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Abstract—Lecture videos are rapidly becoming an invaluable
source of information for students across the globe. Given the
large number of online courses currently available, it is important
to condense the information within these videos into a compact
yet representative summary that can be used for search-based
applications. We propose a framework to summarize whiteboard
lecture videos by finding feature representations of detected
handwritten content regions to determine unique content. We
investigate multi-scale histogram of gradients and embeddings
from deep metric learning for feature representation. We ex-
plicitly handle occluded, growing and disappearing handwritten
content. Our method is capable of producing two kinds of lecture
video summaries - the unique regions themselves or so-called
key content and keyframes (which contain all unique content
in a video segment). We use weighted spatio-temporal conflict
minimization to segment the lecture and produce keyframes
from detected regions and features. We evaluate both types of
summaries and find that we obtain state-of-the-art peformance
in terms of number of summary keyframes while our unique
content recall and precision are comparable to state-of-the-art.

I. INTRODUCTION

Educational videos are an abundant resource thanks to the
proliferation of Massively Online Open Courses and university
online offerings. These resources hold the promise of de-
mocratizing education by ensuring that distance and economy
do not prevent access to quality content. It has been shown
that breaking down a lecture into topically coherent segments
increases viewer engagement [1]. Further, studies have found
that students tend to return multiple times to certain points
in the video to review concepts [2]. Thus, there is a need to
summarize the content so that a student can a) quickly decide
which lecture to view and b) navigate to specific content.

Information extraction from lecture videos is a challenging
problem. Several lectures are self-recorded and do not have ex-
tensive production and transcript annotation and often involve
a single fixed camera covering the whiteboard. Thus, there is
a need for a pipeline to summarize lectures via visual text as
opposed to text transcript. Further, whiteboard lectures tend to
be a semi-structured arrangement of phrases, math expressions
and sketches making direct recognition challenging. Therefore,
there is a need to explore methods for handwritten content
representations such as visual features.

In our work, we use term ‘summarization’ to describe video
summarization by keyframes which is the process of reducing

Fig. 1: Our pipeline for producing keyframe and key object
summaries is shown above. We first take every frame of
input video and detection content regions using a neural
network, features are obtained from detected regions and
this information is used to form an initial tracklet graph,
where each node corresponds to a unique content region.
Then we detect conflicting region tracklets as well as group
occluded/growing/disappearing tracklets. At this point, we
generate all unique groups of tracklets as key object sum-
maries. Further, we use the conflict information to segment
the video and produce a keyframe per segment.

a video to a subset of frames that capture all of the content
within the video [3]. This method of summarization has been
adapted in both presentation and whiteboard lecture videos.
Some methods for presentation videos extract image descrip-
tors from consecutive frames and detect slide transitions by
measuring sharp changes in frame descriptors [4, 5]. While
this approach has been used for whiteboard lectures [6], it
was found to be susceptible to noise induced by presence of
lecturer as well as by handwritten content changing gradually
over time, as opposed to instant slide changes.

Thus, state-of-the-art whiteboard summarization approaches
[7, 8] use the paradigm of content detection and binarization,
tracking binary connected component (BCC) lifetimes across
the video using pixel-wise overlap as matching metric and
finally segmenting the video based on these lifetimes. In
particular, Davila and Zanibbi proposed conflict minimization
- a greedy algorithm to segment a lecture video, based on
spatial conflicts between dissimilar BCCs [7]. However, such
approaches typically use a specialized binarization network
that needs to be trained on lecture data [9, 10]. In this work, we
propose a region-based framework that does not need explicit
binarization to perform summarization.

Content regions need robust descriptors to represent the con-
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tent. Accurate recognition of the content region would yield a
satisfactory descriptor, however, it is not always feasible due
to lack of annotation. Furthermore, the variety of handwrit-
ten content encourages us to explore visual descriptors for
whiteboard lecture content. In our prior work, we investigated
deep metric learning methods to produce these descriptors.
Although this method showed promise, it was used to produce
‘key object’ summaries and not keyframe summaries. In our
current work, we investigate high level descriptors obtained
from deep metric learning techniques and low level descriptors
(using Histogram of Gradients) and propose a framework to
produce both keyframe and key object summaries.

