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Abstract—Charts are useful communication tools for the pre-
sentation of data in a visually appealing format that facilitates
comprehension. There have been many studies dedicated to
chart mining, which refers to the process of automatic detection,
extraction and analysis of charts to reproduce the tabular data
that was originally used to create them. By allowing access to
data which might not be available in other formats, chart mining
facilitates the creation of many downstream applications. This
paper presents a comprehensive survey of approaches across all
components of the automated chart mining pipeline such as (i)
automated extraction of charts from documents; (ii) processing
of multi-panel charts; (iii) automatic image classifiers to collect
chart images at scale; (iv) automated extraction of data from
each chart image, for popular chart types as well as selected
specialized classes; (v) applications of chart mining; and (vi)
datasets for training and evaluation, and the methods that were
used to build them. Finally, we summarize the main trends found
in the literature and provide pointers to areas for further research
in chart mining.

Index Terms—Chart Survey, Chart Extraction, Multi-panel
Chart Segmentation, Chart Image Classification, Chart Under-
standing, Chart Data Extraction, Chart Datasets.

I. INTRODUCTION

ATA visualizations can be used to communicate in-

formation in an efficient manner. In many cases, data
which is hard to convey through text and/or tables becomes
easily interpretable through data visualizations. A great deal of
literature has been devoted to the analysis of data visualization
in order to understand how to use them more effectively
[1, 2, 3]. In this work, we concentrate on the technical aspects
of automatic extraction, classification and understanding of a
specific family of data visualizations. viz. charts.

Purchase [4] defines a diagram as a set of indivisible visual
elements (or graphics) depicted on a two-dimensional plane
in order to represent a concept. Charts are abstract diagrams
with simple rules but strong representative power, and have
been widely adopted in multiple domains [4]. In academic
papers, charts can be used as powerful summarization tools
[5], which allow researchers to navigate quickly through
results and comprehend them [6]. Charts usually complement
the facts described in the main text of a document [7], but
their data is often not made available in other formats. Charts
are ubiquitous in documents, and research in automatic chart
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processing is expected to provide access to the rich quantitative
data hidden in these graphical objects.

In this survey, we concentrate on published methods for au-
tomated chart analysis and their applications. Besides seminal
works, we cover primarily research papers from the past 15
years. Earlier methods for diagram analysis have been covered
in the survey by Blostein et al. [8]. The survey by Purchase
[4] presents a high level classification of the research topics
related to diagrams that were presented at the International
Conference on the Theory and Application of Diagrams from
2000 to 2012. The review by Liu et al. [9] covers earlier
methods for chart extraction, classification and recognition [9],
while our work also covers datasets and applications of chart
analysis, as well as new methods from the past 8 years. While
there is a significant amount of literature on chart mining, we
also highlight and draw attention to multiple open problems
which require the attention of researchers to advance this field.

This work is organized around the main steps required
for automated chart mining (see Figure 1). In Section II,
we describe methods for automated extraction of charts from
documents. In Section III, we present methods for processing
multi-panel charts. In Section IV, we discuss methods used for
chart image classification. In Section V, we cover approaches
used for automatic data extraction from charts. In Section VI,
we present applications for automated analysis of charts. In
Section VII, we present a summary of existing datasets and
their creation methodology. Finally, we discuss our findings
and open challenges in Section VIIIL.

II. EXTRACTING CHARTS FROM DOCUMENTS

In highly structured documents (e.g. academic papers, tech-
nical reports, patents, etc.), charts are commonly included
within figures. We define figure as a container for a given
visualization, its labels and its caption (textual description).
In this section, we concentrate on methods used for extracting
figures, including charts, from highly-structured documents.

Different approaches have been proposed for both digitally-
born and scanned documents. The extraction process can be
divided into two high level steps (see Figure 2): document
segmentation and linking figures to captions. The first locates
and extracts figure and caption candidates, while the second
aims to link candidate figures to their corresponding captions.

Multiple metrics have been used to evaluate figure extrac-
tion systems. Figures should be extracted with the correct
page number and captions should match the ground truth
text [5]. Region-based metrics such as intersection over target
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Fig. 1. Summary of the chart mining pipeline. The process starts with a collection of documents from which charts and their captions are extracted. Additional
segmentation is required for multi-panel images. Charts are then identified by their type through image classification methods. An approximation of the data
used to create each chart is produced by chart-specific data extraction models. Finally, the extracted data can be used to support multiple target applications.

box, intersection over candidate box, and intersection over
union (IOU) [5, 10] have been used to match the extracted
figure candidates to ground truth elements. Then, thresholds
over these metrics [5] and greedy 1-to-1 matching [10] have
been used to determine the final recall and precision metrics.
Recent figure extraction systems include PDFFigures 2 [5],
PDFFigCapX [11], and DeepFigures [12]. Both PDFFigures
2.0 and DeepFigures have been used by Semantic Scholar [13]
for large scale extraction of figures from academic papers.

A. Document Segmentation

Most methods for document segmentation can be classified
as either top-down or bottom-up. The first group starts with
complete pages and divides them into regions, while the sec-
ond group creates these regions by grouping small graphical
or textual units. Based on the input format, these methods can
also be classified as: raster-based, vector-based, and hybrid.
The trend for academic papers has been to focus on vector-
based documents and graphics. However, vector graphics can
be converted to images, and these can be processed using the
raster-based methods also used for scanned documents.

1) Raster-Based Segmentation: Traditional methods use
heuristics both to segment pages into uniform regions in either
a top-down [14] or bottom-up [15, 16] manner, and to further
classify these regions as either text or graphics [14, 16]. Deep
neural networks are used by recent methods to locate, extract,
and classify graphic regions from document page images
directly [12, 17, 18]. Saliency-based attention models can
improve general figure detection, but might degrade on charts
containing large empty areas with little saliency [18]. Text
regions that surround graphic regions can be treated as caption
candidates, while text regions that overlap graphic regions can
be considered textual elements within the graphic [15].

2) Vector-Based Segmentation: These methods extract fig-
ures from vector-based documents using analysis of instruc-
tions (e.g. PDF operators) alone. This is challenging, since
vector graphics related to figures can be mixed with other
operators without proper demarcation, and text operators can
be used to represent complete words, lines, or paragraphs
without any consistency [6]. PDF documents use a state-based
system, which needs to be tracked by custom parsers, as well
as operators to render primitives such as text, paths, and raster
images. These state-dependent operations can be converted
to self-contained objects to simplify further analysis [19].
Heuristics can be used to estimate the number of figures on a
given page [10]. Different methods (e.g. k-means clustering)

are then used to find groups of PDF operators representing
figures [7, 10]. Other graphic elements such as logos or tables
must be separated from figures using heuristics [7] or machine
learning [10]. Figure caption candidates are finally located by
analyzing the text operators directly [7, 20].

3) Hybrid Segmentation: These methods combine vector-
based document analysis with rendering for further raster-
based segmentation. Many works rely on existing tools (e.g.
PDFBOX [21]) for the extraction of text and figure candidates
from documents [11, 22], but these generic PDF parsers
usually ignore captions [6]. Hence, some works have de-
veloped their own custom PDF parsers which analyze text
operators directly. Some approaches use harder assumptions
about layouts for academic papers to locate caption candidates
[6, 11, 23, 24]. The non-text PDF operators are then rendered,
sometimes using only approximations of the regions affected
by each PDF operator to accelerate the process [6, 25, 26].
Raster-based segmentation models can then be used to find
figure candidate on the rendered graphics. The original PDF
operators can be used both to refine the resulting figures and
to extract them in vector formats such as SVG [6, 24]. Finally,
text regions overlapping these figure candidates can be added
to them as figure text. Overall, these methods work better on
documents that adhere to standard layouts [6].

B. Linking Figures to Captions

This process takes as input the figure and caption candi-
dates and produces the final figure-caption pairs. Captions are
assumed to be close to the associated figures, usually within
the same page, but exceptions have been found in practice [6].
Geometric properties of the captions [6, 7] and other heuristics
based on document layouts [5, 12] have been used to compute
the cost of linking captions to figure candidates. Then, one can
iteratively select the best matches in an greedy fashion [7], or
use the Hungarian method to find the optimal assignments
that minimize such costs [5, 12]. Some methods allow linking
one caption to multiple figure candidates which then become
a single multi-panel figure [6]. Some of the rejected caption
candidates can be further extracted as figure mentions [22].

IIT. MULTI-PANEL CHART SEGMENTATION

A large percentage of figures, including charts, in academic
papers are multi-panel (up to 60%) [27, 28]. A generalized
pipeline of figure segmentation methods is presented in Figure
3. For multi-panel chart images, some elements (e.g. the
legend) may be shared by many panels. General techniques
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Fig. 2. Summary of approaches used for figure extraction. Depending on whether the input document is raster or vector, different segmentation mechanisms
are applied to extract figure and caption candidates. In the next stage, each method needs to link each figure to its corresponding caption.

might over-segment these images resulting in the isolation
of relevant sub-components that are required for the correct
interpretation of all sub-charts [27]. Captions need to be
split and each portion should be linked to the specific chart
it describes. Therefore, advanced segmentation models are
required to ensure that data extraction will be possible later.

Multi-panel figure segmentation methods are evaluated us-
ing recall, precision, and fl-score of correctly segmented sub-
figures. Different protocols have used different criteria, usually
based on percentages of overlap between candidates and
ground truth panels, to determine which sub-figure candidates
are considered correctly segmented [28, 29, 30].

