self-
shrinkers. While self-shrinkers model the behavior of a MCF as it develops a singularity,
self-expanders are expected to model the behavior of a MCF as it emerges from a conical
singularity. They are also expected to model the long time behavior of the flow. The inter-
ested reader may refer to [2], [7], [8], [9], [11], [15], [16], [20], [21], and references therein.
Finally, self-expanders arise variationally as stationary points, with respect to compactly
supported variations, of the functional

Em:/&%mw
>

where ‘H" is the n-dimensional Hausdorff measure.
Throughout the paper, n, k > 2 are integers and « € (0,1). LetI" be a che asymptot-
ically conical C*“-hypersurface in R"*! and let £(I") the link of the asymptotic cone of
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I'. For instance, if lim,_,o+ pI' = C in CH*(R™H1\ {0}) for C a cone, then T is C2*-
asymptotically conical with asymptotic cone C. For technical reasons, the actual definition
is slightly weaker — see Section 3 for the details. We wish to view the space of all Cche
asymptotically conical self-expanders as an infinite dimensional geometric object and then
understand some of its global features. However, this space is cambersome to work with
and so, inspired by work of White [25], we take a slightly different point of view.
Specifically, let ACH®(T") be the space of C¥**-asymptotically conical embeddings
of T into R"*1. Roughly speaking, f € ACH**(T) if f is an embedding, ¥ = f(I) is a
cr "*_asymptotically conical C***-hypersurface and the parametrization of 3 by f is well
behaved at infinity. This last condition means that an appropriate blow down of f yields a
nice parametrization of the asymptotic cone of . Two elements f;, f, € ACH®*(T') are
equivalent if f; = f5 o ¢ for some diffeomorphism, ¢, of I that fixes the infinity of I'; see
Section 3.2 for the exact definitions of ACH**(T") and of the equivalence. Denote by [f]
the equivalence class of f. Observe that it is possible for two elements f1, f, € ACH(T")
to parametrize the same hypersurface, 35, but to be inequivalent. This happens when the
blow downs of f; and f5 give different parameterizations of the asymptotic cone of X..

Theorem 1.1. ForT' € ACH" let
ACER(T) = {[f]: f € ACH"(T) and £ = £(T) satisfies (1.1)} .

Then the following statements hold:

(1) ACEF(T') is a smooth Banach manifold modeled on C*(L(T"); R"*1), with a
countable cover by coordinate domains O;.

(2) The projection map T1: ACEX*(I") — C*(L(T); R") which assigns to [f] the
trace at infinity, tr>_[f], of f is a smooth map of Fredholm index 0.

(3) Eachll|p, has a coordinate representation given by the map (z, k) — (z,v:(2,K))
from a neighborhood of 0 € Z; ® K; to itself, where K, is the kernel of DII([f;])
for some [£;] € O; and Z; is the complement of KC; in C**(L(T); R™+1).

(4) The kernel of DII([f]) is isomorphic to the space of normal Jacobi fields of f(T")
that fix the asymptotic cone.

By work of Smale [23], an immediate consequence of Theorem 1.1 is that for a “generic”
C*_regular cone, C, all self-expanders asymptotic to C are non-degenerate in that they
admit no non-trivial normal Jacobi fields that fix the asymptotic cone — see Section 6.

Corollary 1.2. Given I’ € ACH"® there is a nowhere dense set S ¢ C**(L(T'); R™+1)
so that if p € CH(L(T); R")\S and [f] € ACEF*(T) has T1([f]) = ¢, then the space
of normal Jacobi fields of ¥ = £(T") that fix the asymptotic cone of X is trivial. That is, the
space K defined in (6.1) is trivial.

Similarly, it follows from Theorem 1.1 that whenever the projection map II is proper,
then there is a well defined mod 2 degree — see [4] for natural situations in which II is
proper.

Corollary 1.3. Given T € ACH™ if U is an open subset of ACE¥*(T') and V is a
connected open subset of C**(L(T); R"*1) such that T|y;: U — V is proper; then 11|y
has a well defined mod 2 degree.

Theorem 1.1 is inspired by the main result of [25] in which White considers the space of
all regular immersions of compact n-dimensional manifolds with boundary into RN, N >
n. He shows that the critical points in this space of any reasonable elliptic integrand, e.g.,
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the area functional, form a Banach manifold and that the natural boundary restriction map
is smooth and Fredholm of index 0. White derives many interesting consequences from
this result including developing an integer degree theory — see [26] for further applications.
The results of [25] were preceded by earlier work on this problem for minimal surfaces by
Bohme-Tromba [6] and Tomi-Tromba [24]. Those authors took a different approach, one
allowing for branched immersions, and the interested reader should consult those papers
and their references.

Theorem 1.1 may be thought of as an extension of [25] to the space of asymptotically
conical self-expanders and we follow the main outline of White’s proof. However, almost
all the technical details are different. We also do not fully carry out the program of [25].
For example, we do not develop an integer degree theory for the map II, instead we address
this topic in a separate paper [5]. To elaborate on the differences, while White is able to
repeatedly appeal to standard results for elliptic boundary value problems, we must develop
the relevant estimates in the non-compact setting ourselves. In addition to the issues caused
by working on a non-compact domain, there are new challenges posed by the lack of
ellipticity of the linearizion of (1.1) “at infinity”. For instance, we establish the Fredholm
properties of this operator using basic facts about the heat kernel on Euclidean space. We
remark that an analogous Fredholm property for the linearization of asymptotically conical
expanding Ricci solitons has also been derived by Deruelle [10] though our setup and
method of deriving the relevant estimates are different from his.

There is a rich literature on the use of global analysis methods to study elliptic varia-
tional problems. For instance, the problem of studying the structure of the space of com-
pact minimal surfaces where the ambient metric is allowed to vary has been considered by
White in [27] for closed surfaces and also by Maximo-Nunes-Smith [19] for free boundary
annuli. In addition, there are two papers where an integer degree theory is constructed
for non-compact minimal surfaces. Namely, [1] where such a theory is sketched for non-
compact surfaces in H? which extend to surfaces with boundary on the ideal boundary
and [13] where the theory is used to study certain non-compact annuli in H? x R.

We organize the paper as follows. In Section 2 we fix notation. In Section 3 we in-
troduce CF "*_asymptotic conical hypersurfaces/embeddings and the trace at infinity. In
Section 4 we derive the first and second variation formula for the functional £. Because
of the low regularity at infinity of cr **-asymptotically conical self-expanders, inspired by
work of White [25], we associate a so-called v-Jacobi operator, L., which is a variant
of the usual Jacobi operator, to the second variation of E¥ where v is a Ok vector field
transverse to the given self-expander. In Section 5 we prove that L, is Fredholm of index
0 between appropriate function spaces. In Section 6 we adapt to our setting an asymptotic
expansion of almost eigenfunctions of certain drifted Laplacians obtained recently by the
first author [3]. This will be used to justify the legitimacy of integration by parts in sev-
eral places and also serves as a substitute for the Calderén unique continuation theorem
employed in the proof of [25, Theorem 3.2]. In Section 7 we prove a so-called smooth
dependence theorem, i.e., Theorem 7.1, of which Theorem 1.1 is an easy corollary. Theo-
rem 7.1 may be thought of as an analog of [25, Theorem 3.2] in the asymptotically conical
self-expander setting.

2. NOTATION

2.1. Basic notions. Denote a (open) ball in R™ of radius R and center = by Bf(x) and
the closed ball by B%(x). We often omit the superscript n when its value is clear from
context. We also omit the center when it is the origin.
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For an open set U C R™"L, a hypersurface in U, ¥, is a smooth, properly embedded,
codimension-one submanifold of U. We also consider hypersurfaces of lower regularity
and given an integer k > 2 and « € (0, 1) we define a C**-hypersurface in U to be a prop-
erly embedded, codimension-one Ok submanifold of U. When needed, we distinguish
between a point p € ¥ and its position vector x(p).

Consider the hypersurface S* C R™*!, the unit n-sphere in R" 1. A hypersurface
in S”, o, is a closed, embedded, codimension-one smooth submanifold of S and C*-2-
hypersurfaces in S™ are defined likewise. Observe that o is a closed codimension-two
submanifold of R"*! and so we may associate to each point p € o its position vector
x(p). Clearly, |x(p)| = 1.

A cone is aset C C R™!\ {0} that is dilation invariant around the origin. That is,
pC = C for all p > 0. The link of the cone is the set £[C] = C N'S™. The cone is regular if
its link is a smooth hypersurface in S™ and C*®-regular if its link is a C***-hypersurface
in S™. For any hypersurface o C S™ the cone over o, C[a], is the cone defined by

Clol={pp: p€o,p>0} CR"\ {0}.
Clearly, L[C[o]] = 0.

2.2. Function spaces. Let ¥ be a properly embedded, C** submanifold of an open set
U C R™*1. There is a natural Riemannian metric, gs;, on 3 of class C*~1 induced
from the Euclidean one. As we always take & > 2, the Christoffel symbols of this metric,
in appropriate coordinates, are well defined and of regularity C*~2. Let Vyx be the
covariant derivative on . Denote by ds; the geodesic distance on ¥ and by B%(p) the
(open) geodesic ball in X of radius R and center p € Y. For R small enough so that B%(p)
is strictly geodesically convex and ¢ € B%(p), denote by qu the parallel transport along
the unique minimizing geodesic in B%(p) from p to g.

For the rest of this section, let §2 be a domain in 3, [ an integer in [0, k], 8 € (0,1) and
d € R. Suppose | + 5 < k + «. We first consider the following norm for functions on €2:

l
I fllue = ngplvzzf\-
1=0

We then let
CI(Q) = {f € Clloc(Q): ||f| 1;Q < OO} .
We next define the Holder semi-norms for functions f and tensor fields 7" on 2

1f(p) = f(9)] IT(p) = (7.0)"T(q)|
[flg.0 = sup —~ " and [T]g.q = sup d ,
’ p.g€Q ds:(p, q)? ’ e ds:(p, q)#
q€ B3 (p)\{p} q€B5 (P)\{r}

where § = §(%, ) > 0 so that for all p € Q, B (p) is strictly geodesically convex. We
further define the norm for functions on €2:

£l = I fllue + [V £ a0,
and let

CP(Q) = {f € CLL): Iflipa < oo}

We also define the following weighted norms for functions on €2:

l
150 = D sup ((p)| + 1)~ IVES(0)]

i=0 P€
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We then let
Ch(Q) = {f € Cloo(): 114 < o}

We further define the following weighted Holder semi-norms for functions f and tensor
fields 7" on 2

A= s (x4 + (el + 1)) LT g,
' p,q€Q (P, q
o
@ _ _ IT(p) = (7.,)"T(q)|
= s ()] 1) o ()] + 1))
q€B;5, (»)\{r}

where 17 = 7(2, %) € (0, 1) so that for any p € 3, letting 6, = n(|x(p)| + 1), B (p) is
strictly geodesically convex. Finally, we define the norm for functions on €2:

d d d—1)
17119 0 = 1£15 + V5SS,
and we let
d
i (@) = {f € L@ 11D <}

The norms || - ||;,5;0 and || - ||l7/j;Q are equivalent for different choices of § and 7. We
also often omit €2 when it is clear from context. It is a standard exercise to verify that all
the spaces defined above are Banach spaces. It is also straightforward to extend them to
RM _valued maps and to tensor fields.

Remark 2.1. The spaces C;”(2) are the interpolation spaces (C%(€2), C571(2))5.00 —
compare [10, Remark 2.1]. When ) is asymptotically conical, our weighted Holder norms
can be related to appropriate unweighted ones on compact domains — see Item (1) of Propo-
sition 3.1 — so the verification of basic properties for weighted Holder continuous functions
becomes standard.

Cl

Finally, we introduce the convention that C}-° locs

e = Ch0 = Ctand C}° = C and
that C2F = Cf  C%F = CF and C9P = C7. The notation for the corresponding norms

is abbreviated in the same fashion.

2.3. Homogeneous functions and homogeneity at infinity. Fix a C**-regular cone C
with its link £. By our definition C is a C*:®-hypersurface in R"*! \ {0}. For R > 0 let
Cr = C\ Bg. Thereis ann = n(L£,R) > 0 so that for any p € Cg, ng (p) is strictly
geodesically convex, where ¢, = n(|x(p)| + 1). We also fix an integer [ € [0, k] and
Bel0,1)withli+ 8 <k+ .

Amapf € Cllolj (C; RM) is homogeneous of degree d if f(pp) = pf(p) forall p € C

and p > 0. Given a map ¢ € CLP(L; RM) the homogeneous extension of degree d of ¢ is
the map &[] € C-5(C;RM) defined by

loc
Ei'lel(p) = [x(p)Ye(1x(p)|~'p)-

Conversely, given a homogeneous RM-valued map of degree d, f € C}' (C;RM), let

¢ = tr[f] € CYP(L;RM), the trace of f, be the restriction of f to £. Clearly, f is the
homogeneous extension of degree d of .