Methods for associating detected text regions across a video
have been shown in video scene text literature using a mixture
of recognition and visual features [11], however in whiteboard
lecture videos, there is a need to be aware of occlusions of
text due to lecturer as well as handling growing/disappearing
content due to writing/erasure events. In our work, we propose
a graph-based technique that can perform association and
conflict detection of content regions even under occluded and
partial conditions.

The evaluation of whiteboard lecture video summarization
involves two metrics, size of produced summary and extraction
of content with respect to ground truth. The goal is to produce
as compact a summary as possible (usually measured in terms
of number of summary objects) while extracting all the unique
content within the lecture video (usually measured in terms
of recall and precision). In our work, we introduce weighted
conflict minimization by modifying the original algorithm
proposed by Davila and Zanibbi [7] in order to obtain a finer
control on the trade-off between the two evaluation metrics.

Our contributions in this work, are as follows:
• A content region-based summarization method that pro-

duces both keyframes and ‘key objects’ as summaries.
• An efficient graph-based tracking scheme for associating

content regions and detecting content conflicts which is
robust to occluded, growing and disappearing content.

• A modified scheme of conflict minimization which al-
lows for a fine-grained control on the trade-off between
compactness of summary and recovery of unique content
within summaries.

Figure 1 shows an overview of our summarization method
which is explained in detail in Section III.

II. BACKGROUND

General Video Summarization: Truong and Venkatesh
have broadly classified video summarization approaches into
static (keyframes) and dynamic (one or more skims) [3].
Keyframes are a set of frames from the video that capture the
most important content whereas skims are short segments of
the videos that capture the most important events. Recently,
Meng et al. [12] proposed a method to summarize videos by
so-called key objects, obtained using representation selection
methods from candidate detections on all video frames.
Summarization methods could be supervised, where each
frame has an importance score allotted by experts which can

be used to train models. In unsupervised methods, frame
representations are extracted and dynamic programming
or similar approaches are used to maximize coverage or
minimize summary size [13].

Whiteboard Lecture Video Summarization: Most recent
approaches summarize lecture videos by providing a set of
keyframes that capture all unique content. Lecture summaries
are of two types (i) extractive,- focusing on all content ele-
ments; (ii) abstractive - focusing on content elements relevant
to search queries or user navigation.

Most whiteboard approaches are extractive and are evalu-
ated by number of keyframes and recall, precision of content
[5, 7, 8, 10, 14, 15, 16, 17]. Summarization of content is
carried out by analysis of detected content (typically binary
connected components) [7, 8, 10] by minimizing a global
objective (content conflicting for the same space at different
times) or using local content difference [15]. Further, labelling
every frame with an importance score is challenging, therefore,
unsupervised methods are preferred.

Whiteboard lecture videos are typically preprocessed by
background removal and binarization followed by content
extraction and summarization [7, 16, 18]. After preprocessing,
handwritten content is extracted and grouped into meaningful
sets, primarily using spatiotemporal cues [7, 8, 10, 14, 16]
or OCR [16]. Explicit modelling of lecturer actions have
also been used for content extraction and video segmentation
[15, 17]. Neural networks have recently been used for direct
content extraction [8, 10, 19, 20].

Recently, we proposed a triplet loss based embedding for
representing content regions (as opposed to binary connected
components in prior work), method to summarize lectures by
key content and a corresponding evaluation scheme [21]. In
our current work, we use neural network to detect content and
investigate low-level descriptors and deep metric learning to
extract features from content. We then propose a framework
sensitive to occluded, growing and disappearing content to
obtain both keyframe and key content summaries.

Text Representation in Images and Videos: While
there have been many methods based on direct recognition
[22, 23] and learning vector representations of recognized
text [24, 25], there are few works that use visual features to
represent detection regions. Phan et, al. use SIFT and Stroke
Width Transform descriptors matching to align regions across
frames and augment recognition based representation [26].

