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Abstract

While highly active antiretroviral therapy (HAART) is successful in controlling the replication

of Human Immunodeficiency Virus (HIV-1) in many patients, currently there is no cure for

HIV-1, presumably due to the presence of reservoirs of the virus. One of the least studied

viral reservoirs is the brain, which the virus enters by crossing the blood-brain barrier (BBB)

via macrophages, which are considered as conduits between the blood and the brain. The

presence of HIV-1 in the brain often leads to HIV associated neurocognitive disorders

(HAND), such as encephalitis and early-onset dementia. In this study we develop a novel

mathematical model that describes HIV-1 infection in the brain and in the plasma coupled

via the BBB. The model predictions are consistent with data from macaques infected with a

mixture of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus

(SHIV). Using our model, we estimate the rate of virus transport across the BBB as well as

viral replication inside the brain, and we compute the basic reproduction number. We also

carry out thorough sensitivity analysis to define the robustness of the model predictions on

virus dynamics inside the brain. Our model provides useful insight into virus replication

within the brain and suggests that the brain can be an important reservoir causing long-term

viral persistence.

Author summary

Around the world HIV/AIDS remains among the most disastrous disease epidemics that

humanity is facing. Currently several treatment regimens and drugs exist that can prolong

the life of HIV infected individuals, but none can cure the disease. As the virus remains

within infected individuals for life, including in their brain, a long lifespan leads to HIV

associated neurocognitive disorders (HAND) such as encephalitis or early-onset demen-

tia. Here we develop a mathematical model to study the viral dynamics in the brain. Our

model, which can accurately describe experimental data from macaques, predicts a signifi-

cantly high rate of HIV transport in and out of the brain through the blood-brain barrier

(BBB). The possibility of ongoing HIV replication inside the brain predicted by our model

indicates that the brain can be an important viral reservoir causing an obstacle to an HIV
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cure. This suggests that eradication of the virus inside the brain should also be considered

while designing strategies for HIV cure.

Introduction

Human Immunodeficiency Virus (HIV-1) constitutes a devastating epidemic the world faces

today with nearly 37 million people currently living with the virus, and over one million

annual deaths due to AIDS related illnesses [1]. Current therapy, namely highly active antire-

troviral therapy (HAART), can successfully control viral loads in the plasma, and infected indi-

viduals may live nearly as long as uninfected individuals. However, no cure has yet been found

despite continuous research and medical breakthroughs, presumably due to virus and/or viral

proteins hiding in various reservoirs, such as the gut, the lungs, the liver, and the brain. More-

over, despite an undetected viral load in the plasma during HAART, many patients experience

HIV associated neurocognitive disorders (HAND), such as encephalitis and early-onset

dementia [2–5], mostly due to the extended period that infected individuals carry the virus

supplied from the reservoirs. Among the viral reservoirs the brain represents the least studied

one [3, 6–11], partly because of its association with the blood-brain barrier (BBB) and the diffi-

culty of in vivo study on the brain infection. Thus it is important to gather insights into the

viral dynamics in the brain to devise proper HIV-1 control strategies.

Recent studies have considered the virus in the brain as a major obstacle in the search for a

cure [9, 12]. The brain has been recognized as a viral reservoir, but it still remains unclear

whether or not viral replication occurs within the brain [4, 5, 10, 14]. Some effort has been

made to suppress the virus within the brain, but the BBB drastically reduces the effectiveness

of such treatment because many drugs cannot cross the BBB [3, 15]. Due to the difficulty in

controlling HIV-1 in the brain as well as potential viral replication inside it, the brain can be

an important reservoir causing an obstacle for a cure [6, 7, 16, 17]. There is a complex interplay

between the viral dynamics of HIV-1 within the brain and within the plasma, and mathemati-

cal modeling may be able to uncover new insight.

