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Abstract—Representational Learning in the form of high
dimensional embeddings have been used for multiple pattern
recognition applications. There has been a significant interest in
building embedding based systems for learning representations
in the mathematical domain. At the same time, retrieval of
structured information such as mathematical expressions is an
important need for modern IR systems. In this work, our
motivation is to introduce a robust framework for learning
representations for similarity based retrieval of mathematical
expressions. Given a query by example, the embedding can
find the closest matching expression as a function of euclidean
distance between them. We leverage recent advancements in
image-based and graph-based deep learning algorithms to learn
our similarity embeddings. We do this first, by using uni-
modal encoders in graph space and image space and then, a
multi-modal combination of the same. To overcome the lack of
training data, we force the networks to learn a deep metric
using triplets generated with a heuristic scoring function. We
also adopt a custom strategy for mining hard samples to train
our neural networks. Our system produces rankings similar to
those generated by the original scoring function, but using only
a fraction of the time. Our results establish the viability of using
such a multi-modal embedding for this task.

Index Terms—Mathematical Information retrieval; Semi-
supervised learning; Graph matching

I. INTRODUCTION

Representational Learning in the form of high dimensional
embeddings on a manifold have transformed the landscape
of artificial intelligence [1] research. In recent trends, models
based on such learnt vector space representations have shown
tremendous promise in applications not limited to object
recognition, speech and signal processing, natural language
processing, multi-modal learning, transfer learning and domain
adaptation. In particular, there has been a significant interest in
trying to build embedding based systems for the mathematical
domain. For example, embeddings have been used to prove
mathematical conjectures through a few steps of machine
learning [2] and models have been built around embeddings
for summarizing mathematical problems [3]. The novelty in
such models is the utilization of math expression embeddings.

The code can be found here : https://cse-ai-lab.github.io/MathIR/EARN/

Retrieval of structured information such as mathematical
expressions is an important need for modern IR systems.
Creating a math aware search engine, which can search and
retrieve relevant documents purely based on similar mathe-
matical expressions effectively in real time is still an open
challenge. Our core motivation is to introduce a robust frame-
work for representing the domain of symbolic mathematical
expressions as a vector space embedding. The objective is that
we should be able to use the distance between vectors in this
learnt space as a similarity measure between expressions.

We leverage recent advancements in image based and graph
based deep learning algorithms to learn our similarity embed-
dings. We do this first, by using uni-modal encoders in graph
space and image space and then, a multi-modal combination of
the same. To overcome the lack of training data, we force the
networks to learn a deep metric using triplets generated with a
computationally expensive scoring function. In the worst case,
this heuristic scoring function can take up to full minutes to
calculate the similarity between two expressions [4]. In order
to improve the training of our networks, we adopt a custom
strategy for mining hard samples, both online and offline. Our
system based on embeddings can produce rankings similar to
those generated by the original scoring function, but using
only a fraction of the time. Our results establish the viability
of using such a multi-modal embedding for this task.

II. BACKGROUND

Our work belongs to the field of mathematical information
retrieval (MIR), and our proposed methodology uses deep
metric learning based on triplets and neural message passing
networks to generate embeddings. In this section, we briefly
introduce these topics.

A. Math Information Retrieval

Developing a ‘math-aware’ search engine has been a long
standing open problem [5]. The paradigm itself stems from
a fundamental symbolic grounding problem: how do we
associate logic and semantic meanings to a particular set of
symbols? With recent advances in deep learning and hardware
capacity, one could claim this problem has been solved to
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Fig. 1: Mathematical Expression Representations. The expres-
sion (a) a− b3 = 10 with associated (b) Symbol Layout Tree
(SLT), (c) Operator Tree (OPT), (d) Symbol Layout Graph
(SLG), and (e) Operator Graph (OPG). SLTs/SLGs represent
formula appearance by the spatial position of symbols on
writing lines. OPTs/OPGs represent mathematical operations
in expressions.

a certain extent for natural language [6]. However, math
expressions are more complex. The symbols themselves derive
meaning from the context of the expression that they are a part
of, which in turn derives meaning from the domain they are
associated with. It is hard even for humans to agree on, what
constitutes ‘similar’ math expressions. For example, for the
expressions, x

2 , 0.5x , x
2, and 2x, one could say the first two

are the most similar because they are equivalent, but then the
first, third and fourth have the most similar symbols. Also, one
could argue that the last three have the most similar operation.

