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ABSTRACT

This paper studies the concept of manufacturing systems
that autonomously learn how to build parts to a user-specified
performance. To perform such a function, these manufacturing
systems need to be adaptable to continually change their process
or design parameters based on new data, have inline performance
sensing to generate data, and have a cognition element to learn
the correct process or design parameters to achieve the specified
performance. Here, we study the cognition element, investigat-
ing a panel of supervised and reinforcement learning machine
learning algorithms on a computational emulation of a manufac-
turing process, focusing on machine learning algorithms that per-
form well under a limited manufacturing, thus data generation,
budget. The case manufacturing study is for the manufacture of
an acoustic metamaterial and performance is defined by a metric
of conformity with a desired acoustic transmission spectra. We
find that offline supervised learning algorithms, which dominate
the machine learning community, require an infeasible number
of manufacturing observations to suitably optimize the manufac-
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turing process. Online algorithms, which continually modify the
parameter search space to focus in on favorable parameter sets,
show the potential to optimize a manufacturing process under a
considerably smaller manufacturing budget.

NOMENCLATURE
T  Total budget/observation number
Loss

Design space or state-space
Dataset
X  Optimum value of inputs
X  Vector of input variables
y  Output
ya Desired output
policy of reinforcement learning agent
Reward function
action-space
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INTRODUCTION

It is inarguable that in 2020 we are in an era of manu-
facturing efficiency and mass production that has never been
seen before [1]. Modern manufacturing economies in the West
and in Asia have automated traditional manufacturing processes
such as stamping, forging, casting, machining, and assembly [2].
Whereas human laborers previously performed material handling
and machine sequencing tasks, automated systems and robots
have replaced the laborer because they are relatively inexpensive,
repeatable, and do not tire. However, the human laborers they
have replaced had superior human cognition; automation robots
are capable of following a sequence of tasks, but rarely make de-
cisions. The human ability to plan, analyze, and intervene, and
thus intelligently modify a manufacturing processes by local ma-
terial work, local heat transfer, and local material addition and
subtraction has been replaced in favor of tight process operating
windows and robotic, repeatable actions for superior efficiency.

Given this unstoppable trajectory of manufacturing automa-
tion for mass manufactured components, it is worth considering
what the next big movement in manufacturing will be. The au-
thors and others [3-5] believe that the next generation of man-
ufacturing automation will enable to manufacturing machines to
plan, analyze, and intervene; instead of automated robotic man-
ufacturing, the next generation of machines will be autonomous.
The machines will have the actuation dexterity, sensing capabil-
ities, and cognition for planning, analysis, and intervention that
far surpasses human capabilities.

This paper investigates cognition elements that are based
on the methods of machine learning (ML). As defined by Mur-
phy [6], “ML is a set of methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict fu-
ture data, or to perform other kinds of decision making under un-
certainty.” The three main classes of ML are supervised learning
(SL), unsupervised learning, and reinforcement learning (RL).
Typically, ML is applied to a dataset XY . X T d
Y T ™ where the dataset is comprised of T observation pairs

X; ¥: , X; are the d independent parameters or inputs, y; is the
set of n dependent output variables. In the general supervised
learning problem, the objective is to uncover patterns in . In
the context of the general manufacturing problem, x; is the set of
independent tunable parameters for a part design or process vari-
able and y; is an output metric or metrics of interest. Whenm 1
the output is a scalar and when m 1 the output is a vector. In
unsupervised learning, y; is unavailable ( X ) and the ob-
jective is to cluster the independent parameters. Although unsu-
pervised learning may have applications to manufacturing, they
are not studied here. Both supervised and unsupervised learning
algorithms are often applied to an existing dataset, and we term
these offline algorithms here, where it is assumed that a dataset
has been collected on a manufacturing system. In contrast, the
aim of reinforcement learning (RL) is to continually explore the
domain of the independent variable space to maximize a reward

(sometimes as a function of y) or goodness of manufacturing per-
formance. RL is an online algorithm where current data informs
the next action, or movement, in the domain. In the standard ML
problem, it is inexpensive to populate ; for example, classical
ML problems such as the modified NIST data [7] and the Netflix
Prize [8] have T values in the range of 103 — 10%. In contrast, the
general manufacturing process is relatively expensive, requiring
materials and labor and occupying plant infrastructure, thus lim-
iting the acceptable number of trials before production quality
parts are produced to be on the order of 10?.

