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ABSTRACT. We show that the space of asymptotically conical self-expanders of the mean
curvature flow is a smooth Banach manifold. An immediate consequence is that non-
degenerate self-expanders – that is, those self-expanders that admit no non-trivial normal
Jacobi fields that fix the asymptotic cone – are generic in a certain sense.

1. INTRODUCTION

A hypersurface, i.e., a properly embedded codimension-one submanifold, Σ ⊂ Rn+1,
is a self-expander if

(1.1) HΣ −
x⊥

2
= 0.

Here
HΣ = ∆Σx = −HΣnΣ = −divΣ(nΣ)nΣ

is the mean curvature vector, nΣ is the unit normal, and x⊥ is the normal component of the
position vector. Self-expanders arise naturally in the study of mean curvature flow. Indeed,
Σ is a self-expander if and only if the family of homothetic hypersurfaces

{Σt}t>0 =
{√

tΣ
}
t>0

is a mean curvature flow (MCF), that is, a solution to the flow(
∂x

∂t

)⊥
= HΣt .

In particular, self-expanders may be thought of as the forward in time analog of self-
shrinkers. While self-shrinkers model the behavior of a MCF as it develops a singularity,
self-expanders are expected to model the behavior of a MCF as it emerges from a conical
singularity. They are also expected to model the long time behavior of the flow. The inter-
ested reader may refer to [2], [7], [8], [9], [11], [15], [16], [20], [21], and references therein.
Finally, self-expanders arise variationally as stationary points, with respect to compactly
supported variations, of the functional

E[Σ] =

∫
Σ

e
|x|2

4 dHn

whereHn is the n-dimensional Hausdorff measure.
Throughout the paper, n, k ≥ 2 are integers and α ∈ (0, 1). Let Γ be a Ck,α∗ asymptot-

ically conical Ck,α-hypersurface in Rn+1 and let L(Γ) the link of the asymptotic cone of
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Γ. For instance, if limρ→0+ ρΓ = C in Ck,αloc (Rn+1 \ {0}) for C a cone, then Γ is Ck,α∗ -
asymptotically conical with asymptotic cone C. For technical reasons, the actual definition
is slightly weaker – see Section 3 for the details. We wish to view the space of all Ck,α∗ -
asymptotically conical self-expanders as an infinite dimensional geometric object and then
understand some of its global features. However, this space is cumbersome to work with
and so, inspired by work of White [25], we take a slightly different point of view.

Specifically, let ACHk,αn (Γ) be the space of Ck,α∗ -asymptotically conical embeddings
of Γ into Rn+1. Roughly speaking, f ∈ ACHk,αn (Γ) if f is an embedding, Σ = f(Γ) is a
Ck,α∗ -asymptotically conical Ck,α-hypersurface and the parametrization of Σ by f is well
behaved at infinity. This last condition means that an appropriate blow down of f yields a
nice parametrization of the asymptotic cone of Σ. Two elements f1, f2 ∈ ACHk,αn (Γ) are
equivalent if f1 = f2 ◦ φ for some diffeomorphism, φ, of Γ that fixes the infinity of Γ; see
Section 3.2 for the exact definitions of ACHk,αn (Γ) and of the equivalence. Denote by [f ]

the equivalence class of f . Observe that it is possible for two elements f1, f2 ∈ ACHk,αn (Γ)
to parametrize the same hypersurface, Σ, but to be inequivalent. This happens when the
blow downs of f1 and f2 give different parameterizations of the asymptotic cone of Σ.

Theorem 1.1. For Γ ∈ ACHk,αn let

ACEk,αn (Γ) =
{

[f ] : f ∈ ACHk,αn (Γ) and Σ = f(Γ) satisfies (1.1)
}
.

Then the following statements hold:
(1) ACEk,αn (Γ) is a smooth Banach manifold modeled on Ck,α(L(Γ);Rn+1), with a

countable cover by coordinate domains Oi.
(2) The projection map Π: ACEk,αn (Γ)→ Ck,α(L(Γ);Rn+1) which assigns to [f ] the

trace at infinity, tr1
∞[f ], of f is a smooth map of Fredholm index 0.

(3) Each Π|Oi has a coordinate representation given by the map (z, κ) 7→ (z, ψi(z, κ))
from a neighborhood of 0 ∈ Zi ⊕ Ki to itself, where Ki is the kernel of DΠ([fi])
for some [fi] ∈ Oi and Zi is the complement of Ki in Ck,α(L(Γ);Rn+1).

(4) The kernel of DΠ([f ]) is isomorphic to the space of normal Jacobi fields of f(Γ)
that fix the asymptotic cone.

By work of Smale [23], an immediate consequence of Theorem 1.1 is that for a “generic”
Ck,α-regular cone, C, all self-expanders asymptotic to C are non-degenerate in that they
admit no non-trivial normal Jacobi fields that fix the asymptotic cone – see Section 6.

Corollary 1.2. Given Γ ∈ ACHk,αn there is a nowhere dense set S ⊂ Ck,α(L(Γ);Rn+1)

so that if ϕ ∈ Ck,α(L(Γ);Rn+1)\S and [f ] ∈ ACEk,αn (Γ) has Π([f ]) = ϕ, then the space
of normal Jacobi fields of Σ = f(Γ) that fix the asymptotic cone of Σ is trivial. That is, the
space K defined in (6.1) is trivial.

Similarly, it follows from Theorem 1.1 that whenever the projection map Π is proper,
then there is a well defined mod 2 degree – see [4] for natural situations in which Π is
proper.

Corollary 1.3. Given Γ ∈ ACHk,αn if U is an open subset of ACEk,αn (Γ) and V is a
connected open subset of Ck,α(L(Γ);Rn+1) such that Π|U : U → V is proper, then Π|U
has a well defined mod 2 degree.

Theorem 1.1 is inspired by the main result of [25] in which White considers the space of
all regular immersions of compact n-dimensional manifolds with boundary into RN , N >
n. He shows that the critical points in this space of any reasonable elliptic integrand, e.g.,
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the area functional, form a Banach manifold and that the natural boundary restriction map
is smooth and Fredholm of index 0. White derives many interesting consequences from
this result including developing an integer degree theory – see [26] for further applications.
The results of [25] were preceded by earlier work on this problem for minimal surfaces by
Böhme-Tromba [6] and Tomi-Tromba [24]. Those authors took a different approach, one
allowing for branched immersions, and the interested reader should consult those papers
and their references.

Theorem 1.1 may be thought of as an extension of [25] to the space of asymptotically
conical self-expanders and we follow the main outline of White’s proof. However, almost
all the technical details are different. We also do not fully carry out the program of [25].
For example, we do not develop an integer degree theory for the map Π, instead we address
this topic in a separate paper [5]. To elaborate on the differences, while White is able to
repeatedly appeal to standard results for elliptic boundary value problems, we must develop
the relevant estimates in the non-compact setting ourselves. In addition to the issues caused
by working on a non-compact domain, there are new challenges posed by the lack of
ellipticity of the linearizion of (1.1) “at infinity”. For instance, we establish the Fredholm
properties of this operator using basic facts about the heat kernel on Euclidean space. We
remark that an analogous Fredholm property for the linearization of asymptotically conical
expanding Ricci solitons has also been derived by Deruelle [10] though our setup and
method of deriving the relevant estimates are different from his.

There is a rich literature on the use of global analysis methods to study elliptic varia-
tional problems. For instance, the problem of studying the structure of the space of com-
pact minimal surfaces where the ambient metric is allowed to vary has been considered by
White in [27] for closed surfaces and also by Maximo-Nunes-Smith [19] for free boundary
annuli. In addition, there are two papers where an integer degree theory is constructed
for non-compact minimal surfaces. Namely, [1] where such a theory is sketched for non-
compact surfaces in H3 which extend to surfaces with boundary on the ideal boundary
and [13] where the theory is used to study certain non-compact annuli in H2 × R.

We organize the paper as follows. In Section 2 we fix notation. In Section 3 we in-
troduce Ck,α∗ -asymptotic conical hypersurfaces/embeddings and the trace at infinity. In
Section 4 we derive the first and second variation formula for the functional E. Because
of the low regularity at infinity of Ck,α∗ -asymptotically conical self-expanders, inspired by
work of White [25], we associate a so-called v-Jacobi operator, Lv, which is a variant
of the usual Jacobi operator, to the second variation of E where v is a Ck,α vector field
transverse to the given self-expander. In Section 5 we prove that Lv is Fredholm of index
0 between appropriate function spaces. In Section 6 we adapt to our setting an asymptotic
expansion of almost eigenfunctions of certain drifted Laplacians obtained recently by the
first author [3]. This will be used to justify the legitimacy of integration by parts in sev-
eral places and also serves as a substitute for the Calderón unique continuation theorem
employed in the proof of [25, Theorem 3.2]. In Section 7 we prove a so-called smooth
dependence theorem, i.e., Theorem 7.1, of which Theorem 1.1 is an easy corollary. Theo-
rem 7.1 may be thought of as an analog of [25, Theorem 3.2] in the asymptotically conical
self-expander setting.

2. NOTATION

2.1. Basic notions. Denote a (open) ball in Rn of radius R and center x by BnR(x) and
the closed ball by B̄nR(x). We often omit the superscript n when its value is clear from
context. We also omit the center when it is the origin.
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For an open set U ⊂ Rn+1, a hypersurface in U , Σ, is a smooth, properly embedded,
codimension-one submanifold of U . We also consider hypersurfaces of lower regularity
and given an integer k ≥ 2 and α ∈ (0, 1) we define aCk,α-hypersurface inU to be a prop-
erly embedded, codimension-one Ck,α submanifold of U . When needed, we distinguish
between a point p ∈ Σ and its position vector x(p).

Consider the hypersurface Sn ⊂ Rn+1, the unit n-sphere in Rn+1. A hypersurface
in Sn, σ, is a closed, embedded, codimension-one smooth submanifold of Sn and Ck,α-
hypersurfaces in Sn are defined likewise. Observe that σ is a closed codimension-two
submanifold of Rn+1 and so we may associate to each point p ∈ σ its position vector
x(p). Clearly, |x(p)| = 1.

A cone is a set C ⊂ Rn+1 \ {0} that is dilation invariant around the origin. That is,
ρC = C for all ρ > 0. The link of the cone is the set L[C] = C ∩ Sn. The cone is regular if
its link is a smooth hypersurface in Sn and Ck,α-regular if its link is a Ck,α-hypersurface
in Sn. For any hypersurface σ ⊂ Sn the cone over σ, C[σ], is the cone defined by

C[σ] = {ρp : p ∈ σ, ρ > 0} ⊂ Rn+1 \ {0}.

Clearly, L[C[σ]] = σ.

2.2. Function spaces. Let Σ be a properly embedded, Ck,α submanifold of an open set
U ⊂ Rn+1. There is a natural Riemannian metric, gΣ, on Σ of class Ck−1,α induced
from the Euclidean one. As we always take k ≥ 2, the Christoffel symbols of this metric,
in appropriate coordinates, are well defined and of regularity Ck−2,α. Let ∇Σ be the
covariant derivative on Σ. Denote by dΣ the geodesic distance on Σ and by BΣ

R(p) the
(open) geodesic ball in Σ of radiusR and center p ∈ Σ. For R small enough so thatBΣ

R(p)
is strictly geodesically convex and q ∈ BΣ

R(p), denote by τΣ
p,q the parallel transport along

the unique minimizing geodesic in BΣ
R(p) from p to q.

For the rest of this section, let Ω be a domain in Σ, l an integer in [0, k], β ∈ (0, 1) and
d ∈ R. Suppose l + β ≤ k + α. We first consider the following norm for functions on Ω:

‖f‖l;Ω =
l∑
i=0

sup
Ω
|∇iΣf |.

We then let
Cl(Ω) =

{
f ∈ Clloc(Ω): ‖f‖l;Ω <∞

}
.

We next define the Hölder semi-norms for functions f and tensor fields T on Ω:

[f ]β;Ω = sup
p,q∈Ω

q∈BΣ
δ (p)\{p}

|f(p)− f(q)|
dΣ(p, q)β

and [T ]β;Ω = sup
p,q∈Ω

q∈BΣ
δ (p)\{p}

|T (p)− (τΣ
p,q)
∗T (q)|

dΣ(p, q)β
,

where δ = δ(Σ,Ω) > 0 so that for all p ∈ Ω, BΣ
δ (p) is strictly geodesically convex. We

further define the norm for functions on Ω:

‖f‖l,β;Ω = ‖f‖l;Ω + [∇lΣf ]β;Ω,

and let
Cl,β(Ω) =

{
f ∈ Cl,βloc(Ω): ‖f‖l,β;Ω <∞

}
.

We also define the following weighted norms for functions on Ω:

‖f‖(d)
l;Ω =

l∑
i=0

sup
p∈Ω

(|x(p)|+ 1)
−d+i |∇iΣf(p)|.
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We then let
Cld(Ω) =

{
f ∈ Clloc(Ω): ‖f‖(d)

l;Ω <∞
}
.

We further define the following weighted Hölder semi-norms for functions f and tensor
fields T on Ω:

[f ]
(d)
β;Ω = sup

p,q∈Ω

q∈BΣ
δp

(p)\{p}

(
(|x(p)|+ 1)−d+β + (|x(q)|+ 1)−d+β

) |f(p)− f(q)|
dΣ(p, q)β

, and,

[T ]
(d)
β;Ω = sup

p,q∈Ω

q∈BΣ
δp

(p)\{p}

(
(|x(p)|+ 1)−d+β + (|x(q)|+ 1)−d+β

) |T (p)− (τΣ
p,q)
∗T (q)|

dΣ(p, q)β
,

where η = η(Ω,Σ) ∈
(
0, 1

4

)
so that for any p ∈ Σ, letting δp = η(|x(p)| + 1), BΣ

δp
(p) is

strictly geodesically convex. Finally, we define the norm for functions on Ω:

‖f‖(d)
l,β;Ω = ‖f‖(d)

l;Ω + [∇lΣf ]
(d−l)
β;Ω ,

and we let
Cl,βd (Ω) =

{
f ∈ Cl,βloc(Ω): ‖f‖(d)

l,β;Ω <∞
}
.

The norms ‖ · ‖l,β;Ω and ‖ · ‖(d)
l,β;Ω are equivalent for different choices of δ and η. We

also often omit Ω when it is clear from context. It is a standard exercise to verify that all
the spaces defined above are Banach spaces. It is also straightforward to extend them to
RM -valued maps and to tensor fields.

Remark 2.1. The spaces Cl,βd (Ω) are the interpolation spaces (Cld(Ω), Cl+1
d (Ω))β,∞ –

compare [10, Remark 2.1]. When Ω is asymptotically conical, our weighted Hölder norms
can be related to appropriate unweighted ones on compact domains – see Item (1) of Propo-
sition 3.1 – so the verification of basic properties for weighted Hölder continuous functions
becomes standard.

Finally, we introduce the convention that Cl,0loc = Clloc, C
l,0 = Cl and Cl,0d = Cld and

that C0,β
loc = Cβloc, C

0,β = Cβ and C0,β
d = Cβd . The notation for the corresponding norms

is abbreviated in the same fashion.

2.3. Homogeneous functions and homogeneity at infinity. Fix a Ck,α-regular cone C
with its link L. By our definition C is a Ck,α-hypersurface in Rn+1 \ {0}. For R > 0 let
CR = C \ B̄R. There is an η = η(L, R) > 0 so that for any p ∈ CR, BCδp(p) is strictly
geodesically convex, where δp = η(|x(p)| + 1). We also fix an integer l ∈ [0, k] and
β ∈ [0, 1) with l + β ≤ k + α.

A map f ∈ Cl,βloc(C;RM ) is homogeneous of degree d if f(ρp) = ρdf(p) for all p ∈ C
and ρ > 0. Given a map ϕ ∈ Cl,β(L;RM ) the homogeneous extension of degree d of ϕ is
the map E H

d [ϕ] ∈ Cl,βloc(C;RM ) defined by

E H
d [ϕ](p) = |x(p)|dϕ(|x(p)|−1p).

Conversely, given a homogeneous RM -valued map of degree d, f ∈ Cl,βloc(C;RM ), let
ϕ = tr[f ] ∈ Cl,β(L;RM ), the trace of f , be the restriction of f to L. Clearly, f is the
homogeneous extension of degree d of ϕ.

A map g ∈ Cl,βloc(CR;RM ) is asymptotically homogeneous of degree d if

lim
ρ→0+

ρdg(ρ−1p) = f(p) in Cl,βloc(C;RM )
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for some f ∈ Cl,βloc(C;RM ) that is homogeneous of degree d. For such a g we define the
trace at infinity of g by trd∞[g] = tr[f ]. Observe that if g ∈ Cl,βloc(CR;RM ) is asymptoti-
cally homogeneous of degree d, then g ∈ Cl,βd (CR;RM ) but the reverse need not be true.
We define

Cl,βd,H(CR;RM ) =
{
g ∈ Cl,βd (CR;RM ) : g is asymptotically homogeneous of degree d

}
.

