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Abstract

While highly active antiretroviral therapy (HAART) is successful in controlling the replication
of Human Immunodeficiency Virus (HIV-1) in many patients, currently there is no cure for
HIV-1, presumably due to the presence of reservoirs of the virus. One of the least studied
viral reservoirs is the brain, which the virus enters by crossing the blood-brain barrier (BBB)
via macrophages, which are considered as conduits between the blood and the brain. The
presence of HIV-1 in the brain often leads to HIV associated neurocognitive disorders
(HAND), such as encephalitis and early-onset dementia. In this study we develop a novel
mathematical model that describes HIV-1 infection in the brain and in the plasma coupled
via the BBB. The model predictions are consistent with data from macaques infected with a
mixture of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus
(SHIV). Using our model, we estimate the rate of virus transport across the BBB as well as
viral replication inside the brain, and we compute the basic reproduction number. We also
carry out thorough sensitivity analysis to define the robustness of the model predictions on
virus dynamics inside the brain. Our model provides useful insight into virus replication
within the brain and suggests that the brain can be an important reservoir causing long-term
viral persistence.

Author summary

Around the world HIV/AIDS remains among the most disastrous disease epidemics that
humanity is facing. Currently several treatment regimens and drugs exist that can prolong
the life of HIV infected individuals, but none can cure the disease. As the virus remains
within infected individuals for life, including in their brain, a long lifespan leads to HIV
associated neurocognitive disorders (HAND) such as encephalitis or early-onset demen-
tia. Here we develop a mathematical model to study the viral dynamics in the brain. Our
model, which can accurately describe experimental data from macaques, predicts a signifi-
cantly high rate of HIV transport in and out of the brain through the blood-brain barrier
(BBB). The possibility of ongoing HIV replication inside the brain predicted by our model
indicates that the brain can be an important viral reservoir causing an obstacle to an HIV
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cure. This suggests that eradication of the virus inside the brain should also be considered
while designing strategies for HIV cure.

Introduction

Human Immunodeficiency Virus (HIV-1) constitutes a devastating epidemic the world faces
today with nearly 37 million people currently living with the virus, and over one million
annual deaths due to AIDS related illnesses [1]. Current therapy, namely highly active antire-
troviral therapy (HAART), can successfully control viral loads in the plasma, and infected indi-
viduals may live nearly as long as uninfected individuals. However, no cure has yet been found
despite continuous research and medical breakthroughs, presumably due to virus and/or viral
proteins hiding in various reservoirs, such as the gut, the lungs, the liver, and the brain. More-
over, despite an undetected viral load in the plasma during HAART, many patients experience
HIV associated neurocognitive disorders (HAND), such as encephalitis and early-onset
dementia [2-5], mostly due to the extended period that infected individuals carry the virus
supplied from the reservoirs. Among the viral reservoirs the brain represents the least studied
one [3, 6-11], partly because of its association with the blood-brain barrier (BBB) and the diffi-
culty of in vivo study on the brain infection. Thus it is important to gather insights into the
viral dynamics in the brain to devise proper HIV-1 control strategies.

Recent studies have considered the virus in the brain as a major obstacle in the search for a
cure [9, 12]. The brain has been recognized as a viral reservoir, but it still remains unclear
whether or not viral replication occurs within the brain [4, 5, 10, 14]. Some effort has been
made to suppress the virus within the brain, but the BBB drastically reduces the effectiveness
of such treatment because many drugs cannot cross the BBB [3, 15]. Due to the difficulty in
controlling HIV-1 in the brain as well as potential viral replication inside it, the brain can be
an important reservoir causing an obstacle for a cure [6, 7, 16, 17]. There is a complex interplay
between the viral dynamics of HIV-1 within the brain and within the plasma, and mathemati-
cal modeling may be able to uncover new insight.