Mathematical modeling has aided the study of within-host viral dynamics [18–20]. Unlike

in the plasma, where HIV-1 primarily infects CD4+ T cells, the primary target cells for HIV-1

in the brain are macrophages [2, 21]. Immature macrophages (called monocytes) become

infected by HIV-1 and penetrate the BBB before growing into mature infected macrophages

[22, 23]. This method is often referred to as the Trojan-horse mechanism. CD4+ T cells less

frequently cross the BBB, thus it is necessary to consider macrophages when studying HIV-1

in the brain, along with CD4+ T cells in the plasma. Currently existing viral dynamics models

cannot explain these issues properly, and thus a new model coupling the plasma and the brain

is needed to accurately explain the viral replication inside the brain.

In this study we develop a novel mathematical model to describe the HIV-1 viral dynamics

within the brain. We identify key parameters by fitting our model to plasma and cerebral-spi-

nal fluid (CSF) viral load data from an experiment using rhesus macaques infected with a mix-

ture of Simian Immunodeficiency Virus (SIV) and Simian-Human Immunodeficiency Virus

(SHIV). We consider three variants of the model to analyze whether viral replication within

the brain occurs. We also explore the long-term stability of HIV-1 predicted by our model and

determine its sensitivity to key parameters. Our study finds that the BBB plays a major role in

the transport of HIV-1 from the brain to the plasma and vice versa, and that viral replication

in the brain may partly explain the virus persistence despite ongoing HAART.
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Materials and methods

Data

The data used in this study was obtained by digitizing results from published literature [24,

25]. In the published experiment [24, 25], three male rhesus macaques (Macacamulatta) were

infected intravenously with a mixture of simian-human immunodeficiency virus (SHIVKU−1B

and SHIV89−6P) and simian immunodeficiency virus (SIV17E−Fr). These animals were moni-

tored for a period of 12 weeks, and levels of circulating CD4+ T cells and viral loads in both

the CSF and plasma were measured as described in Kumar et al. [25].

Mathematical model

In the circulation (representing outside the brain), one of the primary target cells of HIV-1 are

uninfected CD4+ T cells (T) [26]. These cells become infected (T�) by free virions (V) within

the circulation at a rate β. Infected CD4+ T cells die at a rate δ per day and produce virions at a

rate of p per day per infected cell. Uninfected T cells die at a rate d per day and are generated at

a rate λ cells per day.

The major cells that HIV-1 infects in the brain are macrophages [8, 21]. To model this we

include an uninfected population of macrophages (M) in the circulation that becomes infected

(M�) upon interaction with free virus at a rate βM. These infected macrophages produce free

virions at a rate pM per day per infected cell and die at a rate of δM per day. Uninfected macro-

phages die at a rate of dM per day and are generated at a rate λM cells per day. Note that the

population of macrophages has been considered to contribute to viral persistence because of

its longer lifespan [2, 8–10, 12, 13, 22, 27].

In order for a virion to enter the CSF in the brain it must pass through the BBB. It is not

fully understood what factors modulate transit of HIV-1 RNA through the BBB into the CSF

[12]. However studies show that the virus permeates the integrity of the BBB only via an

infected macrophage [15, 21]. Clear mechanisms of how macrophages transport across the

BBB are poorly understood. Since we are not modeling the BBB compartment separately,

rather the BBB is considered as a barrier between two locations, inside and outside the brain,

we model the transport (mobility) of macrophages across the BBB using a simple linear

approach implemented widely in many studies, including lymphocytes movement in and out

of blood [28] and virus infected lymphocyte movement in and out of follicular tissues in SIV-

infected macaques [29]. We represent the rate of the macrophage transit through the BBB into

the brain by φ. Macrophages are not known to generate independently within the brain [23].

The uninfected brain-macrophages become infected (M�

B) by the virus in the brain [6, 11, 14,

22, 23] at a constant rate βM. These infected brain-macrophages produce free virions within

the brain at a constant rate pM per infected cell per day.

In this study, we consider the type of the virus inside the brain to be the same as the virus

outside. However, the environment in the brain has been shown to alter the characteristics of

free virions [3, 11, 23], and the viral load data from inside the brain and the outside the brain

were measured separately. Therefore, we denote HIV-1 virions within the brain by a different

variable VB. We assume that the free virions V and VB are both cleared at the same per capita

rate c per day. While limited evidence suggests the possible presence of HIV-1-infected T cells

within the CSF [30], because the primary targets of HIV-1 within the brain are macrophages

[2, 21], we consider only macrophages within the brain. Macrophages come out of the brain

through the BBB into the bloodstream [31] at a constant rate ψ.