A. High Level Classification

A figure can be either single-panel or multi-panel, and dif-
ferent classification approaches have been used to identify and
handle multi-panel figures correctly. Classification can also
help to determine the appropriate segmentation algorithm that
should be used for a given image, and might be more efficient
than running segmentation algorithms arbitrarily and risk over-
segmentation of single panel figures [31]. During ImageCLEF
2015, a Compound Figure Classification task was introduced
[30], and multi-panel figure classification approaches can be
evaluated using data from this competition and its more recent
editions. We further describe methods used for chart image
classification in Section IV.

B. Figure Caption Analysis

The goal of figure caption analysis is to identify sub-
caption delimiters which can be used to estimate the number
of sub-panels in the figure to inform and validate the image-
based analysis [7, 29, 32]. Heuristic rules are typically used
to identify specific strings (such as “(A)”, “(B)”, etc.) used
as caption delimiters that link each sub-caption to one or
more specific figure sub-panels [32]. The next step is to
split the caption into sub-captions and associate them to their
corresponding panels [29].

C. Panel Label Extraction

Panel labels embedded in the image itself are detected
and recognized by some methods. Such labels can be helpful
during segmentation and facilitate the correct linkage between
panels and sub-captions [33]. Earlier models relied on high
contrast assumptions and used connected component (CC)
analysis to detect panel labels [7, 29], while recent methods

have used path-based classifiers [34] and deep neural networks
[35]. Detected labels are then recognized, but the expected
classes are usually limited to consistent sets of strings com-
monly used as panel labels [29, 34]. Different methods such as
heuristic rules [7], Markov random fields [29], convolutional
neural networks [34], and beam search optimization [34, 35]
have been used to ensure this consistency and to remove false
positives. These methods might fail due to low image quality
and irregular panel layouts [29].

D. Panel Segmentation

Multi-panel figures can be created by leaving gaps between
panels, or by stitching together multiple images, or using a
mixture of these (see Figure 4). Here we cover three types of
segmentation algorithms intended to work on each case.

1) Gap-based Segmentation: These methods rely on the
existence of narrow spaces (gaps) of contrasting colors be-
tween panels. First, the gaps are identified using pixel profiles
[32] and other methods [26]. Then, many methods find the
sub-figures using a top-down recursive splitting of the image
gaps (X-Y cutting). However, under-segmentation can happen
when the gaps lack enough saliency [29, 32]. These methods
can over-segment charts because they typically contain gaps
as part of the image [28, 29, 32]. However, these errors can
be mitigated using different criteria (e.g. number of expected
panels) for the early termination of the recursive splitting
[23, 32]. Alternatively, the over-segmented panels can be
merged using heuristic features and machine learning [27].

2) Edge-based Segmentation: Some multi-panel images are
created by stitching together images without gaps. Edges might
be created around the panel boundaries, and methods in this
category try to detect them for segmentation. Different image
processing techniques are typically applied to the image in
order to enhance and detect axis-aligned, long, non-contiguous
lines representing panel boundaries [33, 38]. Panels can be
segmented using recursive top-down cuts based on these
boundaries [28], or by detecting corners of panel boundaries
formed by these edges [33]. These methods can under-segment
when no edges are found at the panel boundaries [28], and
over-segment when sharp edges exist within the panels [33].

3) Object-based Segmentation: These methods treat panel
segmentation as an object detection problem. Earlier meth-
ods used CC analysis to find the panel candidates [7, 38],
but these methods can over-segment charts and other figure
types [38, 39]. Recent methods use convolutional neural
networks (CNNs) to locate figure panels [40, 41], but without
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Fig. 3. Segmentation of multi-panel figures. Figure images and their captions are analyzed. Most methods use a classification step to determine if segmentation
is needed. Image-based segmentation results are refined to match caption analysis results. The output is a set of individual sub-figures with sub-captions.
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Fig. 4. Types of multi-panel figures. We show multi-panel figures using: (a)
gaps, extracted from [36]; (b) image stitching, extracted from [37]; and (c) a
mixture which combines gap-based and stitched panels, extracted from [37].

constraints, these might produce overlapping panel regions,
under-segmentation for similar looking stitched panels, and
over-segmentation for panels containing charts. By contrast,
specialized CNN architectures which explicitly model possible
figure layouts work much better [35, 41]. Unified models have
also been proposed which can simultaneously identify panel
and panel label candidates on the image with higher accuracy
and faster performance than using separated detectors [35].

E. Sub-figure Parsing

The parsing step generates the final list of panels with their
associated sub-captions. Any differences between initial panel
count estimates (e.g. from caption analysis) and the actual
number of panels produced by the segmentation algorithm are
resolved in this step. For bottom-up models with estimated
over-segmentation, further clustering of panel candidates can
be used to resolve the difference [38]. When multiple segmen-
tation hypotheses are available, one option is to pick the best
one based on a given heuristic criteria (e.g. panel count is the
closest to initial estimates) [32]. Methods which detect panel
labels on the image and/or caption can apply more complex
refinements. Panels with matching labels can be accepted first
[29], and layout heuristics can be used to estimate and fix
panel segmentation errors [7, 29]. However, this is prone to
failure due to OCR errors and false positives in panel label
detection results [7, 29].

IV. CHART CLASSIFICATION

Extracting data from charts at scale requires image classifi-
cation to split charts from other visualizations. In this section,
we overview figure taxonomies, and then we focus on methods
used for classification of chart images.

A. Figure Taxonomies

Visualizations in general have been classified by their func-
tionality [1], by their structure [2], and by visual information

seeking tasks [42]. Complex hierarchical taxonomies have
been defined for figures based on large scale analysis of
published papers [43]. The visualization process and existing
data visualizations types, including charts, have been reviewed
by Khan and Khan [44]. For the scope of this survey, we are
interested in the classification between chart and non-chart
images, followed by classification of images per chart type.

B. Methods for Classification

Many figure classification approaches first discriminate be-
tween broad categories of visualizations (e.g. figure types),
and then further classify sub-types of each broad category
(e.g. chart types). The original figure context can also provide
helpful information during classification, especially in the
case of multi-panel figures [45]. We can roughly group ex-
isting classification methods into four families: model-based,
heuristic-based, bags of visual words (BoVW), and deep
learning. Table I presents an overview of the classes covered
by different methods used for image classification, and Figure
5 shows examples of some of these classes.

1) Model-based: These approaches create models for each
class using domain knowledge and heuristics [46, 47, 48]
or trainable models such as Hidden Markov Models [49],
multiple-instance learning [50], and decision trees [51]. Im-
ages are first analyzed to locate specific chart elements (e.g.
bars) and other basic shapes. Most methods use raster-to-
vector conversions for this purpose [46, 47, 50, 51]. Alter-
natively, trainable models may use feature sets which can
capture these elements implicitly [49]. During classification,
these basic objects and their layout are compared against each
chart model to determine the likelihood that the input belongs
to that class. The model with the highest likelihood is selected
as the image class, unless this likelihood is too low and/or the
image does not contain all of the expected elements for that
class [50]. These methods cannot distinguish between broader
figure types. They also break easily due to failures during the
recognition of basic chart elements and also on valid charts
which do not follow the original assumptions for their class
[50]. Note that the objects located during the classification
process can be re-used during data extraction [50].

2) Heuristic Features: Methods in this category generate
vector-based image representations using heuristic-based fea-
tures for later classification through machine learning. Both
visual and textual features have been considered. Many ap-
proaches use features to describe objects such as lines [25],
curves [52], rectangles [53], closed contours [54], CCs [54],
among others [19, 55]. Such object-based features are easier
to obtain from vector-based graphics [56]. For images in gray-
scale, the pixel intensities are used to extract multiple features
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Fig. 5. Popular chart types examples. Approximated counts of chart mining papers published from 2004 to 2018 are presented using both a (a) line chart and

an (b) area chart. This count is further divided in three time periods, and we

show the number of papers related to popular chart types using a (c) bar chart,

and a (d) doughnut chart. The overall proportion of the coverage given to these most popular chart types is depicted using a (e) pie chart, a (f) tree-map and
(g) radar chart. Finally, we use synthetic data to show examples of (i) scatter chart, (j) bubble chart, and (k) box plot.

such as basic statistics, histograms, moments, co-occurrence
matrix and entropy [53, 55]. For binary images, other features
are typically used based on density, basic statistics, and profiles
[15, 16]. From edge images, other features such as direction
histograms, distance histograms, and profiles have been used
[52]. From color images, color-based features are also used
[28, 38]. Finally, many models use different texture descriptors
such as skewness, entropy, uniformity, smoothness, and edge
difference [28, 57]. Other texture descriptors used include
Local Binary Patterns (LBP) [58], Hough transform (HT) [54],
wavelet transform [59] and histogram of oriented gradients
(HOG) [52, 58]. For textual feature extraction, the caption
and/or mentions are usually normalized by removing stop-
words and stemming the remaining words [57], and then
different features are extracted such as keywords, bag-of-
words, n-grams, word embedding, TF-IDF, and sub-figure
mentions or delimiters [24, 45, 54, 57, 60]. Some works
use feature selection methods to make the final vector rep-
resentation smaller [54]. The classification process is then
carried out using machine learning techniques such as K-
nearest neighbors [55], decision trees [15], logistic regression
[28], shallow neural networks [55], SVM [59], boosting [52],
or ensemble methods [55, 56].