Amapg € C’l(’fi (Cr; RM) is asymptotically homogeneous of degree d if
lim pg(p~'p) = £(p) in C}.0 (C;RM)
p—0~+
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for some f € C’ll(’fz (C; RM) that is homogeneous of degree d. For such a g we define the
trace at infinity of g by tre [g] = tr[f]. Observe that if g € C’ll(’fz (Cr; RM) is asymptoti-

cally homogeneous of degree d, then g € Cfl’ﬁ (Cr; RM) but the reverse need not be true.
We define

C’lli”% (Cr;RM) = { ge C’(li’ﬁ (Cr;RM): g is asymptotically homogeneous of degree d} .

It is straightforward to verify that Cé’ff{ (Cr; RM) is a closed subspace of C;”(Cr; RM)
and that

trd : O (Cry RM) — A (L3 RM)
is a bounded linear map. Hence, C(li’g (Cr; RM) = ker (trgo) is a closed subspace of

C’é’f{ (Cr; RM). Moreover, the construction of tr, and the Arzela-Ascoli theorem ensure
thatforl + B <U'+ 83 <k+a,

21 geCiRCmR)NC (CriRM) =l [g] € CLF (CriRM).
Finally, observe that x|c,, € Cfﬁ (Cr; R" 1) and trl [x|c,] = x|

2.4. Transverse sections. The unit normal vector field of a (two-sided) C'*>*-hypersurface
is, in general, of class C*=12_1n order to avoid difficulties introduced by this loss of de-
rivative, we adopt a different notion. Let X be a C**®-hypersurface in some open set of
R+, We say a CF* vector field v: ¥ — R"+! along %, is a transverse section if

o |v|=1,

e v(p) does not lie in T}, 3.

Given a transverse section, v, on ¥ we define a C*@ map vy : X X R — R» 1 by

(p,s) = w(p,s) = x(p) +sv(p).

An open neighborhood, U, of X is a v-regular neighborhood if there is an open neighbor-
hood W of 3 x {0} so that v, (W) = U and ~y restricts to a C*: diffeomorphism of W
onto U. If, in addition, W is of the form ¥ x (—e, €), we denote U by N (X, v) and say
that X is e-regular with respect to v. 1t is straightforward to check that D+, at (p,0) is
invertible. As a consequence, such v-regular neighborhoods exist. If X is compact, by the
inverse function theorem, it is e-regular with respect to v for some € = ¢(X,v) > 0.

Fix a transverse section, v, on X. Given a function f € C l’zca(E) let

Yp={w, f(p): pe X},

and we call such a set a v-graph of function f. Clearly, if U is a v-regular neighborhood
of ¥ and (p, f(p)) € 5 1(U) for all p € %, then X ¢ is a C*:*-hypersurface in U.

Given a v-regular neighborhood, U, of ¥ define a C** projection map 7y : U — X
given by 7, = 7 05 !, where 71 is the natural projection from X x R onto ¥ defined by
m1(p, 8) = p. In particular, 7y, 0 v, = m1. Let I > 0 be an integer and 5 € [0, 1) so that
I+ 8 < k+o. Givenamap f € C? (3; RM) we define the v-extension of f (to U) to be

loc

the map &, [f] € C-P (U; RM) given by & [f] = f o .

loc

2.5. Homogeneous extensions around cones. Fix a cone, C C R 1 of class C* with
its link £. Let C be an open cone in R+ containing C. Assume that [ € [0, k] is an integer
and 8 € [0,1) with [ + 8 < k + «. We wish to define a natural extension of an element of
CH8(L; RM) to a homogeneous element of Cll(’fz (C;RM),
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To that end, let v be a homogeneous (of degree 0) transverse section on C. As L is com-
pact, we may suppose C is v-regular. Given a map ¢ € C'8(L; RM) the v-homogeneous
extension of degree d of ¢ (to C) is the map &[] € C-P(C; RM) defined by

loc
Exgle) = & 0 &[]

Clearly, for all p > 0,

Ealel(op) = p €1 l0) (D),
and thus

Vxbeialel = dé6yal¢]

where V is the flat connection on R"*1. In particular, if we denote by v = &, [v], equiva-
lently, v = éiﬁo [v|z], one has V¥ = 0. Moreover,

(d)
Hg‘{{ad[(p]Hl,ﬂ;éR < C”(p”lw@
where C' depends only on C, v, [, 3,d and R.

3. ASYMPTOTICALLY CONICAL HYPERSURFACES

A C’k’“-hypersurface, Y c R s Cf "*.asymptotically conical if there is a Cho.
regular cone, C C R”*1, and a homogeneous transverse section, v, on C such that ¥
outside some compact set is given by the v-graph of a function in Cf N CfO(C r) for
some R > 1. Observe that by the Arzela-Ascoli theorem one has that, for every 3 € [0, «),

lim p¥ = Cin C/2P (R {0}).
p—0t

loc

Clearly, the asymptotic cone, C, is uniquely determined by > and so we denote it by C(X).
Let £(X) denote the link of C(X) and, for R > 0, let Cr(X) = C(X) \ Bg. Denote the
space of cr *“_asymptotically conical C'*:*-hypersurfaces in R" ! by .AC’H?L’O“.

We claim the above definition is independent of the choice of transverse sections. To
see this, let w be another homogeneous transverse section on C(X). Let K be a compact
set of 3 that may be enlarged if needed. Denote by ¥’ = ¥\ K. Since 7 restricts to a
C*« diffeomorphism of ¥’ onto Cr(3), we denote its inverse by 5. We then write

7TW|E’ = (7Tw o ev;E’) o WV‘E"
Notice that 7y o 6.5 restricts to a C*: diffeomorphism of Cx(X) onto the ends of C(X)
and that
X|e(m) 0 mw 0 byisr € 7 N CF g (Cr(E); R™Y).
Moreover,
3.1 trl, [Xle(s) © Tw © Ov;xr] = X|£(x)-
Thus, 7, restricts to a C*@ diffeomorphism of ¥’ onto the ends of C(X),
X[s 0 (mwls) ™' € Oy N O p(CR(E):R™!) and tri [x]s o (mwle) ™) = Xl (s

Hence Y/ can be written as the w-graph of the function

(xlz 0 (Twle) ™! = Xleqm)) - w € CF* N CF o (Cr(T)).

Let us now summarize some properties of weighted Holder continuous functions on
asymptotically conical hypersurfaces.

Proposition 3.1. Fix > € .AC’)"[IfL’CY and T € ACH];;O‘. Let | be an integer in [0, k],
B€10,1)sothatl+ 5 < k+ o, and d,d € R. The following statements hold.:
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(1) Forany R > 1 and py > p1 > 0, the norm for functions in C’Lli’ﬁ(E) defined by

1 £1l,8205, + S‘;ll; P~ © Dol psip-r5)n(Boy\Byy)

is equivalent to the norm || - ”1(02 Here 9,(x) = px for v € R"T1.
(2) Iff € C’lli’ﬁ(E) and infx.(|x| + 1)7¢|f| = § > 0, then % € Cﬁg(E) with its norm
bounded by a constant depending only onn,l, 3,d,d and ||f||1(02

(3) Iff € C’;’B(E) and g € C5P (), then fg € C'(li’fd, (3) and

d+d’ d &
19l < woll £S5
where vq depends only on n, 1, 3,d and d'.
(4) When | > 1, if f € CYP(2;R™ 1) satisfies £(X) C T and there is a 6 € (0,1)
and R > 1 so that |f(p)| > 6|x(p)| on X\ B, then, for all g € Cfi’ﬁ(F),
(d)
LB

d
g o £11i% < vallgl,

where v > 1 depends on m,n,l, 3,d,d, R and ||f||l(71[3
(5) Whenl > 1, ifg € Cfi’ﬁ/(F)forsome B e (B, )withl+ 5 < k+ «, and if, for

i€ {1,2}, f; € CYP (S, R™Y) satisfies £;(3) C T and that there is a 6 € (0,1)
and R > 1 so that |f;(p)| > §|x(p)| on ¥\ Bg, then

B'—B
d 1
lgos —go il <ve (I - £11D)
/ 1) (1) (d)
where vy > 1 depends only onm,n,l, 8, 8',d, 6, R, [[f1]; 5. [|f2[l; 5 and ||gl[; -

Remark 3.2. The above continues to hold for ¥z = ¥\ Br where X is either a C*-<-
regular cone or in AC’HEI’O‘. Where appropriate, the above also extend to RM -valued maps
and to sections of tensor bundles.

3.1. Traces at infinity. Fix an element X € ACH™®. Let [ be an integer in [0, k] and
B €10,1)suchthat{+f5 < k+«a. Amapf € Cll(’fz (2; RM) is asymptotically homogeneous

of degree dif foby.x € Cé’% (Cr(X);RM) , where v, Y, .5 are referred in the previous
discussions, and we define the frace at infinity of f to be

L[] = trd [ o fy] € CH(L(E;RM).

In view of Item (4) of Proposition 3.1 and (3.1), that whether f is asymptotically homoge-
neous of degree d and the definition of trZ, are independent of the choice of homogeneous
transverse sections on C(X). Clearly, x|y is asymptotically homogeneous of degree 1 and

trl [x|s] = X[z (m)-
We next define the space
Cﬁl”%(E; RM) = {f € C’é’B(Z; RM): f is asymptotically homogeneous of degree d} .
One can check that C(li:%(z; RM) is a closed subspace of C(li’ﬁ (2;RM), and the map
trd : CoR (S RM) — P (L(2); RM)

is a bounded linear map. We further define the set C’ﬁl’g(E; RM) C C’fi’% (2;RM) to be the
kernel of tre . As before this is a closed subspace.
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3.2. Asymptotically conical embeddings. Fix an element I' € AC’HE’O‘. We define the
space of cr *“_asymptotically conical embeddings of I into R"*! to be

ACHE(1) = {f € CP* N OF (T;R™): fand &1 o trl [f] are embeddings} :

Clearly, ACH"**(I") is an open set of the Banach space C'T*® N Cf (D R™1) with the
Il - ||,(61L norm. By (2.1) and the hypotheses on f, tr’_[f] € C*(L£(T"); R"*1) and so

Clf] = & otrl [f]: C(I') — R™ ™1\ {0}

is a C** embedding. As this map is homogeneous of degree 1, it parameterizes a C'**-
regular cone.

Proposition 3.3. Given ' € ACH"* and £ € ACHI*(T), let ¥ = £(T'). The following
statements hold:
(1) ¥ € ACHN™ and C(%) = C[f](C(T)).
(2) The inverse, denoted by =1, of f restricted the range to its image is an element of
ACH™*(2) and C[f~1] = C[f] .
(3) Forg e ACHN™(%), gof € ACHY™(T) and C[g o f] = C[g] o C[f].

Proof. AsT € ACH" there is a compact set K C I'so that IV = I'\ K is the v-graph of
a function in CF** N Cfo(Cr(T)) for some R > 1, where v is a homogeneous transverse
section on C(T"). Thus, 7y restricts to a C* diffeomorphism of IV onto Cx(I"), and we
denote its inverse by 6s,.r.

As f € ACHE(T), it follows that

fobyr € CP*NOY L (CR(D);R™Y),

and so, as noted above, tr’, [f] € C*(L(T); R"*!) and C[f] parametrizes a C*:*-regular
cone, denoted by C. Observe that
lim pf o Oy (p~ ') = C[f] in CF

C(T); R,
o0+ loc( ( ) )
Let £ be the link of C and w a homogeneous transverse section on C. Thus, 7y, restricts
to a %< diffeomorphism of ' = ¥\ K’ onto Cr: for some compact set K’ C X and

R’ > 1. Let us denote its inverse by 6.5 . Moreover,
X5 0 fw;sy € CP* N CF (Crs R™Y),

and its trace at infinity is x|.. Hence, it follows that ¥ € ACH" and our construction
ensures C(X) = C[f](C(T")), proving Item (1).

By our hypotheses on I' and f, both f and its differential at any point of I" are injective,
and, for some 6 > 0, |f(p)| > 0|x(p)| whenever |x(p)| is sufficiently large. Thus, by the
inverse function theorem, f restricted the range to its image is invertible and its inverse
£ e CP*(2; R* ). Moreover,

CIE™Y] = Tim pf~ 0 O (p™) = lim pf ™ 0 sz (p22) o CIf] 0 CIf] ™!
p—0t p—0+
= lim pf_l oaw;Z’(p_lﬂw(pfoQV;F’(p_l'))) oC[f]_l
p—0+
— lim_pbyr(p ") o CIE T = CJf) .
p—0+

Here the convergence is in Cf

P (C(X); R™*1). Thus we have shown f~! € AC’HIZ’“(E),
proving Item (2).
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As k > 1, it follows from Item (4) of Proposition 3.1 that g o f € C¥*(I'). The
hypothesis that each f and g is an embedding implies that gof is an embedding. Moreover,

Claof] = lim plgof)obur(p™") = lim, pgobus (p™ mw(pf o buir (7))

- ( lim pg(gw;z,(pl.))> O Ty © < lim pf(@v;l“’(pl'))>

p—0+ p—0t
= C|g] o mw o C[f] = C[g] o C[f].
Here the convergence is in Cf(C(T'); R"*1). Hence, C[g o f] is the composition of em-
beddings and so is also an embedding. That is, g o f € ACH"*(I") and we have proved
Item (3). [l

Finally, we introduce a natural equivalence relation on ACH"®(T"). First, say a C*®
diffeomorphism ¢ : T' — T fixes infinity if x| 0 ¢ € .AC’Hf;’a (T") and
tri, [x|r 0 ¢] = x|z ().