Dataset and Evaluation: AccessMath is the largest, pub-
licly available, benchmarked dataset for whiteboard lecture
video summarization [7]. It consists of 12 lecture videos (5
training and 7 testing), recorded with a single still camera
at 1920 × 1080 resolution spanning the whole whiteboard.
AccessMath consists of ground truth summary keyframes and
is evaluated by the average number of keyframes produced
and the average recall and precision of all binary connected
components (CC) in the summary as well as in all frames of
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the video. The matching scheme for binary CCs is detailed
along with benchmarking procedure by the creators of the
dataset [7] and allows split and merged matches. Additionally,
content region ground truth bounding boxes are also provided.
The boxes are drawn around content that is created and erased
at roughly the same time [8]. In our previous work [21],
we proposed a method to summarize whiteboard lectures by
key content regions. Further, an evaluation scheme based on
DetEval [27] was proposed to evaluate summary regions.
In this work, our method generates both key content and
keyframe summaries from the same framework.

III. LECTURE VIDEO SUMMARIZATION

We summarize whiteboard videos by detecting and repre-
senting handwritten content regions on the video frames. The
feature representations are used to group and track lifetimes
of each unique region within the video. We use partial region
features to ensure occlusions due to lecturer movement and
additions/deletions made to content are correctly handled
during tracking. Finally, we propose a scheme to weigh the
so-called spatio-temporal content conflicts (STCC) i.e. two
different tracklets occupy the same region of the whiteboard
but at different times. The video is then segmented such that
the total weight of STCCs within all segments is minimized
and a binarized keyframe is constructed for each segment using
all tracklets that are active within that segment. Figure 1 shows
an overview of this pipeline. The values of hyperparameters
used in different stages are specified in Section IV.

A. Content Detection

We adapt PSENet, a deep neural network model proposed
by Wang et. al. [28] to detect whiteboard content. This network
is initialized using scene text detection weights and trained on
lecture videos annotated at the bounding box level [8]. The
architecture of the neural network is as follows:

Feature Extractor Block: employs the Feature Pyramid
Network (FPN) with ResNet-50 backbone. It consists of a
downsampling path with consecutive blocks of convolutional
layers with residual connections and an upsampling path using
deconvolution layers. Feature maps at downsampling stage are
smoothed via lateral convolutional layers and concatenated
with the corresponding upsampled feature maps. Finally, all
upsampled feature maps are concatenated along the channel
axis to produce multi-scale features that have proven effective
for object and text detection tasks [28, 29].

Classification Block: a two layer convolutional network
that operates on the concatenated upsampled feature maps
to produce k dense pixel level text/non-text prediction mask.
During training, the masks are trained against k target masks
generated using increasing amount of shrinking applied to the
ground truth text area polygons. During inference, a region
growing algorithm starting with the mask with the highest
amount of shrinking is applied progressively for all k maps to
obtain text masks and polygons using connected components.

TABLE I: Quantitative evaluation of isolated handwritten con-
tent detector in our prior work and current work by measuring
pixel-wise recall and precision against test set video frames.

Frame-wise AVG PIXEL-WISE AVG
METHOD BBOXES REC. PREC. F-MEAS.
Prior work 1 [8] 12.25 81.87 76.20 76.48
Prior work 2 [10] 12.35 88.43 68.39 75.27
Current work 23.69 86.75 84.62 85.68

TABLE II: Evaluation of feature extraction methods by mea-
suring area under the curve (AUC) of the ROC curve

Method AUC
Deep Metric Learning 85.82

Histogram of Gradients 89.10

This detection architecture was shown to be successful
at handling text of different scales, orientations and layouts
including curved text while the progressive expansion allows
the network to handle instance separation when text is close
by or overlapping. Both of these properties are desirable in
whiteboard lectures where the content is loosely structured.
Finetuning on lecture data was necessary since the content type
includes math expressions and figures which are not typically
seen in scene text datasets.