Zanibbi and Blostein [5] analyzed the two major represen-
tations used by the MIR community. The Symbol Layout Tree
(SLT) and the Operator Tree (OPT) as depicted in Figure
1(b) and 1(c). The SLT is based on modeling the relative
visual position between symbols leading to deep trees with
few branches. It starts with the left-most symbol on the main
baseline of the mathematical expression, and it connects every
other symbol using edges labeled as: Next, Above, Pre-above,
Below, Pre-Below, Over, Under, Within, and Element [4].
The OPT is built around the hierarchy of operations in a
formula resulting in shallow trees with many branches. Edge
labels in OPTs indicate descendant position. OPT does have
operator information that the SLT lacks. For our purpose, we
use this operator ‘type’ information as the two edge types:
commutative and non-commutative [4].

Researchers have previously proposed a host of methods
for the formula retrieval task. Most of these approaches are
based on heuristic methods [7] either in the text or tree
matching domain. Text based methods generally treat the
formula as a string and use algorithms like, term frequency-
inverse document frequency (TF-IDF) for ranking [8] or using
the largest common sub-string between the query formula and
each indexed expression [9]. The tree based models try to
overcome this by encoding the structural information [10],
using partial sub-tree matching [11] or even a combination

of retrieval and scoring methods [4].
Davila et al. in Tangent-S [4] proposed a pair-based index

model, with a 3 phase approach: selecting candidates, finding
and scoring the largest common sub-tree between query and
each candidate, and finally a regression model to predict
relevance based on the structural matching scores. A symbol
pair is represented by the tuple (A,D,R), where A and D are
the ancestor and descendant symbols on the tree, and R is
the sequence of edge labels in the path from A to D. In
retrieval time, these tuples are extracted from the query and are
used to find candidate matches on the index. The second step
uses a detailed alignment algorithm which finds the maximum
common sub-tree between the query and each candidate.
This is done while enforcing intricate rules governing math
expressions such as unifying symbols of same ‘type’ (e.g.
x + y can be matched to a + b). Afterwards, candidates
are re-ranked by computing three scores: Maximum Subtree
Similarity (MSS), precision of candidate nodes matched with
unification, and recall of query nodes matched without unifica-
tion. Calculation of these scores can be prohibitively expensive
for large expressions. Thus the first step helps to score only
the most promising candidates per query. Note that we use
modified versions of these scoring functions to train our model.

Mansouri et.al. in Tangent-CFT [12] use the same (A,D,R)
tuples of Tangent-S [4] to train a language model by treating
them as tokens (e.g. words). Using this model they learn a
vector representation for each tuple, and the average of these
tuple vectors is used to represent the entire formula. Notice
that the graph modality of our approach attempts to learn the
final vector embedding from the graph structure directly.

Other recent works have used symbol pairs from a generic
Line-of-Sight graph representation of mathematical expres-
sions for visual search [13]. This model is agnostic to the
math domain, but still matches expressions based on their
visual similarity. Our image-based model attempts to capture
additional information from the visual domain.

B. Triplet Learning

The triplet loss [14] learning objective introduced a semi
self-supervised methodology for training models given the
relative similarity between samples. Given an anchor a, a
positive sample p and a negative sample n, a triplet is defined
by their corresponding embeddings fa, fp, and fn. The
objective of the loss is to make the distance between fa and fn

larger than the distance between fa and fp by a given margin
α. For a batch of size k, it can be computed as follows:

Ltriplet =
k∑

i=1

[||fai − f
p
i ||

2
2 − ||f

a
i − fni ||

2
2 + α] (1)

The model is trained by optimizing parameters to minimize
this loss. For a given anchor, this loss will draw the similar
(positive) samples closer and will push away the less similar
(negative) samples. The beauty of the formulation lies in
the fact that we do not directly need absolute labels for
each training sample. All we require is the information about
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relative similarity between the given training samples. Since
we have a heuristic scoring function which can calculate the
relative similarity between mathematical expressions [4], this
loss suits our objective perfectly.