Two elements f, g € ACH*(I) are equivalent, written f ~ g, provided there is a C**
diffeomorphism ¢ : I' — T that fixes infinity so that f o ¢ = g. We observe that, by Items
(2) and (3) of Proposition 3.3, f ~ g if and only if

f(T') = g(T') and C[f] = C[g].
4. FIRST AND SECOND VARIATIONS OF THE E-FUNCTIONAL

Given a C?-hypersurface ¥ C R"*! an M-parameter differentiable family of C? em-
beddings, ¥Us: ¥ — R"*! fors € (—1,1)M, is a compactly supported variation of x|y, if
Vo = x|z and for some compact set K C X each Y|y x = X[x\ k-

By a direct computation (see, for instance, [22, Section 9]) and integration by parts, we
obtain the first variation formula of E.

Proposition 4.1. Let . be a C?-hypersurface in R" ', and let {¥s}se(—1,1) be a com-

pactly supported variation of X|x. If aa\i oo = V, then
“.1) U g, / Vo (Hy = X2 2 gpyn
. — s =— . —— e .
ds s=0 » = 2

Next we compute the second variation of E at its critical points, i.e., self-expanders.

Proposition 4.2. Let ¥ be a self-expander in R" ™, and let {U ;} 1.5 1<1 be a compactly

supported variation of X|x. If 8‘;;«0 _,=Vand 8\;?%:0 — W, then
cal Ix|2

4.2 ElV,.(2))=-] (V- Le (W - =

@2 5105lro Yt ()] /)S (V-ny) Ly (W -ny)e

where

N

1
LE :AE+§X'VE+ ‘A2|2 —
is the Jacobi operator.

Remark 4.3. If V= fvand W = gv, where v is a transverse section on ¥, then
0? 112
ElV, (X)) =-— Lyg)e * dH™,
Sy P = = [ f(Eug)e
where Ly g = (v-nx)Lx((v-nx)g) and Ly is called the v-Jacobi operator. Observe that
given a self-expander ¥ € ACH"®, in general ny, is merely in &~ C(’iﬁl (3;R*H)
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and so normal variations of x|y may not be in ACHZ’O‘. To overcome this regularity
. . . k .
issue, we will choose a transverse section, v € C|; N C(’)“ u(%s R"“), on Y and consider
variations of x|y; in the v direction for which L., is the associated linearized operator.

Proof. Denote by X5, = U, (X). A straightforward computation similar to [22, Section

9] gives that
0? OV, xT\ 2
_ S, | H o S dHn
t=0 /Zo,t ( s 5_0) < ot 2 ) ‘ "
n

Otos
= / diveV - diveW + Y (V. V)= (V, W) = Y (7, - V,, V)(7; - VW)
= i=1

ij=1

0
E[Es’t] -

s=t=0 815

1x|2

1 1 1 1
—|—2(X-V)divEW+2(X~W)disz+4(x-V)(x-W)+2V-W> e v dH",

where {71,...,7,} is an orthonormal frame on ¥ and V is the flat connection on R™ L
2 . o .
Thus, % o F[Xs,¢] is a symmetric bilinear form, denoted by Qx(V, W). We write

Qs (V,W)=Qs (VEWH) + Qs (VI,WH) + Qs (VEW) + Qs (VI,WT).

We claim that the last three terms on the right hand side are equal to 0. Therefore, (4.2)
follows easily from integration by parts.

To prove the claim, let {¢; }+cr be the one-parameter group of diffeomorphisms of ¥
generated by V. Given |s| small and ¢ € R we define: forp € %,

(I/s,t(p) = yw(6:(p), s) = x(¢:(p)) + SWL(@(P))-

Clearly, {U,;} is a compactly supported variation of x|y with B‘g;“ o = W+ and
a\g(t]’tt:o = V. Thus, Up,(X) = x|x 0 ¢(X) = . By the computations in the
preceding paragraph,
0? ~
Vi, W) = E[U, ,(2)] = 0.
QE( ) OtOsls—t—o [ ,t( )]

By symmetries, Qx(V+-, W) = 0. Finally, let {1, }scr be the one-parameter group of
diffeomorphisms of 3 generated by W . Given s,t € R define U, . = x|gots0¢,. Then

{\f/&t} is a Cf)mpactly supported variation of x|s; with a‘g‘t’*t .o = VT and 8\1{;270 o =
WT. As BV, (X)] — E[¥] =0, Qs(VT,WT) = 0, proving the claim. O

5. FREDHOLM PROPERTY OF v-JACOBI OPERATOR

Throughout this section we fix a self-expander ¥ € ACH" and a transverse section
on X, v e CP* N Ck (3R, In addition, we assume that C[v] = & o tr_ [v] is a
transverse section on C(X) and

2

Observe that such v always exists: for instance, one may take v to be a transverse section
on ¥ that, outside a compact set, equals & [w] o X|s; for w a homogeneous transverse
section on C(X), as one computes that, outside this compact set,

1 1
(5.1) (.,sfz + ) v=Agvgx-Vove crI2e (s R,

x - Vev = Viéy[w] o x|y — V1 8w W] 0 X|g = =2V, Ew[W] 0 X|x,
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where V is the flat connection on R and the second equality uses the homogeneity of
&w[w] and the self-expander equation.
For an integer [l > 2 and 8 € [0,1) with [ + 8 < k + « we define the Banach space

pHi(z) = {rect? nci n ) x- Vaf € O ()}

equipped with the norm

l
1£ls = A0 + D2 IVEAIS ™ + Ix- Vs fliZs),.
i=l—1

The goal of this section is to prove the Fredholm property of L., . First, we show the exis-
tence and uniqueness of solutions in D¥* (%) of Lxu = f for any given f € CfIQ’a(E).
A similar problem has also been investigated by Deruelle [10] in the study of asymptot-
ically conical expanding Ricci solitons. However, the method we employ here is inde-
pendent of [10] (as well as [18]) in part because the weighted function spaces considered
in [10, Section 2] are different from ours and so the arguments there do not apply to our
setting. Next we show that L, — (v - ny)?.% is a compact operator from D% (%) to
C’EQ’“(Z). Thus it follows that L., is Fredholm and of index 0.

5.1. D**-solutions to Lsu = f.

Lemma 5.1. Let Q be a bounded domain in X with smooth boundary. Given f € C°(1),
ifu € C°(Q) N C?(Q) satisfies Lsu = f, then

max |u < 2su + max |u
peﬁl (p)| < peglf(p)\ peml (p)

Proof. Suppose that v attains its maximum at an interior point py € . Then Vsu(pg) = 0
and Ay u(pg) < 0. Thus,

1
F(po) = Zeulpo) < —5ulpo),
implying u(pp) < —2f(po). Hence we have

max u(p) < 2sup — f(p) + max u(p).
peQ peEN PEOQ

A similar argument gives

max —u < 2su + max —u(p).
ma (p) pegf(p) max (p)

The lemma follows from combining these two estimates. U

Lemma 5.2. Given d € R there is an Ry = Ry(X,n,d) > 1 so that on ¥\ Bp,,

d
Lrd < —pd

2
where r(p) = |x(p)| for p € .
Proof. On ¥\ B; we compute

Asr? = Ar? — V?ri(ng,ny) + Hy - Vr? = O(r472),
where we used the hypothesis that > € ACHf;"X in the last equality. Similarly,
x-Verd =d (1—|x"’r?) rd = (d+o(1)) r?.
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It follows from these two identities that
1
Lyrd = B (d—14o0(1))r4,
proving the claim. U

Proposition 5.3. Given f € C)_>*NC° (%) there is a unique solution in C}2*NCY | (%)

of Lsu = f. Moreover, there is a constant Cy = Co(X, n) so that
-1 -1
a0 < CollF157Y.
Proof. By [14, Theorem 6.14] the Dirichlet problem

SLsugr=f inXNDBg
ugp =0 on X NOBg

has a unique solution in C*(3 N Bg). Moreover, by Lemma 5.1,
(52) lurllo < 217llo < 2017167,
Thus, setting ¢ = 4R, | f||5. forall R > Ro(2,n, —1),
2lfl < er~tinX N (Bgr\ Bg,) and |ug| < cr~! on ¥ N OBk, .

Thus, by Lemma 5.2 and the elliptic maximum principle,

(5.3) lugp| < er~tin ¥ N (Bg\ Br,)-

Hence, combining (5.2) and (5.3) gives

(54) sup (147) [ug| < C(Ro)|I£I5™".
YNBRr

Therefore, invoking (5.4) and the elliptic Schauder estimates [14, Theorem 6.2], passing
R — oo, it follows from the Arzela-Ascoli theorem that there is a solution to Zsu = f in
C/() that satisfies

loc

-1 -1
lulls™ < Clfl5-
The uniqueness of such solutions is implied by the elliptic maximum principle. ]

Lemma 5.4. Given f € C/>* N C%,(X) let u be the solution given in Proposition 5.3.

loc
There exist constants C;, i = 1,2, depending only on ¥, n, and «, so that

; —1 _
IVullS™ < CillFI1SY.

Proof. Let ¥; = v/t¥ fort > 0. As X is a self-expander, {3;};~0 is a MCF. As ¥ €
AC’HfL’a, it follows from the interior estimates for graphical MCF (cf. [12, Theorem 3.4])
that there is an R = R(X) sufficiently large so that forany p € £\ Brand t € [1,1], each

¥ N By (p) can be parametrized by the map W, (-, ¢): Q,(t) C T,2 — R"*! given by

\Ilp(xa t) = X(p) + X(l’) + Q/Jp(% t)nE(p)v
satisfying that ¢,,(0,1) = 0 and

3 2
(5.5) DIV 4+ [0V < 1071,

=0 =0
where V is the flat connection on T,,X. Clearly, BY" C ,(¢).
1

Fix any p € ¥\ Bg. We next define a function v, on Q = B} x [$,1] by

vp(z,t) = t3u(t" 20, (z,1)).
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As Zsu = f, it follows from the chain rule that
Avp — Ayvp — atwpn—zr (p) - Vivp = gy

where V; and A, are the gradient and Laplacian, respectively, for the pull-back metric via
W, (+,t), ng (p) is the pull-back of the projection of nx(p) to the appropriate tangent space
of vt ¥ and

gp(@,t) = —t "2 f(t730, (2, t)).

Next we will show that g,, is Holder continuous in space-time. More precisely,

|gp(m7t) _gp(y78)| (-1) -1
0@+  sup = < Cllflla x|
(2.8).(y,9)€Q |T — Y|* + [t — 5|2

for some C' = C(«). First, by (5.5),

||9p

%|X(p)| < [0, (z,1)] < 2x(p)],

and thus
—1 _
00 < 2/ 115 x(p) L

||9p
Next, for (z,t), (y,s) € Q,
_1 _1 _1 _1 _1
|t 2\I}p(x7t) - Z\ij(yﬂs)‘ < |t =S 2||\I’p(x7t)| +s 2 |\I/:D(x7t) - \I]p(yﬂ 8)|
< (@x@)+1)[s =t + |z —yl,

where we used (5.5) in the last inequality. It follows that

9p(2,) — gp(y, 5)| < 572 [F(E2Wp(w, 1)) — f(s™2Wp(y, 5))]
+ [T = sTE (R (2, 1))
< CIAIS V@) (lo =yl + s — 1),
proving the claim.

Finally, combining the hypothesis on u and the preceding discussions, it follows from
the parabolic Schauder estimates (cf. [17, Chapter 4, Theorem 10.1]) that

2

>V, (0,1)] < C/(m ) I£15 ) x(p)|

i=1

This together with (5.5) implies
2 .
Y IVsulp)l < ISV x() 7
i=1

As p € ¥\ Bg was arbitrary, it remains only to obtain the appropriate bounds in Br N X.
Here one appeals to standard elliptic Schauder estimates for compact domains. (]

Lemma 5.5. Given 3 € (0,1) there is an ey = eq(n, 3) sufficiently small so that if a™ €
CY((0,1); CA(R™)) for 1 < i, j < n satisfy

n
sup Y [la” (-,t) = 8illp < o,

o<t<l T
i,j=1
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then given h € C°((0,1); C#(R™)) the Cauchy problem

Ow — > aijaiizjw =h inR"x(0,1)
(5.6) | ij=1 / "
im w(z,t)=0 orx € R"®
(z’,t)—(x,0) ( ) f

has a unique solution w € C°((0,1); C%#(R™)). Moreover, for some C3 = C3(n, j3),

(5.7) sup Zt > |[Viw(-,t)|ls < Cs sup [|h(:,1)]|s.
o<t<1

0< t<1

Remark 5.6. By a change of variables, it is easy to see that Lemma 5.5 still holds true if
we replace the identity matrix (J;;) by any positive definite constant matrix.