Mathematical modeling has aided the study of within-host viral dynamics [18-20]. Unlike
in the plasma, where HIV-1 primarily infects CD4+ T cells, the primary target cells for HIV-1
in the brain are macrophages [2, 21]. Immature macrophages (called monocytes) become
infected by HIV-1 and penetrate the BBB before growing into mature infected macrophages
[22, 23]. This method is often referred to as the Trojan-horse mechanism. CD4+ T cells less
frequently cross the BBB, thus it is necessary to consider macrophages when studying HIV-1
in the brain, along with CD4+ T cells in the plasma. Currently existing viral dynamics models
cannot explain these issues properly, and thus a new model coupling the plasma and the brain
is needed to accurately explain the viral replication inside the brain.

In this study we develop a novel mathematical model to describe the HIV-1 viral dynamics
within the brain. We identify key parameters by fitting our model to plasma and cerebral-spi-
nal fluid (CSF) viral load data from an experiment using rhesus macaques infected with a mix-
ture of Simian Immunodeficiency Virus (SIV) and Simian-Human Immunodeficiency Virus
(SHIV). We consider three variants of the model to analyze whether viral replication within
the brain occurs. We also explore the long-term stability of HIV-1 predicted by our model and
determine its sensitivity to key parameters. Our study finds that the BBB plays a major role in
the transport of HIV-1 from the brain to the plasma and vice versa, and that viral replication
in the brain may partly explain the virus persistence despite ongoing HAART.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 2/18


https://doi.org/10.1371/journal.pcbi.1008305

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

Materials and methods
Data

The data used in this study was obtained by digitizing results from published literature [24,
25]. In the published experiment [24, 25], three male rhesus macaques (Macacamulatta) were
infected intravenously with a mixture of simian-human immunodeficiency virus (SHIVky_15
and SHIVgg_ep) and simian immunodeficiency virus (SIV;7k_r,). These animals were moni-
tored for a period of 12 weeks, and levels of circulating CD4+ T cells and viral loads in both
the CSF and plasma were measured as described in Kumar et al. [25].

Mathematical model

In the circulation (representing outside the brain), one of the primary target cells of HIV-1 are
uninfected CD4+ T cells (T) [26]. These cells become infected (T*) by free virions (V) within
the circulation at a rate 8. Infected CD4+ T cells die at a rate 6 per day and produce virions at a
rate of p per day per infected cell. Uninfected T cells die at a rate d per day and are generated at
arate A cells per day.

The major cells that HIV-1 infects in the brain are macrophages [8, 21]. To model this we
include an uninfected population of macrophages (M) in the circulation that becomes infected
(M*) upon interaction with free virus at a rate f,. These infected macrophages produce free
virions at a rate p,, per day per infected cell and die at a rate of 5, per day. Uninfected macro-
phages die at a rate of dj, per day and are generated at a rate Ay, cells per day. Note that the
population of macrophages has been considered to contribute to viral persistence because of
its longer lifespan [2, 8-10, 12, 13, 22, 27].

In order for a virion to enter the CSF in the brain it must pass through the BBB. It is not
fully understood what factors modulate transit of HIV-1 RNA through the BBB into the CSF
[12]. However studies show that the virus permeates the integrity of the BBB only via an
infected macrophage [15, 21]. Clear mechanisms of how macrophages transport across the
BBB are poorly understood. Since we are not modeling the BBB compartment separately,
rather the BBB is considered as a barrier between two locations, inside and outside the brain,
we model the transport (mobility) of macrophages across the BBB using a simple linear
approach implemented widely in many studies, including lymphocytes movement in and out
of blood [28] and virus infected lymphocyte movement in and out of follicular tissues in SIV-
infected macaques [29]. We represent the rate of the macrophage transit through the BBB into
the brain by ¢. Macrophages are not known to generate independently within the brain [23].
The uninfected brain-macrophages become infected (Mj) by the virus in the brain [6, 11, 14,
22,23] at a constant rate 8, These infected brain-macrophages produce free virions within
the brain at a constant rate p,, per infected cell per day.

In this study, we consider the type of the virus inside the brain to be the same as the virus
outside. However, the environment in the brain has been shown to alter the characteristics of
free virions [3, 11, 23], and the viral load data from inside the brain and the outside the brain
were measured separately. Therefore, we denote HIV-1 virions within the brain by a different
variable V. We assume that the free virions V and Vjp are both cleared at the same per capita
rate ¢ per day. While limited evidence suggests the possible presence of HIV-1-infected T cells
within the CSF [30], because the primary targets of HIV-1 within the brain are macrophages
[2, 21], we consider only macrophages within the brain. Macrophages come out of the brain
through the BBB into the bloodstream [31] at a constant rate y.