PSENet is finetuned on the AccessMath [7] training lecture
videos for detection of handwritten content on frames sampled
at 1 frame per second. In order to save time, bounding box
annotations for this dataset were created by marking the frame
when the lecturer completes writing a unit of content and the
frame when the lecturer begins to erase the same content [8].
This results in regions that are varied in layout (multi-line,
sketches with text labels) and content type (math expressions,
phrases, words, sentences, sketches). During annotation, every
unit of content is assigned a unique ID. Training procedure and
hyperparameters are detailed in Section IV. After training, the
learnt weights are used to predict regions in the AccessMath
test lecture video frames sampled at 1 frame per second.

B. Feature Representation

Given the lack of recognition labels for supervised training
and the variety of text content including math expressions and
sketches, we have opted for a visual feature representation
approach. We compare a histogram of gradients (HoG) based
baseline feature extractor with deep metric learning methods
learnt using the training set of the AccessMath dataset.

1) Histogram of gradients: Every detected region is re-
shaped into multiple aspect ratios in order to extract features
robust to shape and size variations. In this work, we have
chosen 32×32, 64×16, 16×64, 54×18, 18×54. HoG features
with cell size 8 × 8, and block size 2 × 2 are extracted from
each aspect ratio and concatenated. The normalized area of
the input region is appended to these to form the final feature
descriptor with 1189 descriptors. Table II shows the results of
using the HoG features to perform matching of ground truth
regions in the test video lectures.
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Fig. 2: Neural network structure for deep neural network
feature extraction. The feature maps are extracted from the
FPN block of our detector. Detected bounding boxes are used
to crop regions from the feature maps and ROIPool layers are
used to get fixed aspect ratio representations of cropped areas.
These representations are flattened, concatenated and passed
to a fully connected layer followed by L2 normalization to
produce the final feature embedding.

2) Deep metric learning: The feature extractor block of the
PSENet trained for the detection task is re-used to compute
detected region representations. The output feature maps with
256 channels are compressed to 64 channels using a 1x1
convolution layer. From here, we use the detected region
bounding box to crop the feature map and resize it to 2x7, 7x2,
and 7x7 regions using an ROI pooling layer. These features
are flattened, concatenated and fed into a fully connected layer
which is trained using multi-similarity (MS) loss [30].

MS loss is a deep metric loss which selects an anchor sam-
ple and minimizes the weighted distance to positive samples
within a mini-batch and maximizes weighted distance to nega-
tive samples with the mini-batch. These weights are controlled
using a hyper-parameter λ, and the loss function is designed
to give higher weight to positive sample distances that are
further away from the anchor and negative sample distances
that are closer to the anchor. Like many deep metric learning
methods, larger mini-batch size and effective sampling, and
data augmentation is critical to ensure convergence.

We use the unique region IDs assigned during annotation
to compose mini-batches with sufficient positive and nega-
tive samples. Data augmentation is carried out by slightly
perturbing ground truth bounding boxes as well as color
space variations. We make sure that each mini-batch is only
composed of samples from a single lecture so that the unique
IDs are not confused across lectures.

Table II shows comparison of HoG-based features and deep
metric learning features on the AccessMath test dataset.

C. Spatio-temporal Content Graph Creation

We first provide an overview of our spatio-temporal analysis
procedure before diving into the details. The content graph
creation happens in two stages. In the first stage, an initial
detection graph Gd is built where each detection is a node in
the graph. Other metadata such as frame number, video time,
bounding box etc. are also noted in the node. In the second
stage, another graph Gt is composed where each node is a
tracklet and consists of a list of nodes of Gd. Ideally, each
tracklet node groups visually similar and spatially proximal
detection nodes and can be considered as a representative for

that region. After this, we consider all tracklet node pairs
which have positive area overlap as interactions of interest.