Proof. When a =§; ;j» the lemma was known as a classical result for the heat equation on
R™. For reader’s convenience, we include a proof of that in Appendix A. For general (a*/)
that are small perturbations of the identity matrix, we appeal to the method of continuity to
establish the existence of solutions; see, for instance, [14, Theorem 5.2]. The uniqueness
follows from a parabolic maximum principle, Proposition A.1. Thus, it remains to prove
the a priori estimate (5.7) for solutions w € C°((0, 1); %8 (R™)).

The problem (5.6) can be rewritten as follows:

dw—Aw=h in R”™ x (0,1)
lim w(2',t)=0 forzeR"
(z’,t)—(x,0)

where
h=>"(a" ~6;)0%, w+h.

Using the estimate || fg||s < 2||f]|5l|g]|s we obtain

(-, 0)llp < 2 Z la®? (- £) = 6i5l|61107 .z, w (-, )l + (-, 1) 5.
i,j=1

Thus, it follows from Proposition A.2 that

sup th IViw( Dlls < Ceo sup [V2w(-t)lls +C sup k()]s
o<t<1 o<t<1

O<t<1

for some C' = C(n, ). Now, choosing ¢y = 1/(2C), the first term on the right hand side
can be absorbed into the left, so

sup Zt = [Viw(,t)llg < 2C sup |[A(-,1)]s,
0<t<1 0<t<1
completing the proof. ([l
Theorem 5.7. Given f € C*%%(%) there is a unique solution in D¥(X) of Lou = f
satisfying
X ~1
el < Callf 1322
Sor some Cy = Cy(E,n, k, ).
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Proof. By Proposition 5.3 and Lemma 5.4, and the fact that f € C°,(X), there is a unique
solution, u, in C’;ZC(’ ND20(X) of Lsu = f. Moreover, for i = 0, 1,2, this u satisfies

i -1 —
(5.8) IVEul§™ < Cill IS

Letting ¥, = v/t ¥, we define a function v(p,t) = tzu(t~2p) forp € X, and t > 0. In
order to show the solution u € D’“v“(Z), it suffices to establish that foreach 0 <[ < k—2,
there is ¢; = ¢;(2, n, k, a) so that

(5.9) sup Zt NIV 0 a5y < 1Y o

In what follows we will prove (5.9) by induction on /.

Denote by C the asymptotic cone of X.. For ¥ € ACH’“ “, there exists 6 > 0 sufficiently
small so that for any ¢ € CN (B \ By) and t € (0,42), ;N B”*l( ) can be parametrized
by the map ¥, (-,t): Q,(¢) C T,C — R"*! defined by

Vq(z,t) = x(q) +x(x) + (2, t)ne(q),
where By C Q,(t) and for some o = p(C, ),

(5.10) sup H¢q( )”k-,a;B; < .
0<t<§?

(R™*1\ {0}), there is an element 7,/15 € C**(BY) so that
: . — C k(Rn
Tim gy (1) = 05 in O%(B).
Fix any ¢ € C N (Bz \ B1). We define a function v, on BY x (0,6%) by
vg(x,t) = v(¥4(x,1),t).
Thus, (5.8) and (5.10) imply that

As lim;_,g+ ¥y = Cin CF

loc

(5.11) sup Zt [V (s )z < CIFINSY

0<t<4? i=0

for some C' = C(u, Cy, C1,C2). As Lyu = f and ¥ is a self-expander, the chain rule
together with (5.11) gives that

Ovg— > aff@%i%vq — > bi0z,vg = gq in B} x (0,6%)
(5.12) ig=1 i=1
lim
(z,t)—(z,0)
where aif € C°((0,6%); C*~1(Bj)) are given by rational functions of Vi, b}, €

q
C°((0,6%); C*~2%(BY)) are given by smooth functions of V), and V21, and

gl t) = —t72 f(I 20, (z,1)).
By taking 0 small, the matrix ( i7) is a small C perturbation of the identity matrix. More-

over, as f € C* (%), (5.10) ensures that g, € C°((0,62); Ck~22(B%)) with

(5.13) sup_[lgg () llk-z.asmp < C' 1Y 0
0<t<62

vg(a',t) =0 forx € BY,

for some C’ = C'(n, k, a, ).
Let x: R™ — [0, 1] be a smooth function so that y = 1 in B" and x = 0 outside Bj.
And let Z,(x,t) = (px, pt) for (z,t) € R™ x R. For p < £4, let wy, = x(vg 0 Z,)
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which we take to be defined on R™ x (0, 1). Thus, w,,, is supported in By x [0, 1] and, by
(5.12), satisfies

Orwg,p — Z a” 82 o, Wa,p = hg, inR™ x (0,1)
3,5=1
(a:’,tl)iin>(x,0) wq,p(x',t) =0 forz € R™
where

XO.@l/g( ij O.@) (1_XO‘@1/2)61J7 and

fW}jbo@ vg 0 %) —2§j ai © D)0, X0z, (vg © D))
1,j=1
+PX( O‘@) (qo@P)Z(UO‘@)mz]X
i,j=1

Here we used that w, , = 0 outside B3 while (1 — x 0 % /5) = 0in By
By (5.10), we may choose p = p(X, n, «, ) sufficiently small so that

sup Z ||a 1) = dijlla < €o(n, @).

0<t<1

Furthermore, by (5.11), (5.10) and (5.13),

1
S g8l <O suplgg(- ||aB~+Z||v1vq Ollasiy < C 17152

0<t<é

for some C”" depending only on n,a, u, C; C’. This together with Lemma 5.5 and the
parabolic maximum principle (i.e., Proposition A.1) implies

sup Zt IV w0 ()l < CoC” 125 -
0<t<1 4
Hence, (5.9) for [ = 0 follows from transforming the above estimate to that for v, by the
chain rule and invoking (5.10) and the arbitrariness of ¢ € C N (B3 \ Bl).
Suppose (5.9) holds for I = 0,...,mand m < k — 2. Let I= (il, ..., 1,) be a multi-
index of elements of {1,...,n} with |I| = m + 1, and let 27 = 2" - Z" . As before, fix

any ¢ € CN (B \ By). And we follow the previous notation. By the mductlve hypothesis

and (5.10),
1

m ~ -1
sup Yt [V (D) laisy < ClFIILY s
O<t<52i

where C depends only on n, m, o, i1, ¢, . . . , C,. This together with (5.12) further gives

. "DI
3,7=1

n .
(& - > affaiﬂj " v, =g in BY x (0,6%)

m+ 1 _ N
(m’,t)la(z,o) af’?’ vg(a', 1) =0 for z € Bj

where
9o 1 = 0 gy + Py (Vg ..., V" 2y,
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and P 7 is a multi-linear function with coefficients given by smooth functions of aflj and bfl
and their spatial derivatives up to the m-th order. It follows from our inductive hypothesis,

(5.10) and (5.13) that
-l —1
sup 19,1 )llassy < CIFISY o

0<t<s?
where C” depends only on n,m, o, u, C’, cq, . .., cn. Now we may apply the same rea-
soning to 8:2’}+1vq as in the preceding two paragraphs to establish (5.9) for [ = m + 1,
completing the induction procedure. ]

Corollary 5.8. Given ¢ € C*(L(X)) the asymptotic Dirichlet problem

{ Lsu=0 inX

(5.14) trlju]l = ¢ inL(Z)

has a unique solution in CT* N CY 4 (X). Moreover, there is a Cs = C5(3,n, k, ) so that
1
ullis < Cslloli

Proof. Let w be a homogeneous transverse section on C(X) and Ca w-regular open cone
in R"*1 containing C(X). Pick an R > 0 sufficiently large, so that £\ Br C C. Let
x: R*™t — [0,1] satisfy x = 1in R™™ \ Byg and Y = 0 in Bg. Then we define a
function g on X to be

9= (XEwal¢l) o x|5.
As ¥ € ACHM it follows that g € C}* N nyH(E) with the properties that

(5.15) lgllf") < Cligll.o and trl [g] = ¢

where C = C(%,n, k,a) > 0.
Observe, that on X\ Byg, g = &, 1[¢] o x

s, and so
X Vg = 9= Vi ilp] o x|y = -2V, &4 [¢] o x|x
where we used that 5‘,1‘,{,1[90] is homogeneous of degree 1 in the first equality and that

9Hy, = x= in the last equality. This identity together with Hy, € C*7%%(2;R™H)
implies that for some C' = C'(3, n, k, «),

(5.16) I Vg = gli"50 < Cl¢li-1a-
Thus, it follows from (5.15) and (5.16) that %5g € CE;Q’O‘(E) with

-1
(5.17) |- %9075 < C”ll¢llka
where C” depends only on X, n, k, a, C, C’. Hence, by Theorem 5.7 and (5.17), there is a
unique solution, v, in D* (%) of Fv = —ZLg with
(5.18) [0[l%,0 < CaC” @]k a-

Observe that the inclusion D**() € C"* N CF ((2) is continuous. Therefore, com-

bining (5.15) and (5.18), we conclude that v + g € C’f’a N Cf,H(E) is a solution to the
problem (5.14) with the claimed estimate.
Finally, we show the uniqueness of the solutions . € C"® N Cf (%) of the problem

(5.14). It suffices to prove that o = 0 implies v = 0. For ¥ € AC’Hf;a, the vector field

_ x| T
<2
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is well defined on ¥ \ Br: for some sufficiently large R’. We extend V to a Ck—1e
vector field V on X. Observe, that V' is complete as X is asymptotically conical. Then
V generates a one-parameter group, {¢(+, ) }ser, of diffeomorphisms of 3. Observe, that
|x(¢(p,s))] = s+ R forp € XN OBk and s > 0. Thus, we obtain a diffeomorphism
¢5 (E N 833/) X [0,00) — X \ Bpg. As
[x* o ¢|?
s+ R
it follows from 2Hy, = x*, u € C}* N C} (L) and Lru = 0 that

(R +5)05(uo¢) —uop = (R +5)20,(R +s) tuop) =0(s").

Integrating this gives u o ¢ = O(s™1), thatis, u € C°, (). Therefore, the claim follows
from the elliptic maximum principle. O

(x- Vg —u)od = (s + R)d,(uo) —uod d(uo @),

5.2. Fredholm property of L,. Recall, that
1 1
Lz = Ag + §X . VE + |Az|2 — 5 and Lv = (V . nE)Lg((V . nz)X).

Let
Ky, =Ly, — (v-ny)’%.

Lemma 5.9. The unit normal ny, satisfies

1
Lsynys + 5112 =0.

Proof. By a direct computation
Asnyg = Vg Hy, — |As|’ny.
As 2Hs, = —x - ny,, we have
Vs Hs = —%x -Vens.
The lemma follows from combining these two identities. (I
Lemma 5.10. There exist ay € C*5%%(3) and by, € C*7%% (S R™Y) such that
Ky =ay+by Vs

Proof. Using the product rule, we compute

1
(5.19) Ly ((v-ny)g) = (v -ng)%g+2Vyg-Ve(v-ng)+g (Lg + 2) (v-ny).

Invoking Lemma 5.9, we simplify

1 1
(5.20) <Lg + 2) (v-nyg) = (.Zz + 2) v-ny +2Vygv - Vsns.
Thus, substituting (5.20) into (5.19) and invoking the definition of K, we get
(5.21) Kyg9g=avg+Dby-Vxg,
where

1
ay = (V- ny) { (Zg + 2) v-ny +2Vsv- Vgng} and by, = Vy(v- n2)2.
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We show that a, € C*5%%(X) and by € C*2*(3;R™1). For ¥ € ACH* one has
ny € CF~H(%; R™*1). Our assumptions on v ensure that v € Cp*(%; R"*1) and

1 —2.a

(32 + 2> Vv € 0522’ (E, RnJrl).
Now the claim is a direct consequence of Item (3) of Proposition 3.1. (I
Proposition 5.11. The operator K : D**(%) — C*7%%(%) is compact.
Proof. By our definitions, the inclusion D*() ¢ C*7%%(X) and the linear map

Vy: DPO(R) — CF 7225 R
are both continuous. This together with Lemma 5.10 implies that K, is a bounded linear
operator between D (X)) and C* 72 ().

Next, let (g;)ien be any sequence of functions in the unit ball of D**~. We show there is

a subsequence (i7;);en so that (Kyg;;)jen is a Cauchy sequence in C*72*(%), implying
K, is compact. Indeed, by the Arzela-Ascoli theorem and a diagonal argument, there is a

subsequence (i;);en so that (g;;);jen is a Cauchy sequence in C*k(X N Bg) forall R > 0.
Moreover, by our definitions and Item (3) of Proposition 3.1,

-1
1w, 1578 e i < vl a2 195, 18— 0 + D1 i V005, 15
_ 2 —1
< B2 (lav i3, + R, ) llgs o

Thus, given € > 0 there is an R’ > 0 depending only on ||av||k 900 Hbv||§€__12)a and €

so that for all j,
—1 €
(522) ||Kvgij ||I(<;—2)7a;E\BR/ < 1
Furthermore, there is an integer jy depending only on ||a., ||§€__22) o by || b 2 o Gir€and R
so that for all [, m > jog,
(=1 €

(5.23) v gis = B i k2,008, < 5

Hence, it follows from the triangle inequality, (5.22) and (5.23) that for all I, m > jo,
| Kvgi, — vgzm”k 2,0 <€

Hence, it follows that (K g;,);jen is a Cauchy sequence in C’ﬁ]z’o‘(E). O

Theorem 5.12. The operator Ly : DF(X) — C* %% () is Fredholm of index 0.