Considerable debate exists regarding whether or not viral replication occurs within the
brain [6, 9, 10, 12, 14]. To perform deeper analysis from the modeling point of view, we
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Fig 1. The schematic diagram of the model representing HIV-1 infection in the brain. The boxes represent a cell
population, the solid arrows represent transport from one population to another, and the dashed arrows represent the
cause for the corresponding events.

https://doi.org/10.1371/journal.pcbi.1008305.9001

develop three different variants of the model by introducing a parameter @, which represents
the ratio between the infectivity of macrophages in the brain and outside of the brain. Model 1
(o = 1) assumes that viral replication occurs within the brain at the same rate as in the blood-
stream. Similarly, Model 2 (o = 0) assumes that no viral replication occurs in the brain, and
Model 3 (0 < a # 1) assumes that the viral replication occurs at a different rate than outside of
the brain. The schematic diagram of the model is shown in Fig 1. The model equations we use
are as follows.

ar
S = A—BVT—dT
< BVT — dT,
dr+
dr
dM
dr

dMx
? :ﬂMVM-i-lPME—(pM*—éMM*, (1)

— VT — 6T,
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dMm
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dM:
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dv
T ST M eV,
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Three variants of the model are
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Model 1: a =1,
Model 2: a =0,
Model 3: 0 < a # 1.

Parameter estimation and data fitting

We take T, = 38700 as in Vaidya et al. [32]. From Haney et al. [33] we estimate M, = 1463000
and Mg, = 20000. As estimated by Stafford et al. [20], the average life span of uninfected target
T cells is 100 days, which implies d = 0.01 per day. Macrophages begin their life cycle as mono-
cytes, and there are varying results regarding the age of the monocyte/macrophage lifespan
ranging from three months to three years [23]. We take the average lifespan to be approxi-
mately 18 months, i.e. dy; ~ 0.002 per day. As every macaque was uninfected at the beginning
of the study, we take all infected cells to be zero, i.e., Ty, = My = My, = 0 [25]. As done in Vai-
dya et al. [32], we fix p based on the work of Chen et al. [34], who estimated the SIV burst size
in vivo in rhesus macaques to be approximately 5 x 10* virions per infected cell, and take

p =50, 000. Assuming a steady state before infection, we use A = dT and Ays = da(My + Mpo)
to estimate A and A5 Schwartz et al. [35] estimated the rate of lentiviral production by an
infected macrophage to be approximately 1000 virions per infected cell per day. Therefore, we
set pas = 1000 for our base case computation. The virion clearance rate during chronic infec-
tion in humans varies from 9.1 to 36.0 [36]. Thus we take the average ¢ = 23 per day as the min-
imal estimate. However, we acknowledge that this rate may be higher in macaques.

We estimate the remaining parameters 3, B, 8, Oap, @, ¥ by fitting the model to the viral
load data in the CSF and the plasma. We solve the system of ordinary differential equations
(ODEs) numerically using the “ode15s” solver in MATLAB. The predicted log;, values were
fitted to corresponding log-transformed viral load data using the nonlinear least squares
regression, in which the sum of the squared residuals, that is, the difference between the model
predictions and the corresponding experimental data, is minimized. We used the following
formula to calculate the sum of the squared residuals:

1 & _ 1 & _
J= ﬁZ[long(ti) - long(ti)]Z +ﬁ2[10g10V3(ti) - logll)VB(ti)]Z’ (2)
P =1 B i=1

where Np and Np represent the total number of data points in the plasma and in the brain,
respectively. V'and V, represent the virus concentrations in the plasma predicted by the model
and those measured in the experimental data, respectively, while V3 and V , represent the
virus concentrations in CSF predicted by the model and those measured in the experimental
data, respectively. For each best fit parameter estimate, we provide 95% confidence intervals
(CI), which were computed from 500 replicates by bootstrapping the residuals [37, 38].