C. Message Passing Neural Networks for Graphs

The message-passing algorithm was proposed for perform-
ing inference on graphical models, such as Bayesian networks
and Markov random fields. It calculates the marginal distribu-
tion for each unobserved node (or variable), conditional on any
observed nodes (or variables). Gilmer et. al. proposed a deep
learning framework [15] for message passing neural networks
(MPNN) and an aggregation procedure to compute a function
of entire graph inputs. Intuitively, such a method gives us the
capacity to model the innate inductive biases of a system.
Convolution layers or sequential units like an RNN can easily
model spatial or sequential inductive bias. But, it is very hard
to learn such underlying relationships in the data, which one
can only express as a graph [16].

Recent works focus on inductive and transductive learning
tasks like node classification, graph classification, or link
prediction. The graph ‘convolutional’ network, proposed by
Kipf and Welling [17], learns locally shared parameters across
a graph, proving to be a seminal work for the node clas-
sification task. Li et al. proposed attention based pooling
models to generate graph level embeddings [18] while using
global shared parameters in a gated propagation model. There
has also been interest in trying to learn similarity between
graphs using MPNNs. Li et al. proposed a model for retrieval
and matching of graph structured objects, that uses a triplet
learning objective [19] similar to our model.

D. Embeddings

An embedding is a vector from a manifold which is a
topological space with n-dimensions. Simple euclidean geom-
etry (e.g. euclidean distances) can be used to analyze data
on this manifold. Many works aim to represent real world
concepts in a vector space. A well-known example is word2vec
[20] which does this for words, and facilitates generation of
natural language, retrieval of similar documents, and other
language based tasks. In this work, we develop a system to
learn such vectors representing entire math expressions, and
we use distances between embeddings to do MIR.

There have been multiple ways of defining the embedding
function for nodes in a graph. Works like Isomap [21], which
is a widely used isometry embedding method, exhaustively
preserves distance patterns (lengths of shortest paths). Other
works like Poincare embedding [22] creates latent spaces to
capture the nodes in a graph. Also, struc2vec [23] preserves
hierarchies and local structures in a graph. One could use more
complex ways of capturing the topological information in the
mathematical domains at the node level. For our current study
however, we use a straightforward annotation scheme and
focus more on building the embedding at the entire expression
level. We describe this in the next section.

III. METHODOLOGY

We propose a multi-modal learner of similarity between
math expressions. We train separate models on two modalities
(images and graphs) and then further combine their predictions
into the third and final model which leverages both pixel inputs
and graph based inputs. Figure 2 shows all three components
of our multi-modal learner. In this section, we discuss our cus-
tom graph-based representation for mathematical expressions.
Then, we describe the metrics and procedures used to create
triplets. We follow this with a description of each uni-modal
encoder of math expressions as well as the combined multi-
modal model. Finally, we describe our retrieval method.

A. Un-Directed Math Graphs

We convert the original SLT/OPT representations used by
Tangent-S [4] and Tangent-CFT [12], depicted in Figure 1 (b)
and (c), to un-directed graphs as shown in Figure 1 (d) and
(e). We do this by adding the ‘reverse’ edge (shown in dotted
arrows) so that messages can be propagated in both directions.
We call these variants the Symbol Layout Graph (SLG), and
Operator Graph (OPG).

B. Symmetric Scores

The three scores used by the fine-grain matching step
of Tangent-S [4] (MSS, precision, and recall) are excellent
similarity markers, and we use them to generate triplets.
However, these scores do not represent symmetric distances.
For two given expressions, they will vary based on which
one is the query. Therefore, they are not directly viable in a
triplet setting. To capture a smooth bijective, we introduce the
symmetric variant of these scores: sym-MSS and sym-Recall.
Essentially, we smooth the scores by using the harmonic mean
of two scores computed by considering each expression once
as the query and once as the candidate.