It is straightforward to verify that Cl,βd,H(CR;RM ) is a closed subspace of Cl,βd (CR;RM )
and that

trd∞ : Cl,βd,H(CR;RM )→ Cl,β(L;RM )

is a bounded linear map. Hence, Cl,βd,0(CR;RM ) = ker
(
trd∞

)
is a closed subspace of

Cl,βd,H(CR;RM ). Moreover, the construction of trd∞ and the Arzelà-Ascoli theorem ensure
that for l + β ≤ l′ + β′ ≤ k + α,

(2.1) g ∈ Cl,βd,H(CR;RM ) ∩ Cl
′,β′

d (CR;RM )⇒ trd∞[g] ∈ Cl
′,β′

d (CR;RM ).

Finally, observe that x|CR ∈ C
k,α
1,H(CR;Rn+1) and tr1

∞[x|CR ] = x|L.

2.4. Transverse sections. The unit normal vector field of a (two-sided)Ck,α-hypersurface
is, in general, of class Ck−1,α. In order to avoid difficulties introduced by this loss of de-
rivative, we adopt a different notion. Let Σ be a Ck,α-hypersurface in some open set of
Rn+1. We say a Ck,α vector field v : Σ→ Rn+1 along Σ, is a transverse section if

• |v| = 1;
• v(p) does not lie in TpΣ.

Given a transverse section, v, on Σ we define a Ck,α map γv : Σ× R→ Rn+1 by

(p, s) 7→ γv(p, s) = x(p) + sv(p).

An open neighborhood, U , of Σ is a v-regular neighborhood if there is an open neighbor-
hood W of Σ× {0} so that γv(W ) = U and γv restricts to a Ck,α diffeomorphism of W
onto U . If, in addition, W is of the form Σ × (−ε, ε), we denote U by Nε(Σ,v) and say
that Σ is ε-regular with respect to v. It is straightforward to check that Dγv at (p, 0) is
invertible. As a consequence, such v-regular neighborhoods exist. If Σ is compact, by the
inverse function theorem, it is ε-regular with respect to v for some ε = ε(Σ,v) > 0.

Fix a transverse section, v, on Σ. Given a function f ∈ Ck,αloc (Σ) let

Σf = {γv(p, f(p)) : p ∈ Σ} ,

and we call such a set a v-graph of function f . Clearly, if U is a v-regular neighborhood
of Σ and (p, f(p)) ∈ γ−1

v (U) for all p ∈ Σ, then Σf is a Ck,α-hypersurface in U .
Given a v-regular neighborhood, U , of Σ define a Ck,α projection map πv : U → Σ

given by πv = π1 ◦ γ−1
v , where π1 is the natural projection from Σ×R onto Σ defined by

π1(p, s) = p. In particular, πv ◦ γv = π1. Let l ≥ 0 be an integer and β ∈ [0, 1) so that
l+ β ≤ k + α. Given a map f ∈ Cl,βloc(Σ;RM ) we define the v-extension of f (to U ) to be
the map Ev[f ] ∈ Cl,βloc(U ;RM ) given by Ev[f ] = f ◦ πv.

2.5. Homogeneous extensions around cones. Fix a cone, C ⊂ Rn+1, of class Ck,α with
its link L. Let Ĉ be an open cone in Rn+1 containing C. Assume that l ∈ [0, k] is an integer
and β ∈ [0, 1) with l+ β ≤ k + α. We wish to define a natural extension of an element of
Cl,β(L;RM ) to a homogeneous element of Cl,βloc(Ĉ;RM ).
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To that end, let v be a homogeneous (of degree 0) transverse section on C. As L is com-
pact, we may suppose Ĉ is v-regular. Given a map ϕ ∈ Cl,β(L;RM ) the v-homogeneous
extension of degree d of ϕ (to Ĉ) is the map E H

v,d[ϕ] ∈ Cl,βloc(Ĉ;RM ) defined by

E H
v,d[ϕ] = Ev ◦ E H

d [ϕ].

Clearly, for all ρ > 0,
E H
v,d[ϕ](ρp) = ρdE H

v,d[ϕ](p),

and thus
∇xE H

v,d[ϕ] = dE H
v,d[ϕ]

where ∇ is the flat connection on Rn+1. In particular, if we denote by v̂ = Ev[v], equiva-
lently, v̂ = E H

v,0[v|L], one has∇xv̂ = 0. Moreover,∥∥E H
v,d[ϕ]

∥∥(d)

l,β;ĈR
≤ C‖ϕ‖l,β

where C depends only on Ĉ,v, l, β, d and R.

3. ASYMPTOTICALLY CONICAL HYPERSURFACES

A Ck,α-hypersurface, Σ ⊂ Rn+1, is Ck,α∗ -asymptotically conical if there is a Ck,α-
regular cone, C ⊂ Rn+1, and a homogeneous transverse section, v, on C such that Σ

outside some compact set is given by the v-graph of a function in Ck,α1 ∩ Ck1,0(CR) for
someR > 1. Observe that by the Arzelà-Ascoli theorem one has that, for every β ∈ [0, α),

lim
ρ→0+

ρΣ = C in Ck,βloc (Rn+1 \ {0}).

Clearly, the asymptotic cone, C, is uniquely determined by Σ and so we denote it by C(Σ).
Let L(Σ) denote the link of C(Σ) and, for R > 0, let CR(Σ) = C(Σ) \ B̄R. Denote the
space of Ck,α∗ -asymptotically conical Ck,α-hypersurfaces in Rn+1 by ACHk,αn .

We claim the above definition is independent of the choice of transverse sections. To
see this, let w be another homogeneous transverse section on C(Σ). Let K be a compact
set of Σ that may be enlarged if needed. Denote by Σ′ = Σ \ K. Since πv restricts to a
Ck,α diffeomorphism of Σ′ onto CR(Σ), we denote its inverse by θv;Σ′ . We then write

πw|Σ′ = (πw ◦ θv;Σ′) ◦ πv|Σ′ .
Notice that πw ◦ θv;Σ′ restricts to a Ck,α diffeomorphism of CR(Σ) onto the ends of C(Σ)
and that

x|C(Σ) ◦ πw ◦ θv;Σ′ ∈ Ck,α1 ∩ Ck1,H(CR(Σ);Rn+1).

Moreover,

(3.1) tr1
∞[x|C(Σ) ◦ πw ◦ θv;Σ′ ] = x|L(Σ).

Thus, πw restricts to a Ck,α diffeomorphism of Σ′ onto the ends of C(Σ),

x|Σ ◦ (πw|Σ′)−1 ∈ Ck,α1 ∩ Ck1,H(CR(Σ);Rn+1) and tr1
∞[x|Σ ◦ (πw|Σ′)−1] = x|L(Σ).

Hence Σ′ can be written as the w-graph of the function(
x|Σ ◦ (πw|Σ′)−1 − x|C(Σ)

)
·w ∈ Ck,α1 ∩ Ck1,0(CR(Σ)).

Let us now summarize some properties of weighted Hölder continuous functions on
asymptotically conical hypersurfaces.

Proposition 3.1. Fix Σ ∈ ACHk,αn and Γ ∈ ACHk,αm . Let l be an integer in [0, k],
β ∈ [0, 1) so that l + β ≤ k + α, and d, d′ ∈ R. The following statements hold:
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(1) For any R ≥ 1 and ρ2 > ρ1 > 0, the norm for functions in Cl,βd (Σ) defined by

‖f‖l,β;Σ∩B̄R + sup
ρ>R

ρ−d‖f ◦Dρ‖l,β;(ρ−1Σ)∩(B̄ρ2\Bρ1 )

is equivalent to the norm ‖ · ‖(d)
l,β . Here Dρ(x) = ρx for x ∈ Rn+1.

(2) If f ∈ Cl,βd (Σ) and infΣ(|x|+ 1)−d|f | = δ > 0, then 1
f ∈ C

l,β
−d(Σ) with its norm

bounded by a constant depending only on n, l, β, d, δ and ‖f‖(d)
l,β .

(3) If f ∈ Cl,βd (Σ) and g ∈ Cl,βd′ (Σ), then fg ∈ Cl,βd+d′(Σ) and

‖fg‖(d+d′)
l,β ≤ ν0‖f‖(d)

l,β‖g‖
(d′)
l,β ,

where ν0 depends only on n, l, β, d and d′.
(4) When l ≥ 1, if f ∈ Cl,β1 (Σ;Rm+1) satisfies f(Σ) ⊂ Γ and there is a δ ∈ (0, 1)

and R > 1 so that |f(p)| ≥ δ|x(p)| on Σ \ B̄R, then, for all g ∈ Cl,βd (Γ),

‖g ◦ f‖(d)
l,β ≤ ν1‖g‖(d)

l,β ,

where ν1 > 1 depends on m,n, l, β, d, δ, R and ‖f‖(1)
l,β .

(5) When l ≥ 1, if g ∈ Cl,β
′

d (Γ) for some β′ ∈ (β, 1) with l + β′ ≤ k + α, and if, for
i ∈ {1, 2}, fi ∈ Cl,β1 (Σ;Rm+1) satisfies fi(Σ) ⊂ Γ and that there is a δ ∈ (0, 1)
and R > 1 so that |fi(p)| ≥ δ|x(p)| on Σ \ B̄R, then

‖g ◦ f2 − g ◦ f1‖(d)
l,β ≤ ν2

(
‖f2 − f1‖(1)

l,β

)β′−β
,

where ν2 > 1 depends only on m,n, l, β, β′, d, δ, R, ‖f1‖(1)
l,β , ‖f2‖

(1)
l,β and ‖g‖(d)

l,β′ .

Remark 3.2. The above continues to hold for ΣR = Σ\B̄R where Σ is either a Ck,α-
regular cone or inACHk,αn . Where appropriate, the above also extend to RM -valued maps
and to sections of tensor bundles.

3.1. Traces at infinity. Fix an element Σ ∈ ACHk,αn . Let l be an integer in [0, k] and
β ∈ [0, 1) such that l+β < k+α. A map f ∈ Cl,βloc(Σ;RM ) is asymptotically homogeneous
of degree d if f ◦θv;Σ′ ∈ Cl,βd,H(CR(Σ);RM ) , where v,Σ′, θv;Σ′ are referred in the previous
discussions, and we define the trace at infinity of f to be

trd∞[f ] = trd∞[f ◦ θv;Σ′ ] ∈ Cl,β(L(Σ);RM ).

In view of Item (4) of Proposition 3.1 and (3.1), that whether f is asymptotically homoge-
neous of degree d and the definition of trd∞ are independent of the choice of homogeneous
transverse sections on C(Σ). Clearly, x|Σ is asymptotically homogeneous of degree 1 and
tr1
∞[x|Σ] = x|L(Σ).
We next define the space

Cl,βd,H(Σ;RM ) =
{
f ∈ Cl,βd (Σ;RM ) : f is asymptotically homogeneous of degree d

}
.

One can check that Cl,βd,H(Σ;RM ) is a closed subspace of Cl,βd (Σ;RM ), and the map

trd∞ : Cl,βd,H(Σ;RM )→ Cl,β(L(Σ);RM )

is a bounded linear map. We further define the set Cl,βd,0(Σ;RM ) ⊂ Cl,βd,H(Σ;RM ) to be the
kernel of trd∞. As before this is a closed subspace.
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3.2. Asymptotically conical embeddings. Fix an element Γ ∈ ACHk,αn . We define the
space of Ck,α∗ -asymptotically conical embeddings of Γ into Rn+1 to be

ACHk,αn (Γ) =
{
f ∈ Ck,α1 ∩ Ck1,H(Γ;Rn+1) : f and E H

1 ◦ tr1
∞[f ] are embeddings

}
.

Clearly, ACHk,αn (Γ) is an open set of the Banach space Ck,α1 ∩ Ck1,H(Γ;Rn+1) with the

‖ · ‖(1)
k,α norm. By (2.1) and the hypotheses on f , tr1

∞[f ] ∈ Ck,α(L(Γ);Rn+1) and so

C[f ] = E H
1 ◦ tr1

∞[f ] : C(Γ)→ Rn+1 \ {0}
is a Ck,α embedding. As this map is homogeneous of degree 1, it parameterizes a Ck,α-
regular cone.

Proposition 3.3. Given Γ ∈ ACHk,αn and f ∈ ACHk,αn (Γ), let Σ = f(Γ). The following
statements hold:

(1) Σ ∈ ACHk,αn and C(Σ) = C[f ](C(Γ)).
(2) The inverse, denoted by f−1, of f restricted the range to its image is an element of
ACHk,αn (Σ) and C[f−1] = C[f ]−1.

(3) For g ∈ ACHk,αn (Σ), g ◦ f ∈ ACHk,αn (Γ) and C[g ◦ f ] = C[g] ◦ C[f ].

Proof. As Γ ∈ ACHk,αn , there is a compact setK ⊂ Γ so that Γ′ = Γ\K is the v-graph of
a function in Ck,α1 ∩ Ck1,0(CR(Γ)) for some R > 1, where v is a homogeneous transverse
section on C(Γ). Thus, πv restricts to a Ck,α diffeomorphism of Γ′ onto CR(Γ), and we
denote its inverse by θv;Γ′ .

As f ∈ ACHk,αn (Γ), it follows that

f ◦ θv;Γ′ ∈ Ck,α1 ∩ Ck1,H(CR(Γ);Rn+1),

and so, as noted above, tr1
∞[f ] ∈ Ck,α(L(Γ);Rn+1) and C[f ] parametrizes a Ck,α-regular

cone, denoted by C. Observe that

lim
ρ→0+

ρf ◦ θv;Γ′(ρ
−1·) = C[f ] in Ckloc(C(Γ);Rn+1).

Let L be the link of C and w a homogeneous transverse section on C. Thus, πw restricts
to a Ck,α diffeomorphism of Σ′ = Σ \ K ′ onto CR′ for some compact set K ′ ⊂ Σ and
R′ > 1. Let us denote its inverse by θw;Σ′ . Moreover,

x|Σ ◦ θw;Σ′ ∈ Ck,α1 ∩ Ck1,H(CR′ ;Rn+1),

and its trace at infinity is x|L. Hence, it follows that Σ ∈ ACHk,αn and our construction
ensures C(Σ) = C[f ](C(Γ)), proving Item (1).

By our hypotheses on Γ and f , both f and its differential at any point of Γ are injective,
and, for some δ > 0, |f(p)| > δ|x(p)| whenever |x(p)| is sufficiently large. Thus, by the
inverse function theorem, f restricted the range to its image is invertible and its inverse
f−1 ∈ Ck,α1 (Σ;Rn+1). Moreover,

C[f−1] = lim
ρ→0+

ρf−1 ◦ θw;Σ′(ρ
−1·) = lim

ρ→0+
ρf−1 ◦ θw;Σ′(ρ

−1·) ◦ C[f ] ◦ C[f ]−1

= lim
ρ→0+

ρf−1 ◦ θw;Σ′(ρ
−1πw(ρf ◦ θv;Γ′(ρ

−1·))) ◦ C[f ]−1

= lim
ρ→0+

ρθv;Γ′(ρ
−1·) ◦ C[f ]−1 = C[f ]−1.

Here the convergence is in Ckloc(C(Σ);Rn+1). Thus we have shown f−1 ∈ ACHk,αn (Σ),
proving Item (2).



10 JACOB BERNSTEIN AND LU WANG

As k ≥ 1, it follows from Item (4) of Proposition 3.1 that g ◦ f ∈ Ck,α1 (Γ). The
hypothesis that each f and g is an embedding implies that g◦f is an embedding. Moreover,

C[g ◦ f ] = lim
ρ→0+

ρ(g ◦ f) ◦ θv;Γ′(ρ
−1·) = lim

ρ→0+
ρg ◦ θw;Σ′(ρ

−1πw(ρf ◦ θv;Γ′(ρ
−1·)))

=

(
lim
ρ→0+

ρg(θw;Σ′(ρ
−1·))

)
◦ πw ◦

(
lim
ρ→0+

ρf(θv;Γ′(ρ
−1·))

)
= C[g] ◦ πw ◦ C[f ] = C[g] ◦ C[f ].

Here the convergence is in Ckloc(C(Γ);Rn+1). Hence, C[g ◦ f ] is the composition of em-
beddings and so is also an embedding. That is, g ◦ f ∈ ACHk,αn (Γ) and we have proved
Item (3). �

Finally, we introduce a natural equivalence relation on ACHk,αn (Γ). First, say a Ck,α

diffeomorphism φ : Γ→ Γ fixes infinity if x|Γ ◦ φ ∈ ACHk,αn (Γ) and

tr1
∞[x|Γ ◦ φ] = x|L(Γ).

Two elements f ,g ∈ ACHk,αn (Γ) are equivalent, written f ∼ g, provided there is a Ck,α

diffeomorphism φ : Γ→ Γ that fixes infinity so that f ◦ φ = g. We observe that, by Items
(2) and (3) of Proposition 3.3, f ∼ g if and only if

f(Γ) = g(Γ) and C[f ] = C[g].