Results
Model selection

We fit the model to the data containing plasma viral load and the CSF viral load for each of the
three monkeys. To compare models we used the Akaike information criterion (AIC) described
by the following formula [39, 40].

2n(N,,, +1
AIC = nlog <]> +M

» )
n n—N,, —2
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Table 1. SSR and AIC values for each of Model 1 (& = 1), Model 2 (& = 0), and Model 3 (0 < a # 1) fitted to each of the three monkeys.

Monkey 1
Monkey 2
Monkey 3

Model 1 (a=1) Model 2 (a =0) Model3 (0 < ax #1)
SSR AIC SSR AIC SSR AIC
4.6235 17.1562 4.4903 16.7469 3.8943 26.8866
2.4144 55.788 2.4163 55.7966 2.4159 145.7951
4.9797 18.1952 4.9758 18.1841 4.9781 30.3239

https://doi.org/10.1371/journal.pcbi.1008305.t001

where n = Np + Np represents the total number of data points considered, ] is the sum of the
squared residuals (SSR), and N,,,, represents the number of parameters estimated through
data-fitting. The SSR and the AIC values for each of Model 1, Model 2, and Model 3 are given
in Table 1. Note that the lower the AIC value, the better the model fit. There is no significant
difference in the AIC or SSR value between Model 1 and Model 2, but Model 3 has the highest
AIC values (Table 1). Moreover, when the parameter o in Model 3 was fixed at some value
other than 0 or 1, we did not get better AIC or SSR values than those from Model 1 and Model
2. This indicates that the extra parameter introduced in Model 3 did not improve the data fit-
ting. The similar AIC values between Model 1 and Model 2 suggest that the available data is
not enough to decide whether viral replication occurs or does not occur within the brain.
However, Model 1 is supported by the previous study by Schnell [13], who identified the virus
replication inside the brain of HIV-infected patients and indicated that HIV replication in the
central nervous system (CNS) contributes to neurocognitive decline. Therefore, we select
Model 1 to present the subsequent results in the sections to follow. For comparison purposes,
the results using Model 2 are also presented in S2 Text. In general, the patterns and overall
behavior of Model 2 (S2 Text) are similar to Model 1, with some differences in predicted quan-
titative values.

The predictions of the selected model, i.e. Model 1, along with the data for each of the three
monkeys are shown in Fig 2. Our model agrees well with the data (Fig 2). The data fitting of
Model 2 and Model 3 is also provided in S1 Fig. The estimated parameters are given in
Table 2.

Rates of infection and cell death

We estimated that the rate, 3, at which the virus infects CD4+ T cells, ranges between
2.58 x 10~ and 4.40 x 10~° viral RNA copies per uL per day. These estimates are consistent
with the previous estimates [26]. The infection rate estimated for macrophages, B, ranges

10 Macaque #1 10 Macaque #2 10 Macaque #3
10 10 10
== BV =mmn BV == BV
108 —PVL|| 108 — PV 108 —PVL|
= =
g10° g10°
= =
x 10 . x 10
2 H i s
>10° A =10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Days post-infection Days post-infection Days post-infection

Fig 2. Model fit to the data. Plasma viral load (solid line) and CSF viral load (dashed line) predicted by the selected model, i.e. Model 1, along with the
experimental data (filled circle: plasma viral load; filled triangle: CSF viral load) from three monkeys [24, 25].

https://doi.org/10.1371/journal.pchi.1008305.9002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 6/18


https://doi.org/10.1371/journal.pcbi.1008305.t001
https://doi.org/10.1371/journal.pcbi.1008305.g002
https://doi.org/10.1371/journal.pcbi.1008305

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

Table 2. Parameter estimates through data fitting. Estimated parameters from fitting the selected model, i.e. Model 1, to each of the three monkey’s data. Paired values
in parentheses represent 95% confidence intervals.

o Om 9 v B Bum
day™’ day! day™! day™! ml/day ml/day

Monkey 1 1.7319 0.2067 0.0117 9.4052 3.7332E-8 1.0018E-9

(0.5555,1.8049) (0.1405,0.4141) (0.00220,0.22342) (8.2458,10.8779) (1.9456E-8,7.4280E-8) (9.9297E-10,1.0000E-9)
Monkey 2 1.6129 0.0673 0.78565 15.0023 4.4009E-8 4.0068E-11