C. Model Objective and Triplets for Math Expression

Depending on how easily a network can learn to differenti-
ate between the positive and negative samples in a triplet, we
can classify them as ‘easy’ or ‘hard’ triplets. In this domain,
triplets involving partially similar expressions are usually the
hardest ones. Showing the network more ‘hard’ samples makes
it learn faster and more accurately, since the loss contribution
to the gradient is larger [14]. Given the size of our dataset,
we opted for a viable strategy to generate easy and hard
triplets that avoids exploding the training space. We utilise
the concepts of both offline and online hard-mining of triplets
to train the network. During the offline selection, our aim is
to choose every expression as an anchor once as shown in
Algorithm 1. During the online mining, we use Algorithm 2
to prioritize training on the hardest triplets.

D. Math Expressions as an Image

This module learns the relative similarity between mathe-
matical expressions in the image space. Designing an image-
based feature extractor allows us to further extract an addi-
tional modality of information from the visual representation
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Fig. 2: Proposed Model For Learning Equation Similarity. The figure illustrates uni-modal encoders in (a) the pixel space (b)
graph space and then the final multi-modal representation learnt (c) combining both the models. The combined model uses
distances from both modalities and both base SLG/OPG representations, hence has 4 features and bias for the regression model.

Algorithm 1: Offline Hard-Mining of Triplets
Result: Offline subset of 3 million Math Triplets
Data: E - dataset of all expressions
for Each sequential batch bi of 1000 expressions in E do

for Each sequential split sj of 100 expressions in bi do
Select all expressions in sj as Anchors and the

remaining 900 as Candidates;
Score Candidates w.r.t Anchors;
for Each Anchor do

Select 10 candidates as matches, 90% with
highest score, 10% with lowest score ;

From the matches, choose the positive and
negative, depending on which expression has a
better score;

end
end

end

of the formulas. In this work, we assume that inputs are noise-
free binary images of typeset mathematical expressions.

As seen in Figure 2(a) the backbone of the feature extraction
layers are a standard ResNet [24] and bi-LSTM layers to
model the sequential nature of the data. We modify the ResNet
architecture and update the input shape for the rectangular
equation images. A convolution operator learns shared weights
only based on spatial similarity. The output feature-maps from
the ResNet thus lack the capacity to learn the sequential
pattern of symbols. The bi-directional LSTM explicitly models
this sequential nature H = Seq.(P ) after the spatial feature
extraction stage. Each column in a feature map pi ∈ P is
used as a frame of the sequence to generate the final image
expression embedding.

Note that the original scoring functions used to create the
triplets still need a tree-based input. For images, we can train

Algorithm 2: Online Hard-Mining of Triplets
Result: Online Triplets used for Model Training
Data: T - set of offline hard triplets
for Each random big-batch ti of 1000 triplets in T do

Generate embeddings for each triplet in ti ;
Select sub-set δ ∈ ti for which Ltriplet in Equation 1 is
Positive;

Let δs be the list of top 800 triplets from δ sorted by
decreasing Ltriplet;

for Each sequential batch δi ∈ δs of 100 triplets do
Run Training loop over δi;
Pass to next big-batch if all triplets in δs are correct;

end
end

two parallel versions, one trained using triplets from the SLT
representation of the corresponding math expressions, and one
for OPT. The resulting embeddings will be different given that
similarity in SLT and OPT spaces are also different.

E. Math Expressions as a Graph

Our graph based architecture is a rendition of the neural
message-passing models we covered in Section II-C. We have
to decide on particulars such as edge representation vectors,
node representation vectors, number of message passing lay-
ers, the message aggregation and propagation functions, and
a pooling mechanism for graph level outputs.

Edges in a graph represent the relationship between two
nodes. In this case, they either try to capture spatial informa-
tion (SLG) or the operator relationship (OPG) as described in
section II-A. We use a one-hot encoding scheme to represent
edges as vectors. The goal is for the model to learn different
weights for each type of SLG/OPG edge type.
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TABLE I: Annotation construction for SLG and OPG.