Considerable debate exists regarding whether or not viral replication occurs within the

brain [6, 9, 10, 12, 14]. To perform deeper analysis from the modeling point of view, we
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develop three different variants of the model by introducing a parameter α, which represents

the ratio between the infectivity of macrophages in the brain and outside of the brain. Model 1

(α = 1) assumes that viral replication occurs within the brain at the same rate as in the blood-

stream. Similarly, Model 2 (α = 0) assumes that no viral replication occurs in the brain, and

Model 3 (0 < α 6¼ 1) assumes that the viral replication occurs at a different rate than outside of

the brain. The schematic diagram of the model is shown in Fig 1. The model equations we use

are as follows.

dT
dt

¼ l�bVT �dT;

dT�

dt
¼ bVT �dT�;

dM
dt

¼ lM þ cMB �bMVM �φM �dMM;

dM�

dt
¼ bMVM þ cM�

B �φM� �dMM�;

dMB

dt
¼ φM �cMB �abMVBMB �dMMB;

dM�
B

dt
¼ abMVBMB �cM�

B þ φM� �dMM�
B;

dV
dt

¼ pT� þ pMM� �cV;

dVB

dt
¼ pMM�

B �cVB:

ð1Þ

Three variants of the model are

Fig 1. The schematic diagram of the model representing HIV-1 infection in the brain. The boxes represent a cell

population, the solid arrows represent transport from one population to another, and the dashed arrows represent the

cause for the corresponding events.

https://doi.org/10.1371/journal.pcbi.1008305.g001
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Model 1: α = 1,

Model 2: α = 0,

Model 3: 0< α 6¼ 1.

Parameter estimation and data fitting

We take T0 = 38700 as in Vaidya et al. [32]. From Haney et al. [33] we estimateM0 = 1463000

andMB0 = 20000. As estimated by Stafford et al. [20], the average life span of uninfected target

T cells is 100 days, which implies d = 0.01 per day. Macrophages begin their life cycle as mono-

cytes, and there are varying results regarding the age of the monocyte/macrophage lifespan

ranging from three months to three years [23]. We take the average lifespan to be approxi-

mately 18 months, i.e. dM* 0.002 per day. As every macaque was uninfected at the beginning

of the study, we take all infected cells to be zero, i.e., T�

0
¼ M�

0
¼ M�

B0
¼ 0 [25]. As done in Vai-

dya et al. [32], we fix p based on the work of Chen et al. [34], who estimated the SIV burst size

in vivo in rhesus macaques to be approximately 5 × 104 virions per infected cell, and take

p = 50, 000. Assuming a steady state before infection, we use λ = dT0 and λM = dM(M0 +MB0)

to estimate λ and λM. Schwartz et al. [35] estimated the rate of lentiviral production by an

infected macrophage to be approximately 1000 virions per infected cell per day. Therefore, we

set pM = 1000 for our base case computation. The virion clearance rate during chronic infec-

tion in humans varies from 9.1 to 36.0 [36]. Thus we take the average c = 23 per day as the min-

imal estimate. However, we acknowledge that this rate may be higher in macaques.

We estimate the remaining parameters β, βM, δ, δM, φ, ψ by fitting the model to the viral

load data in the CSF and the plasma. We solve the system of ordinary differential equations

(ODEs) numerically using the “ode15s” solver in MATLAB. The predicted log10 values were

fitted to corresponding log-transformed viral load data using the nonlinear least squares

regression, in which the sum of the squared residuals, that is, the difference between the model

predictions and the corresponding experimental data, is minimized. We used the following

formula to calculate the sum of the squared residuals:

J ¼
1

NP

XNP

i¼1

½ log 10VðtiÞ � log 10
�V ðtiÞ�

2
þ

1

NB

XNB

i¼1

½ log 10VBðtiÞ � log 10
�VBðtiÞ�

2
; ð2Þ

where NP and NB represent the total number of data points in the plasma and in the brain,

respectively. V and �V , represent the virus concentrations in the plasma predicted by the model

and those measured in the experimental data, respectively, while VB and �VB represent the

virus concentrations in CSF predicted by the model and those measured in the experimental

data, respectively. For each best fit parameter estimate, we provide 95% confidence intervals

(CI), which were computed from 500 replicates by bootstrapping the residuals [37, 38].