For a manufacturing system to learn, the system must be au-
tomated, such that manufacturing or part design parameters can
be automatically specified by the algorithm, thus x; can be spec-
ified, and the system must have automatic metrology, to quantify
the quality or performance of what is manufactured, and thus
generate observation data y;. Importantly, the system must have
an ML engine for cognition, either to understand underlying pat-
terns in dataset  or perform actions in a RL framework. This
paper explores such a system, particularly in the case of expen-
sive data, where T is budgeted and there is an advantage to con-
verging to a good performance in as few of observations, thus
manufacturing operations, as possible. We explore both offline
and online algorithms and compare part performance at different
budgets, T'. Some online algorithms have a budgetary advantage
because the algorithms probabilistically travel along the path of
highest reward and thus ignoring low-reward regions of the do-
main. The paper is organized as follows. The Methodology sec-
tion presents a generic mathematical framework for manufactur-
ing systems, definition of a performance index to measure the
manufacturing performance, and application of both offline and
online ML algorithms with manufacturing budgets. The Com-
putational Emulation of Manufacturing System section provides
a case study for hypothetical system and ML application for the
manufacture of a Phononic Crystal (PnC) (Fig. 1); this manufac-
turing system, based on an additive manufacturing (AM) plat-
form, can dexterously change the design or process parameters,
X;, by changing G-Code instructions, has inline acoustic spec-
tra sensing to generate y, and has a cognition element to au-
tonomously manufacture, thus sample, in the design and process
workspace to generate data and evolve part performance. The
Machine Learning Application and Results Section describes the
specifics of the panel of ML algorithms applied and compares
the performance metric for different manufacturing budgets for
each algorithm. The Conclusion section provides interpretations
and suggests future research directions.

METHODOLOGY

In this section, a generic mathematical framework for a man-
ufacturing system capable of learning from data or previous ex-
periences is developed. Consider the general manufacturing sys-
tem modeled by
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FIGURE 1. Autonomous Manufacturing System of Phononic crystals (PnC) with ML unit as the cognitive element (dotted line represents the

beginning of a new timestep).

ye=f(x:)+¢€ (1)

where, f(x;): R? — R” is the mapping between the control-
lable inputs, x;, and the true, or measured, output features of
the system, y;, where y; can be a function or scalar (n = 1) or
vector-valued function or vector (n > 1), depending on the def-
inition of an output feature of a specific system, and t € Z is
manufacturing observation index. € is a stochastic variable that
captures uncontrollable inputs, process variability, and measure-
ment noise. We assume that the controllable inputs are bounded:
X = [x,-,l,x;,z, ...:de] € Z where 2 is the corresponding
vector space satisfying the inequality

X=2Xx=X

where x is the minimum allowable limit of the input variables and
X is the maximum allowable limit of the input variables. Here, <
is used to define the element-wise inequality: X; =< X2 means that
x1]i < [x2]; Vi.

Optimization problem
Considering the definition of the manufacturing system in
Eqn.(1), our goal is to find x* € 2" such that |yg — y*| = |ys —

E[(f(x*)]| is minimal, where y4 is a desired output and |-| is a
generic norm operator. Note that, in general, |yg —¥*| = 0 is not
feasible, as one can specify a desired output that is not achievable
for a manufacturing system; for the case example in this paper,
one could specify a desired transmission spectra that is an ideal
filter (top-hat filter) with perfect transmission in the pass-band
and perfect rejection in the stop-band, which is not realizable for
physical systems. Additionally, it is extremely difficult to obtain
optimality with a fixed budget due to the stochastic noise in the
system. Hence, we wish to find a sequence x1,X2,...,Xr with a
total budget of T such that we can end up in the vicinity of x*.

Performance index

The generic optimization problem statement in the previous
section is ill-posed as vector-valued output features, y;, create a
multi-objective optimization problem, with the potential to have
competing objectives. A common method for this issue is the
scalarization of such a multi-objective optimization problem with
the definition of a ‘loss function’ or ‘cost function’,

_g(y): [W],Wg,...,wn] [_gl(yl):_gz(yz):_”:_%l(yn)]r:R"—HR

where each individual loss function is a mapping %(y;) > 0:
R — R and each w; > 0. Leveraging the loss function, our opti-
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mization problem is formulated as

min fx
X X (2)
t 01 T

s.t.