SLG Vector Positions Feature OPG Vector Positions
[0-6] Node Type [0-19]
[7-16] Fence Character [20-29]

[17-25] Row Size [30-39]
[26-34] Col Size [40-49]
[35-816] Symbol Vocab [50-1963]

Nodes in a graph represent the central entities, in this
case the mathematical symbols. The Tangent-S SLT/OPT [4]
symbols have a type and value notation, which we use
to construct a custom feature vector for each node. This
vector is a concatenation of five one hot encoded vectors
as shown in Table I, where each row in the table represents
one property. The first and last vector represent the type and
value of a symbol. The OPG representation has more node
types (e.g. more specific sub-types for elements within fence
characters [4]). It also captures information of math functions
like sin which get treated as text nodes in SLG. The middle
rows in Table I are dedicated vectors to capture matrix type
expressions (An expression in multiple rows enclosed by one
or two fence characters such as square/curly/angular brackets).
This is based on similar representation schemes used for such
formulae in the language model of Tangent-CFT [12] where
they found that encoding dedicated information about matrices
helps in telling these apart from similar symbols occurring in
non-matrix formula expressions. The final concatenated vector
serves as the initial node feature vector.

As we see in Figure 2(b), once we have these initial feature
representations and the adjacency matrix, our next step is to
define a function mapping it to a continuous latent space. Let
G= (V,E) be a graph representing a math formula, where
each node v ∈ V has a feature vector xv and each edge e ∈ E
connects two nodes. Let f : v −→ zv be a mapping function
from a graph node to a d-dimensional vector representation
from Rd. Here, zv ∈ Rd can also be considered as the position
of node v in a latent continuous space. Preferably, the mapping
function should capture the structure and properties of the
graph which is translated as geometric distances in the latent
space. This is facilitated by multiple layers of neural message
passing. Each layer in the graph model can be described as
a function f with two inputs: the features from the previous
layer, and the graph adjacency matrix.

H(l + 1) = f(H(l), A), where (2)

H(0) = X and H(L) = Z (3)

l being the layer number, X being the original node feature
annotations (i.e input for layer 0), A being the adjacency
matrix, Z being outputs at final layer L.

The authors of GCN [17] proposed the following propaga-
tion rule for each layer, to get the readout per node (v) at the
(l + 1)th layer :

h(l+1)
v = ρ(

∑
j∈Nv

1

cv
W (l)h

(l)
j ) (4)

where ρ is a non-linearity function, Cv is the normalization
constant calculated from the degree and adjacency matrix,
W (l) is the weight kernel learnt for the |V |×d feature matrix
over input feature space h.

This weight W (l) is shared by all edges in layer l. We need
to have the functions learn weights per edge-type, to learn
different relationships. So our final update rule becomes;

h(l+1)
v = ρ(W

(l)
0 h(l)v +

∑
r∈R

∑
j∈Nr

i

1

cv,r
W (l)

r h
(l)
j ) (5)

where Nr
v denotes the set of neighbor indices of node v under

relation r ∈ R and cv,r is a normalization constant. For entity
classification, the R-GCN [25] paper uses cv,r = |Nr

v |.
The message vector is constructed as a concatenation of the

updated node features at the lth layer and the one hot encoding
of edge vector between neighbouring nodes of the incoming
messages. After L layers of message passing, our final readout
Z is still a |V | × d vector. To aggregate each of these vectors
into a single graph embedding at layer L, we utilise the global
attention pooling layer [18] :

Hg =

Nv∑
k=1

softmax(fgate(HL
v ))ffeat(H

L
v ) (6)

where fgate is a function that computes attention scores for
each feature and ffeat is a function that transforms the final
readout Z = Hv

L into the embedding dimension applied to
each feature before combining them with attention scores.

The final embedding output vector in a multi-layer model
for math expressions is created as a concatenated output of
the global attention pooling outputs at each subsequent layer
(see Figure 2(b)). We found this hierarchical read out benefits
a lot in capturing information from each stage of message
passing and helps improve the similarity score for partial
matching. Intuitively, smaller message passing steps means
that the embedding readout at that layer would represent a
sub-graph entity, since it has information about only a few
hop neighbours at each node. Instead, if we take the output
of only the last layer, our embedding is a result of only the
maximum possible message passing steps. Say, for an 8 layer
model, our embedding would try to perfect the representation
of every 8 neighbours, as if they were the smallest units. Thus,
we see that full matches between larger graphs improve, but
partial matches are lost. Having information from each layer
of message passing mitigates this.