Results

Model selection

We fit the model to the data containing plasma viral load and the CSF viral load for each of the

three monkeys. To compare models we used the Akaike information criterion (AIC) described

by the following formula [39, 40].

AIC ¼ n log
J
n

� �

þ
2nðNpar þ 1Þ

n�Npar �2
; ð3Þ
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where n = NP + NB represents the total number of data points considered, J is the sum of the

squared residuals (SSR), and Npar represents the number of parameters estimated through

data-fitting. The SSR and the AIC values for each of Model 1, Model 2, and Model 3 are given

in Table 1. Note that the lower the AIC value, the better the model fit. There is no significant

difference in the AIC or SSR value between Model 1 and Model 2, but Model 3 has the highest

AIC values (Table 1). Moreover, when the parameter α in Model 3 was fixed at some value

other than 0 or 1, we did not get better AIC or SSR values than those from Model 1 and Model

2. This indicates that the extra parameter introduced in Model 3 did not improve the data fit-

ting. The similar AIC values between Model 1 and Model 2 suggest that the available data is

not enough to decide whether viral replication occurs or does not occur within the brain.

However, Model 1 is supported by the previous study by Schnell [13], who identified the virus

replication inside the brain of HIV-infected patients and indicated that HIV replication in the

central nervous system (CNS) contributes to neurocognitive decline. Therefore, we select

Model 1 to present the subsequent results in the sections to follow. For comparison purposes,

the results using Model 2 are also presented in S2 Text. In general, the patterns and overall

behavior of Model 2 (S2 Text) are similar to Model 1, with some differences in predicted quan-

titative values.

The predictions of the selected model, i.e. Model 1, along with the data for each of the three

monkeys are shown in Fig 2. Our model agrees well with the data (Fig 2). The data fitting of

Model 2 and Model 3 is also provided in S1 Fig. The estimated parameters are given in

Table 2.

Rates of infection and cell death

We estimated that the rate, β, at which the virus infects CD4+ T cells, ranges between

2.58 × 10−8 and 4.40 × 10−8 viral RNA copies per μL per day. These estimates are consistent

with the previous estimates [26]. The infection rate estimated for macrophages, βM, ranges

Table 1. SSR and AIC values for each of Model 1 (α = 1), Model 2 (α = 0), and Model 3 (0< α 6¼ 1) fitted to each of the three monkeys.

Model 1 (α = 1) Model 2 (α = 0) Model 3 (0 < α 6¼ 1)

SSR AIC SSR AIC SSR AIC

Monkey 1 4.6235 17.1562 4.4903 16.7469 3.8943 26.8866

Monkey 2 2.4144 55.788 2.4163 55.7966 2.4159 145.7951

Monkey 3 4.9797 18.1952 4.9758 18.1841 4.9781 30.3239

https://doi.org/10.1371/journal.pcbi.1008305.t001

Fig 2. Model fit to the data. Plasma viral load (solid line) and CSF viral load (dashed line) predicted by the selected model, i.e. Model 1, along with the

experimental data (filled circle: plasma viral load; filled triangle: CSF viral load) from three monkeys [24, 25].

https://doi.org/10.1371/journal.pcbi.1008305.g002
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between 4.01 × 10−11 and 1.00 × 10−9 viral RNA copies per μL per day, implying that macro-

phages are less susceptible to viral infection than CD4+ T cells. Similarly, we found that the

death rate of infected macrophage (median δM* 0.21 per day) is significantly lower than the

death rate of infected CD4+ T cells (median δ* 1.61 per day). Thus our model suggests that

infected macrophages persist with the virus far longer than infected T cells, which is consistent

with findings from previous experiments [22, 23, 41].