4. FIRST AND SECOND VARIATIONS OF THE E-FUNCTIONAL

Given a C2-hypersurface Σ ⊂ Rn+1 an M -parameter differentiable family of C2 em-
beddings, Ψs : Σ→ Rn+1 for s ∈ (−1, 1)M , is a compactly supported variation of x|Σ if
Ψ0 = x|Σ and for some compact set K ⊂ Σ each Ψs|Σ\K = x|Σ\K .

By a direct computation (see, for instance, [22, Section 9]) and integration by parts, we
obtain the first variation formula of E.

Proposition 4.1. Let Σ be a C2-hypersurface in Rn+1, and let {Ψs}s∈(−1,1) be a com-
pactly supported variation of x|Σ. If ∂Ψs

∂s s=0
= V, then

(4.1)
d

ds s=0
E[Ψs(Σ)] = −

∫
Σ

V ·
(
HΣ −

x⊥

2

)
e
|x|2

4 dHn.

Next we compute the second variation of E at its critical points, i.e., self-expanders.

Proposition 4.2. Let Σ be a self-expander in Rn+1, and let {Ψs,t}−1<s,t<1 be a compactly
supported variation of x|Σ. If ∂Ψs,0

∂s s=0
= V and ∂Ψ0,t

∂t t=0
= W, then

(4.2)
∂2

∂t∂s s=t=0
E[Ψs,t(Σ)] = −

∫
Σ

(V · nΣ)LΣ (W · nΣ) e
|x|2

4 dHn,

where
LΣ = ∆Σ +

1

2
x · ∇Σ + |AΣ|2 −

1

2
is the Jacobi operator.

Remark 4.3. If V = fv and W = gv, where v is a transverse section on Σ, then

∂2

∂t∂s s=t=0
E[Ψs,t(Σ)] = −

∫
Σ

f(Lvg)e
|x|2

4 dHn,

where Lvg = (v ·nΣ)LΣ((v ·nΣ)g) and Lv is called the v-Jacobi operator. Observe that
given a self-expander Σ ∈ ACHk,αn , in general nΣ is merely in Ck−1,α

0 ∩Ck−1
0,H (Σ;Rn+1)



ASYMPTOTICALLY CONICAL SELF-EXPANDERS OF MEAN CURVATURE FLOW 11

and so normal variations of x|Σ may not be in ACHk,αn . To overcome this regularity
issue, we will choose a transverse section, v ∈ Ck,α0 ∩Ck0,H(Σ;Rn+1), on Σ and consider
variations of x|Σ in the v direction for which Lv is the associated linearized operator.

Proof. Denote by Σs,t = Ψs,t(Σ). A straightforward computation similar to [22, Section
9] gives that

∂2

∂t∂s s=t=0
E[Σs,t] =

∂

∂t t=0

∫
Σ0,t

−
(
∂Ψs,t

∂s s=0

)
·
(
HΣ0,t

− x⊥

2

)
e
|x|2

4 dHn

=

∫
Σ

divΣV · divΣW +
n∑
i=1

(∇τiV)⊥ · (∇τiW)⊥ −
n∑

i,j=1

(τi · ∇τjV)(τj · ∇τiW)

+
1

2
(x ·V) divΣW +

1

2
(x ·W) divΣV +

1

4
(x ·V) (x ·W) +

1

2
V ·W

)
e
|x|2

4 dHn,

where {τ1, . . . , τn} is an orthonormal frame on Σ and ∇ is the flat connection on Rn+1.
Thus, ∂2

∂s∂t s=t=0
E[Σs,t] is a symmetric bilinear form, denoted by QΣ(V,W). We write

QΣ (V,W) = QΣ

(
V⊥,W⊥)+QΣ

(
V>,W⊥)+QΣ

(
V⊥,W>)+QΣ

(
V>,W>) .

We claim that the last three terms on the right hand side are equal to 0. Therefore, (4.2)
follows easily from integration by parts.

To prove the claim, let {φt}t∈R be the one-parameter group of diffeomorphisms of Σ
generated by V>. Given |s| small and t ∈ R we define: for p ∈ Σ,

Ψ̃s,t(p) = γW⊥(φt(p), s) = x(φt(p)) + sW⊥(φt(p)).

Clearly, {Ψ̃s,t} is a compactly supported variation of x|Σ with ∂Ψ̃s,0
∂s s=0

= W⊥ and
∂Ψ̃0,t

∂t t=0
= V>. Thus, Ψ̃0,t(Σ) = x|Σ ◦ φt(Σ) = Σ. By the computations in the

preceding paragraph,

QΣ

(
V>,W⊥) =

∂2

∂t∂s s=t=0
E[Ψ̃s,t(Σ)] = 0.

By symmetries, QΣ(V⊥,W>) = 0. Finally, let {ψs}s∈R be the one-parameter group of
diffeomorphisms of Σ generated by W>. Given s, t ∈ R define Ψ̂s,t = x|Σ◦ψs◦φt. Then

{Ψ̂s,t} is a compactly supported variation of x|Σ with ∂Ψ̂0,t

∂t t=0
= V> and ∂Ψ̂s,0

∂s s=0
=

W>. As E[Ψ̂s,t(Σ)]− E[Σ] = 0, QΣ(V>,W>) = 0, proving the claim. �

5. FREDHOLM PROPERTY OF v-JACOBI OPERATOR

Throughout this section we fix a self-expander Σ ∈ ACHk,αn and a transverse section
on Σ, v ∈ Ck,α0 ∩ Ck0,H(Σ;Rn+1). In addition, we assume that C[v] = E H

0 ◦ tr0
∞[v] is a

transverse section on C(Σ) and

(5.1)
(

LΣ +
1

2

)
v = ∆Σv +

1

2
x · ∇Σv ∈ Ck−2,α

−2 (Σ;Rn+1).

Observe that such v always exists: for instance, one may take v to be a transverse section
on Σ that, outside a compact set, equals Ew[w] ◦ x|Σ for w a homogeneous transverse
section on C(Σ), as one computes that, outside this compact set,

x · ∇Σv = ∇xEw[w] ◦ x|Σ −∇x⊥Ew[w] ◦ x|Σ = −2∇HΣ
Ew[w] ◦ x|Σ,
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where ∇ is the flat connection on Rn+1 and the second equality uses the homogeneity of
Ew[w] and the self-expander equation.

For an integer l ≥ 2 and β ∈ [0, 1) with l + β ≤ k + α we define the Banach space

Dl,β(Σ) =
{
f ∈ Cl,β1 ∩ Cl−1,β

0 ∩ Cl−2,β
−1 (Σ): x · ∇Σf ∈ Cl−2,β

−1 (Σ)
}

equipped with the norm

‖f‖∗l,β = ‖f‖(−1)
l−2,β +

l∑
i=l−1

‖∇iΣf‖
(1−l)
β + ‖x · ∇Σf‖(−1)

l−2,β .

The goal of this section is to prove the Fredholm property ofLv. First, we show the exis-
tence and uniqueness of solutions in Dk,α(Σ) of LΣu = f for any given f ∈ Ck−2,α

−1 (Σ).
A similar problem has also been investigated by Deruelle [10] in the study of asymptot-
ically conical expanding Ricci solitons. However, the method we employ here is inde-
pendent of [10] (as well as [18]) in part because the weighted function spaces considered
in [10, Section 2] are different from ours and so the arguments there do not apply to our
setting. Next we show that Lv − (v · nΣ)2LΣ is a compact operator from Dk,α(Σ) to
Ck−2,α
−1 (Σ). Thus it follows that Lv is Fredholm and of index 0.

5.1. Dk,α-solutions to LΣu = f .

Lemma 5.1. Let Ω be a bounded domain in Σ with smooth boundary. Given f ∈ C0(Ω),
if u ∈ C0(Ω̄) ∩ C2(Ω) satisfies LΣu = f , then

max
p∈Ω̄
|u(p)| ≤ 2 sup

p∈Ω
|f(p)|+ max

p∈∂Ω
|u(p)|.

Proof. Suppose that u attains its maximum at an interior point p0 ∈ Ω. Then∇Σu(p0) = 0
and ∆Σu(p0) ≤ 0. Thus,

f(p0) = LΣu(p0) ≤ −1

2
u(p0),

implying u(p0) ≤ −2f(p0). Hence we have

max
p∈Ω̄

u(p) ≤ 2 sup
p∈Ω
−f(p) + max

p∈∂Ω
u(p).

A similar argument gives

max
p∈Ω̄
−u(p) ≤ 2 sup

p∈Ω
f(p) + max

p∈∂Ω
−u(p).

The lemma follows from combining these two estimates. �

Lemma 5.2. Given d ∈ R there is an R0 = R0(Σ, n, d) > 1 so that on Σ \ B̄R0
,

LΣr
d <

d

2
rd

where r(p) = |x(p)| for p ∈ Σ.

Proof. On Σ \B1 we compute

∆Σr
d = ∆rd −∇2rd(nΣ,nΣ) + HΣ · ∇rd = O(rd−2),

where we used the hypothesis that Σ ∈ ACHk,αn in the last equality. Similarly,

x · ∇Σr
d = d

(
1− |x⊥|2r−2

)
rd = (d+ o(1)) rd.
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It follows from these two identities that

LΣr
d =

1

2
(d− 1 + o(1)) rd,

proving the claim. �

Proposition 5.3. Given f ∈ Ck−2,α
loc ∩C0

−1(Σ) there is a unique solution inCk,αloc ∩C0
−1(Σ)

of LΣu = f . Moreover, there is a constant C0 = C0(Σ, n) so that

‖u‖(−1)
0 ≤ C0‖f‖(−1)

0 .

Proof. By [14, Theorem 6.14] the Dirichlet problem{
LΣuR = f in Σ ∩BR
uR = 0 on Σ ∩ ∂BR

has a unique solution in Ck,α(Σ ∩ B̄R). Moreover, by Lemma 5.1,

(5.2) ‖uR‖0 ≤ 2‖f‖0 ≤ 2‖f‖(−1)
0 .

Thus, setting c = 4R0‖f‖(−1)
0 , for all R > R0(Σ, n,−1),

2|f | < cr−1 in Σ ∩ (BR \ B̄R0
) and |uR| < cr−1 on Σ ∩ ∂BR0

.

Thus, by Lemma 5.2 and the elliptic maximum principle,

(5.3) |uR| < cr−1 in Σ ∩ (B̄R \BR0
).

Hence, combining (5.2) and (5.3) gives

(5.4) sup
Σ∩B̄R

(1 + r) |uR| ≤ C(R0)‖f‖(−1)
0 .

Therefore, invoking (5.4) and the elliptic Schauder estimates [14, Theorem 6.2], passing
R→∞, it follows from the Arzelà-Ascoli theorem that there is a solution to LΣu = f in
Ck,αloc (Σ) that satisfies

‖u‖(−1)
0 ≤ C‖f‖(−1)

0 .

The uniqueness of such solutions is implied by the elliptic maximum principle. �

Lemma 5.4. Given f ∈ Ck,αloc ∩ Cα−1(Σ) let u be the solution given in Proposition 5.3.
There exist constants Ci, i = 1, 2, depending only on Σ, n, and α, so that

‖∇iΣu‖
(−1)
0 ≤ Ci‖f‖(−1)

α .

Proof. Let Σt =
√
tΣ for t > 0. As Σ is a self-expander, {Σt}t>0 is a MCF. As Σ ∈

ACHk,αn , it follows from the interior estimates for graphical MCF (cf. [12, Theorem 3.4])
that there is anR = R(Σ) sufficiently large so that for any p ∈ Σ\BR and t ∈

[
1
2 , 1
]
, each

Σt ∩Bn+1
2 (p) can be parametrized by the map Ψp(·, t) : Ωp(t) ⊂ TpΣ→ Rn+1 given by

Ψp(x, t) = x(p) + x(x) + ψp(x, t)nΣ(p),

satisfying that ψp(0, 1) = 0 and

(5.5)
3∑
i=0

|∇iψp|+
2∑
i=0

|∂t∇iψp| ≤ 10−1,

where ∇ is the flat connection on TpΣ. Clearly, Bn1 ⊂ Ωp(t).
Fix any p ∈ Σ \BR. We next define a function vp on Q = Bn1 ×

[
1
2 , 1
]

by

vp(x, t) = t
1
2u(t−

1
2 Ψp(x, t)).
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As LΣu = f , it follows from the chain rule that

∂tvp −∆tvp − ∂tψpn>Σ(p) · ∇tvp = gp

where∇t and ∆t are the gradient and Laplacian, respectively, for the pull-back metric via
Ψp(·, t), n>Σ(p) is the pull-back of the projection of nΣ(p) to the appropriate tangent space
of
√
tΣ and

gp(x, t) = −t− 1
2 f(t−

1
2 Ψp(x, t)).

Next we will show that gp is Hölder continuous in space-time. More precisely,

‖gp‖0;Q + sup
(x,t),(y,s)∈Q

|gp(x, t)− gp(y, s)|
|x− y|α + |t− s|α2

≤ C‖f‖(−1)
α |x(p)|−1

for some C = C(α). First, by (5.5),

1

2
|x(p)| < |Ψp(x, t)| < 2|x(p)|,

and thus
‖gp‖0;Q ≤ 2‖f‖(−1)

0 |x(p)|−1.

Next, for (x, t), (y, s) ∈ Q,

|t− 1
2 Ψp(x, t)− s−

1
2 Ψp(y, s)| ≤ |t−

1
2 − s− 1

2 ||Ψp(x, t)|+ s−
1
2 |Ψp(x, t)−Ψp(y, s)|

≤ (4|x(p)|+ 1) |s− t|+ |x− y|,

where we used (5.5) in the last inequality. It follows that

|gp(x, t)− gp(y, s)| ≤ s−
1
2 |f(t−

1
2 Ψp(x, t))− f(s−

1
2 Ψp(y, s))|

+ |t− 1
2 − s− 1

2 ||f(t−
1
2 Ψp(x, t))|

≤ C‖f‖(−1)
α |x(p)|−1

(
|x− y|α + |s− t|α2

)
,

proving the claim.
Finally, combining the hypothesis on u and the preceding discussions, it follows from

the parabolic Schauder estimates (cf. [17, Chapter 4, Theorem 10.1]) that

2∑
i=1

|∇ivp(0, 1)| ≤ C ′(n, α)‖f‖(−1)
α |x(p)|−1.

This together with (5.5) implies

2∑
i=1

|∇iΣu(p)| ≤ C ′‖f‖(−1)
α |x(p)|−1.

As p ∈ Σ \BR was arbitrary, it remains only to obtain the appropriate bounds in B̄R ∩Σ.
Here one appeals to standard elliptic Schauder estimates for compact domains. �

Lemma 5.5. Given β ∈ (0, 1) there is an ε0 = ε0(n, β) sufficiently small so that if aij ∈
C0((0, 1);Cβ(Rn)) for 1 ≤ i, j ≤ n satisfy

sup
0<t<1

n∑
i,j=1

‖aij(·, t)− δij‖β ≤ ε0,
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then given h ∈ C0((0, 1);Cβ(Rn)) the Cauchy problem

(5.6)


∂tw −

n∑
i,j=1

aij∂2
xixjw = h in Rn × (0, 1)

lim
(x′,t)→(x,0)

w(x′, t) = 0 for x ∈ Rn

has a unique solution w ∈ C0((0, 1);C2,β(Rn)). Moreover, for some C3 = C3(n, β),

(5.7) sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iw(·, t)‖β ≤ C3 sup
0<t<1

‖h(·, t)‖β .

Remark 5.6. By a change of variables, it is easy to see that Lemma 5.5 still holds true if
we replace the identity matrix (δij) by any positive definite constant matrix.

Proof. When aij = δij , the lemma was known as a classical result for the heat equation on
Rn. For reader’s convenience, we include a proof of that in Appendix A. For general (aij)
that are small perturbations of the identity matrix, we appeal to the method of continuity to
establish the existence of solutions; see, for instance, [14, Theorem 5.2]. The uniqueness
follows from a parabolic maximum principle, Proposition A.1. Thus, it remains to prove
the a priori estimate (5.7) for solutions w ∈ C0((0, 1);C2,β(Rn)).

The problem (5.6) can be rewritten as follows:{
∂tw −∆w = h̃ in Rn × (0, 1)
lim

(x′,t)→(x,0)
w(x′, t) = 0 for x ∈ Rn

where

h̃ =
n∑

i,j=1

(aij − δij)∂2
xixjw + h.

Using the estimate ||fg||β ≤ 2||f ||β ||g||β we obtain

‖h̃(·, t)‖β ≤ 2

n∑
i,j=1

‖aij(·, t)− δij‖β‖∂2
xixjw(·, t)‖β + ‖h(·, t)‖β .

Thus, it follows from Proposition A.2 that

sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iw(·, t)‖β ≤ Cε0 sup
0<t<1

‖∇2w(·, t)‖β + C sup
0<t<1

‖h(·, t)‖β

for some C = C(n, β). Now, choosing ε0 = 1/(2C), the first term on the right hand side
can be absorbed into the left, so

sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iw(·, t)‖β ≤ 2C sup
0<t<1

‖h(·, t)‖β ,

completing the proof. �

Theorem 5.7. Given f ∈ Ck−2,α
−1 (Σ) there is a unique solution in Dk,α(Σ) of LΣu = f

satisfying

‖u‖∗k,α ≤ C4‖f‖(−1)
k−2,α

for some C4 = C4(Σ, n, k, α).
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Proof. By Proposition 5.3 and Lemma 5.4, and the fact that f ∈ C0
−1(Σ), there is a unique

solution, u, in Ck,αloc ∩ D2,0(Σ) of LΣu = f . Moreover, for i = 0, 1, 2, this u satisfies

(5.8) ‖∇iΣu‖
(−1)
0 ≤ Ci‖f‖(−1)

α .