3) Bags of Visual Words: These methods learn vector-
based image representations through visual dictionaries made
of recurring image patches or features (visual words). Patch-
based methods first resize all images to a fixed resolution
[68]. During training, a fixed number of visual words are
sampled either densely or pseudo-randomly (e.g. by reject-
ing low variance patches) [24, 68]. A visual dictionary is
then generated by clustering the sampled visual words (e.g.
using K-means). Images are then represented by creating
histograms of responses between the visual dictionary and
visual words extracted from them. It is common to build
multiple histograms using image regions (e.g. quadrants), and
concatenating them into a single vector representation [68].
Additional heuristic features (e.g. textual features) can also

be added to further improve the classification accuracy [24].
Finally, machine learning techniques such as SVM [24, 31, 68]
or random forests [60] are trained for image classification.

4) Deep Learning: State-of-the-art image classification
methods are based on deep neural networks. Some methods
use heuristic features as the input for deep neural network
classifiers [61, 69], but the majority of methods use deep
convolutional neural networks (CNNs) in order to learn a
feature representation from training images directly. The out-
put of certain network layers can also be used as a trainable
feature representation which can be fed to other classifiers
such as SVMs [65, 69]. Common image classification network
architectures such as AlexNet [78], VGG-19 [79], ResNet [80],
DenseNet [81], and others, have been used with few to no
changes for chart classification. Comparisons between some
of these architectures and heuristic-based features have also
been carried out [67]. To deal with the lack of large scale
datasets on this domain, networks can be pre-trained on large
image datasets such as ImageNet [82]. Image classification
accuracy can be further improved by using fusion techniques
that combine the deep convolutional features with heuristic-
based features (e.g textual features) [45, 63], or Fisher Vector
encoders [65]. Figure extraction and classification can be
combined using object detection networks [17].

V. EXTRACTING DATA FROM CHARTS

The goal of chart data extraction is to recover the tabular
data used to create a chart. In the literature, we find meth-
ods for both semi and fully automatic data extraction from
charts. A few examples of semi-automatic systems include:
Dagra [83], Plot Digitizer [84], Engauge Digitizer [85], and
DataThief [86]. Semi-automatic models can be very accurate,
but they can be hardly used at scale because they require
humans in the loop. Therefore, we focus on methods used
for fully-automatic data extraction from chart images.

Chart data extraction is a very challenging process with
strict requirements since both text and graphics need to be
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TABLE I
SUMMARY OF CLASSES HANDLED BY MULTIPLE CHART/FIGURE CLASSIFICATION METHODS.

Classifier Family

Classes Model-based [ Heuristic Features [ Bags of Visual Words [ Deep Learning

High Level Classification: Coarse Figure Types
Figures / Tables / Other | [ 154,57, 59] [ 131] [ 23, 45, 61, 62, 63, 64, 65]
Panels (Single / Multi) | | 128,38, 57] | 124,31, 60] | 145, 66]

Low-Level Classification: Charts Per Type

Area [47, 48] [56, 67] [68] [65, 67, 69, 70, 71]
Bar/Column [46, 47, 49, 50, 51] [19, 25, 52, 53, 55, 56, 67] [24, 68, 72] [23, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77]
Bubble [51] [56] [65]
Doughnut [50] [55, 56]
Flow [23, 65, 73]
Geo Map [56] [68] [65, 70, 71]
High-Low-Close [49]
Line [46, 47, 49, 50, 51] [19, 52, 55, 56, 58, 59, 67] [24, 68, 72] [65, 67, 69, 70, 71, 73, 74, 77]
Pareto [68] [65, 70, 71]
Pie [46, 47, 50, 51] [52, 55, 56, 67] [68, 72] [17, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77]
Radar [68] [65, 70, 71, 77]
Scatter [19, 52, 56] [67, 68] [23, 65, 67, 69, 70, 71, 73, 77]
TreeMap [56, 67] [67]
Venn [68] [65, 70, 71]
Other [52, 56, 67] [68] [23, 65, 67, 70, 71]
Rejection [47, 51] [25, 53, 58, 59] [24] [23, 74]

interpreted correctly [50]. Creating a style-independent chart
recognition system is very difficult because charts can be very
diverse in design [49]. Colored data marks are generally easier
to extract, but many charts are gray-scale, and they might
also have heavy clutter or deformations [23]. Despite these
challenges, digitally-born chart images do not have other types
of noise commonly found in natural images. In this section,
we first survey methods used to deal with common chart data
extraction challenges such as context analysis, image pre-
processing, raster-to-vector conversion, text processing, and
detection and understanding of axes and legends. Then, we
discuss type-specific chart interpretation methods. Finally, we
present methods used for higher level interpretations of charts.
The entire process of data extraction is illustrated in Figure 6.

A. Context Analysis

Important information can be extracted from the original
context of a chart. As discussed previously, this information
is useful during multi-panel figure segmentation (Section
IIl) and figure classification (Section IV). It is also useful
during later processes such as inferring the message of a
chart (Section V-H), chart retrieval (Section VI-D), and chart
summarization (Section VI-B). In particular, many methods
analyze the captions and mentions of charts, which are typi-
cally extracted alongside the charts (Section II). This analysis
requires techniques from natural language processing such
as: stop-word removal, stemming, parsing, and named-entity
recognition among others.

B. Raster Image Pre-processing

Different image processing techniques are typically used
to prepare raster images for data extraction. Many methods
assume that segmentation of chart elements (e.g. bars or lines)
is easier on certain color spaces (e.g. binary, gray-scale, HSV,
and LAB), and they use color transformations. Based on
the types of noise expected from the image source, differ-
ent methods use noise removal techniques such as Gaussian
smoothing, median filters, bilateral filters and morphological

operations. Some systems attempt to split text from other
graphical components using CC analysis and more recently
deep neural networks for semantic segmentation. Afterwards,
many works, especially the ones using grammars, convert the
graphics image to vector as described in Section V-C. Finally,
some works remove the background grids that some charts
include on the data region.

C. Raster-To-Vector Conversion

The raster to vector conversion process takes as input a
raster image and produces a decomposed version of the image
using vector primitives such as lines, and arcs (circular and
elliptic). Many methods start with an image where text has
been removed and multiple image processing techniques have
been used to enhance basic shapes (see Section V-B). One
way to vectorize the image is to identify small line segments
which can be grouped into larger straight line segments
or circular/elliptic arcs (bottom-up) [51, 87]. Curve fitting
algorithms can be used over arc candidates to validate and
replace them with parametrized representations [87]. Other
methods use CC-based analysis, where each CC which is not
a line can be replaced by its contour for further segmentation
into primitives [46]. Finally, iterative tracing algorithms have
also been used which start with individual pixels that do not
belong to any curve and trace them until an intersection is
found. This process is then repeated until every pixel belongs
to a curve [14].

D. Processing Text in Charts

Chart understanding heavily depends on accurate chart text
processing due to the different roles that text plays in chart
images. Most approaches start by locating text regions in
the image, then apply optical character recognition (OCR) to
recover their content, followed by classification of the role of
each text region. One example of the output of this process is
shown in Figure 7.a.
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Fig. 7. Chart data extraction example. After the initial pre-processing, the data
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and (c) legend understanding. The order of these steps varies from method
to method. Then, (d) data extraction takes place producing (e) tabular data.
Methods for high-level chart understanding produce additional outputs such
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1) Text Detection: The complexity of the challenges for
text detection in chart images lies somewhere between scanned
document images and natural images [88]. Chart images have
a sparse distribution of short text strings with semi-structured
layouts, multiple orientations, fonts, colors and sizes. Chart
text detection can be more challenging due to confusions
caused by the presence of other graphical objects such as plot

markers. Some methods have used existing OCR systems for
detection and recognition of text in charts [7, 51], but the
majority of approaches use custom text detection algorithms
based on: CC analysis, texture analysis, and CNNs.

Most systems using CC analysis rely on image prepro-
cessing to binarize the image and extract the CCs. The next
challenge is to identify text CCs and existing methods have
used geometric features (normalized CC height, width and
area), structural features (CC pixel density, binary patterns,
mass to area ratio, orientation of edges), location features
(centroids, bounding box corners), and texture features (Gabor
filters) [14, 49]. Recent approaches have used neural networks
for semantic segmentation to identify text CCs [70, 77]. After
isolating the text CCs, the next challenge is to group them
into words or lines for recognition. This has been done using
rules about layout [59, 89, 90], segmentation trees, projec-
tion profiles [46], Newton’s gravitational force formula [50],
morphological operations [91], clustering algorithms [92], and
Hough transform with heuristics-based line splitting [88, 93].
In their review work, Boschen et al. [92] compare several
configurations for CC-based text detection on scholarly images
using a generic pipeline. They found that adaptive binarization,
dilation-based CC clustering and dilation-based orientation
determination yielded best overall performance [92].

General techniques for text detection in natural scenes
have also been adopted for charts [72, 74, 94, 95]. Recent
approaches mainly use deep neural networks. Object detection
CNNSs can be used to find text alongside other chart elements
(e.g. data marks or axes) in images [75, 76, 96]. It is also pos-
sible to combine both text detection and text role classification
using these networks [76].

Text detection algorithms are evaluated on the basis of recall
and precision of detected text elements. This is described in
more detail on existing benchmarks for general text detection
such as the ICDAR Robust Reading Competition [97].