(0.8940,1.8214) (0.0234,0.1256) (0.33675,2.3305) (14.4669,15.2483) (3.5322E-8,7.3811E-8) (1.0000E-11,4.0119-11)
Monkey 3 1.0766 0.2127 0.29149 8.8010 2.5809E-8 6.9003E-10

(0.5941,1.1664) (0.1550,0.2797) (0.08801,0.91395) (8.6176,9.0556) (1.8701E-8,2.6271E-8) (3.5739E-10,9.3840E-10)

https://doi.org/10.1371/journal.pcbi.1008305.1002

between 4.01 x 10" and 1.00 x 10~ viral RNA copies per uL per day, implying that macro-
phages are less susceptible to viral infection than CD4+ T cells. Similarly, we found that the
death rate of infected macrophage (median 85, ~ 0.21 per day) is significantly lower than the
death rate of infected CD4+ T cells (median 6§ ~ 1.61 per day). Thus our model suggests that
infected macrophages persist with the virus far longer than infected T cells, which is consistent
with findings from previous experiments [22, 23, 41].

Reproduction number

The basic reproduction number (R,) is defined as the average number of secondary infected
cells produced by a single infected cell when there is no target cell limitation [42]. In viral
dynamics, the basic reproduction number is an important threshold that can determine
whether infection occurs. Specifically, if /R, < 1 the infection dies out, and if R, > 1 the infec-
tion occurs [42]. For our model we use the next-generation method [42, 43] to compute R,
The details for this computation as well as an explicit formula for R, are given in S1 Text.

Using the parameters estimated above in the R, formula, we obtained the basic reproduc-
tion number for each monkey. We found that 93, ranges from 1.33 to 1.55. Note that R, > 1
in each case as expected because the experimental data show that the infection persists in each
monkey. We further perform local sensitivity analysis to identify how sensitive the value of R,
is to each parameter. To quantify the sensitivity we considered the sensitivity index S, [44],

given by
s - (X R,
* R,/ \ Ix )’

where x is a parameter whose sensitivity is sought. Based on the S, values (Fig 3), we identified
that the parameters d, S, p, ¢, 8, and A have the greatest influence (S, ~ 0.5) on R, whereas ¢,
¥, dags Bas Pass Oap Mg have much less effect (S, ~ 1 x 107*). We observe that the parameters

greatly influencing R, are mostly T cell related. Thus the T cell and related parameters are pri-
mary contributors to the initial establishment of the viral infection. We now extend the analy-

sis to the global sensitivity by computing the partial rank correlation coefficients for Latin
Hypercube sampling from the global parameter space. In the global parameter space, we
observe that although macrophage-related parameters can also significantly affect the basic
reproduction number, the most strongly correlated parameters remain those associated with T
cells.

Transport through the BBB

Regarding infection in the brain, the transport of virus through the BBB plays a critical role.
These mechanisms can be studied through the parameters ¢ and y of our model. Our
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Fig 3. Sensitivity of parameter estimations to fR,. Local sensitivity of 93 based on sensitivity index (left) and the partial rank correlation coefficients
for global sensitivity of R, based on Latin Hypercube sampling (right).

https://doi.org/10.1371/journal.pchi.1008305.9g003

estimates show that the per capita rate of macrophage entry into the brain, ¢ ~ 0.29 per day, is
significantly less than the per capita rate of macrophage exit from the brain, ¥ ~ 9.41 per day
(Table 2). This implies that it is possible for the transport of virus out of the brain via infected
macrophages to be greater than the transport of virus into the brain, but the net flow of virus
also depends on the amount of infected macrophages outside and inside the brain. As a result,
the amount of virus, which replicates inside the brain and then exits into the bloodstream
through the BBB, can be significantly high. Thus the brain may act as an HIV-1 reservoir caus-
ing the persistent infection despite control of virus in the bloodstream through successful
treatment.