To optimize this model, we also combine a binary cross en-
tropy criterion. This helps the model learn and converge better.
Using Z, we calculate the loss from the initial concatenated
binary annotation that we created for the node.

F. Combining Image and Graph based Models

We combine our uni-modal trained encoders using a simple
linear regression model as depicted in Figure 2(c). The current
method is kept similar to the combination model used by
Tangent-S [4] to facilitate a direct comparison of results. The
embeddings represent expressions on different manifolds and
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combining the uni-modal vectors directly would not be as
useful. But distances between embeddings on each of these
separate manifolds should convey similarity between two ex-
pressions. Thus, where the heuristic baseline combinations use
scores as the features, our model uses the distances between
graph-based and image-based embeddings as the features. We
use 4 distances in total, the SLG and OPG for both graph
and image embeddings. The linear regressor is trained using
relevance assessments provided by human annotators.

G. Mathematical Expression Ranking

Our final objective is to retrieve the most similar expression
given a query-by-example. To keep things comparable with
previous works, we find the top 1000 candidates for each
query for ranking evaluation. For an embedding-based model
this is a straightforward computation of the distance between
embeddings. After training a model, we use it to exhaustively
generate embeddings for the entire collection. Then, we simply
consider the top 1000 expressions closest to the given query
embedding, and we rank them by increasing distance. In this
work, we simply adopt a brute force exhaustive method to
find the distance between a query and each candidate in the
collection. To deploy the system in a real-world setting, it
would be trivial to use an index optimized for K-NN search,
but this exercise was outside of the scope of this work.

IV. EXPERIMENTS

We first discuss our dataset which comes from a sub-task
of a large-scale MIR challenge. Then, our three experiments:
using math expressions as images, as graphs, and finally using
a combination of both representations.

A. Dataset

We use data from the NTCIR-12 MathIR [26] competition.
Specifically, we use data from the optional Wikipedia Formula
Browsing Task which has a corpus of 319,689 articles from
English Wikipedia with more than half a million mathematical
expressions. The original task has 40 topics (queries) for
isolated formula retrieval: 20 are concrete (without wildcards)
and 20 include wildcards. Following other recent studies [11],
[12], we focus only on concrete queries.

At the original competition, the top-20 results for each topic
from 8 submissions were evaluated for relevance. Each result
was assessed by two human evaluators who scored them from
0 (irrelevant) to 2 (relevant). These scores were summed and
each formula has a final relevance score between 0 and 4.
Any candidate with a score of at least 1 is considered a
partially relevant match, and if the score is at least 3 then it is
considered a fully relevant match. A total of 2687 relevance
assessments were produced by this method.

Expressions with at most 20 SLG nodes cover 92% of the
expressions in the corpus. Figure 3 shows the histogram of
SLGs graphs sizes for all graphs having between 1 to 70 nodes.
The whole dataset has a very skewed distribution with the
majority of expressions having between 4 to 8 nodes. The

largest expression in the dataset has more than 1500 nodes,
but such large expressions are rare.

For our uni-modal experiments using either images or
graphs to represent math expressions, we take the whole
subset of expressions with up to 20 nodes, and split it into
3 disjoint sets for training, validation and testing. In this
setting, the queries (or anchors) are first selected randomly
from the available expressions on each split, and they are fixed
across conditions. For the last experiment, we use the complete
collection and the official benchmark queries.

Fig. 3: Distribution of SLGs graphs size with 1 − 70 nodes.
Each column on x-axis represents 1 node and each row
represents 1000 expressions.