For these pairs, we compute partial features (i.e. only from
area of overlap) to compare similarity of the two regions.
The pair is considered to be a spatio-temporal content conflict
(STCC) if dissimilar, or is considered to be occluded, growing
or disappearing content if similar. Conflicting nodes indicate
that new content has replaced older content and is a cue for
video segmentation. On the other hand, if there is no conflict,
then the nodes are part of the same content and the video need
not be segmented.

1) Initial graph formation: The detection network is used
to predict handwritten content regions from every frame.
Features are extracted from each detected region. An object
detector trained on VOC2007 dataset is used to detect the
speaker and any content detection node which spatially over-
laps with the speaker is removed. Each remaining detection
is considered node in a graph Gd. An edge is drawn between
nodes if their normalized spatial distance and feature distances
are below a threshold and they occur within 85s of each
other. These thresholds are obtained using the ground truth
detections from the training video lectures. We compute the
feature distance dfij = ‖f(ri)− f(rj)‖22 and spatial distance
dsij = ‖xi − xj‖22. Where, f represents normalized feature
extraction and xi, xj are the top-left and bottom-right corner
coordinates of detection nodes ni and nj normalized with
respect to frame height and width.

2) Tracklet nodes creation: Connected components are
extracted from Gd which are designated as nodes of a new
graph Gt. Each node of Gt represents a unique region
tracklet ti, consisting of a set of detection instances Ni and
corresponding features Fi which ideally capture the same
content. The metadata associated with these tracklet nodes are
the lists of frame numbers, video times and bounding boxes
corresponding to its constituent detection nodes. Further, we
can compute representative features, lifetimes and bounding
box for each tracklet node by aggregating constituent node
metadata.

3) Characterizing tracklet node interactions: Illumination
changes, occlusions due to speaker movement result in incon-
sistent detections. Thus, it is possible that different tracklets
overlap in space or one completely contains the other. We
exhaustively consider pairs of tracklet nodes ti and tj and
if they overlap spatially, we compute the area of intersection
Aij = Ai∩Aj between aggregate bounding boxes of tracklets
ti and tj , denoted as Ai and Aj respectively.

For every detection node nik ∈ Ni within the tracklet ti,
partial visual features Pi = {pik} are computed from the
region Aij using the meta-data information to obtain list of
frame numbers to get the corresponding frame images. This
process is repeated for every detection node njl ∈ Nj in
tracklet tj to obtain partial feature set Pj = {pjl }. Means and
standard deviations of these features pµ and pσ are computed
for tracklet pair ti and tj . Spatial overlap is measured using
intersection over union IOUij =

Aij

Ai∪Aj
as well as inter-
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Fig. 3: Demonstration of conflicting regions across time. Two
frames ordered in time from top to bottom are shown with a
snapshot of the state of the tracklet graph, each node (tracklet)
is indicated by a rhombus. Red arrows indicate spatio-temporal
content conflict. Strength of each conflict is computed using
the scheme in Section III-D. These conflicts are resolved by
creating a video segment such that the two frames belong to
different segments. Selected detected regions and nodes in the
tracklet graph are shown for clarity.

section over minimum of aggregate tracklet bounding boxes
IOMinij =

Aij

min(Ai, Aj)
.

Two nodes ti and tj are grouped if they overlap tem-
porally and the difference between partial feature means
pµij = |pµi − pµj | is low and the spatial overlap IOUij or
IOMinij is high. This means that there is a common region
between the two tracklets that have similar features and
indicate occluded/growing/disappearing content regions. On
the contrary, if the pµij value is high, this indicates that either
one of the tracklets has merged multiple unique content regions
into one; then tracklet with the higher standard deviation pσ

is marked to be split. If there is no temporal overlap, tracklets
which overlap spatially and are have distant visual features
are marked as conflicting to denote that they occupy the same
space on the whiteboard at different timestamps. An edge is
drawn between ti and tj if they need to be grouped or are
in conflict. Edge metadata also includes difference between
feature means pµij and area of overlap Aij normalized to image
area. These values are noted in order to later compute weight
of the conflict/grouping. Examples of conflicting and non-
conflicting regions are shown in Figures 3 and 4 respectively.