Letting Σt =
√
tΣ, we define a function v(p, t) = t

1
2u(t−

1
2 p) for p ∈ Σt and t > 0. In

order to show the solution u ∈ Dk,α(Σ), it suffices to establish that for each 0 ≤ l ≤ k−2,
there is cl = cl(Σ, n, k, α) so that

(5.9) sup
0<t<1

2∑
j=0

t
j−2

2 ‖∇l+jΣt
v(·, t)‖α;Σt∩(B2\B̄1) ≤ cl‖f‖

(−1)
k−2,α.

In what follows we will prove (5.9) by induction on l.
Denote by C the asymptotic cone of Σ. For Σ ∈ ACHk,αn , there exists δ > 0 sufficiently

small so that for any q ∈ C ∩ (B2 \ B̄1) and t ∈ (0, δ2), Σt∩Bn+1
2δ (q) can be parametrized

by the map Ψq(·, t) : Ωq(t) ⊂ TqC → Rn+1 defined by

Ψq(x, t) = x(q) + x(x) + ψq(x, t)nC(q),

where Bnδ ⊂ Ωq(t) and for some µ = µ(C, δ),

(5.10) sup
0<t<δ2

‖ψq(·, t)‖k,α;Bnδ
≤ µ.

As limt→0+ Σt = C in Ckloc(Rn+1 \ {0}), there is an element ψCq ∈ Ck,α(B̄nδ ) so that

lim
t→0+

ψq(·, t) = ψCq in Ck(B̄nδ ).

Fix any q ∈ C ∩ (B2 \ B̄1). We define a function vq on Bnδ × (0, δ2) by

vq(x, t) = v(Ψq(x, t), t).

Thus, (5.8) and (5.10) imply that

(5.11) sup
0<t<δ2

1∑
i=0

t
i−1

2 ‖∇ivq(·, t)‖α;Bnδ
≤ C‖f‖(−1)

α

for some C = C(µ,C0, C1, C2). As LΣu = f and Σ is a self-expander, the chain rule
together with (5.11) gives that

(5.12)


∂tvq −

n∑
i,j=1

aijq ∂
2
xixjvq −

n∑
i=1

biq∂xivq = gq in Bnδ × (0, δ2)

lim
(x′,t)→(x,0)

vq(x
′, t) = 0 for x ∈ Bnδ ,

where aijq ∈ C0((0, δ2);Ck−1,α(Bnδ )) are given by rational functions of ∇ψq , biq ∈
C0((0, δ2);Ck−2,α(Bnδ )) are given by smooth functions of∇ψq and∇2ψq , and

gq(x, t) = −t− 1
2 f(t−

1
2 Ψq(x, t)).

By taking δ small, the matrix (aijq ) is a small C0 perturbation of the identity matrix. More-
over, as f ∈ Ck−2,α

−1 (Σ), (5.10) ensures that gq ∈ C0((0, δ2);Ck−2,α(Bnδ )) with

(5.13) sup
0<t<δ2

‖gq(·, t)‖k−2,α;Bnδ
≤ C ′‖f‖(−1)

k−2,α

for some C ′ = C ′(n, k, α, µ).
Let χ : Rn → [0, 1] be a smooth function so that χ ≡ 1 in Bn1 and χ ≡ 0 outside Bn2 .

And let Dρ(x, t) = (ρx, ρ2t) for (x, t) ∈ Rn × R. For ρ < 1
8δ, let wq,ρ = χ(vq ◦ Dρ)
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which we take to be defined on Rn× (0, 1). Thus, wq,ρ is supported in Bn2 × [0, 1] and, by
(5.12), satisfies

∂twq,ρ −
n∑

i,j=1

aijq,ρ∂
2
xixjwq,ρ = hq,ρ in Rn × (0, 1)

lim
(x′,t)→(x,0)

wq,ρ(x
′, t) = 0 for x ∈ Rn

where

aijq,ρ = χ ◦D1/2(aijq ◦Dρ) + (1− χ ◦D1/2)δij , and,

hq,ρ = ρχ
n∑
i=1

(biq ◦Dρ)∂xi(vq ◦Dρ)− 2
n∑

i,j=1

(aijq ◦Dρ)∂xiχ∂xj (vq ◦Dρ)

+ ρ2χ(gq ◦Dρ)− (vq ◦Dρ)
n∑

i,j=1

(aijq ◦Dρ)∂
2
xixjχ.

Here we used that wq,p = 0 outside Bn2 while (1− χ ◦D1/2) = 0 in Bn2 .
By (5.10), we may choose ρ = ρ(Σ, n, α, µ) sufficiently small so that

sup
0<t<1

n∑
i,j=1

‖aijq,ρ(·, t)− δij‖α ≤ ε0(n, α).

Furthermore, by (5.11), (5.10) and (5.13),

sup
0<t<1

‖hq,ρ(·, t)‖α ≤ C ′′ sup
0<t<δ2

‖gq(·, t)‖α;Bnδ
+

1∑
i=0

‖∇ivq(·, t)‖α;Bnδ
≤ C ′′‖f‖(−1)

k−2,α

for some C ′′ depending only on n, α, µ, C,C ′. This together with Lemma 5.5 and the
parabolic maximum principle (i.e., Proposition A.1) implies

sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iwq,ρ(·, t)‖α ≤ C3C
′′‖f‖(−1)

k−2,α.

Hence, (5.9) for l = 0 follows from transforming the above estimate to that for vq by the
chain rule and invoking (5.10) and the arbitrariness of q ∈ C ∩ (B2 \ B̄1).

Suppose (5.9) holds for l = 0, . . . ,m and m < k − 2. Let I = (i1, . . . , in) be a multi-
index of elements of {1, . . . , n} with |I| = m+ 1, and let xI = xi11 · · ·xinn . As before, fix
any q ∈ C ∩ (B2 \ B̄1). And we follow the previous notation. By the inductive hypothesis
and (5.10),

sup
0<t<δ2

1∑
i=0

t
i−1

2 ‖∇i∂m+1
xI

vq(·, t)‖α;Bnδ
≤ C̃‖f‖(−1)

k−2,α,

where C̃ depends only on n,m, α, µ, c0, . . . , cm. This together with (5.12) further gives
(
∂t −

n∑
i,j=1

aijq ∂
2
xixj

)
∂m+1
xI

vq = gq,I in Bnδ × (0, δ2)

lim
(x′,t)→(x,0)

∂m+1
xI

vq(x
′, t) = 0 for x ∈ Bnδ

where
gq,I = ∂m+1

xI
gq + Pq,I(∇vq, . . . ,∇m+2vq)
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and Pq,I is a multi-linear function with coefficients given by smooth functions of aijq and biq
and their spatial derivatives up to the m-th order. It follows from our inductive hypothesis,
(5.10) and (5.13) that

sup
0<t<δ2

‖gq,I(·, t)‖α;Bnδ
≤ C̃ ′‖f‖(−1)

k−2,α,

where C̃ ′ depends only on n,m, α, µ,C ′, c0, . . . , cm. Now we may apply the same rea-
soning to ∂m+1

xI
vq as in the preceding two paragraphs to establish (5.9) for l = m + 1,

completing the induction procedure. �

Corollary 5.8. Given ϕ ∈ Ck,α(L(Σ)) the asymptotic Dirichlet problem

(5.14)
{

LΣu = 0 in Σ
tr1
∞[u] = ϕ in L(Σ)

has a unique solution in Ck,α1 ∩Ck1,H(Σ). Moreover, there is a C5 = C5(Σ, n, k, α) so that

‖u‖(1)
k,α ≤ C5‖ϕ‖k,α.

Proof. Let w be a homogeneous transverse section on C(Σ) and Ĉ a w-regular open cone
in Rn+1 containing C(Σ). Pick an R > 0 sufficiently large, so that Σ \ BR ⊂ Ĉ. Let
χ : Rn+1 → [0, 1] satisfy χ ≡ 1 in Rn+1 \ B2R and χ ≡ 0 in BR. Then we define a
function g on Σ to be

g =
(
χE H

w,1[ϕ]
)
◦ x|Σ.

As Σ ∈ ACHk,αn , it follows that g ∈ Ck,α1 ∩ Ck1,H(Σ) with the properties that

(5.15) ‖g‖(1)
k,α ≤ C‖ϕ‖k,α and tr1

∞[g] = ϕ

where C = C(Σ, n, k, α) > 0.
Observe, that on Σ \B2R, g = E H

w,1[ϕ] ◦ x|Σ, and so

x · ∇Σg − g = −∇x⊥E H
w,1[ϕ] ◦ x|Σ = −2∇HΣ

E H
w,1[ϕ] ◦ x|Σ

where we used that E H
w,1[ϕ] is homogeneous of degree 1 in the first equality and that

2HΣ = x⊥ in the last equality. This identity together with HΣ ∈ Ck−2,α
−1 (Σ;Rn+1)

implies that for some C ′ = C ′(Σ, n, k, α),

(5.16) ‖x · ∇Σg − g‖(−1)
k−2,α ≤ C

′‖ϕ‖k−1,α.

Thus, it follows from (5.15) and (5.16) that LΣg ∈ Ck−2,α
−1 (Σ) with

(5.17) ‖LΣg‖(−1)
k−2,α ≤ C

′′‖ϕ‖k,α
where C ′′ depends only on Σ, n, k, α, C,C ′. Hence, by Theorem 5.7 and (5.17), there is a
unique solution, v, in Dk,α(Σ) of LΣv = −LΣg with

(5.18) ‖v‖∗k,α ≤ C4C
′′‖ϕ‖k,α.

Observe that the inclusion Dk,α(Σ) ⊂ Ck,α1 ∩ Ck1,0(Σ) is continuous. Therefore, com-
bining (5.15) and (5.18), we conclude that v + g ∈ Ck,α1 ∩ Ck1,H(Σ) is a solution to the
problem (5.14) with the claimed estimate.

Finally, we show the uniqueness of the solutions u ∈ Ck,α1 ∩ Ck1,H(Σ) of the problem
(5.14). It suffices to prove that ϕ = 0 implies u = 0. For Σ ∈ ACHk,αn , the vector field

V =
|x|
|x>|2

x>
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is well defined on Σ \ BR′ for some sufficiently large R′. We extend V to a Ck−1,α

vector field Ṽ on Σ. Observe, that Ṽ is complete as Σ is asymptotically conical. Then
Ṽ generates a one-parameter group, {φ(·, s)}s∈R, of diffeomorphisms of Σ. Observe, that
|x(φ(p, s))| = s + R′ for p ∈ Σ ∩ ∂BR′ and s ≥ 0. Thus, we obtain a diffeomorphism
φ : (Σ ∩ ∂BR′)× [0,∞)→ Σ \BR′ . As

(x · ∇Σu− u) ◦ φ = (s+R′)∂s(u ◦ φ)− u ◦ φ− |x
⊥ ◦ φ|2

s+R′
∂s(u ◦ φ),

it follows from 2HΣ = x⊥, u ∈ Ck,α1 ∩ Ck1,0(Σ) and LΣu = 0 that

(R′ + s)∂s(u ◦ φ)− u ◦ φ = (R′ + s)2∂s((R
′ + s)−1u ◦ φ) = O(s−1).

Integrating this gives u ◦ φ = O(s−1), that is, u ∈ C0
−1(Σ). Therefore, the claim follows

from the elliptic maximum principle. �

5.2. Fredholm property of Lv. Recall, that

LΣ = ∆Σ +
1

2
x · ∇Σ + |AΣ|2 −

1

2
and Lv = (v · nΣ)LΣ((v · nΣ)×).

Let
Kv = Lv − (v · nΣ)2LΣ.

Lemma 5.9. The unit normal nΣ satisfies

LΣnΣ +
1

2
nΣ = 0.

Proof. By a direct computation

∆ΣnΣ = ∇ΣHΣ − |AΣ|2nΣ.

As 2HΣ = −x · nΣ, we have

∇ΣHΣ = −1

2
x · ∇ΣnΣ.

The lemma follows from combining these two identities. �

Lemma 5.10. There exist av ∈ Ck−2,α
−2 (Σ) and bv ∈ Ck−2,α

−1 (Σ;Rn+1) such that

Kv = av + bv · ∇Σ.

Proof. Using the product rule, we compute

(5.19) LΣ ((v · nΣ)g) = (v · nΣ)LΣg + 2∇Σg · ∇Σ(v · nΣ) + g

(
LΣ +

1

2

)
(v · nΣ).

Invoking Lemma 5.9, we simplify

(5.20)
(
LΣ +

1

2

)
(v · nΣ) =

(
LΣ +

1

2

)
v · nΣ + 2∇Σv · ∇ΣnΣ.

Thus, substituting (5.20) into (5.19) and invoking the definition of Kv, we get

(5.21) Kvg = avg + bv · ∇Σg,

where

av = (v · nΣ)

{(
LΣ +

1

2

)
v · nΣ + 2∇Σv · ∇ΣnΣ

}
and bv = ∇Σ(v · nΣ)2.
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We show that av ∈ Ck−2,α
−2 (Σ) and bv ∈ Ck−2,α

−1 (Σ;Rn+1). For Σ ∈ ACHk,αn one has
nΣ ∈ Ck−1,α

0 (Σ;Rn+1). Our assumptions on v ensure that v ∈ Ck,α0 (Σ;Rn+1) and(
LΣ +

1

2

)
v ∈ Ck−2,α

−2 (Σ;Rn+1).

Now the claim is a direct consequence of Item (3) of Proposition 3.1. �

Proposition 5.11. The operator Kv : Dk,α(Σ)→ Ck−2,α
−1 (Σ) is compact.

Proof. By our definitions, the inclusion Dk,α(Σ) ⊂ Ck−2,α
−1 (Σ) and the linear map

∇Σ : Dk,α(Σ)→ Ck−2,α
−1 (Σ;Rn+1)

are both continuous. This together with Lemma 5.10 implies that Kv is a bounded linear
operator between Dk,α(Σ) and Ck−2,α

−1 (Σ).
Next, let (gi)i∈N be any sequence of functions in the unit ball ofDk,α. We show there is

a subsequence (ij)j∈N so that (Kvgij )j∈N is a Cauchy sequence in Ck−2,α
−1 (Σ), implying

Kv is compact. Indeed, by the Arzelà-Ascoli theorem and a diagonal argument, there is a
subsequence (ij)j∈N so that (gij )j∈N is a Cauchy sequence in Ck(Σ ∩ B̄R) for all R > 0.
Moreover, by our definitions and Item (3) of Proposition 3.1,

‖Kvgij‖
(−1)
k−2,α;Σ\BR ≤ ‖av‖

(0)
k−2,α;Σ\BR‖gij‖

(−1)
k−2,α + ‖bv‖(0)

k−2,α;Σ\BR‖∇Σgij‖
(−1)
k−2,α

≤ R−2
(
‖av‖(−2)

k−2,α +R‖bv‖(−1)
k−2,α

)
‖gij‖∗k,α.

Thus, given ε > 0 there is an R′ > 0 depending only on ‖av‖(−2)
k−2,α, ‖bv‖(−1)

k−2,α and ε
so that for all j,

(5.22) ‖Kvgij‖
(−1)
k−2,α;Σ\BR′

<
ε

4
.

Furthermore, there is an integer j0 depending only on ‖av‖(−2)
k−2,α, ‖bv‖(−1)

k−2,α, gi, ε and R′

so that for all l,m > j0,

(5.23) ‖Kvgil −Kvgim‖
(−1)
k−2,α;Σ∩B2R′

<
ε

2
.

Hence, it follows from the triangle inequality, (5.22) and (5.23) that for all l,m > j0,

‖Kvgil −Kvgim‖
(−1)
k−2,α < ε.

Hence, it follows that (Kvgij )j∈N is a Cauchy sequence in Ck−2,α
−1 (Σ). �

Theorem 5.12. The operator Lv : Dk,α(Σ)→ Ck−2,α
−1 (Σ) is Fredholm of index 0.

Proof. Since
Lv = (v · nΣ)2LΣ +Kv

where Kv is a compact operator by Proposition 5.11, to prove the theorem, it suffices to
show that (v · nΣ)2LΣ is an isomorphism between Dk,α(Σ) and Ck−2,α

−1 (Σ).
First, by our definition of Dk,α(Σ) and Theorem 5.7, LΣ is an isomorphism between

Dk,α(Σ) and Ck−2,α
−1 (Σ). If the map defined by

(v · nΣ)2× : g 7→ (v · nΣ)2g

were an isomorphism of Ck−2,α
−1 (Σ), then the claim would follow immediately.
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For Σ ∈ ACHk,αn and our assumptions on v,

nΣ ∈ Ck−1,α
0 ∩ Ck−1

0,H (Σ;Rn+1) and v ∈ Ck,α0 ∩ Ck0,H(Σ;Rn+1).