B. Evaluation Metrics

We use the Normalized Discounted Cumulative Gain@p
(nDCGp) in our evaluation. The premise of DCG is that
low relevant matches appearing higher in the rank should
get a higher penalty. In this sense, the graded relevance
value of each match is reduced logarithmically proportional
to their position in the rank. The traditional formula of DCG
accumulated at a particular rank position p is defined as :

DCGp =

p∑
i=1

reli
log2(i+ 1)

= rel1 +

p∑
i=2

reli
log2(i+ 1)

Search result lists vary in length depending on the query. As
such, the cumulative gain at each position for some p needs
to be normalized across queries. This is done by sorting all
relevant expressions in the corpus by their relevance related
to the query, producing the maximum possible DCG through
position p, also called Ideal DCG(IDCGp). For a query, the
normalized DCG, or nDCG, is computed as:

nDCGp =
DCGp

IDCGp

TABLE II: Math Expression as Images: nDCG10 for test set
consisting of random anchors and sym-recall as ideal score

Model(input size) SLT OPT
ResNet(100× 200) 0.3901 0.3861
ResNet(50× 400) 0.3974 0.3882
ResNet(80× 250) 0.3926 0.3861

ResNet (50× 400) + BiLstm 0.401 0.3996
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TABLE III: Ablation study - nDCG10 for test set consisting of random anchors and sym-recall as ideal score

Layers 4 6 8 10 4 7 8 10
# Parameters 3059780 3695270 4326632 4953866 3063780 3701270 4334632 4963866

# Math Symbols SLG OPG
1-4 Nodes 0.3172 0.3544 0.348 0.411 0.3221 0.297 0.3731 0.402
5-8 Nodes 0.3553 0.3279 0.3539 0.3562 0.3316 0.3147 0.3429 0.3476

9-12 Nodes 0.3448 0.3333 0.3245 0.3731 0.3401 0.3261 0.331 0.3519
13-16 Nodes 0.3321 0.346 0.3677 0.3889 0.3274 0.3301 0.348 0.3497
17-20 Nodes 0.3401 0.3621 0.38 0.493 0.3341 0.3545 0.3661 0.421

TABLE IV: NTCIR-12 MathIR Wikipedia Formula Browsing Subtask Results: Average Bpref for Concrete Queries

S.No. Model Partially Relevant Matches Fully Relevant Matches
# Bpref@1000 SLT OPT Combined SLT OPT Combined
1 MCAT [10] - - 0.569 - - 0.567
2 Approach-0 (3-B) [11] - 0.595 - - 0.672 -
3 Language Model Embedding: Tangent-CFT [12](and combos) 0.66 0.66 0.71 0.58 0.60 0.60
4 Tangent-S [4] (core) 0.606 0.521 - 0.565 0.583 -
5 Tangent-S [4] (matching) 0.564 0.505 - 0.620 0.589 -
6 Tangent-S [4] (regression) 0.571 0.558 0.587 0.618 0.600 0.636
7 MSS (full-matching) 0.602 0.559 - 0.650 0.617 -
8 sym-MSS (full-matching) 0.566 0.543 - 0.604 0.608 -
9 sym-Recall (full-matching) 0.701 0.560 - 0.625 0.624 -
10 sym-Scores (full-matching, all 6) - - 0.688 - - 0.65
11 ResNet (50× 400) + BiLstm 0.406 0.421 0.441 0.465 0.483 0.493
12 Graph Embedding 1-20 Nodes; 10Layers 0.591 0.579 0.615 0.623 0.58353 0.660
13 Graph + Image All 4 Regression - - 0.673 - - 0.694

where IDCG is calculated in our work using the top matches
based on their sym-Recall score.

The second evaluation metric used in our experiments is
Bpref. This metric locates the top s judged non-relevant
formulas, then compares their ranks against the ranks of the
k judged relevant formulas pairwise. The nDCGp is very
sensitive to the level of relevance of each match in the rank.
However, it requires all matches in the rank to have an
associated or known relevance value. In contrast, the bpref
metric only cares to measure the number of known irrelevant
matches that are ranked before the known relevant matches
and ignores any result which does not have an associated
relevance value. We use Bpref to evaluate rankings based on
incomplete human relevance assessments from the NTCIR-12
MathIR Wikipedia Formula Browsing Task benchmark.

C. Math Expressions as Images

We render binary images of isolated expressions from our
dataset using LATEX representations. All image models are
trained on the full subset of expression with at most 20 nodes.