[l e

Ideally the loss function is convex and zeroth order, first order or
second order optimization algorithms are typically used to min-
imize the loss function. Non-convex loss functions pose a more
complicated optimization problem than the ideal one as there
might be multiple local optima with one or more global optima.
If the loss function is not differentiable then gradient-based op-
timization algorithms are difficult to implement as there may be
multiple points with discontinuities [9—-11].

Optimization of the loss function: Online vs Offline

The solution to Eqn.(2) is the main problem statement of
standard ML problem. Here, we investigate offline, SL-based
learning methods as a gold-standard for comparison of the op-
timization problem. We define offline to be the optimization
of Eqn.(2) when the dataset X Y is available a priori;
note that the acquisition of  may be prohibitively expensive
for manufacturing systems. We define online to be the optimiza-
tion of Eqn.(2) with no a priori information and the information
at a given operation observation ¢ ( XY .X t 4 and
Y ! ™M) directs the selection of the next input set X, ; to ob-
serve.

Offline methods Most of the popular machine learning
algorithms are offline methods and hence not suitable to imple-
ment in a problem setting with limited or expensive data. Al-
though we will implement commonly used supervised learning
techniques to show the best case scenario, the performance of
supervised algorithms become poor with fewer training samples.
There are also gradient based and gradient free optimization
methods which may reach the global/local minimum with rea-
sonably good accuracy, but these algorithms have a major lim-
itation. Gradient based optimization methods can achieve con-
vergence for convex objective functions fairly well, but fail to
ensure optimality for non-smooth (smooth in the sense of Lips-
chitz), non-convex objective functions. Gradient free optimiza-
tion methods are computation intensive and need large datasets
to obtain optimality with convergence. As any manufacturing
system is a real-world process and incorporates various inher-
ent noise to the system, it is highly unlikely that we will end up
with a smooth convex objective function to optimize and as men-
tioned in the previous section, we might get stuck at one of the
many local minima.

Online methods We can extend the optimization prob-
lem to the online setting without any prior knowledge, unlike
most of the offline optimization problem where a training set,

X Y is available beforehand. Online optimization prob-
lems can utilize either one new input-output relationship (with
knowledge of already experienced values) or they can utilize
small batches of data (often called batch optimization). A conve-
nient approach often followed for this purpose is the “Response
Surface Method” (RSM), which is sometimes used analogously
with global metamodel optimization [12]. In case of global meta-
model optimization, a global model is fit to the dataset, while in
case of RSM, local models are fit into small batches of data. The
fundamental idea behind RSM is simple and sketched in algo-
rithm 1. Starting with a randomly selected state we fit a local
model (unlike a global metamodel) to a sampled region around
the starting state at every iteration and use search methods like
Stochastic Gradient Descent (SGD) [13] to find the minimum of
that region. This minimum acts as the starting state for the next
iteration. By state, we define the vector of all input variables (x)
at a single point. From the pseudocode we can view RSM as

Algorithm 1 RSM pseudo code

Require: design space , dimension of sampled region (e.g.
length ,, for square region in 2D design space), maximum
iteration number: ifer,,q ., random initial state xq

1: while step iter,,, do
: state X0
3. create sampled region S around Xg (e.g. square region with
length = rsm)
4:  randomly choose n points from S
Sy new region by fitting n points using lower order
polynomials

6: X,  global minimum on Sy using SGD
T Xpewr : MiN Xpew  Xopr 1
Xnea
8: X0 Xnext
9: end while

a batch online method that takes a small batch of data at each
iteration.

Reinforcement learning (RL) has the correct properties to be
a good candidate in our problem setting due to its inherent online
nature of learning [14]. Reinforcement learning has been proved
to be an effective sequential decision making process under un-
certainty where an agent (multiple agents in some cases [15])
interacts with its dynamic environment to achieve a goal and
obtains rewards as the outcome of this interaction. This learn-
ing scheme typically works in the context of incomplete Markov
Decision Process (MDP) [16]; incomplete in the sense of un-
availability of all the state-transition probabilities . Formally
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a finite MDP can be expressed as the tuple ,
where, is the finite set of states, is the finite set actions,
is the state transition probabilities,  is the reward function
and is the discount factor 1 . The behavior of the agent is
described by policy ax PrA, ax, x X which
is basu:ally a mapping from the state-space to the action-space,
. The reinforcement learning agent follows policy
to move from current state X to next state x and receives re-
wardr XX a4 XX a . The goal of reinforcement
learning is to estimate the “value function™, V that estimates the
future expected rewards (often discounted) while the agent is in
the current state.