It follows from Item (3) of Proposition 3.1 that (v ·nΣ)2 ∈ Ck−1,α
0 ∩Ck−1

0,H (Σ). Moreover,
as v and C[v] are transverse to, respectively, Σ and C(Σ) we have

inf
p∈Σ
|v · nΣ|(p) = δ > 0.

It follows from Item (2) of Proposition 3.1 that (v · nΣ)−2 ∈ Ck−1,α
0 (Σ). Hence,

g ∈ Ck−2,α
−1 (Σ)⇐⇒ (v · nΣ)2g ∈ Ck−2,α

−1 (Σ).

Moreover, there is a C > 0 depending only on Σ,v, n, k, α so that

(5.24) C−1‖g‖(−1)
k−2,α ≤ ‖(v · nΣ)2g‖(−1)

k−2,α ≤ C‖g‖
(−1)
k−2,α,

implying the map (v · nΣ)2× is an isomorphism of Ck−2,α
−1 (Σ). �

6. ASYMPTOTIC BEHAVIOR OF JACOBI FUNCTIONS

Continue to consider a self-expander Σ ∈ ACHk,αn and a transverse section on Σ,
v ∈ Ck,α0 ∩ Ck0,H(Σ;Rn+1) so that w = C[v] is a transverse section on C(Σ). We say
a function u is a Jacobi function of Σ if LΣu = 0. In this case, unΣ is a normal Jacobi
field of Σ. Similarly, a function u is a v-Jacobi function if Lvu = 0 and in this case uv is
a v-Jacobi field. Let us denote the set of Jacobi functions of Σ so that the corresponding
normal Jacobi fields fix the asymptotic cone of Σ by

(6.1) K =
{
u ∈ C2

loc(Σ) ∩ C0
1,0(Σ): LΣu = 0

}
.

Similarly, denote the set of v-Jacobi functions on Σ whose corresponding v-Jacobi fields
fix the asymptotic cone of Σ by

(6.2) Kv =
{
u ∈ C2

loc(Σ) ∩ C0
1,0(Σ): Lvu = 0

}
.

The elements of these spaces are significantly more regular locally and have better as-
ymptotic decay properties. To see this, we first use the analysis of Section 5 and a result
from [3] to show improved regularity and decay for elements of the two spaces.

Indeed, for r(p) = |x(p)|, p ∈ Σ, and ∂r = ∇Σr, one has

Lemma 6.1. The spacesK andKv are both finite dimensional subspaces ofDk,α(Σ), and
dimK = dimKv. Moreover, for all m ∈ R any element u ∈ K ∪ Kv satisfies

(6.3)
∫

Σ

(
|∇Σu|2 + u2

)
rme

r2

4 dHn <∞.

Proof. Suppose that u ∈ K. By standard elliptic regularity results Σ is a smooth hypersur-
face and u ∈ C∞loc(Σ). As |AΣ| ∈ C∞loc ∩ C

k−2,α
−1 (Σ), the function f = LΣu = −|AΣ|2u

satisfies f ∈ C∞loc ∩ C0
−1(Σ). By Proposition 5.3 and the local gradient estimate [14, The-

orem 8.32] there is a unique solution, ũ, in C0
−1 ∩ C1

1 (Σ) of LΣũ = f . We first show
ũ = u.

To that end, observe that as Σ ∈ ACHk,αn is a self-expander, on Σ \B1,

r|AΣ|+ r4||∇Σr| − 1|+ r2|∇2
Σr

2 − 2gΣ| ≤ C.
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Hence, there is an RΣ > 1 so that (Σ\B̄RΣ
, gΣ, r) is a weakly conical end in the sense of

[3]. Observe that LΣ = ∆gΣ + r
2∂r−

1
2 . Let v = u−ũ and observe that as u, v ∈ C0

1,0(Σ),

lim
ρ→∞

ρ−n−1

∫
Σ∩∂Bρ

u2 dHn−1 = lim
ρ→∞

ρ−n−1

∫
Σ∩∂Bρ

v2 dHn−1 = 0.

Hence, as LΣu = 0 and LΣv = LΣu − LΣũ = 0, [3, Theorem 9.1] implies that (6.3)
holds, with any m, for both u and v. In particular, for R > 1 sufficiently large, integrating
by parts and using LΣv = 0, gives∫

Σ∩BR

(
|∇Σv|2 +

1

2
v2

)
e
r2

4 dHn =

∫
Σ∩∂BR

v∂rv|∇Σr|−1e
r2

4 dHn

≤ 2

(∫
Σ∩∂BR

v2e
r2

4 dHn
)1/2(∫

Σ∩∂BR
|∇Σv|2e

r2

4 dHn
)1/2

.

As (6.3) holds for v with m = 0, there is a sequence of R →∞, for which the right hand
side tends to zero. Hence, v identically vanishes and so u = ũ and u ∈ C0

−1 ∩ C1
1 (Σ).

We will now argue by induction to show u ∈ Dk,α(Σ). As C1
1 (Σ) ⊂ Cα1 (Σ), that u ∈

C1
1 (Σ) and the decay of |AΣ| ensure that f = −|AΣ|2u ∈ Cα−1(Σ). Let ū be the unique

element ofD2,α(Σ) that satisfies LΣū = f given by Theorem 5.7. As LΣ(ū−u) = 0 and
ū−u ∈ C2

loc∩C0
−1(Σ), the elliptic maximum principle implies u = ū and so u ∈ D2,α(Σ),

proving the claim for k = 2. Suppose that we have shown u ∈ Dl,α(Σ) for 2 ≤ l ≤ k− 1.
As Dl,α(Σ) ⊂ Cl,α1 (Σ), the decay of |AΣ|2 ensures that f = −|AΣ|2u ∈ Cl

′,α
−1 (Σ) where

l′ = min{k − 2, l}. Theorem 5.7 gives a unique û ∈ Dl′+2,α(Σ) with LΣû = f . As
û−u ∈ C2

loc∩C0
−1(Σ) and LΣ(û−u) = 0 the elliptic maximum principle implies u = û

and so u ∈ Dk,α(Σ) as claimed.
Suppose now that u ∈ Kv. For Σ ∈ ACHk,αn and our assumptions on v we have that

|v · nΣ| ∈ Ck−1,α
0 (Σ) and is uniformly bounded from below by a positive constant. This

implies (v · nΣ)−1 ∈ Ck−1,α
0 (Σ). Thus, u ∈ Kv if and only if (v · nΣ)u ∈ K. By what

have shown (6.3) holds for u and (v·nΣ)u ∈ Dk,α(Σ) implying u ∈ Ck−2,α
−1 ∩Ck−1,α

0 (Σ).
By writing Lv = (v ·nΣ)2LΣ +Kv, the definition ofKv (see (5.21)) ensures that LΣu ∈
Ck−2,α
−1 (Σ). Hence, arguing as above gives u ∈ Dk,α(Σ).
Finally, by Theorem 5.12, Lv is Fredholm and so Kv is finite dimensional and, as Kv

and K are isomorphic, the same is true of K. �

We will actually need a sharper decay estimate for elements ofK proved in [3]. Roughly
speaking, this result says that for any non-trivial u ∈ K, there will be a non-zero element
tr∗∞[u] ∈ L2(L(Σ)) so that one has the asymptotic expansion

u = r−n−1e−
r2

4 E H
w,0[tr∗∞[u]] ◦ x|Σ + o

(
r−n−1e−

r2

4

)
.

This expansion will be crucial in justifying several integration by parts arguments.
More precisely, with AR′,R = Σ ∩ (B̄R′ \BR), we have

Proposition 6.2. If u ∈ K, then

(6.4) lim
ρ→∞

ρn+3e
ρ2

2

∫
Σ∩∂Bρ

u2 dHn−1 = a[u]2 <∞,

and there are constants R1 and C6, depending on Σ and u, so that for all R ≥ R1,

(6.5)
∫
A2R,R

(
|∇Σu|2 + r4(2∂ru+ ru)2

)
e
r2

2 dHn ≤ C6a[u]2R−n.
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Moreover, there is an injective linear map

tr∗∞ : K → L2(L(Σ))

satisfying

(6.6)
∫
L(Σ)

tr∗∞[u]2 dHn−1 = a[u]2,

and for all R ≥ R1,

(6.7)
∫
A2R,R

(u−Fw[u])2e
r2

2 dHn ≤ C6a[u]2R−n−4

where

Fw[u] = r−n−1e−
r2

4 E H
w,0[tr∗∞[u]].

Proof. As in the proof of Lemma 6.1, (Σ\B̄RΣ
, gΣ, r) is a weakly conical end in the sense

of [3]. Define û = rn+1er
2/4u. As u ∈ K satisfies LΣu = 0 and (6.3), it follows

from [3, Theorem 7.2] that

(6.8) lim
ρ→∞

ρ1−n
∫

Σ∩∂Bρ
û2 dHn−1 = a[u]2 <∞,

and there are constants R̂ and Ĉ, depending on Σ and u, so that for R ≥ R̂,

(6.9)
∫
A2R,R

(
|∇Σû|2 + r2(∂rû)2

)
r−n dHn ≤ Ĉa[u]2R−2.

Thus, (6.4) and (6.5) follow from (6.8) and (6.9) together with the observations that

e
r2

4 ∇Σu = −
(
n+ 1

r
+
r

2

)
r−n−1û∂r + r−n−1∇Σû,

e
r2

4 (2∂ru+ ru) = −2(n+ 1)(1 +O(r−2))r−n−2û+ 2r−n−1∂rû.

It remains to construct the map tr∗∞ with claimed properties. As Σ ∈ ACHk,αn , by our
definition, there is a Ck,α-regular cone C = C(Σ) and a function ψ ∈ Ck,α1 ∩ Ck1,0(CR′)
where CR′ = C\B̄R′ so that for some compact setK ⊂ Σ, Σ′ = Σ\K can be parametrized
by the map Ψ: CR′ → Σ′ ⊂ Rn+1 given by

Ψ(p) = x(p) + ψ(p)w(p).

As Σ is a self-expander, we have

(x · ∇CΨ−Ψ) · (nΣ ◦Ψ) = 2HΣ ◦Ψ ∈ C0
−1(CR′).

Invoking the homogeneity of cone and w, this gives

(6.10) x · ∇Cψ − ψ ∈ C0
−1(CR′).

Given τ > 0 we define ûτ = û(Ψ(τ ·)) on CR′/τ . Then

∂τ ûτ (p) = τ−1 {|Ψ(τp)|∂rû(Ψ(τp)) + (τp · ∇Cψ(τp)− ψ(τp))∇Σû(Ψ(τp)) ·w(p)} .

Thus, invoking (6.10), for some constant C ′ = C ′(C,w, ψ),

(6.11) |∂τ ûτ (p)| ≤ τ−1|r∂rû|(Ψ(τp)) + C ′τ−2|x(p)|−1|∇Σû|(Ψ(τp)).
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Fix any ρ2 ≥ ρ1 > 0. Denote by Acρ2,ρ1
= C ∩ (B̄ρ2

\Bρ1
). For τ2 ≥ τ1 � 1, we use the

Hölder inequality and (6.11) to estimate:∫
Acρ2,ρ1

(ûτ2 − ûτ1)
2
dHn ≤

∫
Acρ2,ρ1

(∫ τ2

τ1

|∂τ ûτ | dτ
)2

dHn

≤ 2

∫ τ2

τ1

1

τ2
dτ

∫ τ2

τ1

∫
Acρ2,ρ1

|r∂rû|2(Ψ(τp)) dHndτ

+
2(C ′)2

ρ2
1

∫ τ2

τ1

1

τ4
dτ

∫ τ2

τ1

∫
Acρ2,ρ1

|∇Σû|2(Ψ(τp)) dHndτ.

(6.12)

Observe that for sufficiently large τ , Ψ(Acτρ2,τρ1
) ⊂ A2τρ2,

τρ1
2

and the Jacobian of Ψ

on Acτρ2,τρ1
is bounded from below by 1

2 . Thus, an application of the change of variables
formula and (6.9) gives that∫

Acρ2,ρ1

(
|∇Σû|2 + (r∂rû)2

)
(Ψ(τp)) dHn

≤ 2

τn

∫
A

2τρ2,
τρ1

2

(
|∇Σû|2 + (r∂rû)2

)
dHn ≤ C ′′a[u]2τ−2,

where C ′′ depends on Ĉ, n, ρ1 and ρ2. Hence, substituting this estimate into (6.12) gives∫
Acρ2,ρ1

(ûτ2 − ûτ1)
2
dHn ≤ C̃a[u]2τ−2

1

where C̃ depends on ρ1, C
′ and C ′′.

Therefore, it follows that

lim
τ→∞

ûτ = û∞ in L2
loc(C)

for some û∞ ∈ L2
loc(C). Moreover, û∞(ρp) = û∞(p) for all p ∈ C and ρ > 0, and for

ρ2 ≥ ρ1 > 0 and for sufficiently large τ ,

(6.13)
∫
Acρ2,ρ1

(ûτ − û∞)
2
dHn ≤ C̃a[u]2τ−2.

As û∞ is homogeneous of degree 0, we can define

tr∗∞[u] = û∞|L(Σ) ∈ L2(L(Σ)).

The linear dependence of tr∗∞ on u is justified by our construction of û∞. And (6.6) is
given by combining (6.8) and (6.13). Furthermore, (6.7) follows from substituting u =

r−n−1e−r
2/4û into (6.13) and a change of variables. Finally, in view of (6.4), (6.5) and

(6.6), the map tr∗∞ is injective. �

We obtain several useful corollaries of Proposition 6.2.

Corollary 6.3. For all κ ∈ Kv \ {0} there are no solutions in Dk,α(Σ) of Lvu = κ.

Proof. We argue by contradiction. Suppose there were a κ ∈ Kv \{0} and a u ∈ Dk,α(Σ)
satisfying Lvu = κ. Let κ̃ = (v · nΣ)κ and ũ = (v · nΣ)u. By standard elliptic regularity
theory, Σ is a smooth hypersurface. Then κ̃ ∈ K, ũ ∈ C2

loc(Σ) and

(6.14) ũ, |∇Σũ| ∈ C0
−1(Σ).
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Denote by Sρ = Σ ∩ ∂Bρ. Since LΣκ̃ = 0 and (v · nΣ)LΣũ = κ, it follows from the
divergence theorem and the Cauchy-Schwarz inequality that for sufficiently large ρ,∫

Σ∩Bρ
κ2e

r2

4 dHn = e
ρ2

4

∫
Sρ

(κ̃∂rũ− ũ∂rκ̃)|∇Σr|−1 dHn−1

≤ 2

(
ρ3−n

∫
Sρ

(|ũ|2 + |∂rũ|2) dHn−1

) 1
2
(
ρn−3e

ρ2

2

∫
Sρ

(|κ̃|2 + |∂rκ̃|2) dHn−1

) 1
2

.

Invoking (6.14), (6.4) and (6.5), it follows that for some sequence of ρ→∞ the last term
of the above identity converges to 0. Thus, by the monotone convergence theorem,∫

Σ

κ2e
|x|2

4 dHn = 0,

giving a contradiction. �

Corollary 6.4. Given ε ∈ (0, 1) there is an injective linear map T εv : Kv → Ck,α(L(Σ))
satisfying that for any κ ∈ Kv,

‖T εv[κ]− tr∗∞[κv · nΣ]‖L2 < ε‖tr∗∞[κv · nΣ]‖L2 .

Proof. We first define a map Tv : Kv → L2(L(Σ)) by

Tv[κ] = tr∗∞[κv · nΣ].

The map Tv is linear by the linearity of tr∗∞. It is injective because v is a transverse section
on Σ and Proposition 6.2.

Next, as dimKv < ∞, the subspace Tv(Kv) is also finite dimensional. We choose an
orthonormal basis, ϕ1, . . . , ϕm, of Tv(Kv). Using the partition of unity and the mollifica-
tion, given ε ∈ (0, 1) we may find ϕεi ∈ Ck,α(L(Σ)) for 1 ≤ i ≤ m so that

m∑
i=1

‖ϕεi − ϕi‖2L2 < ε2.

We then define a linear map M ε : Tv(Kv) → Ck,α(L(Σ)) as follows. If ϕ ∈ Tv(Kv) is
given by the unique linear combination of ϕi, namely,

ϕ =
m∑
i=1

aiϕi where ai ∈ R,

then we let

M ε[ϕ] =

m∑
i=1

aiϕ
ε
i =

m∑
i=1

aiM
ε[ϕi].

Observe that ‖ϕ‖2L2 =
∑m
i=1 a

2
i . Thus, by the triangle inequality,

‖M ε[ϕ]− ϕ‖L2 ≤
m∑
i=1

|ai|‖ϕεi − ϕi‖L2 < ε‖ϕ‖L2 .