We experimented with 3 resolutions with the same pixel
count : 100×200, 50×400, and 80×250. We then used the best
one (50× 400) combined with the bi-LSTM layers. For each
model, we trained two versions, one using SLT-based triplets
and another using OPT-based triplets. The results are reported
in Table II. We provide these results in terms of nDCG10

taking the sym-Recall as the relevance predictor.

D. Math Expressions as Graphs

We want to understand the effect of the number of message
passing layers in a MPNN model vs the size of the graphs. We
further split the training portion into sub-splits by size: 1-4,
5-8, 9-12, 13-16, 17-20 nodes. We used these splits to evaluate
4 types of models with increasing number of message passing

layers: 4, 6, 8, 10. We also trained two versions of each model,
one using SLG and one for OPG, for a total of 40 models. We
report the results in terms of nDCG10 in Table III. We also
mention the number of trainable parameters for each model,
to verify if any improvement is not just due to an increased
representational capacity of the model.

Each layer of an MPNN sends and aggregates messages to
one-hop neighbours. After l layers of message passing each
node state vector has information about symbols and edges
l−hops away. So, for a 10 layer model trained on a data
consisting of expressions with 17-20 nodes, we expect for the
largest expressions that at least one node would learn about
every other node in the graph. Increasing number of layers has
an improvement, but not for mid-sized graphs. The smallest
expressions with 1-4 nodes perform better than mid-sized ones.
The smaller expressions could turn out to be sub-graphs for a
larger mathematical expression. A model having the capacity
to learn such a pattern essentially performs better.

E. Combining Images and Graphs
We report the Bpref scores for the top 1000 results for the 20

concrete queries from the benchmark in Table IV. We use two
relevance thresholds (see Section IV-A) to get Bpref for fully
relevant matches and partially relevant matches. Results in the
’combined’ columns represent models which use information
from both SLT/SLG and OPT/OPG. Rows 1-6 of the table
provide results from previous works. Interestingly, Tangent-
CFT [12] provides the best results for partially matching
expressions, but our results for exact matching are better.

First, we evaluate an exhaustive version of the ‘re-ranking’
step from Tangent-S (see Section II-A) and compare it against
our ‘symmetric scores’. Rows 7, 8, and 9 (tagged as ‘full-
matching’) in Table IV represent these results. We calculate
the score for all the expressions per official query. This is
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a slow process and took over a week running on an AMD
1950X 16-Core Processor with 2 threads each. Row 10 in in
table IV shows our results for the regression combination of
each of the three metrics. For partially relevant matches, The
sym-Recall full-matching gives us very similar numbers to the
combined language model embedding of Tangent-CFT.

Next, we evaluate models on human graded relevance.
Rows 11 and 12 of Table IV show the evaluation of our
best uni-modal architectures. Theses models are trained on
whole subset of expressions with 1-20 nodes. The graph based
embedding shows quite promising numbers. Row 13 is the
farther of embedding distances from both modalities and both
representations (see Section III-F). These regression models
are all trained on the small subset of the human graded
relevance data with a leave-one-out cross validation scheme.

V. CONCLUSION

We have proposed a method for encoding math expressions
and their similarity in latent space. Our experiments provide
the groundwork for leveraging the rapid advancements in
geometric deep learning and deep metric learning. Improving
the underlying graph embedding, message passing network,
aggregation techniques or updated criterion functions can
easily be implemented as a plug-and-play updates to improve
the results that we have achieved. Combining image and graph
based non-euclidean feature extractors in a early/late fusion
model would be definite next steps. This in turn also gives us
a huge boost for leveraging updated and improved methods
from the domains of computer vision and pattern recognition.
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[22] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 6338–6347.

[23] D. R. Figueiredo, L. F. R. Ribeiro, and P. H. P. Saverese, “struc2vec:
Learning node representations from structural identity,” CoRR, vol.
abs/1704.03165, 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[25] M. S. Schlichtkrull, T. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in ESWC, 2018.

[26] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis, G. Topic, and K. Davila,
“Ntcir-12 math-ir task overview,” in NTCIR-12, 2016, p. 299–308.

6289

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 01,2021 at 02:48:45 UTC from IEEE Xplore.  Restrictions apply. 