Proof. Since
Ly = (V . 1’12)2.,%2 + Ky
where K, is a compact operator by Proposition 5.11, to prove the theorem, it suffices to
show that (v - ny)2.%s is an isomorphism between D% (%) and C*72(%).
First, by our definition of D*%(X) and Theorem 5.7, % is an isomorphism between
DR (%) and C*73%(X). If the map defined by

(v-ng)’x: g = (v-nx)’g

were an isomorphism of Cff’a (3), then the claim would follow immediately.
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For ¥ € .AC’H?L’O“ and our assumptions on v,
ny € Cy Y NCEE (SR and v € O N Cf (S R™ ).

It follows from Item (3) of Proposition 3.1 that (v-nx)? € Cg ~hen C(’if{l (X). Moreover,
as v and C[v] are transverse to, respectively, 3 and C(X) we have

inf |v - =6 >0.
Inf v -nsl(p) = 0>

It follows from Item (2) of Proposition 3.1 that (v - ny) 2 € Cg_l’o‘(E). Hence,
g € CF (%) <= (v ny)’g € C¥127(3).

Moreover, there is a C' > 0 depending only on X, v, n, k, « so that

(5.24) CH gl R < v ns)2gliY,, < Cllglliy,
implying the map (v - nx)?x is an isomorphism of Cf]Q’a(E). O

6. ASYMPTOTIC BEHAVIOR OF JACOBI FUNCTIONS

Continue to consider a self-expander > € AC'HZ’“ and a transverse section on X,
veCchkn Cu(X;R™1) so that w = C[v] is a transverse section on C(X). We say
a function w is a Jacobi function of ¥ if Lyu = 0. In this case, uny, is a normal Jacobi
field of ¥. Similarly, a function u is a v-Jacobi function if Lyu = 0 and in this case uv is
a v-Jacobi field. Let us denote the set of Jacobi functions of ¥ so that the corresponding
normal Jacobi fields fix the asymptotic cone of X by

(6.1) K={ueC}.(3)NnC{y(%): Lyu=0}.

Similarly, denote the set of v-Jacobi functions on 3 whose corresponding v-Jacobi fields
fix the asymptotic cone of ¥ by

(6.2) Ky ={ueClL.(2)NnC}y(2): Lyu=0}.

The elements of these spaces are significantly more regular locally and have better as-
ymptotic decay properties. To see this, we first use the analysis of Section 5 and a result
from [3] to show improved regularity and decay for elements of the two spaces.

Indeed, for r(p) = |x(p)|, p € &, and 9, = Vxr, one has

Lemma 6.1. The spaces K and K, are both finite dimensional subspaces of D** (%), and
dim K = dim K. Moreover, for all m € R any element u € K U K, satisfies

(6.3) / (IVsul® + u?) Pt dHT < 0o,
>

Proof. Suppose that u € K. By standard elliptic regularity results 3 is a smooth hypersur-
face and u € C72. (). As [As| € CP2.N CF72*(%), the function f = Zu = —|As|?u
satisfies f € C2°, N CY,(X). By Proposition 5.3 and the local gradient estimate [14, The-
orem 8.32] there is a unique solution, @, in C°; N C}(X) of Zsa = f. We first show
U = U.

To that end, observe that as ¥ € ACH’;’”‘ is a self-expander, on X \ By,

r|As| + 7’4||Vgr| -1+ r2|V227"2 —2g9s| < C.
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Hence, there is an Ry > 1 so that (X\Bgy,, gs, 7) is a weakly conical end in the sense of
[3]. Observe that % = A,y 429, — 5. Letv = u— 1 and observe that as u, v € CY (D),

lim ,f”*l/ u? dH" 1 = lim p*”*l/ V2 dH = 0.
p—r00 $NOB, p—0 $NoB,

Hence, as Lyu = 0 and Zxv = Zu — £t = 0, [3, Theorem 9.1] implies that (6.3)
holds, with any m, for both w and v. In particular, for R > 1 sufficiently large, integrating
by parts and using Zsv = 0, gives

1 ’7‘2 T2
/ <|ng|2 + v2> eT dH" = / vO|Vsr| e T dH"
YNBgr 2 YXNOBRr

2 1/2 2 1/2
<2 (/ vie' T d’H”) (/ |Vso|2e™ dH”) .
$NOBr £NOBR

As (6.3) holds for v with m = 0, there is a sequence of R — oo, for which the right hand
side tends to zero. Hence, v identically vanishes and so u = % and u € C°; N C}(X).

We will now argue by induction to show u € D*(X). As C1(X) C C¢(X), that u €
C1(¥) and the decay of |Ax| ensure that f = —|Ax|?u € C%,(X). Let u be the unique
element of D?* () that satisfies s = f given by Theorem 5.7. As % (4 —u) = 0 and
u—u € C} NCY, (L), the elliptic maximum principle implies © = % and so u € D**(X),
proving the claim for k = 2. Suppose that we have shown u € D (%) for2 <1 < k—1.
As DH(S) € Ch(X), the decay of |Ax|? ensures that f = —|Ax|?u € C' () where
I = min{k — 2,1}. Theorem 5.7 gives a unique & € D' t2(¥) with Li = f. As
i—u e CE,NC% () and %5 (4 — u) = 0 the elliptic maximum principle implies u = @
and so u € DF2(X) as claimed.

Suppose now that u € K. For ¥ € ACH"“ and our assumptions on v we have that
|v-ny| € 0{; ~12 (%) and is uniformly bounded from below by a positive constant. This
implies (v - nyg) ™! € C’g_l’a(Z). Thus, u € Ky if and only if (v - ny)u € K. By what
have shown (6.3) holds for v and (v-ny)u € D% (%) implyingu € C*7% ﬂC’g*l’a ().
By writing L, = (v-ny)?.%s + Ky, the definition of K (see (5.21)) ensures that Zsu €
C*7%*(%). Hence, arguing as above gives u € DF<(X).

Finally, by Theorem 5.12, L., is Fredholm and so Iy is finite dimensional and, as
and K are isomorphic, the same is true of . O

We will actually need a sharper decay estimate for elements of XC proved in [3]. Roughly
speaking, this result says that for any non-trivial v € KC, there will be a non-zero element
tri [u] € L2(L(X)) so that one has the asymptotic expansion

-2 2
u=r"""teTTE] jltri[ul] o x|z + 0 (7""‘16_%) .

This expansion will be crucial in justifying several integration by parts arguments.
More precisely, with Ap/ p = X N (Br: \ Bgr), we have

Proposition 6.2. Ifu € IC, then

2
(6.4) lim p"t3eT / w? dH" ! = afu)? < oo,
NoB,

p—+00

and there are constants Ry and Cg, depending on ¥ and u, so that for all R > Ry,

(6.5) / (IVsul® + r*(20,u + ru)?) 5 dH" < Cealu]*R™".
AR, R
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Moreover, there is an injective linear map

tri s K — L*(L(%))

satisfying
(6.6) / trr [u)? dH" ™ = afu)?,
L(%)
and for all R > Ry,
©67) / (1 = Fuu])2e? dH" < Coalu]? R~
A2R,R
where

Fwlu] = r_"_le_§ éavlf’o[trio [u]].

Proof. As in the proof of Lemma 6.1, (X\ Bgy,, g5, ) is a weakly conical end in the sense

of [3]. Define & = r"+1e"*/4u. As u € K satisfies Lyu = 0 and (6.3), it follows
from [3, Theorem 7.2] that

p—00

(6.8) lim p“"/ a* dH" ! = afu)?® < oo,
$NoB,
and there are constants 12 and C' , depending on X and wu, so that for R > R,
(6.9) / (Vs +r2(9y0)%) r~" dH" < Calu]*R™2.
A2Rr.R

Thus, (6.4) and (6.5) follow from (6.8) and (6.9) together with the observations that

7‘2 1
et Vysu=— (n + + ;) r "0, + 1" Vs,
r

e (20,u + 1) = —2(n + 1)(1 + O(r=2))r~""2a + 2r~—""18,4.

It remains to construct the map tr}  with claimed properties. As 3 € AC’HIfL’a, by our
definition, there is a C**-regular cone C = C(%) and a function ¢ € C"* N CY o (Cr/)
where Cr: = C\ Bp/ so that for some compact set K C %, ¥ = X\ K can be parametrized
by the map ¥: Cr — ¥’ C R"*! given by

¥(p) =x(p) + Y(p)w(p).
As X is a self-expander, we have
(x-VeW —0) - (ngo¥) =2Hy 0¥ € C°,(Cr).

Invoking the homogeneity of cone and w, this gives
(6.10) x- Ve — i € C° (Crr).

Given 7 > 0 we define 4, = u(¥(7-)) on Cg//,. Then
Ortir(p) = 7 {[U(7p)|0, (¥ (7p)) + (tp - Verb(rp) — ¥(7p)) Vs a(¥(7p)) - W(p)} -
Thus, invoking (6.10), for some constant C' = C'(C, w, ),
(6.11) |0-t-(p)| < 7778, al(U(7p)) + C'7 2 x(p)| ! Vna|(¥(1p)).
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Fix any p; > p1 > 0. Denote by A5, =CnN (B,, \ By,). For 73 > 71 > 1, we use the
Hoélder inequality and (6.11) to estimate:

T2 2
[ i< [ ([Coidar) o
Ac < T

P2,P1 P2,P1

(6.12) < 2/ —dT/ / royaf* (W (p)) dH" dr

P2,P1

2(C7)2 [ 1.
+ ( 5 / / / |Vsal?(¥(rp)) dH"dr.
P1 71 p2,P1
Observe that for sufficiently large 7, W(AZ, ., ) C A
on A¢ is bounded from below by % Thus, an application of the change of variables

TP2,TP1

formula and (6.9) gives that

[ (sl + 00?) (o) d

c
P2,P1

<o (IVsal* + (ro.0)*) dH™ < C"afu)*r 2,

- T?L

27 py, 701 and the Jacobian of ¥

-
27’/’2;%

where C" depends on C ,n, p1 and po. Hence, substituting this estimate into (6.12) gives
/ (llry — Gig,)* dH™ < Calu)?r2
A52~P1

where C' depends on p;, C’ and C".
Therefore, it follows that

Tlggo iy = Gl in L7, (C)

for some G0, € L .(C). Moreover, fioo (pp) = fino(p) for all p € C and p > 0, and for
p2 > p1 > 0 and for sufficiently large 7,

(6.13) / (lhr — flog)” dH" < Calu)?r72.
Ay

As 1 is homogeneous of degree 0, we can define
tri,[u] = dool£(z) € L*(L(R)).

The linear dependence of tr}, on u is justified by our construction of .. And (6.6) is
given by combining (6.8) and (6.13). Furthermore, (6.7) follows from substituting v =
="~ le=7*/44 into (6.13) and a change of variables. Finally, in view of (6.4), (6.5) and
(6.6), the map trr is injective. g

We obtain several useful corollaries of Proposition 6.2.
Corollary 6.3. Forall k € Ky \ {0} there are no solutions in D** (%) of Lyu = .

Proof. We argue by contradiction. Suppose there were a x € KCy \ {0} and a u € DF*(X)
satisfying Lyu = k. Let & = (v - ny)x and @ = (v - ny )u. By standard elliptic regularity
theory, ¥ is a smooth hypersurface. Then & € K, @ € CZ (¥) and

(6.14) i, |Vyi| € C2 (D).
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Denote by S, = ¥ N 0B,. Since Lyk = 0 and (v - ny)Lxtd = &, it follows from the
divergence theorem and the Cauchy-Schwarz inequality that for sufficiently large p,

7‘2 2
/ KPeT AW = e'T / (RO, 0 — 00, R)|Vgr|~t dH™ !
sNB, S,

§2<p3‘" / (|a|2+|ara|2>dﬂ"-1> <p / (|f%|2+|am|2>dﬂ"—1) .
S S

P P

ol

Invoking (6.14), (6.4) and (6.5), it follows that for some sequence of p — oo the last term
of the above identity converges to 0. Thus, by the monotone convergence theorem,

s
/ K2e i dH" =0,
by
giving a contradiction. O

Corollary 6.4. Given ¢ € (0,1) there is an injective linear map TS: Ky — C*(L(%))
satisfying that for any k € Ky,
T3 (K] — tri[mv - ms]|le < elltrd[kv - ns]|| 2.
Proof. We first define a map T, : Ky — L?(L(X)) by
Ty [k] = tri [kv - nx].

The map T+ is linear by the linearity of tr_. It is injective because v is a transverse section
on X and Proposition 6.2.