2) Text Recognition: After locating the text regions, the
next task is to recognize their content. Most charts are digitally
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born and hence standard OCR engines for typeset text recog-
nition can be used. This includes open source and commercial
systems such as: Microsoft OCR [98], Tesseract [99], ABBYY
FineReader [100], and Ocropy [101]. The performance of
these OCR systems has been empirically compared [92].
Running the OCR system for multiple orientations can help to
improve the overall recognition accuracy [92, 95]. Convolu-
tional Recurrent Neural Networks [102] have also been used
for chart text recognition [74, 75].

The next step is to refine the OCR results. Traditional
strategies used for document OCR were found to provide no
improvements on figure images [92]. This is most likely due
to the isolated nature of text regions in charts. One option is to
use text from context (captions and mentions) to apply lexical
corrections based on edit distance, part-of-speech and named
entity recognition [103]. However, this method is sensitive to
tokenization of words especially in the presence of compound
nouns [103]. Recognized text can be evaluated using metrics
such as character error rate, word error rate, Levenshtein
distance and Gestalt Pattern Matching.

3) Text Role Classification: Accurate chart data extraction
requires understanding the role of each text region on a given
chart image. The most common roles include: chart title, axis
title, tick labels (values associated with axis positions), legend
title, and legend entry [20, 50, 70, 74, 77, 91]. It is common to
further associate some roles (axis title, tick value) with their
corresponding axis. Other less common roles include: data
mark names, data mark values, unit labels, and other. Lack
of balance between classes makes this problem harder.

Many heuristic features have been used for text role classifi-
cation including geometric features, layout features, and text-
based features [50, 70, 74, 77, 91]. Geometric and layout-
based features of text bounding boxes include: corner loca-
tions, aspect ratio, centre coordinates, distance to image bor-
ders, angle to image centers, and angle of rotation. Text-based
features include capitalization, string length and whether the
string is numeric or not. Classifiers based on SVMs, Random
Forests, Decision Trees and Naive Bayes have been used
with these features to determine text roles. Object detection
networks can simultaneously predict both the location and the
role of text regions [76].

E. Axis Detection and Understanding

Axes recognition is required for the extraction of data from
certain chart types such as line, scatter, bar and others. To
reconstruct the values of data marks in the original chart space,
the scale and range of each axis must be inferred by detecting
the axes lines, tick marks and tick values (see Figure 7.b).
Otherwise, only relative coordinates can be produced [110].
While most charts include two lines (z and y axes), there are
many 3D visualizations which add a third line for the z axis.
Other situations that make axes recognition hard are illustrated
in Figure 8. In this section, we concentrate on automated
approaches for axes recognition.

1) Detecting axes lines: Most models assume that axes
have a fixed location (e.g y on the left and = on bottom),
without any skew or line splitting. Axes lines are commonly
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Fig. 8. Examples of charts complexities. (a) Two scales for a single axis,
from [104]. (b) Hierarchical tick values, from [105]. A (c) factorized legend,
where data series are combinations of legend entries, from [106]. (d) Two
dependent variables, from [107]. (e) Non-contiguous axis scale, from [108].
A chart with (f) cluttered data marks, where individual points are hard to
identify, and the data region contains addition of a sub-chart, from [109].

expected to be the largest lines in a chart image. For raster
images, axes lines have been detected using methods based on
projection profiles, Hough Tranform (HT) and CC analysis.
Methods based on projection profiles assume that axes lines
will produce peaks in profiles generated from raw binary pixels
[14, 89, 110, 111, 112] and tick mark locations [96], and
candidate axes lines are chosen by locating these peaks. One
advantage of these methods is that they can handle broken axes
lines [110]. Methods based on the HT first use edge detection
algorithms (e.g Canny) and then apply the HT to find the axes
lines [50, 58, 59, 113, 114]. Comparisons between these two
families of methods have found that HT is less sensitive to
small rotations of the axes [93]. Methods using CC analysis
identify the axes lines by assuming these should be connected
thus representing a very large CC in the image [91]. For vector-
based graphics, axes candidates can be identified directly from
straight line objects using heuristics [46, 50, 51, 115].

The final axes lines are then selected from the set of
candidates. Grid lines and/or borders create bad candidates,
and many methods use filtering rules based on location and
length of lines, and the location of tick marks to select the final
candidates. Methods that first recognize other chart elements
such as text regions and data marks can use these to select the
axes lines [50, 91]. For example, the baseline of the bars can
be used to hypothesize the location of the x-axis in a bar chart
[91]. Text role classification results can also be really helpful
since axes are located around tick labels in most cases.
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2) Detecting tick marks: These are marks located within
the axes lines which help to define the chart scale. Normally
these can be detected using heuristics based on their location
relative to axes candidates. Under the assumption that tick
marks are located at fixed intervals, some methods detect them
using the Fast Fourier Transform over pixel profiles of the axes
[89]. Recent models have used deep neural networks trained
specifically for tick mark detection [96].

3) Inferring the Range and Scale of Axes: First, the rec-
ognized values of tick labels should be associated with their
corresponding tick marks or axis locations. For axis using
linear scales, the mapping from the pixel space to the axis
coordinate space is an affine transformation which can be
estimated from pixel-wise distances between tick values [23],
and methods such as RANSAC can be used to deal with
potential OCR errors in the tick values [96]. However, it is
important to bear in mind that many charts use other non-
linear scales (e.g. logarithmic), or have interruptions in their
scales (see Figure 8.e). Nominal patterns representing units or
scale multipliers (e.g. k for kilo) can be included within text
regions, and they must be considered for correct inference of
the range and scale of the data being extracted [70]. Some
charts include hierarchical tick values (see Figure 8.b) which
need further analysis to extract them correctly.

F. Legend Detection and Understanding

Charts with multiple data series usually include legends to
identify them. Methods which handle legends can associate
each data series with its original name (see Figure 7.c). In
most cases, the legend entries become the headers in the
extracted tabular data (see Figure 7.e.). Exceptions include
cases where the final set of data series is a combination of
legend entries (see Figure 8.c), and charts with legends used
to group categorical values within the same data series.

Some methods assume that legends are delimited rectan-
gular regions containing text elements as well as data marks
patches [24, 46, 58], and they detect legends by finding a large
rectangle which holds these assumptions [46]. CC analysis
can be used for this purpose [91]. Other methods rely on text
role classification to detect the legend region [23, 24, 58].
They associate data marks to legend entries using position-
based heuristics [23, 24], optimization models (e.g. Hungarian
method) [24], and more recently relational networks [75].
Long data series names which are split into multiple text
regions can make these methods fail [24].

G. Per Chart Type Data Extraction

1) Line, Area and Scatter Charts: These charts are seman-
tically similar since they present one or more sequences of
2D points on a given Cartesian plane, and related methods
have been used to recognize them in the literature. The Scatter
chart is the most basic kind in this group, and when lines or
curves are used to connect its data points then it becomes
a line chart (also called curve chart). When the goal is to
highlight the area under each curve, typically by using coloring
or texture patterns, then it becomes an area chart. These types
of charts are commonly used in academic papers, mostly to

represent experimental data [26]. They can be challenging
to recognize for several reasons including: the presence of
arbitrary text and/or grids on the data region, cluttering, non-
white backgrounds, lack of legends, overlapping non-colored
curves, and the use of colors which are hard to distinguish
visually [26]. Some of these complexities are illustrated in
Figure 8, including the case of a chart which contains a sub-
chart in the data region (Figure 8.f).

Methods for recognition of line, scatter and area charts work
under multiple assumptions. The majority assume that charts
are created using a regular process [14], without unexpected
elements in the data region [110]. Many consider that the chart
might have grid lines, but these should not be more visually
distinctive than the data marks [116]. Other approaches im-
plicitly assume that data is located in the first quadrant of
the Cartesian plane, while a few have no such constraints.
Some methods can only handle a single data series in the
chart [110, 116], and for those supporting multiple data series,
it is common to assume that these will use different colors
[74, 115, 116]. Very few works support line charts where a
single x value might be associated with multiple y values on
the same curve (e.g. step function) [110].

For line charts, the next step is to recognize the lines.
Legend analysis results can provide an estimation of the
number of lines in the chart. For digitally-born vector graphics
(e.g. SVG, D3), chart lines can be extracted accurately as
long as they can be correctly identified, and overlapping
curves and dashed lines do not pose a challenge as they do
for raster images [24, 117]. Methods that work with raster
images require different approaches to extract the lines such
as: sampling, tracing, segmentation, and grammars.

Sampling-based methods find the points where chart lines
intersect a set of vertical lines [118] Then, these points are
clustered into lines using local descriptors. These methods can
handle broken and dashed lines.

Tracing-based methods scan the data region to find pixels
that belong to chart lines and trace them using pixels [110],
connected line segments [46], or patches [58]. Only the patch-
based tracing methods can handle broken and dashed lines, but
they might break when chart lines have sharp gradients [58].

Methods based on segmentation aim to split entire chart
lines from the background pixels. This has been done using
color-based heuristics (e.g. Hue-based color quantization) [74,
115]. Other methods have used deep neural networks to learn
embeddings for data mark patches, which in turn are used to
segment out lines by minimizing the cost of matching patches
from lines to data mark patches from the legend [23]. Some
of these methods can handle broken lines [115].

Methods based on grammars start with a vectorized image,
and using bottom-up parsing they recognize the chart lines
from low-level elements such as straight lines and elliptic arcs
[14, 47]. The main drawback of these models is the cost of
defining grammars that can properly handle large collections
of charts [47]. Some of these methods can only parse multiple
lines if they have different colors [14].