erklxr X X 3)
k0

where,returnG; R, 1 R 2 2R?, andr x; a; X,
R;. Usually action-value function Q x a is used instead of value
function, V x to define the value of taking action a in current
state x while following policy

Q xa Gx, xa a )

erklxr Xa a X (5)

Formally this problem becomes finding the optimal policy
that maximizes 0 x a ,

Q xa

max() xa X (6)

COMPUTATIONAL EMULATION OF A MANUFACTUR-
ING SYSTEM

The goal of the case study is to evaluate the methods de-
scribed in the previous sections on simulation of a manufactur-
ing process: the manufacture of acoustic metamaterial crystals
with a fused deposition (FDM) based AM system. These meta-
materials, also commonly known as phononic crystals (PnCs),
exhibit special acoustic bandgap properties corresponding to the
geometric parameters [17, 18]. PnCs can be fabricated via ad-
ditive manufacturing and tested using piezoelectric transducers
as shown in Fig. 2(a) and 2(b). The bandstructure of PnCs can
be parameterized by their geometric design parameters, such as
the filament diameter and lattice constant (Fig. 2(a)), and de-
sired bandpass can be obtained by proper tuning of those pa-
rameters. In the following sections we provide a brief overview
of the bandstructure analysis of PnCs with respect to geometric
parameters and the development of suitable learning framework
for this specific manufacturing system.

Bandstructure analysis of PnC

In this study, the band structure calculations are per-
formed on a representative unit cell, which is the building
block of the PnC and repeats periodically along the three spa-
tial directions x y z . Fig. 2(a) shows the unit cell used in
this study. A computational engine is developed that uses
the acoustics module package of COMSOL® as its core to
solve the elastic wave propagation problem by Finite Element
Method (FEM) at discrete parameter values of the lattice con-
stant, I, 700 705 1035 m, and filament diameter, d
300 305 635 m, for a total of 4624 unique design pa-
rameter combinations. More specifically, these band structures
are calculated through corresponding numerical eigenfrequency
analysis. The traditional frequency-wave vector k disper-
sion relationship is extracted from the eigenfrequency analysis
by sweeping the wavevector k in the first symmetric Brillouin
zone X S Y Z URTZY TU XS R
The structure of the Irreducible Brillouin Zone (IBZ) comes from
the symmetry of the unit cell. As this study mainly focuses on
the learning algorithms we will skip the details of the IBZ and
the eigenfrequency analysis of PnCs; interested readers are sug-
gested to look into [19,20]. We consider only the Z direc-
tion as experimental phononic studies typically use longitudinal
waves for PnC characterization as shown in Fig. 2(b). The set
of dominantly longitudinal band structures is synthesized into
the transmission spectra by labeling as bandpass in frequency
regions in which there is transmission and bandstop in frequency
regions in which there is no transmission and then Gaussian ker-
nel based filtering to smooth the spectra. The outcome spectra
from this method is qualitatively comparable to the experimen-
tally derived spectra from [21]. A representative desired spectra
and a typical actual spectra from the simulation are shown in Fig.
3. These spectra are characterized with respect to the desired
peak amplitudes (y4, Y4,). actual peak amplitudes (v, Y, )
desired peak frequencies (fz, fa,) and actual peak frequencies

(faey fae)-

Learning problem formulation

As mentioned in the previous sections, our goal is to im-
plement and analyze the performance of various machine learn-
ing algorithms - both online and offline. One advantage with
this computational study is that we can consider supervised al-
gorithms as a hypothetical, best-case scenario of having all the
data a priori.