Next, as dim Ky, < o0, the subspace T, (K, ) is also finite dimensional. We choose an
orthonormal basis, ¢1, . .., @m, of Ty (Ky). Using the partition of unity and the mollifica-
tion, given € € (0, 1) we may find § € C**(L(X)) for 1 < i < m so that

m
D lles = willze < €.
i=1

We then define a linear map M¢: Ty, (K, ) — C*(L(X)) as follows. If p € T\, (Ky) is
given by the unique linear combination of ¢;, namely,

m
= Z a;p; where a; € R,
i=1
then we let

Mgl = aipf =Y aiM[pi].
=1 =1

Observe that [|¢||2, = >~ | a?. Thus, by the triangle inequality,

1] = llze <D laalllgf — ¢illze < ellgllze.
i=1
Therefore, the corollary follows by setting Ty = M€ o T,. (]

Corollary 6.5. There is an e = €1(X, w) so that given ¢ € TS (K, \ {0}) the asymptotic
Dirichlet problem

6.15) { Lysu=0 inY

trl[u] = (w -ngyy in L(X)

has no solutions in C,, N C} y(X).
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Proof. We argue by contradiction. Take any sufficiently small e. Suppose that there were
a € TS(Ky \ {0}) so that the problem (6.15) has a solution u € CZ N C’117H(E). There
isar € Ky \ {0} sothat T¢[k] = ¢. Let K = kv - nx, so & € K\ {0}. Thus, by the
divergence theorem, letting S, = ¥ N 0B,

(6.16) e%/ /%aru|Vgr|71d’H”71=epT/ udpk|Ver| T dH L

P 3

On the one hand, using the Cauchy-Schwarz inequality gives

e%/ 0, |Vsr| 1 A
s,

<9 pl—n/ pn—leé/ 72 gyn-1
S Sp

Hence, Proposition 6.2 implies that there is a sequence of p — oo, for which the left hand
side of (6.16) converges to 0. On the other hand, we decompose

1 1
2 2

(Opu)? d’H"‘1>

P

20,.f = 20,k + 1R) — 1(k — PwlR]) — rFwlFk].

Using the Cauchy-Schwarz inequality,

e%/ (20,7 + 7| |Vssr| L A1
S

,
% 2
u2d7-["_1> <p”+lep2/ (za,,gwfz)?d?{”—l) ,
S

S p

and likewise

Nl

P

p2

peT/ (it — P [7])|| V|~ dHm

Sp

1
2
2
<2 <pn1 /S ’LL2 dHnl) <pn+3€’02 )
P

Hence, Proposition 6.2 gives that the right hand side of (6.16) converges to

1
—5/ TS [R]trl [Rlw - g sy dH"
L(%)

W=

(R — FwlR])? d’H"1>

P

As w is transverse to £(X), we may assume

inf w - =§>0.
i wenee)

Therefore, by Corollary 6.4 and injectivity of tr_,

> (6 = o)lltri[RlIZ- > 0,

/ TE k]t [l w - Dy dH™ !
L()

which gives a contradiction. (]
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7. STRUCTURE OF THE SPACE OF ASYMPTOTICALLY CONICAL SELF-EXPANDERS

For this section we fix an element ' € ACH®®. Let f € ACH**(T') be a E-stationary
map, that is, ¥ = f(I) is a self-expander. By Item (1) of Proposition 3.3, & € ACH"
and C(X) = C[f](C(T)). Letv € C2* N C§ 1 (X;R™1) be a transverse section on ¥ so
that w = C[v] is a transverse section on C(X) and satisfying (5.1). Next we define

H: ACH"(2) — CF 2 (2 R

by H[g](p) = Hg(x)(g(p)). Likewise, define n and x. Finally, given a Banach space
X, denote by Br(p; X) the (open) ball in the space with center p and radius R.

7.1. Smooth dependence theorem. The goal here is to establish an analog of [25, Theo-
rem 3.2] in the asymptotically conical F-stationary setting.

Theorem 7.1. There exist smooth maps

Fy: Uy x Uy — ACHM™ (D), and,
GVS Lﬁ XZ/{Q %Kv,

where Uy is some neighborhood of X| (s in C**(L(X); R™ ) and Us is some neighbor-
hood of 0 in Ky, such that the following hold:

(1) For (¢, k) € Uy X Us, trl [Fy[p, k]] = .

(2) Fy[x[z(s), 0] = x[s.

(3) For (¢, k) € Uy X Us, Fy|p, k| is E-stationary if and only if Gy [p, k] = 0.

(4) For k € Ky, DoFy(X|z(x),0)k = Kv.

(5) G1(0) is a smooth submanifold of codimension equal to dim K. It contains
{0} x Ky in its tangent space at (©,0). Equivalently, D1G\ (x| (s, 0) is of rank
equal to dim ICy and D>G (x|z(x),0) = 0.

(6) Given € > 0 there is a neighborhood W of x|, € ACHY* (%) such that for any
E-stationary element g € W there is a v € Ky with ||&|}., < € and a C**
diffeomorphism ¢ of ¥ with x|z o ¢ € ACHN*(2) and tr!_[x|s o ¢] = X|z(w)
such that

g = F,[tr} [g], x] o ¢.
That is, g ~ Fy[trl [g], ] in the sense of Section 3.2.
Furthermore, we can choose

Uy = U NCP(LE);R™ ) and W = W N CP(S; R,

where Uy and W are open sets of CF4(L(X); R"1) and Cf’&(Z; R"+1), respectively, for
O0<a<a

To prove Theorem 7.1 we need several auxiliary lemmata. Let g. be the Euclidean
metric on R*T1. If h: ¥ — R"*! is a C'! embedding, then we denote by g, = h*g, the
pull-back metric of the Euclidean one by h.

Lemma 7.2. Ifh: ¥ — R is a C? embedding, then

x+ n L
v (B2 )= (venihl) ( S+ D (" - g5)7(Tm) | nibl

ij=1
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Proof. By a standard differential geometric fact (see, for instance, [11, Appendix A])

H[h] = n[h] - Z 29 (VEh),; | nfh]

(7.1)

=nfh]- | Ash + Z — g51)¥(V%h);; | n[h).

1,9=1
Observe that
(x- Vsh)(p) = (Dh),(x") € Ty h(X).
Thus, it follows that
(7.2) nfh]-h=—n[h] (x-Vgh—h).
Hence, the lemma follows by combining (7.1) and (7.2). U
By Corollary 5.8 we can define
Eo: CP(L(D);R™) = CP* N CF (DR

such that &[] is the (unique) solution to Zsu = 0 with trl_ [u] = ¢ given by Corollary
5.8. Moreover, &%, is an isomorphism.

Lemma 7.3. There is an vy > 0 sufficiently small, depending only on ¥,v,n,k and o,
such that the map

=t By (K| O (L(D) R x By, (0,D4(2)) = CH2(x)
defined by
- X+
Evipul =v- <H - 2> x|z + &5l — x[g(m)] +uv]
is a smooth map.

Proof. First observe that there is an € > 0 sufficiently small, depending on X, v, n, k and
a, so that if
(7.3) e = x|z lka + lullka <e
then
h%u = X‘E + &% [(p — X|£(z)} +uv € ACHZ’Q(E).

Fix any pair (¢, ) satisfying (7.3). For simplicity, we write h = h, ,. By Item (1)
of Proposition 3.3, A = h(X) € ACH*. As n[h](p) = na(h(p)), it follows from
Item (4) of Proposition 3.1 that n[h] € C§~"*(%;R**1). Similarly, one proves that
gt — g5t € CE (R T2, We show Zoh € CF2%(3; R™H1), which, together
with Lemma 7.2 and Item (3) of Proposition 3.1, implies that =, [, u] € C*7%*(%).

By our hypothesis that ¥ is a self-expander and the definition of &%,

Zs (x|s + &sle — x[(w)]) = 0.

It remains only to show that %% (uv) € C*7%%(2; R™+1). The product rule gives
1
Ls(uv) =vLsu+2Vsu-Vgv +u (,,2”2 + 2) v

Thus the claim follows from that u € D*<(%), the hypotheses on v and Item (3) of
Proposition 3.1.
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Finally, as n[h] and g;,' — g5;" are rational functions of Vsh, the maps h + n[h] and
h— (g% — g5 ') are smooth maps from ACH®* (%) to, respectively, Co~ " (%; R 1)
and CF~1%(2; T(©2)%), and so the smoothness of =, follows easily. O

We will need the following self-improving regularity theorem at several points in the
argument. First, we prove a slight generalization of Theorem 5.7 where we allow the
coefficient matrix of the Laplacian on X to be a small perturbation of the metric.

Proposition 7.4. There is an ¢; > 0 sufficiently small, depending on ¥, n, k and «, such
that if M € C’giz’a(E;T(O’Q)E) satisfies ||M||,(:)_)2 o < €1, then for every f € CFIP®)
there is a unique solution u € D**(X) of

Lomu=Lout Y MI(Viu)i; = f.

ij=1
Moreover, there is a constant C; > 0 depending on ¥, n, k and « so that

n -1
(7.4) lullf o < CollFIY -

Proof. When M vanishes identically this was proved in Theorem 5.7. We can prove it
for the general case by the method of continuity (see, for instance, [14, Theorem 5.2]),
provided we can establish that the a priori estimate (7.4) holds.

First observe that by taking €; sufficiently small, depending only on n, we can ensure
that the symbol of the operator %5 a1 is uniformly elliptic. Here we use the elementary
fact that we may decompose M = M, + M, where M is symmetric and M, is skew-
symmetric, and || M;|[x—2,0 < [[M]||x—2,o and one has, due to the symmetry of V%, that
LM = % M., Hence, by the elliptic maximum principle, the only u € D¥®(X) in the
kernel of %5, v is the zero function.

Next observe that, if u € D*<(X), then

> M9(Viu);; € CF2(R),

ij=1
and as u solves
Lsu=f— Z Mij(V%u)ij,
ij=1
Theorem 5.7 implies
* ij -1
lullf o < Call £ = > MY (VEu)is |17,
ig=1
-1 0 1
< CullflIS7Y 0 + 2CalIM, L IVEul 73
< CullflIE7Y o + 2Caet[[ul} o

When ¢; = ﬁ,

* —1
lullf o < 204 1S

and so the desired estimate holds with C7; = 2C}. [
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Lemma 7.5. Let 0 < & < «. There is an r1 > 0 sufficiently small and a Cg > 0, de-
pending only on X3, v, n, k, o and &, with the following significance. Let g € .ACH];’O‘(Z)
satisfy

lg — X|g\|,(€1_)17a <riand Lxg € Cff’a(E;R"H),
and let

Egv: DEA(D) N B, (0;CF (D)) — CF174(%)
be the map defined by

Egvul=v- (H— X;) g + uv].

The following statements hold:
(1) IfEgy[u] € CP*12*(), then u € D¥*(X), with the estimate

* —_ -1
i < Cs (I1Zgn i + g —

(2) If DZ¢(0)u € C*72%(2) for u € DF4(X), then u € DF*(%).

1 —
O+ 128l + el )

Proof. First, we remark that all the constants below depend only on 3, v, n, k, o and a.
By our hypotheses on v,

inf |[v-ng|(p) =26 > 0.

peEXS

One may take 7, > 0 sufficiently small so that if g € ACH"*(%), u € D*%(X) and
e — X|Z||k Lot Hu”k La <71,
thenh = g 4+ uv € ACHN%(%),
Inf |v - nfhj|(p) > 0 and lgn' = 95 15,0 < (5, K, ),
where we used the fact that
@5 lgi" = 95 120 < Clb =52, < C (g = xlnli o + 0l ) -

Moreover, as shown in Lemma 7.3, % (uv) € CE]Q’&(E; R"™*1) and, by our hypotheses
on g, so does .#sh. Hence, invoking Lemma 7.2 gives the map =  is well defined.
Let us set
Mg y[u] = g, — 95" and Py y[u] = (v -n[h]) .
By Lemma 7.2 and the product rule,

(7.6) Lsu+ Z Mg,v[u]ij(v%u)ij = Pg,v[u]zEg,v[u] — Py v[u]Qg v(ul,
=1

where

Qgv[ul = (ﬁfzg +u (éfz + ;) v+ 2Vsu- vzv) -n[h]

- Z Mg [u]7 (VE(g — x|5))i; + Z Mg o [u]F (V2x]5)i; | - n[h]
1,j=1 1,7=1
+ ZMg, (u(VEV)i; + 2(Vsu)i(Vsv);) | - nlh].

1,j=1
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By Items (2)-(4) of Proposition 3.1 and our hypotheses,
0 0
Il o + 1 Pe sl 0 < €

Our hypotheses on v ensure that
1 -
v E Cg‘,oc(z;Rn—i-l) and (fz + 2) Vv E 0522,Q(Z;Rn+1).