For scatter charts, the next step is to locate the data marks.
If the legend is recognized, then shape [111] and color [115]
can be used to identify data marks by data series. Further
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processing might be required to split overlapping data marks
[111]. For methods relying on color-based heuristics, colored
text in the data region might cause errors [115]. Recent
methods locate data marks in charts by using object detection
networks [96], but they can over-segment data marks and
might not work well on dense charts.

Some charts contain both lines and data marks, and are
generally considered line charts, but sometimes the lines
represent trend lines on scatter charts. Some models treat these
as scatter charts by removing the lines using k-median filters
and estimations of line thickness [59, 89]. For charts in vector
format, repeated shapes can be grouped together if they are
all intersected by the same line candidate [115].

The pixel coordinates of data marks and/or extracted lines
are projected onto the axes to determine their relative coordi-
nates. If axes were fully recognized, these relative coordinates
can be projected onto the original data space. The output is
a table with the data points represented in the chart in their
original coordinate system. Data value labels cause problems
for many methods, but these should be used to refine local es-
timates [118]. The evaluation of these data extraction methods
is challenging because ground truth is limited. Some methods
use qualitative evaluation based on chart reconstruction [58].
Recent methods are using fully annotated synthetic datasets
which allow them to evaluate their models using recall and
precision of the extracted data marks [96].

2) Bar and Column Plots: These charts are commonly used
to visualize data series which have a categorical independent
variable. The chart sub-type (either bars or columns) is usually
determined either during classification or later by analyzing the
widths and heights of the candidate bars. The same techniques
are usually applied on both chart sub-types, and these work
under a variety of assumptions. Many assume that bars should
be in the first quadrant of the chart [91], and they should have
a single solid color filling, without 3D effects or text written on
the bars [68]. Very few methods handle stacked bars and they
expect these to have different colors [76]. Grouped bar charts
are also expected to have large spacing between each group
of bars [77]. Many methods assume no grid or interpolation
lines should be on the chart.

The next main step is the detection of bars/columns. Meth-
ods working with vector graphics can easily identify the bar
rectangles with high accuracy [117], but different families
of approaches have been used for raster graphics. Multiple
works parse charts using grammars [14, 49] and other forms
of explicit bar chart models [46, 47, 50]. These operate in a
bottom-up fashion by first identifying small primitives such
as lines using methods for edge detection [49], vectorization
[46, 47], and color-based segmentation [14]. The primitives
are then grouped into higher level components such as bars,
and this can be done through optimization processes that
test multiple grouping hypotheses against layout constraints
involving other chart elements (e.g. text, axes), and keep
the most promising bar candidates for further data extraction
[47, 49]. Grammars, however, rely heavily on heuristics and
hard assumptions which do not cover many real charts, and
early mistakes can affect the whole recognition process. An
alternative is to learn the models from data [49], where

heuristic features can be used to map specific components of
bar charts (e.g. beginning and ending of bars).

Other methods aim to directly detect bars on chart im-
ages, and they have used a variety of methods based on:
CC analysis, contour analysis, projection profiles, and deep
neural networks. Methods using CC analysis assume that bars
should be solid single-colored regions. Bars are differenciated
from other rectangular regions (e.g. the legend, grid cells)
using classifiers and heuristic features based on shape, pixel
densities, color uniformity, and relative distances to axes
[68, 76, 77, 91]. However, these methods might fail to detect
small bars [68]. Methods using contours assume that bars
have a solid border which can be detected using contour
tracing algorithms [114], and further heuristic rules can be
used to identify bar candidates from these contours. Methods
using pixel projection profiles also assume that bars have
solid borders and/or backgrounds which can be detected as
plateaus in the pixel projection profiles over the x-axis [119].
Methods based on deep neural networks use object detection
architectures to locate the bars [74, 75, 120].

Further data extraction requires full text processing as well
as axis and legend recognition. These processes identify the
categorical values which are then linked to bars using mostly
layout-based heuristics. Legend recognition is used to identify
the names of data series on stacked and grouped bar charts. A
recent approach has used relational networks to identify links
between bars, legend entries and categorical values [75].

The final step is to determine the bar values by projecting
their widths or heights into the dependent axis. Using axes
recognition results, these relative values are then projected
into the original chart data space to produce the final tabular
data (see Figure 7.d-e). Normally, many bars share a common
baseline usually aligned with the independent axis, and the
minimums and maximums of each bar can be used to identify
it [68]. This baseline must be considered to interpret bar charts
with stacked bars and/or negative values correctly. Overall, all
methods are sensitive to OCR errors, and rotated labels are a
common source of errors. Most of the methods described here
cannot deal with bars using non-solid color patterns.

3) Pie and Donut Charts: These charts can be used to
display a single data series, where each pie slice represents a
data tuple of the form “(category, value)” [68]. The categorical
values can be specified using either the legend or text labels
around the corresponding slices. Methods for recognition of
these charts work under assumptions such as having solid
single-colored pie slices without 3D effects [17, 74, 75, 76].

Extracting data from these charts requires locating the
pie and its slices. This can be done accurately on vector
graphics [117]. For raster images, different families of methods
have been proposed including: grammars, curve fitting, CC
analysis and deep learning. Methods using grammars typically
recognize the pies using bottom-up parsing from vectorization
results [14, 46, 47, 87]. Pie slices can be formed by com-
bining straight lines and elliptic arcs, and multiple slices are
combined to form a single pie or doughnut. Methods using
curve fitting locate the pie by finding ellipsis candidates on
gradient or edge images (e.g. by using RANSAC) [68, 76].
The slices can be further located by finding sharp transitions
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between colors (the slice boundaries) on one or many smaller
concentric ellipses [68]. Methods using CC analysis locate the
pie slices under the assumption that these have single solid-
color patterns [17]. Recent methods based on deep learning
have used object detectors to locate the pie [74, 75], and
some a rotation fitting component to predict the angle of each
slice [75]. Slice detection and legend analysis can be combined
through relational networks [75].

After finding the slices, the percentage associated with each
slice can be found by dividing: the angle of each slice by
360 degrees [50], the area of each slice by the total pie area
[17, 74], and the number of pixels from each slice by the total
number of pixels in a circular sample of the pie [76]. For charts
without a perspective distortion, the values obtained by these
methods are close to the true values. However, charts with
perspective distortions (e.g. 3D charts) require the projection
of the elliptical pies into circles.

These methods can fail due to several reasons including
small slices that go undetected, and categorical values that
are associated with the wrong slices because they are the
closest [68]. Systems working with gray-scale images might
accidentally merge neighboring pie slices [17, 74]. Many
methods degrade when used over 3D pies.

4) Miscellaneous Chart Types: Due to their highly special-
ized nature, many chart types have very little coverage in the
existing chart recognition literature. Some of these chart types
include: high-low charts [49], topographic maps [121], map
charts [122], meteorological facsimile charts [123], limnigraf
charts [124], and phase diagrams [125].

H. High Level Chart Understanding

Many charts are designed to simply display data, but some
are created to highlight specific trends and other relevant
features of the data itself [126]. This is the high level message
of the chart which can be enough to summarize the entire
graphic [126], as illustrated in Figure 7.f. Many methods aim
to infer these messages from chart images, and here we discuss
the considerable amount of work done towards this goal.

The high level messages that can be transmitted by different
types of charts have been explored in the literature including
bar charts with one [126] or multiple [127] data series, line
charts [128] and pie charts [129]. Based on what the chart
messages describe, they can be coarsely grouped as: trends,
ranks, gaps, relationships, saliencies, entity comparisons, com-
putations, and others. Some charts might illustrate multiple
messages, but they attempt to identify the most relevant and
therefore other relevant ideas might be missed [130]. They
evaluate their method in terms of its accuracy in ranking first
(with confidence > 50% ) the top chart message as annotated
by human coders [126].

Carberry et al., use a plan inference technique based on
Bayesian Networks [131] for recognition of chart messages.
Nodes at the top-level of the network represent all the possible
messages for the current chart type, and the probabilities at
these nodes represent their likelihood based on the available
evidence. The next level represents the evidence nodes which
are provided by communicative signals detected on the chart

such as the relative effort required by the viewer to perform
a given perceptual or cognitive task, saliency of graphical
elements, and text-based signals from the caption. Here, a
perceptual task represents actions such as comparing bar
heights, while a cognitive task represents deductive work such
as making computations from the chart. The relative effort of
performing some visual tasks was studied using eye-tracking
in order to estimate these efforts on new charts [132]. Saliency
of graphical elements is determined using color, references to
such elements on the caption, or any highlighting on the chart
[130]. Finally, the caption might provide strong cues about the
chart message by using certain verbs or adjectives, and also
by mentioning the dependent and independent variables of the
chart [133]. Note that is possible to make inferences using this
model even when some of the evidence is missing.

Other methods have been proposed to predict high-level
chart messages. A multi-modal approach which combines
textual and convolutional features using deep learning has been
proposed for prediction of messages in line charts [134]. Other
works have used natural lenguage processing to extract explicit
ontologies, triplets of the form “(subject, predicate, object)”,
to describe 2D charts at a high level [119].

VI. CHART ANALYSIS APPLICATIONS
A. Redesigning and Improving Chart Visualization

A chart might be redesigned for many reasons such as
making them easier to understand, reducing their design bias
or simply to improve their aesthetics. In this section, we
cover methods for chart redesign which include automatic
components for data extraction from the original charts. More
general tools used to design and redesign visualizations are
presented in the survey by Mei et al. [135].