In our study we impose some constraints to mimic the actual
manufacturing systems. It is assumed throughout the study that
our system is only capable of manufacturing PnCs with filament-
to-filament distance (l,y) and filament diameter (d) within a cer-
tain range. We can describe the manufacturing system in Eqn.(1)
with input vectorx I, d T, output function y is the spectra,

is the noise, with the noise distribution considered to be un-
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FIGURE 2. Unit cell description and PnC characterization: (a)
Unit cell with mesh and design parameters I,y and d, (b) PnC Charac-
terization using ultrasonic transducers, (c) IBZ structure of the unit cell,
(d) mode shape showing dominant longitudinal deformation.
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FIGURE 3. Typical desired and actual spectra: Desired spectra and
actual spectra characterized by peak amplitudes and peak frequencies.

known. The key idea is that we assume we do not have a model
of the system which encourages us to consider model-free online
learning methods later in this section. Ultimately we can express
the optimization problem for this computational manufacturing

system as the following:

min E[Z(ya(ly,d),yaq)]

Ly d
TOOpm] [z,y] [1035 pm] )
s.t. = =
[SOOpm d|, 635um
telo,1,...,T]

To assess the performance as the budget changes we consider
t as a variable. We construct the loss function % (y4,y,) from
the mathematical comparison of user specified desired spectra
(y4) and actual spectra obtained from the computational eigen-
frequency analysis (y,). We design the following loss:

LYa,Ya) =A+aLr+bh (8)

where,

e el Vsl
— Wac1—Jde1 ac) —Jde2 acl —Jacd
4= I}' fdcl | + | fder | T laer—faal
— Yacl —Yde1 Yac2 —Ydcd
L= Yaa T vaw
Here, # compares the amplitude of the desired and actual

g

, d(pm)
g

filament diameter
&
Y

00 750 800 as0 200 250 1000

filament distance, ,(um)

FIGURE 4. Map of loss over the domain of 2": same color means
equal loss.

spectra, % is a metric of the difference between peak ampli-
tude frequency of the actual and desired spectra, normalized by
the desired peak amplitude frequency, to quantify the position
of the peak within the transmission bandwidth, %5 is a metric
of the difference between peak amplitude of the actual and de-
sired spectra, normalized by the desired amplitude, to quantify
the transmission level within the transmission bandwidth. Fig. 4
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shows the map of the above loss function over the domain
(design space). The loss function is non-smooth and non-convex
for the computational dataset described in the bandstructure anal-
ysis section. The non-smoothness occurs because the simulation
results are found to be highly sensitive for small change in di-
mensions of the PnCs. This sensitive loss mimics the experi-
mental loss function as both of them associate noise of very ran-
dom nature. Nonetheless this contour gives us a global mini-
mum which shows close proximity with the experimental result
of [21]. Due to the presence of many local optima, we choose to
define an optimum region S, which we treat as the most promis-
ingregionof  (dark blue region with boundary in Fig. 4). This
region, S, corresponds to low values of loss ( yg Yo 25).

MACHINE LEARNING APPLICATION AND RESULTS
Methods

In this section we present the details of each algorithm ap-
plied to the dataset and the important results from the study.

Supervised learning algorithms In this study, some
of the widely used supervised algorithms like Polyno-
mial Regression, Decision, Tree, Kernel Ridge Regres-
sion, Support Vector Regression (SVR) [6, 22] and multi-
layer Neural Networks (NN) [23] are applied. Each su-
pervised algorithm is performed for various budgets (T
5 125 250 500 1000 2000 3000 4000) to incorporate the worst
case and best case scenario for the amount of data available.
The sampled data is randomly selected from the entire dataset
of n 4624 observations and each algorithm is independently
run 15 times to understand the range in algorithmic perfor-
mance. Evaluating the performance of each supervised algorithm
is straightforward. After each algorithm fits the data we deter-
mine the global minimum of loss obtained from the supervised
model and calculate the corresponding optimum input variables,
X Lyd T In case of multiple points with lowest value of
loss we randomly choose one point which is compensated by
running each algorithm multiple times. Before implementing any
algorithm, the whole dataset is split into 90% training data and
10% test data to check the accuracy of the model on unseen data.
Most of the algorithms have hyperparameters (e.g. polynomial
regression quality is dependent on polynomial degree and deci-
sion tree is dependent on tree depth) which directly impact model
accuracy. To overcome this issue of manually choosing the hy-
perparameters, 10 fold cross validation [22] (when T 10)
is used for polynomial regression, decision tree, kernel ridge re-
gression and SVR; for example: polynomial degree are varied
between 0 21 while tree depth are varied from 3 20 for
better accuracy. In case of kernel ridge regression, radial basis
functions are chosen as the kernel. We define the prediction er-
ror of the loss obtained from each algorithm as g for training

dataand 7 for test data where the errors are mean squared error
(MSE) expressed as below:

1™
MSE — i i
Bs i

where ny is the total number of samples used to calculate the
MSE, ;and ; are the actual loss and predicted loss of the ith
sample, respectively.