D. Video Summarization

At this stage of the algorithm we can generate two kinds of
summaries - key content and keyframes. Key content regions
can be computed by using the partial feature difference and

Fig. 4: Occlusion due to lecturer movement or growing
handwritten content produces tracklets that cover overlapping
regions. Direct feature comparison would produce different
tracklets and could lead to oversegmentation during the sum-
marization as well as lower content recall and precision. By
extracting partial features from regions of overlap, we merge
these separate tracklets into the same. The frames above are
ordered in time starting from left to right on the top row and
then left to right on the bottom row.

area of overlap between nodes stored as edge metadata in
Gt. This computed weight allows us to control the number of
final content regions produced. This summary is evaluated by
average recall with respect to ground truth content regions at
intersection-over-union (IOU) tolerance of 0.5 for matching,
as well as number of content regions compared to ground
truth [21]. Table IV shows the compares the performance of
our current method with prior art.

Keyframe summaries are produced by first segmenting the
video using weighted conflict minimization, a variant of the
approach proposed by Davila and Zanibbi [7]. Each content
node present within every interval is binarized and placed on a
virtual frame to produce the summary keyframe. It is evaluated
by the recall-precision of binary connected components in the
output keyframes and number of keyframes.

Weighted Conflict Minimization: This is a greedy al-
gorithm used to segment the video into intervals containing
unique content. The initial video segment is set to be entire
video from the first to the last frame. We identify the lifetimes
(in terms of frame number) of every pair of conflicting
tracklets that are present on the whiteboard within the selected
interval. The frames between these lifetimes are candidates
for segmenting the video. For every such frame, we sum the
weights of the conflict (derived from edge metadata computed
in Section III-C3) that would be resolved if the video was
segmented at that frame. The frame with highest conflict
resolution weight is chosen greedily and the algorithm is
recursively repeated in the left and right intervals until a
stopping criterion is reached.

After identifying the frame numbers to segment the video,
we gather all tracklets that are active within each interval,
obtain cropped regions using the stored frame numbers and
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TABLE III: Comparison of different methods of conflict minimization strategies by measuring recall (R), precision (P), f-score
(F), average number of frames (Nf ) and standard deviation (σ). The first half shows results for uniform weights while the second
half shows results for weights computed from product of normalized area of conflict and mean partial feature difference. With
the latter strategy, we get more control on the trade-off between compression and content recall. wmin indicates the minimum
conflict weight required to create a segment.

AVG AVG GLOBAL AVG PER FRAME
wMIN Nf (σ) R P F R P F
5 10.71 (1.48) 94.98 93.77 94.36 93.92 92.50 93.18
3 11.86 (1.25) 95.2 93.97 94.57 94.13 92.85 93.47
1 15.57 (2.19) 95.52 94.18 94.84 94.45 93.36 93.89
0.025 10.29 (1.67) 95.01 93.84 94.41 93.98 93.69 93.84
0.0025 12.57 (1.50) 95.37 94.00 94.68 94.24 93.09 93.64
0.0001 15.57 (1.99) 95.61 94.56 95.08 94.6 93.77 94.17

TABLE IV: Evaluation of key content summaries by com-
paring average number of content regions, Nc (ground truth
Nc = 87.43), and average summary recall. Intersection-over-
Union threshold of 0.5 is used to check if ground truth region
has been recalled.

Method Nc Avg. Recall
Prior Work [21] 127.14 92.09

Our Work 114.57 94.10

bounding boxes and binarize them using a random forest (RF)
in hysteresis with Otsu binarization as described by Davila and
Zanibbi [7]. Thus, a summary keyframe is produced for each
interval by compositing all binarized tracklet regions within
that video segment. It must be noted that we use binarized
summary keyframes in order to compare fairly with existing
methods in the literature that are evaluated on recall and
precision of unique ground truth binary components. We can
also produce summary keyframes by selecting a video frame
with maximum content from within a segment.

Table V shows the number of keyframes produced along
with recall-precision of summary binary connected compo-
nents obtained using our proposed framework and comparison
to existing methods.