To redesign charts in raster format, the first step is usually
classification followed by chart data extraction, which in many
cases is carried out semi-automatically [14, 68, 71, 136, 137].
Any limitations on these processes will also place limits on
the redesigning capabilities of a system. Other systems work
with programmatic vector graphics such as D3 which can
include the original data in the file [117]. By automatically
inferring the mappings between data fields and attributes of
data marks in the graphic, it is possible to handle a variety of
visualizations without explicitly classifying them [117].

A chart can be redesigned in multiple ways after its data has
been extracted. Galleries of redesigned versions of the chart
can be created [68], which are helpful to let the user chose
a new design. This process can consider aspects of the user
(preference, experience, visual/verbal working memory, etc)
in order to redesign charts specifically for them [138]. Then,
interactive interfaces can be provided to let the users modify
the new chart design [14, 137], or a chart specification can be
exported to edit it with external tools for chart design [70].

The original chart design can be abstracted into templates
[117, 139], or it can be enhanced by adding graphic overlays
[136, 140] such as reference structures, highlights, summary
statistics, and descriptive text, even from the source document
[141]. Qualitative comparisons and evaluations of redesign
tools can be carried out through user studies [71].
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B. Textual Summarization of Charts

Textual summarization of charts is one of the most targeted
applications in the literature. Chart summaries can further
facilitate other chart applications such as retrieval or acces-
sibility. According to Demir et al. [142], the challenges of
creating textual descriptions from numeric data include: (1)
selection of the most relevant information, (2) which must
be organized into coherent/fluent text, (3) using complex but
understandable sentence structures, (4) produced in a given
language (e.g English) with appropriate expressions in the
text. In this section, we focus on abstractive summarization
methods, where both content and context of a chart are used
to create a meaningful textual description.

Summaries are based on chart facts that are collected using
automated methods for data extraction (see Section V), or by
relying on meta-data made available during the creation of
the chart (e.g. by using plug-ins [143]). Facts can be extracted
from the chart image, its data and related text. Textual facts are
based on analysis of captions and mentions [24, 144], other
text surrounding the chart [48] and the remaining document
text [144]. Further text analysis can produce additional derived
information such as a referent for the dependent axis [145],
and short descriptors for long lists of categorical values making
the summaries more concise [145]. Based on the specific
chart type, additional facts can be derived based on existing
trends [24, 91], the shape of data marks [48], and salient chart
elements [91], and any inferred chart message.

Not all facts are required in a text summary, especially
in interactive environments where users can request them
[146]. A study [146] found that users prefer initial summaries
containing descriptions of salient chart elements as well as
propositions which helped to avoid drawing false conclusions
from the summary. To produce an initial summary, the facts
and/or document sentences can be initially ranked based
on training data [128], similarity between them and chart
mentions and captions [144], and other ranking algorithms
such as PageRank [147]. Adding one fact to the summary will
reduce the relevance of the remaining ones due to information
coverage, summary length, and redundancy. As such, many
methods will iteratively add the top ranking fact and then re-
weight the remaining ones [144, 147].

After selecting facts, the textual summaries can be gen-
erated. The simplest method is to use templates [48, 114].
Other works first represent the extracted facts using trees
[146] and other graph-based structures [91]. Sentences in
natural language can be then generated by navigating these
data structures (e.g. by using protoforms [91]). Tree structures
can be modified to re-organize the same facts (tree nodes) in
a way that the overall complexity is reduced thus resulting in
a better summary [142]. The vocabulary level of the original
document can be considered to produce summaries that are
consistent with it [147]. Finally, the generated summary can
be used to replace the chart in the original document, but it
should be placed around the most relevant paragraph [148].

Different systems have been developed for automatic gen-
eration of textual summaries of charts [143, 146] including
bar charts [91, 114, 142], line charts [24, 128, 147], area

charts [48]. Other systems summarize figures in general [144].
Evaluation of textual summaries of charts has been carried out
using precision oriented metrics such as fact accuracy (cor-
rect or approximately correct facts) and summary relevance
[91, 145]. However, these metrics do not account for relevant
facts missed by the summary. Overall, chart summarization
methods are very sensitive to OCR errors and other mistakes
made by the automatic data extraction process [91].

C. Charts and Accessibility

Accessibility systems such as screen readers handle images
by relying on source-based tags which are generally not
enough to explain charts [46, 143]. To overcome this, chart
accessibility systems aim to help users with visual impairments
understand charts. This has been done by providing tools for
accessing chart data directly, and also by providing meaningful
summaries of the chart data (see Section VI-B).

A naive system can simply read out loud all data points
from a chart. However, other models use sounds and tactile
representations. For line charts, one can play a continuous
sound with varying pitch based on the shape of each line as a
function of the x axis [149]. This makes it easier to determine
the slopes and can also be very effective in delivering math-
ematical concepts such as symmetry or monotonicity [149].
However, this might not work well on complex visualizations,
and recent models combine sound with interactive exploration
[150]. Methods using tactile representations translated the
extracted chart data to Braille. One example is the VIEW
system which works for bar, pie and line charts [72].

Methods based on textual summaries use speech synthesis.
Short summaries can be provided first, and interactive op-
tions allow the users to request additional facts [151, 152]
(see Section VI-B). The raw data can also be accessed and
described using sounds [113] and other methods described
earlier. Congenitally blind users who have never seen charts
might learn more from descriptions of the chart message than
from descriptions of what the chart looks like [53]

Many tools for chart accessibility have been implemented
as web browser extensions that complement existing screen
readers. Some of them automatically detect charts on web
pages and extract their data. After this, some tools replace
these chart images with sound files [113], HTML tables [74],
and other interactive documents to explore the chart data [72]
and its textual summary [151]. Other web-based tools avoid
chart analysis but depend on counterparts that need to be
used during the chart generation process [152]. The evoGraphs
jQuery plugin [153] can be used to create visualizations
that are directly compatible with screen readers. Recently,
interactive tools have been proposed to let visually impaired
people create visualizations for sighted users [154].

To create accessibility systems, it is important to include
prospective users at every stage of the process [74, 154].
During evaluation, it is common to include both sighted
and visually impaired people to test the effectiveness of the
systems including their interaction capabilities [151, 152].
These studies have shown that blind users generally adopt
very different follow-up strategies when compared to non-
blind users [152]. Based on their findings, authors recommend
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keeping in mind the limitations of screen readers with graphic
material, to place chart descriptions very close to them, and
to be consistent when listing chart elements using text [152].
Additional studies and technologies for chart accessibility as
well as existing guidelines for creating more accessible charts
have been reviewed in the work by Martinez et al. [155].

D. Chart Retrieval

Charts can be retrieval targets in many situations, especially
when they contain data not available elsewhere. The goal of
chart retrieval is to produce search engines which consider in-
formation from the charts themselves (data, text, etc) instead of
relying on text from meta-data or context like most traditional
search engines do [156]. Here we cover methods for indexing
and retrieval of charts.

Chart search engines first need to create an index based on
image and text analysis. Multi-panel figures can be segmented
and indexed individually [26]. Further image classification
will enable retrieval of specific image types [26, 31]. Images
are typically indexed based on text extracted from captions
[31, 156, 157], the image itself [20, 23, 31, 157], the chart
message [157], and textual summaries of the charts [157].
Chart text can be indexed based on its role [20, 23]. To increase
the chances of matching text, one can use techniques such
as stemming [31], acronym expansion [156] and other high-
level natural language processing methods [26]. In addition,
some applications such as style-based retrieval of info-graphics
[158] require indexing images by features such as HoG, LBP,
GIST, and color histograms. Charts in text formats (e.g. Vega-
Lite) can be indexed by style attributes directly [159].

After indexing, the next step is retrieval which can be
divided into query matching and ranking. Many systems deal
with key-word based queries [20, 31], where these can then
be matched to specific text roles [20], or even chart style
properties [159]. To improve precision, some methods prefer
longer queries which can be compared against full textual
descriptions of charts [157]. The goal is to automatically
identify specific entities (e.g. the dependent and independent
axes) from the query, and match these to what is stored in the
index [157]. To improve recall, some methods consider query
expansion by adding synonyms of query key-words [20, 157].
Unfortunately, systems relying on chart text extraction for
indexing can be very sensitive to OCR errors [23]. Besides
text-based queries, other systems allow query by example,
where for a given query image, the system finds the closest
images based on a given similarity function [158, 159].

Finally, ranking sorts the matching images by decreasing
relevance to the query. For keyword-based queries, state-of-
the-art methods from general text-based search engines can
be used for this purpose. For text indexed by its role, one
can use TF-IDF scores for each role, and then all query terms
can be combined using role-wise weights to produce the final
ranking [20]. Each document can have its own overall score
(e.g. based on impact estimates [31]) which can also be used to
rank the images it contains. One can also use machine learning
to predict the relevance of a given image to a given query
using both text-based [20, 157] and/or image-based features

[160]. Many methods use triplets of the form (query, candidate,
relevance) to learn to predict candidate relevance [20], but
humans are generally inconsistent in rating candidates. For this
reason, other methods learn similarity metrics using triples of
the form (image, similar, dissimilar) [160], which humans can
produce more consistently. These methods can also collect data
by focusing on adversarial examples [161], and the data col-
lection process can be up-scaled using Crowdsourcing [158].
Using this training data, different methods have been trained
to rank figure and chart candidates including mixture models
[157], weight-based distance metrics [20, 158], and neural
networks [160]. In some applications, diversity of results is
considered an important factor and search results might be
shown in randomized order [159].