Because of potential selection imposed by the BBB, especially for the entry of virus into the
brain, we ask a question whether inflow of the virus into the brain is constant and thus whether
the brain compartment can be studied in isolation as done in some previous studies [17]. To
analyze viral entry into the brain we calculated the rate of the number of infected macrophages
(¢M*) entering into the brain over time for 100 days post-infection (Fig 4). The model predic-
tion suggests that infected macrophages enter the brain through the BBB at time-varying rate,
depending upon the infection outside the brain. This indicates that in order to accurately pre-
dict the viral dynamics in the brain, both the brain and the plasma must be considered as one
coupled system rather than two separate ones, at least during the acute phase of infection.

Cell and virus dynamics

We first used our model to study the acute phase dynamics of macrophages (Fig 5). The
infected macrophages in the plasma and the brain both reach a peak at approximately 18 days
post-infection, and then decline steadily over the next three weeks, eventually reaching a set
point level. The dynamics of infected macrophages in the brain is similar to that of the infected
macrophages in the plasma, however the amount of infected macrophages in the brain is sig-
nificantly lower (peak at ~ 170 per yL) than the infected macrophages in the plasma (peak at
~40, 000 per uL). The uninfected macrophages, both in the brain and in the plasma, decline
rapidly (by ~6%) from their initial amounts.

We also studied the long-term dynamics by performing model simulations for 1000 days
(approximately 3 years). After approximately 200 days the CD4+ T cell count, the infected
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macrophages in the brain and the plasma, and the viral RNA copies in the brain and the
plasma all reach a steady state (Fig 6). The steady state level of the infected macrophages in the
brain is roughly one fourth of that outside the brain (200 per uL outside vs 50 per uL inside the
brain). Similarly, the steady-state level of viral RNA in the brain is nearly three-fold less than
that in the plasma (~ 10° VRNA copies in the brain vs. ~ 10° vRNA copies in the plasma), con-
sistent with the experimental results [25]. The CD4+ T cell count drops rapidly and levels off
at 400 shortly after day 200.

As predicted by our model, the small amount of infected macrophages hiding inside the
brain as well as ongoing replication of the virus inside the brain may partially contribute to the
low level of viral persistence during the treatment of infected patients since many drugs cannot
enter the brain through the BBB [3]. To further study the impact of the virus produced in the
brain, we simulated viral dynamics under HAART, in which the viral production outside the
brain was completely suppressed (p = py; = 0 outside the brain) and the viral production inside
the brain was allowed (p,; > 0 inside the brain). We found that for low levels of viral produc-
tion both the brain and plasma viral load remain undetected, but for high level viral produc-
tion the brain viral load becomes detected while the plasma viral load remains undetected (S3
Text). Therefore, while in the absence of treatment, the virus supplied from the brain may not
significantly contribute to the plasma viral load because of high viral production outside the
brain, in the presence of treatment, the contribution of the ongoing viral replication and pro-
duction in the brain to the persistence of virus can be remarkably high.

Sensitivity analysis

Sensitivity of data-fitting estimates on the fixed parameters. Our data-fitting estimates
were based on the fixed values of parameters My, Mgy, dys, and pyr. While we estimated values
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of these parameters from the literature, there is uncertainty with these values. Therefore, we
performed sensitivity analysis of the data-fitting parameter estimates to the choice of the initial
conditions M, and Mp, and the choice of dj;and p,, (S2 and S3 Figs).

First, we performed 200 different data fittings using M, and Mp, values chosen randomly
from the uniform distribution between 10% less and 10% more values than the base value. We
observed that the median change in the estimated parameters remained below 10% for each
parameter and for each monkey except for 5, in Monkey 2 (22% change) (S2 Fig). This high
sensitivity of B, for Monkey 2 is likely due to the lack of enough data points in the brain for
this monkey. The overall mean change of each estimated parameter also remained less than
10% from the base case estimate, suggesting our estimates were robust within these ranges of
M, and Mp,,.

Then, we performed 200 data fittings using das and p,, values sampled randomly from the
values between 10% less and 10% more than the base values. In this case, we observed that
both the median and the mean change in the estimated parameters never exceeded more than
8% for each parameter for each monkey. This suggests that our parameter estimates for dj,
and p,, were also robust within these ranges for dy; and pj.