Response surface method As previously mentioned
we use response surface method (RSM) to fit a local metamodel
to a sampled dataset obtained from the full dataset (pseudo code
1). In this study we have a 2D design space , so we opted
for rectangular sampling topographies. Various combinations of
sampled square length, ,4, and sample number, n are tested in
this study, while the intuition behind these values is that higher
values of .4, and n will have a larger region, S to fit. A larger
S will increase the amount of data to feed the algorithm at each
iteration but will ensure better fit as it is difficult to get a good fit
with very low number of data samples. To balance these issues

sm 10 and n 100 have been used in this study. Initially
lower order polynomials (degree = 2,3) are used to fit the data
and at later steps of iterations (30% of total iterations) higher
degree of polynomials (degree = 4) are used to fit the data.

Reinforcement learning algorithms Our goal is to
find the state which maximizes the expected future rewards as
described in (6). Different types of reward functions, r X a x
are applied in this context and the following function is defined
as the suitable reward due to its ability to incorporate the loss at
each state:

rxxa f M X X (9)

where, M is an arbitrary high constant value. The purpose of M is
to build an inverse relationship between the loss and reward while
keeping the reward as a positive value. It is clear from Eqn.(9)
that the current reward comes from the value of loss at the current
state, which makes it a noisy reward due to the random noise ex-
istent in the original system. While many reinforcement learning
problems deal with episodic tasks and constant binary rewards,
in this case, it is hard to do so. Due to lack of a priori informa-
tion about the position of minimum loss on ~ we can not define
a terminal state in our problem like many other episodic imple-
mentations of RL. Instead we have a continuing task problem. In
this study we consider an on-policy algorithm called “Differen-
tial SARSA™ [16], which uses undiscounted average reward for
continuing tasks while using the temporal difference (TD) update
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rule for updating the Q-value. The differential return (G,4) and
TD update rule with TD error (8) can be expressed as follows:

Gig=Ri1—R+Ru2—R+...
8 =R—R+Q(x,d)—0(x,a)
R=R+pBé
0(x,a) + Q(x,a)+ad

(10)

In this study & — greedy policy is used with slightly higher ex-
ploration factor (¢ = 0.2). Like most RL problems balancing
the exploration-exploitation is a bit of a challenge and due to the
high non-convexity and non-smoothness of the loss function and
limited budgets, our agent is often stuck at local minima in the
no exploration case. We tried different action spaces and even-
tually adopt the “king’s move” as possible actions of the agent
from each current state, x. The “king’s move” allows the agent
to move in eight directions from any state with certain step size
(A = 5pum). It adds more degrees of freedom for the agent to
explore the search space than an agent which is allowed to move
only in four directions. The agent starts from a random state
within design space 2. If the agent hits the boundary of 2, it
gets a zero reward and chooses a random state within 2 as the
next state. Other hyperparameters for learning have been set as:
a=0.5,=03.

Results

3

3

8 ]

MSE, (6]"5{ and ‘ETE)
8

10

0 500 1000 1500 2000 2500 3000 3500 4000
budget, T

FIGURE 5. Train and test error: Mean squared error of SL algo-
rithms (solid lines represent training MSE (£7g) and dashed lines repre-
sent test MSE (erg).

For supervised algorithms training error (€rg) and test er-
ror (erg) with respective to budgets are shown in Fig. 5. Both

erg and erg decrease with higher training samples as expected.
Close values of erp and grg ensures the confidence of the models
in avoiding issues like overfitting. Although one can find opti-
mum points (points with minimum loss) for higher training data,
the optimum point is not near the optimum region S,,, most of
the times. Even if we use large amount of training data (> 3000
samples) it is quite difficult to predict the optimum loss for any
supervised algorithm as described in Fig. 6. The optimum loss is

Optimum loss (Poly regression)

70} * - .
- * 1
= 60 1 7
- - _— -
Ss50F ! T 1 1 - T g
\.Q, 1 1 1 1 1 1

1 40 T
%30— Q—
= 1 4

20r 4 + L 4 L .