IV. EXPERIMENTS AND DISCUSSION

PSENet structure of the handwritten content detector is
initialized with weights trained on a combination of scene
text datasets from ICDAR 2015 and 2017 Robust Reading
Competitions [31, 32]. It is then fine-tuned end-to-end on the
AccessMath dataset for 200 epochs at a learning rate of 0.001
for 200 epochs using a stochastic gradient descent optimizer
with momentum of 0.9 and a weight decay of 0.0005. The
training frames are randomly cropped to sizes of 512 × 512
and the batch size is 8.

Pixel-wise recall and precision of the detector is compared
to other existing methods on the AccessMath test lecture
dataset in Table I. We can see that the detector demonstrates
higher F-measure than both existing methods despite produc-
ing more regions per-frame. This is possibly attributed to more
pre-training data and instance segmentation as opposed to
regression-based detection.

The feature extraction network is initialized using the same
weights as the detector for all common layers and the rest are
initialized using Kaiming-normal initialization. These layers
are then trained for 200 epochs at a learning rate of 0.0001
which is dropped by a factor of 0.1 after 100 epochs. In our
experiments, using MSLoss hyperparameter λ = 0.3 gave us
best results, whereas under triplet loss this network did not
converge. We test the matching performance of the two feature
extraction algorithms by using receiver operating characteristic
(ROC) curves at various thresholds. Features are extracted
from ground truth test set regions using the two methods and
for each region, cosine distance is computed to every other
region feature. We then measure the area under the curve
(AUC) for genuine and impostor distances to compare the two
methods, which is shown in Table II.

While deep metric learning (DML) approaches show
promise, the histogram of gradients features outperforms this
approach. DML approaches are often sensitive to sampling and
thus, require large batch sizes and multiple epochs to converge
to meaningful representations. This forces trade-offs with
respect to number of parameters and computational hardware
use. Further, neural network features extract high-level features
due to multiple downsampling layers and are often further
reduced by pooling operations, which may not be sufficient to
perform fine-grained distinction of handwritten content regions
without additional supervision requiring extensive annotations.

During computation of spatio-temporal graphs (STG), we
use distance threshold dsij = 0.04 and feature threshold
dfij = 0.5 for both full and partial matches. If spatial overlap,
IOUij ≥ 0.70 or IOMinij ≥ 0.90, two tracklets ti and tj
are considered as occluded/growing/disappearing regions and
are candidates for grouping. For conflicts checks, any non-
zero values of overlap are considered. These thresholds are
obtained empirically by measuring final performance on the
training lecture video set. Though, the first two stages of STG
creation (Sections III-C1 and III-C2) are analogous to work
by Davila and Zanibbi [7], we have designed an algorithm
that uses partial region feature extraction (detailed in Section
III-C3) to merge region tracklets or mark them as conflicting,
thus enabling us to perform spatio-temporal content analysis
at region level.

For keyframe generation via video segmentation, we ex-
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TABLE V: Comparison of different methods of lecture video summarization by measuring recall (R), precision (P), f-score
(F), average number of frames (Nf ) and standard deviation (σ). Lower Nf is better, whereas higher (R, P, F) is better. Our
results in the lower part of the table are obtained by tuning our system for two different objectives - 1) minimum number of
summary keyframes (best compression) and 2) maximum unique content f-measure (best f-measure). In configuration 1, we
are able to achieve the best Nf with competitive f-measure whereas in configuration 2 we show near state-of-the-art f-measure
with competitive Nf . Depending on the end use of summarization, our framework can be tuned to optimize either objective.