Some figure retrieval systems in the literature have consid-
ered charts and diagrams explicitly [20, 23, 45, 157, 158].
Other related systems for general figure retrieval are covered
in the review by Sanyal et al. [162].

E. Visual Question Answering

The goal of visual question answering (VQA) systems is to
provide useful responses to natural language questions with
respect to specific images. General approaches for VQA can
be found in the survey by Wu et al. [163]. In this section, we
focus on strategies for chart question answering (CQA).

Chart questions have been categorized as structure under-
standing, data retrieval, and reasoning [164]. Different proce-
dures can be used for each type of question [50, 120, 164].
Data retrieval questions can be answered by simply executing
the required operations on the extracted chart data [50], and
some systems can accurately determine these operations by
relying on template-based questions which explicitly state the
data source and variables involved [23]. Many other questions,
specially the structural ones, can be answered using classifica-
tion methods that choose one answer from a fixed vocabulary
[120, 164]. However, there are many open-ended questions
requiring out-of-vocabulary (OOV) answers which must be
produced through more sophisticated methods. We note that
existing models rarely consider rejecting invalid questions, and
will forcefully produce invalid answers for them.

Initial results show that out-of-the-box state-of-the-art meth-
ods for VQA do not perform well on charts, except for
questions related to structure understanding, involving chart
properties and/or basic counting operations [164]. Apart from
traditional image and question embeddings, CQA methods
usually consider chart-specific operations such as detection
and recognition of chart elements, especially text [120, 164,
165]. Many of these models deal with OOV answers by
creating image-specific dictionaries to dynamically encode the
detected chart text regions and any reference to these on
the input questions [164, 165, 166]. After this, the system
can combine the image-specific text encoding with a fixed
vocabulary to select the final answer through classification,
usually involving some form of attention [164, 165, 167]. An
alternative to these encodings is to use a regression branch to
directly identify text regions containing the answer [167].

Other families of methods first convert the input chart into
a table, and then use table-based question answering systems
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[120]. This can be useful with charts formats such as Vega-Lite
which already includes the original tabular data used to create
the chart [168]. Data-related questions requiring computations
can be handled effectively by these systems [120, 168], but the
input questions should be modified by converting all references
to visual properties of chart elements into their corresponding
data references [168]. The query constructed by the QA system
can also be used as the basis to provide an explanation of the
answer to the final users based on templates and the reverse
mappings between data fields and visual attributes of chart
elements [168]. Overall, methods for VQA on raster images
are really sensitive to OCR errors [166]. Finally, the usage of
Iterative CQA has been proposed to approximately reconstruct
the original tabular data [166].

E. Bibliometrics

The field of bibliometrics studies ways to help researchers
discover important papers among the increasing pool of aca-
demic literature [23]. Some works have studied which types
of visualizations are commonly used per discipline, and how
these visualizations and their corresponding captions affect the
citations that a publication receives [5, 31]. In a study with
5 million figures [31], authors found that papers with more
citations have more diagrams (e.g., schematics, conceptual
diagrams, flow charts, architecture diagrams, illustrations) than
charts. Two potential explanations were given - papers with
good visualizations are more effective, hence producing higher
impact; novel ideas require more visual explanations (more
diagrams, less charts with experimental results). Another study
[5] found a small correlation between paper citations and
their figure and table count, especially when these have longer
captions.

G. Other Applications

There are many other helpful applications for chart analysis
that have received little attention from the research community.
In this section we briefly cover some of these.

1) Chart Quality Assessment: Principles from educational
psychology and cognitive theories have been used to create
quantitative metrics of chart quality i.e. effectiveness of infor-
mation transmission from the graphic to the reader [51]. These
metrics include: spatial location quality, label completeness,
graphic contrast, and multi-modality consistency. Computing
these metrics requires image and natural language processing,
and they are very sensitive to OCR and vectorization errors.

2) Automated Chart Grading: Questions related to charts
and diagrams in student assignments can be automatically
graded by comparing similarity of submitted charts to the ideal
answer. This has been done for Venn and Euler diagrams in
SVG format [169], where similarity is measured using labels
of sets, curves used for sets, regions in the diagram, number
of elements, and shaded zones.

3) Chart Plagiarism Detection: Similarity metrics can also
be used to detect potentially plagiarized charts. Extracted
text and chart data have been used to test for plagiarism of
bar charts [170]. However, such methods cannot distinguish
between authorized reproductions and plagiarized charts.

4) Chart Data Preservation: Historical records contain
large amounts of data only available on non-digital charts
which can be preserved and digitized by automatic data extrac-
tion methods. Axis analysis and image processing techniques
have been used to preserve historical autographic weather
charts (thermographs, microbarographs, hydrographs) [112].

5) Predicting Hashtags: Hashtags can be used to support
applications such as search and browsing of graphical content
including infographics. Text extraction along with object de-
tection and classification having been used to generate textual
and visual hashtags from Infographics [171].

VII. DATASETS

Chart mining solutions require chart datasets for training
and evaluation. Most works in the literature use small, often
private, datasets. This is due to the fact that creating manually
annotated chart datasets is often a complex and time con-
suming task. However, recent works have started using semi
and fully automatic approaches to create larger datasets which
are also public. Here we cover existing chart datasets and the
methods used to create them.

A. Manual Dataset Generation

A collection of chart images can be turned into a dataset
with the help of human annotators. Before the labeling process
takes place, it is common to apply some quality controls to the
data [158]. The original image meta-data can provide some
relevant labels [56], but others need to be captured through
special user interfaces [172]. Crowdsourcing can up-scale the
annotation process but it requires strict quality controls to
reduce noisy labels [134, 141, 158].

The annotation process depends on the labels required to
train and evaluate the task being targeted. Classification tasks
require chart images and/or chart elements to be associated
with classes from predefined sets [173]. Detection tasks usu-
ally require collecting the position, size and orientation of
certain chart elements such as text regions, legends, axes,
and data marks [173]. For text regions, their transcription and
roles are also collected. High-level recognition tasks require
collecting certain relationships among chart elements (e.g.
linking data marks to data series), or even between the docu-
ment and specific chart elements [141]. Retrieval tasks require
relevance assessments which are commonly captured as scores
for query-candidate pairs, or alternatively by capturing the user
preference over image candidates for a given target [158, 160].
For chart summarization, some authors have collected textual
summaries for isolated charts [172].

B. Semi-Automatic Dataset Generation

The semi-automatic approach combines manual labeling
with automated methods to speed-up the annotation process.
This approach works better on tasks which are too hard to
fully annotate by hand. For example, the generation of ground
truth at the pixel-level and/or vector-level [174]. Depending of
the complexity of the labeling process, the users can provide
inputs and/or correct the outputs for automatic algorithms in
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one or multiple interactive rounds. For example, an automated
text detection algorithm can be used on a chart image to obtain
candidate text regions which can be corrected by the user
[174], and afterwards the transcriptions for each text region
can be generated using an OCR engine followed by manual
corrections [68, 173]. For classification tasks, a small but
diverse set of images can be manually labeled. These labels
are then propagated to similar images followed by manual
verification. This process can be repeated until a large number
of images has been annotated [65]. For CVQA tasks, human
annotators can be source of question templates which can be
used to automatically generate thousands of questions based
on arbitrary chart data [120, 168], which in turn can be
paraphrased manually by humans [120] or automatically by
translator systems [165].

C. Automatic Data Generation

Automatic chart dataset generation requires data sources and
models for synthetic chart generation. The data sources can
also be fully synthetic, real or derived from real data [165,
173]. Considering a noise model during the generation process
might also lead to better data to train more robust systems
[67]. For example, a method proposed printing, scanning and
cropping synthetic charts to add realistic noise [116], while
other approaches simulate such noise programmatically [174].

Chart rendering tools capable of producing ground truth at
different levels for each chart image are required. Despite the
fact that relying on a single chart rendering tool has consider-
able limitations in terms of variety [174], most works tend to
use a single tool for their entire chart rendering process. A few
works have used commercial software such as Microsoft Excel
[75, 114], SAP reports [14], or MATLAB [116]. However,
the majority of works prefer non-commercial packages such
the XML/SWF Charts tool [47, 175], and the Vega language
[67, 70, 176]. Some early works created their own custom
chart generation tools in order to gain full control of the data
generation [174]. This allowed them to create ground truth at
any level including pixels and vector primitives. Many recent
works use the Matplotlib library [177] to create large scale
synthetic datasets because it allows them to generate ground
truth at the level of chart elements [75, 96, 164, 165, 173].

Synthetic datasets have also been created for document
segmentation tasks related to chart mining (see Section II).
Using existing collections of papers which include both a
PDF version of each paper and its corresponding sources
(e.g. KIEX or XML plus figures), it is possible to apply
simple heuristics to automatically generate labels for figure
locations, and these can be used to train and test methods for
extraction of figures from documents [12]. For multi-panel
figure segmentation, it is possible to use collections of single
panel figures to generate synthetic multi-panel figures with
random layouts [40]. Ground-truth can be generated for these
images at the level of both pixels and bounding boxes.