As g € CP(8; R™), we use Item (3) of Proposition 3.1 and (7.5) to estimate
—1 -1 1 1
Qe i < € (1258115 + g = Xlsllih + lull?, . )

Hence, as we assume =g \ [u] € Cﬁf’“(Z), the right hand side of (7.6) is an element of

C*7%* (%), and so, by Proposition 7.4, u € DF(X) and it satisfies the estimate claimed
in Item (1).
To obtain Item (2), we replace u in (7.6) by su for |s| < € to get that

s | Lu+ Z Mg o [su]? (VEu)ij | = Pev[su]*Zg.v[su] — Pgv[su]Qg.v[su].

ij=1

By shown in Lemma 7.3 and shrinking 7 if needed, Zg , is smooth near 0 € Dkv&(E).
And careful, but straightforward, analysis shows that our hypotheses ensure that P . and
Qg,v are both smooth maps from a small neighborhood of 0 € D*:% (%) into, respectively,

C’é“ _2’a(2) and CE?’Q(Z). Hence, differentiating the above equation at s = 0 gives that

Lou+ Y Mg [0 (Viu)ij = 25 y[0]Pg v [0]D Py v (0)u + Pe v [0]* D= o (0)u

ij=1
— Qgv[0]D Py v (0)u — Pg v [0]DQg v (0)u.
Now, using that g € C’f’o‘(E; R™"*1) and Zg € CE;Q’O‘(E;R"“), we compute,

Egv[0] = Pe[0]7! | Zog+ ) Mg [0]7(V3g)i; | -nlg] € CF (D).

ij=1
Hence, as we assume DZg  (0)u € C*F7%%(%) we have
Lsu+ Z Mg,v[O]ij(V%u)ij € 0512,04(2)’
ij=1
and the argument concludes by appealing to Proposition 7.4. d

Using the above lemmata we show that near any given asymptotically conical self-
expander all other asymptotically conical self-expanders admit a natural parametrization.

Lemma 7.6. Given ¢ € (0, 1) there is an ro € (0,1) depending only on X, v, n, k, « and
€ so that for any E-stationary map

g € ACH*(2) N By, (x]s; O (5 R™H)
there is a u € B.(0; DX (X)) so that g(X) can be reparametrized by the map
g = x|s + &[trl [g — x|s]] + uv € ACHE(%).

As such, g ~ g, where this is the equivalence relation of Section 3.2.
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Proof. Let
h = x|y + &[trl [g — x|x]].
And let A = g(X) and T = h(X). If g lies in a sufficiently small neighborhood of
x|y, € CF*(2; R"*1), then, by Corollary 5.8, so does h. Thus, h € ACH*%(X), and so
T € ACH"* by Item (1) of Proposition 3.3. Hence, if we set
g=gohlandv=voh™!

then, by Items (2) and (3) of Proposition 3.3, g € AC’HE’Q(T), and, by Item (4) of Propo-
sition 3.1, v € C’(]f N C(’)“,H(T; R”“) and it is a transverse section on Y. Observe, that as
trl [h] = trl [g], C(T) = C(A) and trl [g] = x|, (v). Furthermore, by our hypotheses,
Item (4) of Proposition 3.1, Corollary 5.8 and the triangle inequality,

A~ 1 _ — 1 1
g —xlr ) = llgoh™ —hoh™'|{") < ullg —h)

k,a —

(1.7) .
S 1/1(]. + CC5)||g — X‘E”k,a S 1/1(1 —+ 005)7"2,

where C' depends on X, n, k and «. Thus, by taking 7o sufficiently small, we can write

&(p) = m(&(p)) + ¥ (p) V(s (&(p))),
s0, by Item (4) of Proposition 3.1 and the fact that triO [re0g—g] =0,
b(p) = (&(p) — 7o (8(p))) - V(me(&(p))) € CT* NCF ().
Since
Ty 0& — X|y =7y 08 — 7y o X7,

it follows from Item (5) of Proposition 3.1 and (7.7) that for any 8 € [0, «),

8 llmeog—xrly < (lg- x|T||§3,33)“’5 < (1 + CCs)rs ™7
Hence, by Item (3) of Proposition 3.1, the triangle inequality and by using (7.7) and (7.8),
(7.9) 1D < g — mo 0 8lIS < Cln(vs + 1)(1+ CCs)rs ™7,

where C’ depends on X, v, n, k and 3. Moreover, in view of (7.8), for r5 sufficiently small,
Ty 08 € AC”Hfl""(T) and so is its inverse by Item (2) of Proposition 3.3. Thus, setting
u =1 o (mgog) ! oh onehas

g=go(meog) toh=h+uv,
and, by Item (4) of Proposition 3.1 and (7.9), u € CF* N CF (D) satisfies
(7.10) lull () < Crg=?

for some constant C depending on X, v, n, k, o and .

Next we claim that u € D*#(%), and [ulli 5 — 0asrg — 0. First observe that, by
Corollary 5.8 and (7.10), for r sufficiently small, g is sufficiently close to x|x. in the Cf B
topology, and so g € .ACHE’/B (X). Moreover, by Item (3) of Proposition 3.1,

~ 0 — — 0 1 1
@1 nfg) = ns 5+ gt = o5 I < €7 (g = xlslEh + lulll}))

where C” depends on X, v, n, k and 3. It follows from the hypotheses on v that

inf v n[g]|(p) = 5 > 0.
inf [v-nlg]|(p) =6 >0
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If g is a E-stationary map, then so is g. Hence, by Lemma 7.2 and the product rule,

_ n|g] 1 - —1 —1y\ij (v2 &
Lsu = _V : n[g} - 2Vsu-Vev+u <gz; + 2) A\ ijgl(gg — 95 ) J(Vzg)ij

where the right hand side is an element of C’ff’ﬂ (X) and, by Items (2) and (3) of Propo-
sition 3.1, (7.10) and (7.11), its Cﬁf‘ﬂ norm is bounded by O(rgfﬁ). Hence, invoking
Theorem 5.7, there is a @ € D*A () satisfying that %5 = Fsu and lallz 5 < O(r?iﬁ).
As u, 0 € C’i’OB(Z), by Corollary 5.8, u = @ and so u € D*#() and [[ull} 5 — 0 as
Ty — 0.

Finally, as Zsh = Ehyv[u] = 0, we can appeal to Item (1) of Lemma 7.5 to see that
when 75 is sufficiently small, u € D*<(X) and

* 1 * A _
Julli o < Cs (I = x|l + llulli 5) < Crs ™",

where C' depends on X, v, n, k, o and 3. Therefore, one completes the proof by taking
sufficiently small so that C75 ™7 < e. O

Now we are ready to prove Theorem 7.1 stated in the beginning of this section.

Proof of Theorem 7.1. First, we define
€ k—2 r2
Ky = {f eCIIT(D): / freT™ dH" =0forall k € ICV} , and,
b
2
’C\Jﬂ* = {f € DM(X): / fre™ dH" =0forall k € ICV} .
b

By Lemma 6.1 the space KC, is a finite dimensional subspace of D*®(X), and for any
feC (X)) and k € Ky,

/f* dH"| < C(w)|IFIIS

where, by Proposition 6.2,
r2
C(r) :/ (1 +1)"leT dH" < oo,
by

Thus, we can define the orthogonal projection IIx : CEQ’“ (X) — K with respect to the

measure e” /43" |3, and Ik, is a bounded linear map. We also consider the projection
ey : CF2(8) — KL defined by Hys = Id —Ilx,, is also a bounded linear map.
Consider the map

O By (x| (s OV (L(R) R™)) x By (03K x Brg (03 K8.) — K
defined by
@V[Q07 Ky U] = HIC& © EV[@) K+ U]

By Lemma 7.3, ©, is a well defined, smooth map. Moreover, in view of Propositions
4.1 and 4.2, D30, (x|£(x),0,0) is given by L, restricted to IC‘%,*. Thus, it follows from
Theorem 5.12 and Corollary 6.3 that D3O (x| (s, 0, 0) is an isomorphism between Ky,
and KC&. Hence, by the implicit function theorem, there is a neighborhood U = U; x Us
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of (x|(x),0) in CF*(L(X); R"*!) x Ky and a smooth map F\ . : U — Ky, that gives
the unique solution in a neighborhood of 0 & IC\%)* of
®V [Qav Ha FV,*[@? ‘%H = O
Now let

Folp, 5] = x|s + &slp — x|z0)] + (8 + Fy «[p, k]) v, and,

GV[<)07 KJ] = H/Cv © EV[‘)O7 K+ FVJ[@? K’H
Then Items (1) and (2) follows immediately. By the definitions of F}, and =,,,

xt

(7.12) Uy {v- (H — 2) [Fv[go,/@]]] =0.
Thus, Fy[p, k] is E-stationary if and only if

te, [v- (-2 ) (Bl <o

i.e., Gy[p, k] = 0. This proves Item (3).
To establish Item (4), it suffices to show Dy Fy «(X|z(x),0) = 0. Take any x € K.
Observe that for |s| < e,

-
(7.13) s {v : (H — 2) (x|s + (sk + Fy < [x|(x), 5K]) v]] =0.
Now, differentiating (7.13) at s = 0, we apply Proposition 4.2 and the chain rule to get
Hxs o Ly o DoFy (X[ (5, 0)k = 0.
Since K¢ = Im(Ly) by Theorem 5.12 and Corollary 6.3, it follows that
DyFy o (X| (s, 0)k € Ky N Ky, = {0}.

Thus, the claim follows immediately from the arbitrariness of k € C, .
Next, by the definition of G, and (7.12), we have

<+

Gulipnl = v+ (1= ) (Rl
Thus, it follows from Proposition 4.2 and Item (4) that for all x € K,
DGy (X|z(s),0)k = (v - nx) Le[Do Fy (%] £(x),0)k - ng] = Lyk = 0.
This shows DoG'y (x| (s, 0) = 0. Next, take any ¢ € 75! (Ky) \ {0}. Then
DGy (x| (x), 0)[¢W] = (v - ng) Ly [D1 Fy (X[ (x), 0)[¢w] - nx].
By the linearity of trl_ and Item (1),
trl, [D1Fy (x| £(x), 0)[CW] - nx] = (w - nges).
As ¥ € ACH™®, it follows from Corollary 6.5 that
D1Gy (X|z(s),0)[CW] # 0.

Thus, we appeal to Corollary 6.4 to see that D1 G (X|£(x), 0) is of rank equal to dim Cy,
which completes the proof of Item (5). Finally, Item (6) follows from Lemma 7.6 and the
implicit function theorem.

It remains only to prove the last statement (“Furthermore, we can choose...”). Fixan & €
(0, ). First observe that, by Lemma 6.1, Ky is a finite dimensional subspace of D*%(X),
so any norms on Ky, are equivalent. Let I@ﬂ; and Iﬁﬂ;* be the orthogonal complements of Xy,
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in C’ff’d (X) and D4 (), respectively. We further let II 1 be the orthogonal projection
of C*72%(%) onto KE. As ¥ € ACHFM® ¢ ACHMS, applying the theorem with &
replacing «, there is a neighborhood U = Uy x Us of (x|z(x, 0) in CF3(L(Z); R™H1) x
Ky together with a smooth map Fw*: U — I@&,ﬂ giving the unique solution in some
neighborhood of 0 € K¢, of

Oulioum Buslionnl) = 1g, (v (120 ) (Rfpun]) =0,

where

Fylp,n] = x| + Eslp — Xleem) + (5 + Rl il v.
If o € Uy N CF2(L(D); R+, then &l — x| (3] € CF(8; R, Let
g = x|z + &xp — x|z (m))-

Thus, shrinking U, if necessary, g € AC’HZ’O“(E), and Zg = 0 as X is a self-expander.
By the definition of Fy .,

Egvlh+ Fuip, K] € Ky € CF12(D).

Hence, shrinking I/ so we may apply Item (1) of Lemma 7.5 to get Fy, [, 5] € D" (X).
Denote by

U =UnNCHLE);R™) x Ky).
Therefore, the map Fy ,: U' — lCé’* given by the restriction of Fl, . to U’ is well defined.
Likewise, define F..: U’ — ACH () to be the restriction of F,.

Given (o, k) € U, letu = Fy ,[p, k] and h = F{[p, k]. Then D30, (¢, K, u) is an iso-
morphism ofléf;_’* and K. Observe thath € ACH"* (%) with Zh € CF 2 (3 R,
Since E, v restricts to a smooth map from a neighborhood of 0 € DF(X) to C*7%%(%),
we have

Dg(:)v(go, R, u)\,c‘%* = HIC& o DEh,v (O)‘K‘f*
Thus, Item (2) of Lemma 7.5 implies D3O, (¢, &, u) is an isomorphism of K5, and K5
Moreover, by the implicit function theorem, there is a smooth map F' from a neighborhood
of (¢, k) € CH*(L(X);R™ 1) x Ky to K that gives the unique solution in a neighbor-
hood of u of
év[@lv Hlv F[‘P/a ‘%/” = 0
Hence, Iy, , coincides with I near (i, k). Therefore, Fy , and I are both smooth maps.

Let Gy : U — K., be given by
~ XJ_ ~
Gulpyr] = v- (H - ) Fuliool,

and let G/, = Gy|y. Then Gy and G, are smooth maps. By the theorem (replacing o by
@), G,1(0) is a smooth submanifold of I/ at each point of which we may assume DGy, is
surjective. Observe, that

(G)7H0) = GLH(0) N (CP(L(Z); R x Ky).

v

As C*(L(X)) is dense in C*¥(L(X)), DGL (¢, k) is surjective for (¢, k) € (GL)71(0).
Thus, by the implicit function theorem, (G%,)~!(0) is a smooth submanifold of 2/’
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Finally, by the preceding discussions and the fact that the norms || - ||, , and [ - || 5 on
K are equivalent, the WV in Item (6) can be taken to be W N Cf (3 R™HL) for W open
in CF%(3; R"1), completing the proof of the last statement. O

7.2. Global structure theorem. Following the strategy of the proof of [25, Theorem 3.3],
we apply Theorem 7.1 to prove Theorem 1.1.