Therefore, the corollary follows by setting T εv = M ε ◦ Tv. �

Corollary 6.5. There is an ε1 = ε1(Σ,w) so that given ζ ∈ T ε1v (Kv \ {0}) the asymptotic
Dirichlet problem

(6.15)
{

LΣu = 0 in Σ
tr1
∞[u] = ζw · nL(Σ) in L(Σ)

has no solutions in C2
loc ∩ C1

1,H(Σ).
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Proof. We argue by contradiction. Take any sufficiently small ε. Suppose that there were
a ζ ∈ T εv(Kv \ {0}) so that the problem (6.15) has a solution u ∈ C2

loc ∩ C1
1,H(Σ). There

is a κ ∈ Kv \ {0} so that T εv[κ] = ζ. Let κ̃ = κv · nΣ, so κ̃ ∈ K \ {0}. Thus, by the
divergence theorem, letting Sρ = Σ ∩ ∂Bρ,

(6.16) e
ρ2

4

∫
Sρ

κ̃∂ru|∇Σr|−1 dHn−1 = e
ρ2

4

∫
Sρ

u∂rκ̃|∇Σr|−1 dHn−1.

On the one hand, using the Cauchy-Schwarz inequality gives

e
ρ2

4

∫
Sρ

|κ̃∂ru||∇Σr|−1 dHn−1

≤ 2

(
ρ1−n

∫
Sρ

(∂ru)2 dHn−1

) 1
2
(
ρn−1e

ρ2

2

∫
Sρ

κ̃2 dHn−1

) 1
2

.

Hence, Proposition 6.2 implies that there is a sequence of ρ→∞, for which the left hand
side of (6.16) converges to 0. On the other hand, we decompose

2∂rκ̃ = (2∂rκ̃+ rκ̃)− r(κ̃−Fw[κ̃])− rFw[κ̃].

Using the Cauchy-Schwarz inequality,

e
ρ2

4

∫
Sρ

|u(2∂rκ̃+ rκ̃)||∇Σr|−1 dHn−1

≤ 2

(
ρ−n−1

∫
Sρ

u2 dHn−1

) 1
2
(
ρn+1e

ρ2

2

∫
Sρ

(2∂rκ̃+ rκ̃)2 dHn−1

) 1
2

,

and likewise

ρe
ρ2

4

∫
Sρ

|u(κ̃−Fw[κ̃])||∇Σr|−1 dHn−1

≤ 2

(
ρ−n−1

∫
Sρ

u2 dHn−1

) 1
2
(
ρn+3e

ρ2

2

∫
Sρ

(κ̃−Fw[κ̃])2 dHn−1

) 1
2

.

Hence, Proposition 6.2 gives that the right hand side of (6.16) converges to

−1

2

∫
L(Σ)

T εv[κ]tr∗∞[κ̃]w · nL(Σ) dHn−1.

As w is transverse to L(Σ), we may assume

inf
L(Σ)

w · nL(Σ) = δ > 0.

Therefore, by Corollary 6.4 and injectivity of tr∗∞,∣∣∣∣∣
∫
L(Σ)

T εv[κ]tr∗∞[κ̃]w · nL(Σ) dHn−1

∣∣∣∣∣ ≥ (δ − ε)‖tr∗∞[κ̃]‖2L2 > 0,

which gives a contradiction. �
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7. STRUCTURE OF THE SPACE OF ASYMPTOTICALLY CONICAL SELF-EXPANDERS

For this section we fix an element Γ ∈ ACHk,αn . Let f ∈ ACHk,αn (Γ) be a E-stationary
map, that is, Σ = f(Γ) is a self-expander. By Item (1) of Proposition 3.3, Σ ∈ ACHk,αn
and C(Σ) = C[f ](C(Γ)). Let v ∈ Ck,α0 ∩ Ck0,H(Σ;Rn+1) be a transverse section on Σ so
that w = C[v] is a transverse section on C(Σ) and satisfying (5.1). Next we define

H : ACHk,αn (Σ)→ Ck−2,α
−1 (Σ;Rn+1)

by H[g](p) = Hg(Σ)(g(p)). Likewise, define n and x⊥. Finally, given a Banach space
X , denote by BR(p;X) the (open) ball in the space with center p and radius R.

7.1. Smooth dependence theorem. The goal here is to establish an analog of [25, Theo-
rem 3.2] in the asymptotically conical E-stationary setting.

Theorem 7.1. There exist smooth maps

Fv : U1 × U2 → ACHk,αn (Σ), and,

Gv : U1 × U2 → Kv,

where U1 is some neighborhood of x|L(Σ) in Ck,α(L(Σ);Rn+1) and U2 is some neighbor-
hood of 0 in Kv, such that the following hold:

(1) For (ϕ, κ) ∈ U1 × U2, tr1
∞[Fv[ϕ, κ]] = ϕ.

(2) Fv[x|L(Σ), 0] = x|Σ.
(3) For (ϕ, κ) ∈ U1 × U2, Fv[ϕ, κ] is E-stationary if and only if Gv[ϕ, κ] = 0.
(4) For κ ∈ Kv, D2Fv(x|L(Σ), 0)κ = κv.
(5) G−1

v (0) is a smooth submanifold of codimension equal to dimKv. It contains
{0} ×Kv in its tangent space at (ϕ, 0). Equivalently, D1Gv(x|L(Σ), 0) is of rank
equal to dimKv and D2Gv(x|L(Σ), 0) = 0.

(6) Given ε > 0 there is a neighborhoodW of x|Σ ∈ ACHk,αn (Σ) such that for any
E-stationary element g ∈ W there is a κ ∈ Kv with ‖κ‖∗k,α ≤ ε and a Ck,α

diffeomorphism φ of Σ with x|Σ ◦ φ ∈ ACHk,αn (Σ) and tr1
∞[x|Σ ◦ φ] = x|L(Σ)

such that
g = Fv[tr1

∞[g], κ] ◦ φ.
That is, g ∼ Fv[tr1

∞[g], κ] in the sense of Section 3.2.

Furthermore, we can choose

U1 = Ũ1 ∩ Ck,α(L(Σ);Rn+1) andW = W̃ ∩ Ck,α1 (Σ;Rn+1),

where Ũ1 and W̃ are open sets of Ck,α̃(L(Σ);Rn+1) and Ck,α̃1 (Σ;Rn+1), respectively, for
0 < α̃ < α.

To prove Theorem 7.1 we need several auxiliary lemmata. Let ge be the Euclidean
metric on Rn+1. If h : Σ → Rn+1 is a C1 embedding, then we denote by gh = h∗ge the
pull-back metric of the Euclidean one by h.

Lemma 7.2. If h : Σ→ Rn+1 is a C2 embedding, then

v ·
(
H− x⊥

2

)
[h] = (v · n[h])

LΣh +
n∑

i,j=1

(g−1
h − g

−1
Σ )ij(∇2

Σh)ij

 · n[h].
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Proof. By a standard differential geometric fact (see, for instance, [11, Appendix A])

H[h] = n[h] ·

 n∑
i,j=1

(g−1
h )ij(∇2

Σh)ij

n[h]

= n[h] ·

∆Σh +
n∑

i,j=1

(g−1
h − g

−1
Σ )ij(∇2

Σh)ij

n[h].

(7.1)

Observe that
(x · ∇Σh)(p) = (Dh)p(x

>) ∈ Th(p)h(Σ).

Thus, it follows that

(7.2) n[h] · h = −n[h] · (x · ∇Σh− h) .

Hence, the lemma follows by combining (7.1) and (7.2). �

By Corollary 5.8 we can define

EΣ : Ck,α(L(Σ);Rn+1)→ Ck,α1 ∩ Ck1,H(Σ;Rn+1)

such that EΣ[ϕ] is the (unique) solution to LΣu = 0 with tr1
∞[u] = ϕ given by Corollary

5.8. Moreover, EΣ is an isomorphism.

Lemma 7.3. There is an r0 > 0 sufficiently small, depending only on Σ,v, n, k and α,
such that the map

Ξv : Br0(x|L(Σ);C
k,α(L(Σ);Rn+1))× Br0(0;Dk,α(Σ))→ Ck−2,α

−1 (Σ)

defined by

Ξv[ϕ, u] = v ·
(
H− x⊥

2

)[
x|Σ + EΣ[ϕ− x|L(Σ)] + uv

]
is a smooth map.

Proof. First observe that there is an ε > 0 sufficiently small, depending on Σ,v, n, k and
α, so that if

(7.3) ‖ϕ− x|L(Σ)‖k,α + ‖u‖∗k,α < ε,

then
hϕ,u = x|Σ + EΣ[ϕ− x|L(Σ)] + uv ∈ ACHk,αn (Σ).

Fix any pair (ϕ, u) satisfying (7.3). For simplicity, we write h = hϕ,u. By Item (1)
of Proposition 3.3, Λ = h(Σ) ∈ ACHk,αn . As n[h](p) = nΛ(h(p)), it follows from
Item (4) of Proposition 3.1 that n[h] ∈ Ck−1,α

0 (Σ;Rn+1). Similarly, one proves that
g−1
h − g−1

Σ ∈ Ck−1,α
0 (Σ;T (0,2)Σ). We show LΣh ∈ Ck−2,α

−1 (Σ;Rn+1), which, together
with Lemma 7.2 and Item (3) of Proposition 3.1, implies that Ξv[ϕ, u] ∈ Ck−2,α

−1 (Σ).
By our hypothesis that Σ is a self-expander and the definition of EΣ,

LΣ

(
x|Σ + EΣ[ϕ− x|L(Σ)]

)
= 0.

It remains only to show that LΣ(uv) ∈ Ck−2,α
−1 (Σ;Rn+1). The product rule gives

LΣ(uv) = vLΣu+ 2∇Σu · ∇Σv + u

(
LΣ +

1

2

)
v.

Thus the claim follows from that u ∈ Dk,α(Σ), the hypotheses on v and Item (3) of
Proposition 3.1.
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Finally, as n[h] and g−1
h − g

−1
Σ are rational functions of ∇Σh, the maps h 7→ n[h] and

h 7→ (g−1
h − g−1

Σ ) are smooth maps from ACHk,αn (Σ) to, respectively, Ck−1,α
0 (Σ;Rn+1)

and Ck−1,α
0 (Σ;T (0,2)Σ), and so the smoothness of Ξv follows easily. �

We will need the following self-improving regularity theorem at several points in the
argument. First, we prove a slight generalization of Theorem 5.7 where we allow the
coefficient matrix of the Laplacian on Σ to be a small perturbation of the metric.

Proposition 7.4. There is an ε1 > 0 sufficiently small, depending on Σ, n, k and α, such
that if M ∈ Ck−2,α

0 (Σ;T (0,2)Σ) satisfies ‖M‖(0)
k−2,α < ε1, then for every f ∈ Ck−2,α

−1 (Σ)

there is a unique solution u ∈ Dk,α(Σ) of

LΣ,Mu = LΣu+
n∑

i,j=1

Mij(∇2
Σu)ij = f.

Moreover, there is a constant C7 > 0 depending on Σ, n, k and α so that

(7.4) ‖u‖∗k,α ≤ C7‖f‖(−1)
k−2,α.

Proof. When M vanishes identically this was proved in Theorem 5.7. We can prove it
for the general case by the method of continuity (see, for instance, [14, Theorem 5.2]),
provided we can establish that the a priori estimate (7.4) holds.

First observe that by taking ε1 sufficiently small, depending only on n, we can ensure
that the symbol of the operator LΣ,M is uniformly elliptic. Here we use the elementary
fact that we may decompose M = Ms + Ma where Ms is symmetric and Ma is skew-
symmetric, and ‖Ms‖k−2,α ≤ ‖M‖k−2,α and one has, due to the symmetry of ∇2

Σ, that
LΣ,M = LΣ,Ms . Hence, by the elliptic maximum principle, the only u ∈ Dk,α(Σ) in the
kernel of LΣ,M is the zero function.

Next observe that, if u ∈ Dk,α(Σ), then

n∑
i,j=1

Mij(∇2
Σu)ij ∈ Ck−2,α

−1 (Σ),

and as u solves

LΣu = f −
n∑

i,j=1

Mij(∇2
Σu)ij ,

Theorem 5.7 implies

‖u‖∗k,α ≤ C4‖f −
n∑

i,j=1

Mij(∇2
Σu)ij‖(−1)

k−2,α

≤ C4‖f‖(−1)
k−2,α + 2C4‖M‖(0)

k−2,α‖∇
2
Σu‖

(−1)
k−2,α

≤ C4‖f‖(−1)
k−2,α + 2C4ε1‖u‖∗k,α.

When ε1 = 1
4C4

,

‖u‖∗k,α ≤ 2C4‖f‖(−1)
k−2,α,

and so the desired estimate holds with C7 = 2C4. �
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Lemma 7.5. Let 0 < α̃ < α. There is an r1 > 0 sufficiently small and a C8 > 0, de-
pending only on Σ,v, n, k, α and α̃, with the following significance. Let g ∈ ACHk,αn (Σ)
satisfy

‖g − x|Σ‖(1)
k−1,α < r1 and LΣg ∈ Ck−2,α

−1 (Σ;Rn+1),

and let
Ξg,v : Dk,α̃(Σ) ∩ Br1(0;Ck−1,α

1 (Σ))→ Ck−2,α̃
−1 (Σ)

be the map defined by

Ξg,v[u] = v ·
(
H− x⊥

2

)
[g + uv].

The following statements hold:

(1) If Ξg,v[u] ∈ Ck−2,α
−1 (Σ), then u ∈ Dk,α(Σ), with the estimate

‖u‖∗k,α ≤ C8

(
‖Ξg,v[u]‖(−1)

k−2,α + ‖g − x|Σ‖(1)
k,α + ‖LΣg‖(−1)

k−2,α + ‖u‖(1)
k−1,α

)
.

(2) If DΞg,v(0)u ∈ Ck−2,α
−1 (Σ) for u ∈ Dk,α̃(Σ), then u ∈ Dk,α(Σ).

Proof. First, we remark that all the constants below depend only on Σ,v, n, k, α and α̃.
By our hypotheses on v,

inf
p∈Σ
|v · nΣ|(p) = 2δ > 0.

One may take r1 > 0 sufficiently small so that if g ∈ ACHk,αn (Σ), u ∈ Dk,α̃(Σ) and

‖g − x|Σ‖(1)
k−1,α + ‖u‖(1)

k−1,α < r1,

then h = g + uv ∈ ACHk,α̃n (Σ),

inf
p∈Σ
|v · n[h]|(p) ≥ δ and ‖g−1

h − g
−1
Σ ‖

(0)
k−2,α < ε1(Σ, n, k, α),

where we used the fact that

(7.5) ‖g−1
h − g

−1
Σ ‖

(0)
k−2,α ≤ C‖h− x|Σ‖(1)

k−1,α ≤ C
(
‖g − x|Σ‖(1)

k−1,α + ‖u‖(1)
k−1,α

)
.

Moreover, as shown in Lemma 7.3, LΣ(uv) ∈ Ck−2,α̃
−1 (Σ;Rn+1) and, by our hypotheses

on g, so does LΣh. Hence, invoking Lemma 7.2 gives the map Ξg,v is well defined.
Let us set

Mg,v[u] = g−1
h − g

−1
Σ and Pg,v[u] = (v · n[h])−1.

By Lemma 7.2 and the product rule,

(7.6) LΣu+
n∑

i,j=1

Mg,v[u]ij(∇2
Σu)ij = Pg,v[u]2Ξg,v[u]− Pg,v[u]Qg,v[u],

where

Qg,v[u] =

(
LΣg + u

(
LΣ +

1

2

)
v + 2∇Σu · ∇Σv

)
· n[h]

+

 n∑
i,j=1

Mg,v[u]ij(∇2
Σ(g − x|Σ))ij +

n∑
i,j=1

Mg,v[u]ij(∇2
Σx|Σ)ij

 · n[h]

+

 n∑
i,j=1

Mg,v[u]ij
(
u(∇2

Σv)ij + 2(∇Σu)i(∇Σv)j
) · n[h].
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By Items (2)-(4) of Proposition 3.1 and our hypotheses,

‖n[h]‖(0)
k−2,α + ‖Pg,v[u]‖(0)

k−2,α ≤ C
′.

Our hypotheses on v ensure that

v ∈ Ck,α0 (Σ;Rn+1) and
(

LΣ +
1

2

)
v ∈ Ck−2,α

−2 (Σ;Rn+1).

As g ∈ Ck,α1 (Σ;Rn+1), we use Item (3) of Proposition 3.1 and (7.5) to estimate

‖Qg,v[u]‖(−1)
k−2,α ≤ C

′′
(
‖LΣg‖(−1)

k−2,α + ‖g − x|Σ‖(1)
k,α + ‖u‖(1)

k−1,α

)
.

Hence, as we assume Ξg,v[u] ∈ Ck−2,α
−1 (Σ), the right hand side of (7.6) is an element of

Ck−2,α
−1 (Σ), and so, by Proposition 7.4, u ∈ Dk,α(Σ) and it satisfies the estimate claimed

in Item (1).
To obtain Item (2), we replace u in (7.6) by su for |s| < ε to get that

s

LΣu+
n∑

i,j=1

Mg,v[su]ij(∇2
Σu)ij

 = Pg,v[su]2Ξg,v[su]− Pg,v[su]Qg,v[su].