D. Existing Chart Datasets

In this subsection, we present a summary of datasets that
have been used for different chart mining tasks. In Table II, we

present a summary of datasets for extraction of figures from
documents (Section II). These generally include document
pages annotated with the locations of their figures. Many of
these also annotate the locations of tables, and the captions
for both figures and tables. In Table III, we present datasets
used for image classification (Section IV). This table includes
different hierarchies of image classes: single-panel vs multi-
panel, figure per type, chart per type. Table IV presents
datasets which have been used for recognition of charts and
other graphics (Section V). Note that very few of these
datasets have been made publicly available, and even fewer
of these are reaching the scale required by state-of-the-art
techniques such as deep learning. In addition, most of the
large datasets are synthetic resulting in multiple limitations
despite the scale. Finally, Table V presents datasets used for
chart text processing (Section V-D). Two main sub-tasks are
considered here: text detection and recognition (TDR), and
text role classification (TRC).

TABLE I
SUMMARY OF DATASETS USED FOR TRAINING AND EVALUATION
METHODS FOR EXTRACTION OF FIGURES FROM DOCUMENTS

Domain Size Unit | Used By
Multi 979 Pages [15]
Bio Med 2,256 Articles [7]
Multi 207 | Articles | [6]
CS 346 Articles CS-Large [5]
CS 20,000 | Articles | [23]
Multi >5,500,000 | Articles | DeepFigures [12]
TABLE III

SUMMARY OF DATASETS USED FOR IMAGE CLASSIFICATION. DIFFERENT
SETS OF CLASSES HAVE BEEN CONSIDERED: SINGLE-PANEL VS
MULTI-PANEL, FIGURES PER TYPE, AND CHARTS PER TYPE

Size Datasets
Classes: Single vs Multi Panel, Figure Type
20,000 | ImageCLEF 2015 [28, 33, 39, 64, 66]
21,000 ‘ ImageCLEF 2016 [40, 41, 45, 62, 63, 64, 66]
Classes: Figure Type
< 1500 | [24], [61]
33,070 ‘ DocFigure [65]
Classes: Chart Type
<2000 | VIEW [72], [52], [69], [49]
2,500 ReVision [68, 70, 74]
5,000 DeepChart [73]
6,997 ChartSense [71]
4,242 | CHART 2019 - PMC [173]
11,174 Chart Decoder [77]
17,154 | [67]
202,550 | CHART 2019 - Synthetic [173]

VIII. DISCUSSION AND CONCLUSIONS
A. Discussion

Automatic extraction of the data encoded in charts is diffi-
cult due to the diversity of their types, styles, structures and
noise [9]. There are many technical challenges in the process
which have not been completely addressed in the existing
literature, but rather deferred through hard assumptions in
most cases. In a previous analysis of charts extracted from
PubMedCentral [173], we found that most of these hard
assumptions are broken by real charts from academic papers.
For example, the empty space of the chart data regions is
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TABLE IV
SUMMARY OF DATASETS USED FOR CHART DATA EXTRACTION AND
OTHER RELATED APPLICATIONS

Graphics Domain Size | Used By

Line Media 215 SIGHT [128]

Bar Media 330 | SIGHT [127]

Bar, Line, Pie Multi 200 | CHIME-R [50, 92]

Line CS 882 | [90]

2D Charts CS 332 [70]

Bar Multi 213 [91]

Bar Synth 300,000 | DVQA [164]

2D Charts Synth 224,377 | PlotQA [120]

2D Charts Synth 250,000 | LEAF-QA [165]

2D Charts Bio Med 400 CHART 2019 [173]

2D Charts Synth 202,550 | CHART 2019 [173]

Infographics Multi 29,000 | Visually29K [171]
TABLE V

SUMMARY OF DATASETS USED FOR EVALUATION OF TEXT PROCESSING IN
FIGURES. THE MAIN SUB-TASKS ARE: TEXT DETECTION AND
RECOGNITION (TDR) AND TEXT ROLE CLASSIFICATION (TRC)

Graphics | Domain | TDR | TRC | Size | Used By
Figures Multi Yes No 441 [92]
Figures News Yes Yes 475 [70]
Figures Bio Med Yes Yes 10,642 [34]

2D Charts Bio Med Yes Yes 400 [173]
2D Charts Multi Yes Yes 202,550 [173]

commonly re-used to added smaller sub-charts (see Figure
8.f). Many charts display more than one dependent variable (y-
axis), each one with its own scale (see Figure 8.d). Some charts
have interruptions on the axes lines which can be interpreted
as a non-contiguous scale (see Figure 8.e). Despite being
common, none of the works covered here dealt explicitly with
these and other chart complexities. In addition, many recent
methods prefer working with charts in vector formats, but there
are vast amounts of charts only available in raster formats.

Methodologies used for chart recognition have evolved
considerably as well. Many early methods concentrated on
bottom-up approaches which usually started with raster-to-
vector conversions when needed and then used grammar-based
parsing to recognize chart elements from low-level to high-
level. These methods were more generic in the initial steps of
the process until the recognized elements had to be interpreted
as data. Recent methods recognize type-specific chart elements
from the outset. They also rely more on data and machine
learning for high-level chart interpretation.

In general, state-of-the-art computer vision techniques have
not been fully adopted by chart mining approaches, but we
believe that these will be useful in overcoming many of
the technical challenges discussed earlier. For tasks such as
chart image classification and text processing, these computer
vision methods have been relatively successful with little to
no changes from their original domains. However, other tasks
require domain adaptations as we have seen in some of the
very recent works using end-to-end deep learning.

There has been very few comparisons between methods for
chart mining. This is mostly due to the lack of public bench-
marks. There have been competitions on related challenges
such as figure extraction, multi-panel figure segmentation,
figure classification, and figure text processing. For charts, the
first effort was made at ICDAR 2019 through the Competition
on HArvesting Raw Tables (CHART-info) [173], and their data

and tools have been made publicly available.

Another major challenge in chart mining is the lack of large
annotated datasets. So far, chart extraction and classification
are the only tasks being tested with reasonably large datasets,
probably due to the simplicity of the labels required for
evaluation. Advanced data extraction tasks require complex
labels which are hard to annotate manually. As such, they are
still evaluated on considerably small datasets, which are often
also private. We also noticed that many works use images from
the web, but redistribution might be affected by copyrights.

The common alternative to large scale data annotation is
synthetic data generation. However, these datasets are com-
monly generated using a single tool, and as such they often
fail to capture the diversity and complexity found in real-
world charts [173]. Many chart generation methods rely on
unconstrained randomizations of style parameters of the chart
rendering tool, but this is likely to overfit the design space
for that tool in particular. The goal should be to create
realistic charts using a diverse set of tools. Studies considering
both large-scale synthetic and small-scale real chart datasets
show similar trends where their methods perform well on the
synthetic testing data, but perform significantly worse on real
charts [67, 75, 76, 173].

In this review, we have only covered applications for chart
mining that have been addressed in the existing literature.
Many users would benefit from advances in each of these ap-
plications, but some of them have been rather under-explored
by existing works. Also, like the main chart recognition
problem, many of these applications suffer from the same
issues of over-simplification, lack of comparisons between
existing methods and lack of large scale public datasets.

B. Open Challenges

There is a strong need to address the challenging problems
in chart processing by moving away from hard assumptions
and weak heuristics, and start moving towards more robust
methods which can handle the varied characteristics of real
chart data. For example, we can anticipate that vector graphics
might become more commonplace in the future, but we
still need more robust methods to handle raster graphics.
Overcoming these challenges will have an immediate impact
on a variety of applications in the document recognition
community.

Chart mining methodologies continue to evolve, and we
hope to see more methods taking advantage of progress in
computer vision. There is a need to adopt fully trainable
methodologies (e.g. Deep Neural Networks) that avoid hard
heuristic assumptions such as we have seen in some of the
most recent methods [75]. The advantage of these methods is
the concurrent optimization of multiple portions of the chart
recognition pipeline, especially with end-to-end networks.
Also, processing of certain specialized diagrams in scientific
disciplines requires the exploration of a combination of state-
of-the-art methods for low-level chart element recognition
with a mechanism to provide high-level domain knowledge
and other input to the system for interpreting these diagrams.
This should facilitate the rapid development of pipelines for
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recognition of highly specialized charts based on models pre-
trained on more general charts.

The adoption of state-of-the-art computer vision techniques
can be facilitated by the creation of large scale public datasets.
Overall, these datasets should be more diverse and include
charts from multiple sources and domains (news media, aca-
demic literature, technical reports, policy documents, white
papers, patents, etc). The chart recognition community should
take advantage of existing chart annotation tools [173] to
create and release benchmarks in the future. These benchmarks
might require the formal definition of new metrics which
are capable of capturing the complexity of the task being
evaluated and the finer improvements obtained with new
methodologies for these tasks. Also, methods using synthetic
data should combine charts from multiple chart generation
tools, considering as well that it is not enough to simply use
real data to generate synthetic charts, but the chart generation
process itself should adopt user models that emulate the way
that real people would create visualizations based on such data.

Finally, while some applications of chart mining are getting
a reasonable amount of attention, there are more ambitious
applications that have been under-explored by the community.
As more accurate methods for chart data extraction emerge,
we can anticipate that these applications will become more
achievable.

C. Conclusion

In this work, we have not only reviewed the chart mining
literature, but we have also analyzed its limitations and pro-
vided a few pointers for future work. We anticipate that chart
literature will grow in the years to come, leading to more
accurate chart mining methods that can power more creative
applications. We expect this review to provide useful insights
for the future developers of these methodologies.
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