T T T
:i or - T ! + T
- 501 ! ! T .
= 1 1 b 1
S0t - .
3 -
.30 $ 1
w
A L
R . S S
5 125 250 500 1000 2000 3000 4000

FIGURE 6. Optimum value of loss provided for selected super-
vised algorithms: Poly regression means Polynomial regression, NN
regression means Neural network regression and Tree regression means
Decision tree regression

not consistent with the number of budgets and it varies within a
large range of values for the same amount of budget. Only 4000
training data show consistent low values of the loss and almost
all the supervised algorithms suffer from this issue. The random
noise in the manufacturing system makes it hard for the super-
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vised algorithms to find the optimum points near S,,,. Note that
the models would have been able to provide better results if the
probability distribution of the noise was known (e.g. Gaussian
noise). An example fit of the data is shown in Fig. 7 where mul-

training data
test data

FIGURE 7. Example fit of data: Loss function fit by a multilayer
neural network.

tilayer neural network regression is implemented.

On the other hand, Fig. 8 shows result from implementation of
RSM with lower order polynomials. The RSM algorithm is able
to minimize the loss fairly well with an overall budget of T =
1500. In most cases the value of the loss converges to a small
value (Z(y4,Y,) < 25) although in some cases the algorithm
fails to converge to a lower value of loss than the initial loss.
As shown in Fig. 8, 5 attempts out of 7 are able to converge to
L(¥4,¥a) < 25. The average reward SARSA is able to reach the
“optimum region” (S,p) within a limited number of budgets (T
= 200) although the algorithm is not invariant to starting state. In
some cases starting from a random state the agent fails to reach
within the close proximity of the region S, This is not surpris-
ing because of the noisy reward obtained by the agent at each
timestep. Unlike typical deterministic reward functions, the re-
ward function used in this study is a function of the noisy loss.
As the algorithm is fed noisy reward it can not make a better de-
cision following the deterministic policy 7(x|a) in an otherwise
well defined problem formulation. Nonetheless average reward
SARSA is often capable of reaching within the close proximity
of S,p with small budget, while data intensive supervised tech-
niques are not capable of producing a similar result with com-

RSM optimization
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FIGURE 8. Loss from RSM: Loss values obtained from multiple
RSM runs, trial 3 shows a non-convergent behavior (failed to find S,p,)
unlike other trials.
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FIGURE 9. RL for larger timesteps: Reward obtained from RL al-
gorithm (differential SARSA) with a large budget (T = 1000). Occa-
sional drops in the reward are a result of exploration done by the agent.

paratively higher budgets. Fig. 9 shows a special scenario where
the RL agent is allowed to operate for an extended period of
timesteps. This figure states an interesting fact where the agent is
capable of finding the maximum reward most of the times once
the Q — value space has been mapped after about 500 timesteps.
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FIGURE 10. Differential SARSA (undiscounted average reward) results: (a) Agent from different random initial states often end up in the desired
region within the allocated low budget. Path of the agent has been shown from random start state to final state, (b) return obtained by the agent over the

timesteps, (c) A comparison of desired and actual spectra corresponding to agents final position.

CONCLUSION

Here, we study the general concept of manufacturing sys-
tems that learn to manufacture parts with a specified part per-
formance. We focused on the cognition element of such a sys-
tem, investigating a panel of supervised and reinforcement learn-
ing algorithms for their ability to optimize for part performance,
with the constraint of a manufacturing budget limiting the num-
ber of manufacturing runs allowable. Reinforcement learning al-
gorithms were observed to provide good performance even when
there is a fixed manufacturing budget on the order of 100 ob-
servations. Critically, reinforcement learning algorithms aggres-
sively pursue high-reward parameter sets, effectively ignoring
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low-reward parameter sets and thus not wasting manufacturing
budget in low-reward regions of the parameter space. Future
work will investigate multi-agent reinforcement learning algo-
rithms that can coordinate to cull low-reward agents to further
reduce the manufacturing budget and application on a manufac-
turing test bed to test algorithm efficacy with real process and
measurement variability.
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Optimum loss (Kernel ridge regression)
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FIGURE 11. Optimum Loss for the remaining supervised algorithms.
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