By shown in Lemma 7.3 and shrinking r1 if needed, Ξg,v is smooth near 0 ∈ Dk,α̃(Σ).
And careful, but straightforward, analysis shows that our hypotheses ensure that Pg,v and
Qg,v are both smooth maps from a small neighborhood of 0 ∈ Dk,α̃(Σ) into, respectively,
Ck−2,α

0 (Σ) and Ck−2,α
−1 (Σ). Hence, differentiating the above equation at s = 0 gives that

LΣu+

n∑
i,j=1

Mg,v[0]ij(∇2
Σu)ij = 2Ξg,v[0]Pg,v[0]DPg,v(0)u+ Pg,v[0]2DΞg,v(0)u

−Qg,v[0]DPg,v(0)u− Pg,v[0]DQg,v(0)u.

Now, using that g ∈ Ck,α1 (Σ;Rn+1) and LΣg ∈ Ck−2,α
−1 (Σ;Rn+1), we compute,

Ξg,v[0] = Pg,v[0]−1

LΣg +
n∑

i,j=1

Mg,v[0]ij(∇2
Σg)ij

 · n[g] ∈ Ck−2,α
−1 (Σ).

Hence, as we assume DΞg,v(0)u ∈ Ck−2,α
−1 (Σ) we have

LΣu+
n∑

i,j=1

Mg,v[0]ij(∇2
Σu)ij ∈ Ck−2,α

−1 (Σ),

and the argument concludes by appealing to Proposition 7.4. �

Using the above lemmata we show that near any given asymptotically conical self-
expander all other asymptotically conical self-expanders admit a natural parametrization.

Lemma 7.6. Given ε ∈ (0, 1) there is an r2 ∈ (0, 1) depending only on Σ,v, n, k, α and
ε so that for any E-stationary map

g ∈ ACHk,αn (Σ) ∩ Br2(x|Σ;Ck,α1 (Σ;Rn+1))

there is a u ∈ Bε(0;Dk,α(Σ)) so that g(Σ) can be reparametrized by the map

g̃ = x|Σ + EΣ[tr1
∞[g − x|Σ]] + uv ∈ ACHk,αn (Σ).

As such, g̃ ∼ g, where this is the equivalence relation of Section 3.2.
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Proof. Let
h = x|Σ + EΣ[tr1

∞[g − x|Σ]].

And let Λ = g(Σ) and Υ = h(Σ). If g lies in a sufficiently small neighborhood of
x|Σ ∈ Ck,α1 (Σ;Rn+1), then, by Corollary 5.8, so does h. Thus, h ∈ ACHk,αn (Σ), and so
Υ ∈ ACHk,αn by Item (1) of Proposition 3.3. Hence, if we set

ĝ = g ◦ h−1 and v̂ = v ◦ h−1,

then, by Items (2) and (3) of Proposition 3.3, ĝ ∈ ACHk,αn (Υ), and, by Item (4) of Propo-
sition 3.1, v̂ ∈ Ck,α0 ∩Ck0,H(Υ;Rn+1) and it is a transverse section on Υ. Observe, that as
tr1
∞[h] = tr1

∞[g], C(Υ) = C(Λ) and tr1
∞[ĝ] = x|L(Υ). Furthermore, by our hypotheses,

Item (4) of Proposition 3.1, Corollary 5.8 and the triangle inequality,

‖ĝ − x|Υ‖(1)
k,α = ‖g ◦ h−1 − h ◦ h−1‖(1)

k,α ≤ ν1‖g − h‖(1)
k,α

≤ ν1(1 + CC5)‖g − x|Σ‖(1)
k,α ≤ ν1(1 + CC5)r2,

(7.7)

where C depends on Σ, n, k and α. Thus, by taking r2 sufficiently small, we can write

ĝ(p) = πv̂(ĝ(p)) + ψ̂(p)v̂(πv̂(ĝ(p))),

so, by Item (4) of Proposition 3.1 and the fact that tr1
∞[πv̂ ◦ ĝ − ĝ] = 0,

ψ̂(p) = (ĝ(p)− πv̂(ĝ(p))) · v̂(πv̂(ĝ(p))) ∈ Ck,α1 ∩ Ck1,0(Υ).

Since
πv̂ ◦ ĝ − x|Υ = πv̂ ◦ ĝ − πv̂ ◦ x|Υ,

it follows from Item (5) of Proposition 3.1 and (7.7) that for any β ∈ [0, α),

(7.8) ‖πv̂ ◦ ĝ − x|Υ‖(1)
k,β ≤ ν2

(
‖ĝ − x|Υ‖(1)

k,β

)α−β
≤ ν1ν2(1 + CC5)rα−β2 .

Hence, by Item (3) of Proposition 3.1, the triangle inequality and by using (7.7) and (7.8),

(7.9) ‖ψ̂‖(1)
k,β ≤ C

′‖ĝ − πv̂ ◦ ĝ‖(1)
k,β ≤ C

′ν1(ν2 + 1)(1 + CC5)rα−β2 ,

whereC ′ depends on Σ,v, n, k and β. Moreover, in view of (7.8), for r2 sufficiently small,
πv̂ ◦ ĝ ∈ ACHk,αn (Υ) and so is its inverse by Item (2) of Proposition 3.3. Thus, setting
u = ψ̂ ◦ (πv̂ ◦ ĝ)−1 ◦ h one has

g̃ = ĝ ◦ (πv̂ ◦ ĝ)−1 ◦ h = h + uv,

and, by Item (4) of Proposition 3.1 and (7.9), u ∈ Ck,α1 ∩ Ck1,0(Σ) satisfies

(7.10) ‖u‖(1)
k,β ≤ C̃r

α−β
2

for some constant C̃ depending on Σ,v, n, k, α and β.
Next we claim that u ∈ Dk,β(Σ), and ‖u‖∗k,β → 0 as r2 → 0. First observe that, by

Corollary 5.8 and (7.10), for r2 sufficiently small, g̃ is sufficiently close to x|Σ in the Ck,β1

topology, and so g̃ ∈ ACHk,βn (Σ). Moreover, by Item (3) of Proposition 3.1,

(7.11) ‖n[g̃]− nΣ‖(0)
k−1,β + ‖g−1

g̃ − g
−1
Σ ‖

(0)
k−1,β ≤ C

′′
(
‖g − x|Σ‖(1)

k,β + ‖u‖(1)
k,β

)
where C ′′ depends on Σ,v, n, k and β. It follows from the hypotheses on v that

inf
p∈Σ
|v · n[g̃]|(p) = δ > 0.
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If g is a E-stationary map, then so is g̃. Hence, by Lemma 7.2 and the product rule,

LΣu = − n[g̃]

v · n[g̃]
·

2∇Σu · ∇Σv + u

(
LΣ +

1

2

)
v +

n∑
i,j=1

(g−1
g̃ − g

−1
Σ )ij(∇2

Σg̃)ij


where the right hand side is an element of Ck−2,β

−1 (Σ) and, by Items (2) and (3) of Propo-
sition 3.1, (7.10) and (7.11), its Ck−2,β

−1 norm is bounded by O(rα−β2 ). Hence, invoking
Theorem 5.7, there is a ũ ∈ Dk,β(Σ) satisfying that LΣũ = LΣu and ‖ũ‖∗k,β ≤ O(rα−β2 ).
As u, ũ ∈ Ck,β1,0 (Σ), by Corollary 5.8, u = ũ and so u ∈ Dk,β(Σ) and ‖u‖∗k,β → 0 as
r2 → 0.

Finally, as LΣh = Ξh,v[u] = 0, we can appeal to Item (1) of Lemma 7.5 to see that
when r2 is sufficiently small, u ∈ Dk,α(Σ) and

‖u‖∗k,α ≤ C8

(
‖h− x|Σ‖(1)

k,α + ‖u‖∗k,β
)
≤ Ĉrα−β2 ,

where Ĉ depends on Σ,v, n, k, α and β. Therefore, one completes the proof by taking r2

sufficiently small so that Ĉrα−β2 < ε. �

Now we are ready to prove Theorem 7.1 stated in the beginning of this section.

Proof of Theorem 7.1. First, we define

K⊥v =

{
f ∈ Ck−2,α

−1 (Σ):

∫
Σ

fκe
r2

4 dHn = 0 for all κ ∈ Kv

}
, and,

K⊥v,∗ =

{
f ∈ Dk,α(Σ):

∫
Σ

fκe
r2

4 dHn = 0 for all κ ∈ Kv

}
.

By Lemma 6.1 the space Kv is a finite dimensional subspace of Dk,α(Σ), and for any
f ∈ C0

−1(Σ) and κ ∈ Kv, ∣∣∣∣∫
Σ

fκe
r2

4 dHn
∣∣∣∣ ≤ C(κ)‖f‖(−1)

0

where, by Proposition 6.2,

C(κ) =

∫
Σ

|κ|(1 + r)−1e
r2

4 dHn <∞.

Thus, we can define the orthogonal projection ΠKv : Ck−2,α
−1 (Σ)→ Kv with respect to the

measure er
2/4HnbΣ, and ΠKv is a bounded linear map. We also consider the projection

ΠK⊥v : Ck−2,α
−1 (Σ)→ K⊥v defined by ΠK⊥v = Id−ΠKv , is also a bounded linear map.

Consider the map

Θv : Br0(x|L(Σ);C
k,α(L(Σ);Rn+1))× B r0

2
(0;Kv)× B r0

2
(0;K⊥v,∗)→ K⊥v

defined by
Θv[ϕ, κ, u] = ΠK⊥v ◦ Ξv[ϕ, κ+ u].

By Lemma 7.3, Θv is a well defined, smooth map. Moreover, in view of Propositions
4.1 and 4.2, D3Θv(x|L(Σ), 0, 0) is given by Lv restricted to K⊥v,∗. Thus, it follows from
Theorem 5.12 and Corollary 6.3 that D3Θv(x|L(Σ), 0, 0) is an isomorphism between K⊥v,∗
and K⊥v . Hence, by the implicit function theorem, there is a neighborhood U = U1 × U2
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of (x|L(Σ), 0) in Ck,α(L(Σ);Rn+1) × Kv and a smooth map Fv,∗ : U → K⊥v,∗ that gives
the unique solution in a neighborhood of 0 ∈ K⊥v,∗ of

Θv[ϕ, κ, Fv,∗[ϕ, κ]] = 0.

Now let

Fv[ϕ, κ] = x|Σ + EΣ[ϕ− x|L(Σ)] + (κ+ Fv,∗[ϕ, κ])v, and,

Gv[ϕ, κ] = ΠKv ◦ Ξv[ϕ, κ+ Fv,∗[ϕ, κ]].

Then Items (1) and (2) follows immediately. By the definitions of Fv and Ξv,

(7.12) ΠK⊥v

[
v ·
(
H− x⊥

2

)
[Fv[ϕ, κ]]

]
= 0.

Thus, Fv[ϕ, κ] is E-stationary if and only if

ΠKv

[
v ·
(
H− x⊥

2

)
[Fv[ϕ, κ]]

]
= 0,

i.e., Gv[ϕ, κ] = 0. This proves Item (3).
To establish Item (4), it suffices to show D2Fv,∗(x|L(Σ), 0) = 0. Take any κ ∈ Kv.

Observe that for |s| < ε,

(7.13) ΠK⊥v

[
v ·
(
H− x⊥

2

)[
x|Σ +

(
sκ+ Fv,∗[x|L(Σ), sκ]

)
v
]]

= 0.

Now, differentiating (7.13) at s = 0, we apply Proposition 4.2 and the chain rule to get

ΠK⊥v ◦ Lv ◦D2Fv,∗(x|L(Σ), 0)κ = 0.

Since K⊥v = Im(Lv) by Theorem 5.12 and Corollary 6.3, it follows that

D2Fv,∗(x|L(Σ), 0)κ ∈ Kv ∩ K⊥v,∗ = {0}.
Thus, the claim follows immediately from the arbitrariness of κ ∈ Kv.

Next, by the definition of Gv and (7.12), we have

Gv[ϕ, κ] = v ·
(
H− x⊥

2

)
[Fv[ϕ, κ]].

Thus, it follows from Proposition 4.2 and Item (4) that for all κ ∈ Kv,

D2Gv(x|L(Σ), 0)κ = (v · nΣ)LΣ[D2Fv(x|L(Σ), 0)κ · nΣ] = Lvκ = 0.

This shows D2Gv(x|L(Σ), 0) = 0. Next, take any ζ ∈ T ε1v (Kv) \ {0}. Then

D1Gv(x|L(Σ), 0)[ζw] = (v · nΣ)LΣ[D1Fv(x|L(Σ), 0)[ζw] · nΣ].

By the linearity of tr1
∞ and Item (1),

tr1
∞[D1Fv(x|L(Σ), 0)[ζw] · nΣ] = ζw · nL(Σ).

As Σ ∈ ACHk,αn , it follows from Corollary 6.5 that

D1Gv(x|L(Σ), 0)[ζw] 6= 0.

Thus, we appeal to Corollary 6.4 to see that D1Gv(x|L(Σ), 0) is of rank equal to dimKv,
which completes the proof of Item (5). Finally, Item (6) follows from Lemma 7.6 and the
implicit function theorem.

It remains only to prove the last statement (“Furthermore, we can choose...”). Fix an α̃ ∈
(0, α). First observe that, by Lemma 6.1, Kv is a finite dimensional subspace of Dk,α(Σ),
so any norms onKv are equivalent. Let K̃⊥v and K̃⊥v,∗ be the orthogonal complements ofKv
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in Ck−2,α̃
−1 (Σ) and Dk,α̃(Σ), respectively. We further let ΠK̃⊥v

be the orthogonal projection

of Ck−2,α̃
−1 (Σ) onto K̃⊥v . As Σ ∈ ACHk,αn ⊂ ACHk,α̃n , applying the theorem with α̃

replacing α, there is a neighborhood Ũ = Ũ1 × Ũ2 of (x|L(Σ), 0) in Ck,α̃(L(Σ);Rn+1)×
Kv together with a smooth map F̃v,∗ : Ũ → K̃⊥v,∗ giving the unique solution in some
neighborhood of 0 ∈ K̃⊥v,∗ of

Θ̃v[ϕ, κ, F̃v,∗[ϕ, κ]] = ΠK̃⊥v

(
v ·
(
H− x⊥

2

)
[F̃v[ϕ, κ]]

)
= 0,

where
F̃v[ϕ, κ] = x|Σ + EΣ[ϕ− x|L(Σ)] +

(
κ+ F̃v,∗[ϕ, κ]

)
v.

If ϕ ∈ Ũ1 ∩ Ck,α(L(Σ);Rn+1), then EΣ[ϕ− x|L(Σ)] ∈ Ck,α1 (Σ;Rn+1). Let

g = x|Σ + EΣ[ϕ− x|L(Σ)].

Thus, shrinking Ũ1 if necessary, g ∈ ACHk,αn (Σ), and LΣg = 0 as Σ is a self-expander.
By the definition of F̃v,∗,

Ξg,v[κ+ F̃v,∗[ϕ, κ]] ∈ Kv ⊂ Ck−2,α
−1 (Σ).

Hence, shrinking Ũ so we may apply Item (1) of Lemma 7.5 to get F̃v,∗[ϕ, κ] ∈ Dk,α(Σ).
Denote by

U ′ = Ũ ∩ (Ck,α(L(Σ);Rn+1)×Kv).

Therefore, the map F ′v,∗ : U ′ → K⊥v,∗ given by the restriction of F̃v,∗ to U ′ is well defined.
Likewise, define F ′v : U ′ → ACHk,αn (Σ) to be the restriction of F̃v.

Given (ϕ, κ) ∈ U ′, let u = F ′v,∗[ϕ, κ] and h = F ′v[ϕ, κ]. ThenD3Θ̃v(ϕ, κ, u) is an iso-
morphism of K̃⊥v,∗ and K̃⊥v . Observe that h ∈ ACHk,αn (Σ) with LΣh ∈ Ck−2,α

−1 (Σ;Rn+1).
Since Ξh,v restricts to a smooth map from a neighborhood of 0 ∈ Dk,α(Σ) to Ck−2,α

−1 (Σ),
we have

D3Θ̃v(ϕ, κ, u)|K⊥v,∗ = ΠK⊥v ◦DΞh,v(0)|K⊥v,∗ .

Thus, Item (2) of Lemma 7.5 implies D3Θ̃v(ϕ, κ, u) is an isomorphism of K⊥v,∗ and K⊥v .
Moreover, by the implicit function theorem, there is a smooth map F from a neighborhood
of (ϕ, κ) ∈ Ck,α(L(Σ);Rn+1) × Kv to K⊥v that gives the unique solution in a neighbor-
hood of u of

Θ̃v[ϕ′, κ′, F [ϕ′, κ′]] = 0.