Proof of Theorem 1.1. First, by Item (4) of Theorem 7.1, one has that for any x € K, \{0},
there is a bounded smooth n-form w on a neighborhood of ¥ C R"™*! so that

d
dsls—o /E e T I[X|(m), skl w # 0.

Furthermore, one can choose such n-forms, wq,...,wys, where M = dim K, so that the
linear map K, — RM defined by
d
K —

r2 -2
d (/ e_TFv[X|C(E),SK}*w1,...,/ 6_4FV[X£(2),SI€]*(UM>
sls=0 \ /s o)

is an isomorphism.
Recall, that f € ACH"*(T') and & = f(I) is a self-expander. Define

Bp: ACH}™(I) = CH*(L(D);R™T) x RM

given by
2 2
Be(g) = (tréc[g], [t oty [ e4<gof1>*wM).
> >

Clearly, ®¢ is a smooth map. We also define
Cr: ACHE*(X) — ACHF*(T), C¢[h] = hof.

By Items (2) and (3) of Proposition 3.3, Ct is well defined and it is an isomorphism with
inverse Cp-1.
Now, consider

Do CroFy: Uy X Uy — CP(L(T); R™T) x RM
where Uy = Uy N C*(L(X); R 1), Uy a neighborhood of x|z (x) € CF4(L(Z); R 1)
and Us is a neighborhood of 0 € K. By our definitions,

trl [f]

7‘2 *
®¢ 0 Cro Fy[p, k] = (|tréo[f]g0 <|tr1[f}|) ,/Ze*TFv[xM(E),FL] w1,

-2
..7/ 6_4FV[X|£(E),HZ]*LUM).
z

Thus, by the inverse function theorem, shrinking dl,dg if necessary, ®¢ o Cg o Fy, is a
smooth diffeomorphism onto its image. By Item (5) of Theorem 7.1, G, (0) is a smooth
submanifold of C**(L(X); R"*1) x K, and so S¢ = ®¢ 0 C¢ o F,(G51(0)) is a smooth
submanifold of C**(L£(T); R"*1) x RM near ®¢[f]. Hence, in view of Items (3) and (6)
of Theorem 7.1, ®¢ sets up a one-to-one correspondence between

Or = {lg] € ACEL*(T): 5 € W},

where W = W N ACH*%(T") for W a neighborhood of £ € C*%(T'; R™*1), and a neigh-
borhood of ®¢[f] € S¢. Moreover, if f € ACH*(T) and f'(T") is a self-expander, then

Dpr o (Delog) " =P 0 Cro Fyo(ProCroFy) 7 s,
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is a smooth map. Therefore, the collection of such (Of, ®¢) form a smooth atlas for
ACEF2(T") from which one obtains a countable subcover as C** N CfH ([; R"*1) and

Cka(L£(T); R™+1) are separable with respect to the C2* and C*% topology, respectively.
This proves Item (1).

To obtain Items (2) — (4), we observe that IT o (®¢|p,)~! is the usual projection of
Cke(L(T); R™1) x RM onto its first component. We invoke Item (5) of Theorem 7.1 to
see that codim S¢ = dim Ky, = M and {0} x R is contained in the tangent space of S¢
at O¢[f]. Hence, the claims in Items (2) — (4) follow easily from these observations. O
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APPENDIX A. ESTIMATES FOR THE HEAT EQUATION ON R"
We first state a well-known maximum principle for parabolic equations on R”.

Proposition A.1. If w € C°(R™ x [0,T)) has continuous spatial derivatives up to the
second order and continuous time derivative and satisfies

Ow— > aij(?iiij— S b0, w—cw <0 inR™ x (0,T)
ij=1 i=1
w(z,0) <0 forz e R

where for some A > 0,

n

> ai(e )€€ = Oand 3 la(wt)] + 3 (.0 + el )] < X

i,j=1 i,j=1 i=1
then w < 0on R™ x [0,T.
Proof. For each [ > 0 we define
wi(x,t) = e Mw(a,t) — 11+ |z|?)7.

Then, by direct computations,

Oyw; — Z aijaizjwl - Z b0, wy + (2X — c)w; < C(n, M.
ij=1 i=1
Clearly, w;(x,0) < 0, and as w € C°(R™ x [0,T)), w;(z,t) — —oo when (z,t) ap-
proaches infinity.
Thus, there is a point (z;,¢;) € R™ x [0, T such that

sup  wi(w, t) = wizy, ).
(z,t)€R™ x [0,

If ¢; > 0, then

Opwy(xy,t;) > 0, Op,wi(x1,8) = 0, and Z aij(l’l,tl)aiiijl(xl,tl) <0.
ij=1
As |c| < ), it follows that w(z;, ;) < CIATL. If t; = 0, then w; (2, ¢;) < 0. Hence,

sup wy(z,t) < CINTL
(z,t)ER™ % [0,T]

Now passing [ — 0, we get

sup  w(z,t) <0,
(z,t)ER™ %X [0,T]
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proving the claim. O

We now prove Lemma 5.5 for the heat equation on R™.
Proposition A.2. Let 3 € (0,1). Given h € C°((0,1); C#(R™)) the Cauchy problem

{ Ow — Aw = h inR"™ x (0,1)
(

(A.1) lim w(@,t)=0 forzeR"

z’,t)—(z,0)

has a unique solution in CO((O 1); C%8(R™)). Moreover, w satisifes

sup Zt T | Viw(-, t)lg < v(n,B) sup ||h(-,t)ls.
o<t<1

O<t<1

Proof. OnR"™ x (0,1) we define

wia.t) = | t [ b9l =yt - ) dyis,

n _lz—yl? . .
where ®(x — y,t — s) = (4n(t — s))"ze 3= . It follows from a direct calculation —

cf. [17, pp. 263-264] — that O;w — Aw = h.
Observe that |w(x,t)| < t||h||o, and that

lw(z,t) —w(x', )] < /0 / |h(z — 1y, s) — h(z' —vy,s)|®(y, t — s)dyds

<t sup [A(8)sle —a')f.
0<s<1

Thus,

sup t~w(-,t)l|ls < sup [[A(,1)]s.
o<t<1 0<t<1

Next we use [17, Chapter 4, (2.5)] to estimate

t
|0, w(, )| < thlo/ / |00, (x — y,t — 5)| dyds < C(n) V|| llo.
0 JR»

Moreover,
t
100, 10(x, 8) — By, w(al 1)) < / / (e — 1, 8) = h(2 — 9, 8)[|9y, B(y, t — )| dyds
O n

< C(n)\/ioilslgl[h(w s)|gle —a'|°.

Thus,

1
sup ¢ 2|0z, w(-, )]s < C(n) sup [Ih(-,1)]s-
0<t<1 o<t<1

Next we use [17, Chapter 4, (1.9) and (2.5)] to estimate

|mx1 mt\<// (y,s) — h(z,s)||02, 2, @(x =yt —s)|dyds
< swp | // o~ 9P 102, 0, Bz — .t — )| dyds
0o Jrn

0<5<1
< C'(n,B) sup [h( s)]s-

This together with the Holder estimate [17, pp. 276-277] of 831,%_10 gives

sup 1070, w(-t)lls < C'(n, ) sup [IA(,1)ls.
0<t< 0<t<1
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Hence, we have proved that w is a classical solution to the problem (A.1) satisfying

sup Zt 7 || Viw(

0<t<1

w g < C7(n, B) sup [|h(:,1)]|s.
o<t<1

Moreover, observe that for (z,¢) € R” x (0,1)and0 < 6 < 1 —¢,

w(x,t) //n (y,840) — h(y,$))®(z — y,t — s) dyds

+/ / h(y,s + 0)®(x — y,t — s) dyds.
—0 n

By the preceding discussions, if h € C°((0,1); C#(R™)), thenw € C°((0,1); C%A(R™)).
The uniqueness follows from Proposition A.1. (]

w(z,t+96) —

APPENDIX B. NOTATION GUIDE

Section 1.

Hs the mean curvature vector of >

nsx the unit normal of ¥

X the position vector

x* the normal component of the position vector

H™ the n-dimensional Hausdorff measure

ACEF(T")  the space of equivalence classes of C'F**-asymptotically conical em-

beddings of I" into R" ! whose images are self-expanders.

Section 2.1.
By (), Br(z)
By(x), Br(z)

the open ball in R" of radius R and center x
the closed ball in R™ of radius R and center x

CP(Q) = COB(Q)

B%,Br the open ball in R™ of radius R and center origin

B}%, Br the closed ball in R™ of radius R and center origin

L[C] the link of cone C

Clo] the cone over ¢ C S™

Section 2.2.

Vs the covariant derivative on %

ds, the geodesic distance on X

Bx(p) the open geodesic ball in X of radius R and center p € X

qu the parallel transport along the unique minimizing geo-
desic in X from p to q

£ 102, [1Lf [l the C* norm for function f on

CY(Q),C"0(Q) the space of functions on §2 with finite C* norm

[f1s:0,[f]s the Holder semi-norm with exponent 3 for function f on
Q0

[T1s:0, T3 the Holder semi-norm with exponent 3 for tensor field T’
on 2

| fll,:9: 11 fll2,8 the C# norm for function f on

Il £l 3.5 | ] the C’ norm for function f on

Ch8(Q) the space of functions on  with finite C*-# norm

the space of functions on € with finite C'# norm
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”f”l(df)b ||f||z(d)a Hf”z(%) the (1 + |x|)4-weighted C' norm for function f on
Cch(Q),c’ Q) the space of functions on € with finite || - ||’ norm
[ f]gdzl, [f] gi) the(1 + |x|)%-weighted Holder semi-norm with expo-

nent /3 for function f on
[T (dez, [T (Bd) the (1 + |x|)%-weighted Holder semi-norm with expo-
nent (3 for tensor field T" on €}
||f||l(d/3)_ﬂ, Hf||l(°2 the (1 + |x|)%-weighted C*# norm for function f on {2
||f||g%, ||fHE,d) = ||fHéd% the (1 + |x|)¢-weighted C* norm for function f on
C’é‘ﬂ () the space of functions on ) with finite || - ||l(dﬂ) norm
Cg Q) = CS”B Q) the space of functions on € with finite || - ||gd) norm
X (Q;RM) the space of maps from 2 to R with finite X norm
Section 2.3. B
Cr the cone C outside the closed ball Bgr
é”;{ [¢] the homogeneous extension of degree d of ¢ where ¢ is a map
from the link of a cone to RY

tr[f] the trace of f where f is a homogeneous map from a cone to RM

trd [g] the trace at infinity of g where g is an asymptotically homoge-
neous of degree d map from a cone to RM

Céz’,?{ (Cr;RM)  the subspace of C”(Cr; RM) consisting of elements that are
asymptotically homogeneous

Cii,ﬁ (Cr;RM)  the subspace of C(lz’,% (Cr;RM) consisting of elements with trace
at infinity equal to zero

Section 2.4.

Xy the v-graph of function f

Ty the projection map onto a hypersurfaces along transverse section v on the
hypersurface

&,[f] the v-extension of f where f is a map from a hypersurface to RM and v is
a transverse section on the hypersurface

Section 2.5.

é’&d [¢] the v-homogeneous extension of degree d of  where  is a map from the
link of a cone to RM and v is a tranverse section on the cone

Section 3.

C(%) the asymptotic cone of X

L(X) the link of the asymptotic cone of ¥ -

Cr(%) the asymptotic cone C'(X) outside the closed ball Br

AC’HZ’O‘ the space of cr ““_asymptotically conical C*®-hypersurfaces in R"*1
Oy.> the inverse of 7 restricted to X', a hypersurface outside a compact set

Section 3.1.
trd [f] the trace at infinity of f when f is an asymptotically conical of

Ch (5 RM)

Clilo (%5 RM)

degree d map from an asymptotically conical hypersurface into R
the subspace of C{lj’ﬁ (3;RM) consisting of elements that are
asymptotically homogeneous

the subspace of C’(Ii’%(E; RM) consisting of elements with trace at
infinity equal to zero
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Section 3.2.
ACHF2(T)  the space of C'F**-asymptotically conical embeddings of T" into R"*!
C[f] the homogeneous extension of degree one of trl_[f]
f~g the asymptotically conical embeddings f, g are equivalent, provided

f~1 o g is a diffeomorphism that fixes infinity

Section 4.
Ly, the Jacobi operator on X

L, the v-Jacobi operator where v is a transverse section

Section 5.
L5 certain Schrodinger operator on X related to the Jacobi operator

DLA(X)  certain Banach space of functions on ¥
|fll; s  thenorm on DLHA(R)

Section 6.
K the kernel space of the Jacobi operator
Ky the kernel space of the v-Jacobi operator
r the distance to the origin restricted to a hypersurface
Oy the gradient of r
tri [u] the trace at infinity of Jacobi function u

Fwlu] the leading term in the expansion of Jacobi function u

Section 7.

Hg] the mean curvature vector of embedding g
nlg| the unit normal of embedding g
xt[g] the normal component of embedding g

Br(p; X) the open ball in Banach space X with radius R and center p € X
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