Reproduction number

The basic reproduction number (R0) is defined as the average number of secondary infected

cells produced by a single infected cell when there is no target cell limitation [42]. In viral

dynamics, the basic reproduction number is an important threshold that can determine

whether infection occurs. Specifically, ifR0 < 1 the infection dies out, and ifR0 > 1 the infec-

tion occurs [42]. For our model we use the next-generation method [42, 43] to computeR0.

The details for this computation as well as an explicit formula forR0 are given in S1 Text.

Using the parameters estimated above in theR0 formula, we obtained the basic reproduc-

tion number for each monkey. We found thatR0 ranges from 1.33 to 1.55. Note thatR0 > 1

in each case as expected because the experimental data show that the infection persists in each

monkey. We further perform local sensitivity analysis to identify how sensitive the value ofR0

is to each parameter. To quantify the sensitivity we considered the sensitivity index Sx [44],

given by

Sx ¼
x
R0

� �
@R0

@x

� �

;

where x is a parameter whose sensitivity is sought. Based on the Sx values (Fig 3), we identified

that the parameters d, β, p, c, δ, and λ have the greatest influence (Sx* 0.5) onR0, whereas φ,

ψ, dM, βM, pM, δM, λM have much less effect (Sx* 1 × 10−4). We observe that the parameters

greatly influencingR0 are mostly T cell related. Thus the T cell and related parameters are pri-

mary contributors to the initial establishment of the viral infection. We now extend the analy-

sis to the global sensitivity by computing the partial rank correlation coefficients for Latin

Hypercube sampling from the global parameter space. In the global parameter space, we

observe that although macrophage-related parameters can also significantly affect the basic

reproduction number, the most strongly correlated parameters remain those associated with T

cells.

Transport through the BBB

Regarding infection in the brain, the transport of virus through the BBB plays a critical role.

These mechanisms can be studied through the parameters φ and ψ of our model. Our

Table 2. Parameter estimates through data fitting. Estimated parameters from fitting the selected model, i.e. Model 1, to each of the three monkey’s data. Paired values

in parentheses represent 95% confidence intervals.

δ δM φ ψ β βM
day−1 day−1 day−1 day−1 ml/day ml/day

Monkey 1 1.7319

(0.5555,1.8049)

0.2067

(0.1405,0.4141)

0.0117

(0.00220,0.22342)

9.4052

(8.2458,10.8779)

3.7332E-8

(1.9456E-8,7.4280E-8)

1.0018E-9

(9.9297E-10,1.0000E-9)

Monkey 2 1.6129

(0.8940,1.8214)

0.0673

(0.0234,0.1256)

0.78565

(0.33675,2.3305)

15.0023

(14.4669,15.2483)

4.4009E-8

(3.5322E-8,7.3811E-8)

4.0068E-11

(1.0000E-11,4.0119-11)

Monkey 3 1.0766

(0.5941,1.1664)

0.2127

(0.1550,0.2797)

0.29149

(0.08801,0.91395)

8.8010

(8.6176,9.0556)

2.5809E-8

(1.8701E-8,2.6271E-8)

6.9003E-10

(3.5739E-10,9.3840E-10)

https://doi.org/10.1371/journal.pcbi.1008305.t002
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estimates show that the per capita rate of macrophage entry into the brain, φ* 0.29 per day, is

significantly less than the per capita rate of macrophage exit from the brain, ψ* 9.41 per day

(Table 2). This implies that it is possible for the transport of virus out of the brain via infected

macrophages to be greater than the transport of virus into the brain, but the net flow of virus

also depends on the amount of infected macrophages outside and inside the brain. As a result,

the amount of virus, which replicates inside the brain and then exits into the bloodstream

through the BBB, can be significantly high. Thus the brain may act as an HIV-1 reservoir caus-

ing the persistent infection despite control of virus in the bloodstream through successful

treatment.