Hence, F ′v,∗ coincides with F near (ϕ, κ). Therefore, F ′v,∗ and F ′v are both smooth maps.
Let G̃v : Ũ → Kv be given by

G̃v[ϕ, κ] = v ·
(
H− x⊥

2

)
[F̃v[ϕ, κ]],

and let G′v = G̃v|U ′ . Then G̃v and G′v are smooth maps. By the theorem (replacing α by
α̃), G̃−1

v (0) is a smooth submanifold of Ũ at each point of which we may assume DG̃v is
surjective. Observe, that

(G′v)−1(0) = G̃−1
v (0) ∩ (Ck,α(L(Σ);Rn+1)×Kv).

As Ck,α(L(Σ)) is dense in Ck,α̃(L(Σ)), DG′v(ϕ, κ) is surjective for (ϕ, κ) ∈ (G′v)−1(0).
Thus, by the implicit function theorem, (G′v)−1(0) is a smooth submanifold of U ′.
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Finally, by the preceding discussions and the fact that the norms ‖ · ‖∗k,α and ‖ · ‖∗k,α̃ on
Kv are equivalent, theW in Item (6) can be taken to be W̃ ∩ Ck,α1 (Σ;Rn+1) for W̃ open
in Ck,α̃1 (Σ;Rn+1), completing the proof of the last statement. �

7.2. Global structure theorem. Following the strategy of the proof of [25, Theorem 3.3],
we apply Theorem 7.1 to prove Theorem 1.1.

Proof of Theorem 1.1. First, by Item (4) of Theorem 7.1, one has that for any κ ∈ Kv\{0},
there is a bounded smooth n-form ω on a neighborhood of Σ ⊂ Rn+1 so that

d

ds s=0

∫
Σ

e−
r2

4 Fv[x|L(Σ), sκ]∗ω 6= 0.

Furthermore, one can choose such n-forms, ω1, . . . , ωM , where M = dimKv, so that the
linear map Kv → RM defined by

κ 7→ d

ds s=0

(∫
Σ

e−
r2

4 Fv[x|L(Σ), sκ]∗ω1, . . . ,

∫
Σ

e−
r2

4 Fv[x|L(Σ), sκ]∗ωM

)
is an isomorphism.

Recall, that f ∈ ACHk,αn (Γ) and Σ = f(Γ) is a self-expander. Define

Φf : ACHk,αn (Γ)→ Ck,α(L(Γ);Rn+1)× RM

given by

Φf (g) =

(
tr1
∞[g],

∫
Σ

e−
r2

4 (g ◦ f−1)∗ω1, . . . ,

∫
Σ

e−
r2

4 (g ◦ f−1)∗ωM

)
.

Clearly, Φf is a smooth map. We also define

Cf : ACHk,αn (Σ)→ ACHk,αn (Γ), Cf [h] = h ◦ f .
By Items (2) and (3) of Proposition 3.3, Cf is well defined and it is an isomorphism with
inverse Cf−1 .

Now, consider

Φf ◦ Cf ◦ Fv : U1 × U2 → Ck,α(L(Γ);Rn+1)× RM

where U1 = Ũ1 ∩Ck,α(L(Σ);Rn+1), Ũ1 a neighborhood of x|L(Σ) ∈ Ck,α̃(L(Σ);Rn+1)
and U2 is a neighborhood of 0 ∈ Kv. By our definitions,

Φf ◦ Cf ◦ Fv[ϕ, κ] =

(
|tr1
∞[f ]|ϕ

(
tr1
∞[f ]

|tr1
∞[f ]|

)
,

∫
Σ

e−
r2

4 Fv[x|L(Σ), κ]∗ω1,

. . . ,

∫
Σ

e−
r2

4 Fv[x|L(Σ), κ]∗ωM

)
.

Thus, by the inverse function theorem, shrinking Ũ1, Ũ2 if necessary, Φf ◦ Cf ◦ Fv is a
smooth diffeomorphism onto its image. By Item (5) of Theorem 7.1, G−1

v (0) is a smooth
submanifold of Ck,α(L(Σ);Rn+1)×Kv, and so Sf = Φf ◦Cf ◦Fv(G−1

v (0)) is a smooth
submanifold of Ck,α(L(Γ);Rn+1)× RM near Φf [f ]. Hence, in view of Items (3) and (6)
of Theorem 7.1, Φf sets up a one-to-one correspondence between

Of =
{

[g] ∈ ACEk,αn (Γ) : g ∈ W
}
,

whereW = W̃ ∩ ACHk,αn (Γ) for W̃ a neighborhood of f ∈ Ck,α̃1 (Γ;Rn+1), and a neigh-
borhood of Φf [f ] ∈ Sf . Moreover, if f ′ ∈ ACHk,αn (Γ) and f ′(Γ) is a self-expander, then

Φf ′ ◦ (Φf |Of
)−1 = Φf ′ ◦ Cf ◦ Fv ◦ (Φf ◦ Cf ◦ Fv)−1|Sf
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is a smooth map. Therefore, the collection of such (Of ,Φf ) form a smooth atlas for
ACEk,αn (Γ) from which one obtains a countable subcover as Ck,α1 ∩ Ck1,H(Γ;Rn+1) and
Ck,α(L(Γ);Rn+1) are separable with respect to the Ck,α̃1 and Ck,α̃ topology, respectively.
This proves Item (1).

To obtain Items (2) – (4), we observe that Π ◦ (Φf |Of
)−1 is the usual projection of

Ck,α(L(Γ);Rn+1)× RM onto its first component. We invoke Item (5) of Theorem 7.1 to
see that codimSf = dimKv = M and {0} × RM is contained in the tangent space of Sf
at Φf [f ]. Hence, the claims in Items (2) – (4) follow easily from these observations. �
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APPENDIX A. ESTIMATES FOR THE HEAT EQUATION ON Rn

We first state a well-known maximum principle for parabolic equations on Rn.

Proposition A.1. If w ∈ C0(Rn × [0, T ]) has continuous spatial derivatives up to the
second order and continuous time derivative and satisfies ∂tw −

n∑
i,j=1

aij∂2
xixjw −

n∑
i=1

bi∂xiw − cw ≤ 0 in Rn × (0, T )

w(x, 0) ≤ 0 for x ∈ Rn

where for some λ > 0,
n∑

i,j=1

aij(x, t)ξiξj ≥ 0 and
n∑

i,j=1

|aij(x, t)|+
n∑
i=1

|bi(x, t)|+ |c(x, t)| ≤ λ,

then w ≤ 0 on Rn × [0, T ].

Proof. For each l > 0 we define

wl(x, t) = e−2λtw(x, t)− l(1 + |x|2)
1
2 .

Then, by direct computations,

∂twl −
n∑

i,j=1

aij∂2
xixjwl −

n∑
i=1

bi∂xiwl + (2λ− c)wl ≤ C(n, λ)l.

Clearly, wl(x, 0) ≤ 0, and as w ∈ C0(Rn × [0, T ]), wl(x, t) → −∞ when (x, t) ap-
proaches infinity.

Thus, there is a point (xl, tl) ∈ Rn × [0, T ] such that

sup
(x,t)∈Rn×[0,T ]

wl(x, t) = wl(xl, tl).

If tl > 0, then

∂twl(xl, tl) ≥ 0, ∂xiwl(xl, tl) = 0, and
n∑

i,j=1

aij(xl, tl)∂
2
xixjwl(xl, tl) ≤ 0.

As |c| ≤ λ, it follows that wl(xl, tl) ≤ Clλ−1. If tl = 0, then wl(xl, tl) ≤ 0. Hence,

sup
(x,t)∈Rn×[0,T ]

wl(x, t) ≤ Clλ−1.

Now passing l→ 0, we get

sup
(x,t)∈Rn×[0,T ]

w(x, t) ≤ 0,
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proving the claim. �

We now prove Lemma 5.5 for the heat equation on Rn.

Proposition A.2. Let β ∈ (0, 1). Given h ∈ C0((0, 1);Cβ(Rn)) the Cauchy problem

(A.1)

{
∂tw −∆w = h in Rn × (0, 1)
lim

(x′,t)→(x,0)
w(x′, t) = 0 for x ∈ Rn

has a unique solution in C0((0, 1);C2,β(Rn)). Moreover, w satisifes

sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iw(·, t)‖β ≤ ν(n, β) sup
0<t<1

‖h(·, t)‖β .

Proof. On Rn × (0, 1) we define

w(x, t) =

∫ t

0

∫
Rn
h(y, s)Φ(x− y, t− s) dyds,

where Φ(x − y, t − s) = (4π(t − s))−n2 e−
|x−y|2
4(t−s) . It follows from a direct calculation –

cf. [17, pp. 263–264] – that ∂tw −∆w = h.
Observe that |w(x, t)| ≤ t‖h‖0, and that

|w(x, t)− w(x′, t)| ≤
∫ t

0

∫
Rn
|h(x− y, s)− h(x′ − y, s)|Φ(y, t− s) dyds

≤ t sup
0<s<1

[h(·, s)]β |x− x′|β .

Thus,
sup

0<t<1
t−1‖w(·, t)‖β ≤ sup

0<t<1
‖h(·, t)‖β .

Next we use [17, Chapter 4, (2.5)] to estimate

|∂xiw(x, t)| ≤ ‖h‖0
∫ t

0

∫
Rn
|∂xiΦ(x− y, t− s)| dyds ≤ C(n)

√
t‖h‖0.

Moreover,

|∂xiw(x, t)− ∂xiw(x′, t)| ≤
∫ t

0

∫
Rn
|h(x− y, s)− h(x′ − y, s)||∂yiΦ(y, t− s)| dyds

≤ C(n)
√
t sup

0<s<1
[h(·, s)]β |x− x′|β .

Thus,
sup

0<t<1
t−

1
2 ‖∂xiw(·, t)‖β ≤ C(n) sup

0<t<1
‖h(·, t)‖β .

Next we use [17, Chapter 4, (1.9) and (2.5)] to estimate

|∂2
xixjw(x, t)| ≤

∫ t

0

∫
Rn
|h(y, s)− h(x, s)||∂2

xixjΦ(x− y, t− s)| dyds

≤ sup
0<s<1

[h(·, s)]β
∫ t

0

∫
Rn
|x− y|β |∂2

xixjΦ(x− y, t− s)| dyds

≤ C ′(n, β) sup
0<s<1

[h(·, s)]β .

This together with the Hölder estimate [17, pp. 276–277] of ∂2
xixjw gives

sup
0<t<1

‖∂2
xixjw(·, t)‖β ≤ C ′(n, β) sup

0<t<1
‖h(·, t)‖β .
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Hence, we have proved that w is a classical solution to the problem (A.1) satisfying

sup
0<t<1

2∑
i=0

t
i−2

2 ‖∇iw(·, t)‖β ≤ C ′′(n, β) sup
0<t<1

‖h(·, t)‖β .

Moreover, observe that for (x, t) ∈ Rn × (0, 1) and 0 < δ < 1− t,

w(x, t+ δ)− w(x, t) =

∫ t

0

∫
Rn

(h(y, s+ δ)− h(y, s))Φ(x− y, t− s) dyds

+

∫ 0

−δ

∫
Rn
h(y, s+ δ)Φ(x− y, t− s) dyds.

By the preceding discussions, if h ∈ C0((0, 1);Cβ(Rn)), then w ∈ C0((0, 1);C2,β(Rn)).
The uniqueness follows from Proposition A.1. �

APPENDIX B. NOTATION GUIDE

Section 1.
HΣ the mean curvature vector of Σ
nΣ the unit normal of Σ
x the position vector
x⊥ the normal component of the position vector
Hn the n-dimensional Hausdorff measure
ACEk,αn (Γ) the space of equivalence classes of Ck,α∗ -asymptotically conical em-

beddings of Γ into Rn+1 whose images are self-expanders.

Section 2.1.
BnR(x), BR(x) the open ball in Rn of radius R and center x
B̄nR(x), B̄R(x) the closed ball in Rn of radius R and center x
BnR, BR the open ball in Rn of radius R and center origin
B̄nR, B̄R the closed ball in Rn of radius R and center origin
L[C] the link of cone C
C[σ] the cone over σ ⊂ Sn

Section 2.2.
∇Σ the covariant derivative on Σ
dΣ the geodesic distance on Σ
BΣ
R(p) the open geodesic ball in Σ of radius R and center p ∈ Σ

τΣ
p,q the parallel transport along the unique minimizing geo-

desic in Σ from p to q
‖f‖l;Ω, ‖f‖l, ‖f‖l,0 the Cl norm for function f on Ω
Cl(Ω), Cl,0(Ω) the space of functions on Ω with finite Cl norm
[f ]β;Ω, [f ]β the Hölder semi-norm with exponent β for function f on

Ω
[T ]β;Ω, [T ]β the Hölder semi-norm with exponent β for tensor field T

on Ω
‖f‖l,β;Ω, ‖f‖l,β the Cl,β norm for function f on Ω
‖f‖β;Ω, ‖f‖β = ‖f‖0,β the Cβ norm for function f on Ω
Cl,β(Ω) the space of functions on Ω with finite Cl,β norm
Cβ(Ω) = C0,β(Ω) the space of functions on Ω with finite Cβ norm
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‖f‖(d)
l;Ω, ‖f‖

(d)
l , ‖f‖(d)

l,0 the (1 + |x|)d-weighted Cl norm for function f on Ω

Cld(Ω), Cl,0d (Ω) the space of functions on Ω with finite ‖ · ‖(d)
l norm

[f ]
(d)
β;Ω, [f ]

(d)
β the(1 + |x|)d-weighted Hölder semi-norm with expo-

nent β for function f on Ω

[T ]
(d)
β;Ω, [T ]

(d)
β the (1 + |x|)d-weighted Hölder semi-norm with expo-

nent β for tensor field T on Ω

‖f‖(d)
l,β;Ω, ‖f‖

(d)
l,β the (1 + |x|)d-weighted Cl,β norm for function f on Ω

‖f‖(d)
β;Ω, ‖f‖

(d)
β = ‖f‖(d)

0,β the (1 + |x|)d-weighted Cβ norm for function f on Ω

Cl,βd (Ω) the space of functions on Ω with finite ‖ · ‖(d)
l,β norm

Cβd (Ω) = C0,β
d (Ω) the space of functions on Ω with finite ‖ · ‖(d)

β norm
X(Ω;RM ) the space of maps from Ω to RM with finite X norm

Section 2.3.
CR the cone C outside the closed ball B̄R
E H
d [ϕ] the homogeneous extension of degree d of ϕ where ϕ is a map

from the link of a cone to RM
tr[f ] the trace of f where f is a homogeneous map from a cone to RM
trd∞[g] the trace at infinity of g where g is an asymptotically homoge-

neous of degree d map from a cone to RM

Cl,βd,H(CR;RM ) the subspace of Cl,βd (CR;RM ) consisting of elements that are
asymptotically homogeneous

Cl,βd,0(CR;RM ) the subspace of Cl,βd,H(CR;RM ) consisting of elements with trace
at infinity equal to zero

Section 2.4.
Σf the v-graph of function f
πv the projection map onto a hypersurfaces along transverse section v on the

hypersurface
Ev[f ] the v-extension of f where f is a map from a hypersurface to RM and v is

a transverse section on the hypersurface

Section 2.5.
E H
v,d[ϕ] the v-homogeneous extension of degree d of ϕ where ϕ is a map from the

link of a cone to RM and v is a tranverse section on the cone

Section 3.
C(Σ) the asymptotic cone of Σ
L(Σ) the link of the asymptotic cone of Σ
CR(Σ) the asymptotic cone C(Σ) outside the closed ball B̄R
ACHk,αn the space of Ck,α∗ -asymptotically conical Ck,α-hypersurfaces in Rn+1

θv;Σ′ the inverse of πv restricted to Σ′, a hypersurface outside a compact set

Section 3.1.
trd∞[f ] the trace at infinity of f when f is an asymptotically conical of

degree dmap from an asymptotically conical hypersurface into RM

Cl,βd,H(Σ;RM ) the subspace of Cl,βd (Σ;RM ) consisting of elements that are
asymptotically homogeneous

Cl,βd,0(Σ;RM ) the subspace of Cl,βd,H(Σ;RM ) consisting of elements with trace at
infinity equal to zero
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Section 3.2.
ACHk,αn (Γ) the space ofCk,α∗ -asymptotically conical embeddings of Γ into Rn+1

C[f ] the homogeneous extension of degree one of tr1
∞[f ]

f ∼ g the asymptotically conical embeddings f ,g are equivalent, provided
f−1 ◦ g is a diffeomorphism that fixes infinity

Section 4.
LΣ the Jacobi operator on Σ
Lv the v-Jacobi operator where v is a transverse section

Section 5.
LΣ certain Schrödinger operator on Σ related to the Jacobi operator
Dl,β(Σ) certain Banach space of functions on Σ
‖f‖∗l,β the norm on Dl,β(Σ)

Section 6.
K the kernel space of the Jacobi operator
Kv the kernel space of the v-Jacobi operator
r the distance to the origin restricted to a hypersurface
∂r the gradient of r
tr∗∞[u] the trace at infinity of Jacobi function u
Fw[u] the leading term in the expansion of Jacobi function u

Section 7.
H[g] the mean curvature vector of embedding g
n[g] the unit normal of embedding g
x⊥[g] the normal component of embedding g
BR(p;X) the open ball in Banach space X with radius R and center p ∈ X
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