AVG AVG GLOBAL AVG PER FRAME
METHOD Nf (σ) R P F R P F
AccessMath [7] 17.29 (4.54) 96.28 93.56 94.90 95.73 92.21 93.93
Maximum Content Sum [15] 34.42 (10.15) 96.49 94.51 95.49 96.13 91.95 93.99
Prior work 1 [8] 19.43 (5.32) 92.33 94.16 93.23 91.69 93.45 92.56
Prior work 2 [10] 21 (5.17) 95.80 92.88 94.32 95,40 92.44 93.90
Xu et al. [17] 12.29 (2.14) 95.89 86.28 90.83 94.18 85.15 89.44
Combined Area-Feature (best compression) 10.29 (1.67) 95.01 93.84 94.41 93.98 93.69 93.84
Combined Area-Feature (best f-measure) 15.57 (1.99) 95.61 94.56 95.08 94.60 93.77 94.17

perimented with different conflict weighing schemes namely,
uniform conflict weight (all conflicts receive a weight of 1.0
which is identical to the scheme used by Davila and Zanibbi
[7]), and product of partial feature mean difference and area
of overlap (computed as described in III-C3). Table III shows
the differences between the approaches. We found that non-
uniform conflict weights allowed a more fine-grained control
over the segmentation process than uniform weights. This
is because in the uniform scheme, the minimum weight of
conflicts to create a segment wmin, can be varied in discrete
steps, whereas in the weighted scheme, we have a continuous
range. Further, we note that for similar number of summary
frames, we get slightly higher content f-measure with the
weighted scheme.

The minimum conflict weight (wmin) to decide if segmen-
tation should occur was determined empirically using the
training video lecture set. Table V shows the final results
we obtained, compared to other work on the AccessMath
dataset. We present two sets of results, one configuration with
wmin = 0.0025 which achieved compression closest to ground
truth on training lectures and another with wmin = 0.0001
which achieved highest f-measure.

We note that our best compression method (row 1 in lower
part of Table V) achieves lowest number of summary frames in
the literature while maintaining global f-measure comparable
to the highest in literature [6], requiring about 24 summary
keyframes lesser than this method. Further, the method by
Xu et. al. which uses lecturer pose to perform summarization
[17] has the next best summarization performance while being
about 3.5% points lower in f-measure. Our best f-measure
method (row 2 in lower part of Table V) achieves second
highest global f-measure falling short by 0.4% of the highest
in literature [6] while requiring about 19 frames lesser to
summarize the content.

This shows that our framework is flexible with respective
both the objectives of whiteboard summarization - i.e. more
compact summary as well as high extraction measure of
unique content and can in fact be tuned to achieve the right
trade-off depending on the downstream application such as
search and retrieval and design of a navigable user interface.

Our failure cases in the recall largely arise from detector errors
especially smaller content regions that may be entirely missed.
Some content regions that change very subtly and also missed
by the conflict detection resulting in undersegmentation. Pre-
cision errors are caused by spurious detections sometimes in-
duced by lecturer or other false positives that cause extraneous
conflicts to be detected creating oversegmentation.

V. CONCLUSION

In this work, we have proposed a fully bounding box
detection oriented approach to summarizing whiteboard lec-
ture video in terms of both key content and keyframes. We
investigated and compared deep metric learning (DML) and
histogram of gradient (HoG) feature approaches to represent
detected regions and found that HoG achieved better perfor-
mance although DML shows promise. Further, we proposed an
efficient spatio-temporal graph (STG) based tracking scheme
using partial region feature regions that can handle growing
and occluded handwritten content to find unique regions which
are presented as key content summaries. The STG along with
a weighted conflict minimization scheme to segment the video
led to keyframe summaries. Our methods lead to performance
comparable to state-of-the-art methods in terms of average
recall, f-measure as well as average number of summary
keyframes. Additionally, the meta-data information such as
frame number and timestamps stored along with the nodes
and tracklets in our spatio-temporal graphs could help in video
navigation.

In the future, we wish to further investigate deep metric
approaches to represent handwritten content especially using
additional supervision such as recognition or classification
labels. Semi-supervised methods for handwritten content are
also an attractive avenue for future research. We also wish to
unify lecturer action detection and text detection approaches
in order to obtain higher f-measure and similar or lower com-
pression ratios. Finally, we wish to explore these methods on
other handwritten lecture datasets, especially in other domains.
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