Sensitivity of model dynamics on the general parameter space. Given the limited num-
ber of data sets and extreme complications for the study of brain virus, the results based on the
model dynamics from our limited estimates require further analysis on a wider parameter
space. To examine the robustness of our model dynamics we performed 200 simulations using
a Latin hypercube sampling (LHS) of nine parameters (8x5, ¥, @, Bas 5, Mpo, Mo, par and dyy).
The box-plots and partial rank correlation coefficients (PRCC) of this sensitivity analysis is
shown in Figs 7 and 8, respectively. The dynamics from the data fitting estimates (solid lines)
are clearly captured within the boxes of the LHS results. Predicted dynamics are more sensitive
to the parameters during early part of the infection. Variation of the viral dynamics in the
brain is much wider than that in the plasma (Fig 7).

We calculated PRCC values at weeks one, two, three, and 26, corresponding to the timings
for pre-peak, peak, post-peak, and set point viral load, respectively (Fig 8). The computed par-
tial rank correlation coefficients indicate that parameters, in general, have stronger correlation
to the viral load in the CSF compared to that in the plasma. Both plasma and CSF viral load are
most correlated with parameters related to infection rates, ), and 3, and macrophage life-
span, dys. In addition, the CSF viral load is highly correlated with the BBB related parameter,
¢. These parameters, except 8y, mainly have larger effect on early viral load than on late viral
load. Both plasma and CSF viral loads are positively impacted by f,, and 5, and negatively
impacted by 6, while ¢ has positive impact on CSF viral load and negative impact (but with
smaller magnitude) on the plasma viral load.

We also computed PRCC values for the timing of the peak viral loads in the plasma and the
CSF (Fig 8). Out of the nine parameters sampled, only the parameters 3, ¢, and p,, impact the
timing of the peak viral load in the CSF and the plasma in the similar manner (i.e., either both
positive correlation or both negative correlation), with 3 being the most impactful parameter.
In the case of the other parameters, there is an opposite effect on the timing of peak viral loads
in the plasma compared to the CSF.

Discussion

HIV-1 remains a major public health challenge and one of the leading causes of death world-
wide [1]. While HIV-1 is one of the most studied diseases, viral dynamics in the brain remains
one of the least studied aspects of the disease. In particular, the transport of the virus through
the BBB and the presence of ongoing viral replication in the brain are poorly understood. To
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https://doi.org/10.1371/journal.pcbi.1008305.9007

gain insights into these issues, here we developed a mathematical model that can explain the
experimental viral load data in the plasma and the CSF from SIV/SHIV infected macaques.
Using our model and experimental data we estimated key parameters, including those related
to the BBB. In addition, we performed thorough sensitivity analyses, including with Latin
Hypercube sampling, to examine the robustness of the dynamics described by our model. Our
model predicts a number of interesting results that may be helpful to control the virus in the
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brain, thereby potentially reducing the occurrence of HAND since HIV replication in the
brain can contribute to neurocongnitive decline [14].

Our model predicts that the entry of HIV virus and/or viral protein via macrophages cross-
ing the BBB is time-varying in nature and the rate of entry may depend on the virus dynamics
outside the brain. This shows that while the chronic phase HIV dynamics in the brain may be
studied with the brain compartment in isolation, as done in some previous studies [17], the
modeling study for acute phase HIV-1 dynamics in the brain should include both the brain
and the plasma as one coupled system. This underscores the importance of getting deeper
insights into the BBB and viral transport across it.

In addition to the virus entering into the brain from outside, our model comparison on the
basis of AIC values reveals that there is a possibility of ongoing viral replications and produc-
tion of new virus inside the brain. However, the infection rate of macrophages, the major tar-
get cells for viral replication inside the brain, is significantly smaller than that of CD4+ T cells.
This implies that macrophages are less susceptible to HIV-1 than CD4+ T cells, but once
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infected they remain so for a much longer time as indicated by our estimate of a significantly
lower death rate of infected macrophages than of infected CD4+ T cells. As a result of these
infections outside and inside the brain, our model predicts that in the long run the virus in the
brain reaches a steady-state nearly three-fold lower than the virus in the plasma. Similarly,
there can be persistence of infected macrophages in the brain with a steady state level signifi-
cantly lower than the infected cells in the plasma. This indicates that without treatment the
virus maintains infectiousness throughout an individual’s lifetime not only in the plasma, but
also in the brain. This long-term persistence of the virus inside the brain is likely linked to
HAND including early-onset dementia and encephalitis [2-4, 11, 12].

Importantly, our estimates show that the rate of viral exit from the brain, , is significantly
higher than the rate of viral entry into the brain, ¢. It should, however, be noted that the time
dependent net flow of the virus also depends on the available infected macrophages carrying
viral RNAs. This flow rate of the virus across the BBB combined with persistent low level ongo-
ing viral replication and viral production inside the brain indicate that the brain can be an
important reservoir supplying virus to the bloodstream. Because of the high viral load outside
the brain compared to the viral load in the brain (3-fold lower in the brain) in untreated indi-
viduals, the contribution of the virus coming out of the brain may not be significant to the
plasma viral load for untreated individuals. However, this contribution can be extremely
important for viral persistence in the presence of HAART (S3 Text). Since many antiretroviral
drug molecules cannot enter the brain through the BBB [3], viral replication can continue in
the brain despite suppression of the virus to undetected levels in the plasma, thereby causing
an obstacle to the cure of HIV through treatment. Upon treatment interruption, the virus pro-
duced in the brain may contribute to further replication outside the brain resulting in the viral
rebounds. Therefore, antiretroviral agents that can obstruct the replication inside the brain are
necessary for successful control of HIV-1 infection.

We also computed the basic reproduction number, 2R, for each monkey, and found that
the value of 2R (1.33 to 1.55) is consistent with previous estimates [26]. Furthermore, we per-
formed a sensitivity analysis to identify the parameters most affecting fR,. Our results show
that those parameters related closely to T cells are the most impactful for determining the
value of R, and thus best characterize the initial infection. This suggests that the brain has
minimal effect on the initial infectiousness of HIV-1. This result is consistent with the facts
that infection initiates outside the brain first, and it takes some time for the virus to penetrate
the BBB and enter the brain [12].

We acknowledge several limitations of our study. Our parameter estimates are based on a
limited number of macaques. Furthermore, the available data was not enough for our model
to determine whether viral replication occurs in the brain. Also, note that the infection in
these macaques was initiated using a mixture of different viruses (SHIV and SIV), thus the
obtained results, including computed R, values, should be interpreted as the combined effect
of these viruses in the mixture. More data with infection from individual virus types is neces-
sary to identify whether the results remain the same for the single virus type. We considered
only macrophages as targets of HIV-1 inside the brain. However, brain macrophages may dif-
ferentiate into microglia. Also, a small amount of CD4+ T cells may exists within the brain
[30] and other cells such as astrocytes may be HIV-1 targets. We did not consider the immune
responses, which might be particularly important for the long-term dynamics. Since the pri-
mary objective of this study was to analyze viral dynamics inside the brain and the data did not
include other potential viral reservoirs, we considered only the brain and the circulation in our
model. While our study provided important insights into the potential role of the brain as a
viral reservoir, other important reservoirs, such as Infected Resting Cells [13, 45, 46], should
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also be considered to accurately describe the viral persistence. For such study, we require the
data collected simultaneously from other reservoirs as well. Moreover, a detailed study of mac-
rophage transport across the BBB is needed to properly model the transport mechanism to
accurately evaluate the impact of the BBB. Further experimental and theoretical study could
also examine the persistent HIV-1 replication in the brain while individuals are under ongoing
treatment.

In summary, we developed a novel mathematical model to examine the viral load dynamics
in the plasma and the CSF of HIV-1. From this model and experimental data we estimated key
parameters related to the BBB and viral transport through the BBB which may indicate the
behavior of the brain as a virus reservoir. Results from this model may help offer insight into
better ways to control HIV-1, and thus reducing the development of HAND.
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