Because of potential selection imposed by the BBB, especially for the entry of virus into the

brain, we ask a question whether inflow of the virus into the brain is constant and thus whether

the brain compartment can be studied in isolation as done in some previous studies [17]. To

analyze viral entry into the brain we calculated the rate of the number of infected macrophages

(φM�) entering into the brain over time for 100 days post-infection (Fig 4). The model predic-

tion suggests that infected macrophages enter the brain through the BBB at time-varying rate,

depending upon the infection outside the brain. This indicates that in order to accurately pre-

dict the viral dynamics in the brain, both the brain and the plasma must be considered as one

coupled system rather than two separate ones, at least during the acute phase of infection.

Cell and virus dynamics

We first used our model to study the acute phase dynamics of macrophages (Fig 5). The

infected macrophages in the plasma and the brain both reach a peak at approximately 18 days

post-infection, and then decline steadily over the next three weeks, eventually reaching a set

point level. The dynamics of infected macrophages in the brain is similar to that of the infected

macrophages in the plasma, however the amount of infected macrophages in the brain is sig-

nificantly lower (peak at *170 per μL) than the infected macrophages in the plasma (peak at

*40, 000 per μL). The uninfected macrophages, both in the brain and in the plasma, decline

rapidly (by*6%) from their initial amounts.

We also studied the long-term dynamics by performing model simulations for 1000 days

(approximately 3 years). After approximately 200 days the CD4+ T cell count, the infected

Fig 3. Sensitivity of parameter estimations toR0. Local sensitivity ofR0 based on sensitivity index (left) and the partial rank correlation coefficients

for global sensitivity ofR0 based on Latin Hypercube sampling (right).

https://doi.org/10.1371/journal.pcbi.1008305.g003

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 8 / 18

https://doi.org/10.1371/journal.pcbi.1008305.g003
https://doi.org/10.1371/journal.pcbi.1008305


Fig 4. Incoming infected macrophages entering the brain (φM�). Model simulations of the total count of infected

macrophages (φM�) entering the brain for 100 days post-infection.

https://doi.org/10.1371/journal.pcbi.1008305.g004

Fig 5. Simulations of macrophages in the plasma and the CSF. Model simulations over 100 days post-infection of infected macrophages (top row)

and uninfected macrophages (bottom row) in the plasma (left column) and in the brain (right column).

https://doi.org/10.1371/journal.pcbi.1008305.g005
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macrophages in the brain and the plasma, and the viral RNA copies in the brain and the

plasma all reach a steady state (Fig 6). The steady state level of the infected macrophages in the

brain is roughly one fourth of that outside the brain (200 per μL outside vs 50 per μL inside the

brain). Similarly, the steady-state level of viral RNA in the brain is nearly three-fold less than

that in the plasma (*103 vRNA copies in the brain vs.*106 vRNA copies in the plasma), con-

sistent with the experimental results [25]. The CD4+ T cell count drops rapidly and levels off

at 400 shortly after day 200.

As predicted by our model, the small amount of infected macrophages hiding inside the

brain as well as ongoing replication of the virus inside the brain may partially contribute to the

low level of viral persistence during the treatment of infected patients since many drugs cannot

enter the brain through the BBB [3]. To further study the impact of the virus produced in the

brain, we simulated viral dynamics under HAART, in which the viral production outside the

brain was completely suppressed (p = pM = 0 outside the brain) and the viral production inside

the brain was allowed (pM> 0 inside the brain). We found that for low levels of viral produc-

tion both the brain and plasma viral load remain undetected, but for high level viral produc-

tion the brain viral load becomes detected while the plasma viral load remains undetected (S3

Text). Therefore, while in the absence of treatment, the virus supplied from the brain may not

significantly contribute to the plasma viral load because of high viral production outside the

brain, in the presence of treatment, the contribution of the ongoing viral replication and pro-

duction in the brain to the persistence of virus can be remarkably high.

Sensitivity analysis

Sensitivity of data-fitting estimates on the fixed parameters. Our data-fitting estimates

were based on the fixed values of parametersM0,MB0, dM, and pM. While we estimated values

Fig 6. Long-term model simulations. Viral load (top left) for the plasma (solid line) and the brain (dashed line) along with the CD4+ T cell count (top

right) and the total infected macrophages (bottom row) in the brain (bottom left) and in the plasma (bottom right).

https://doi.org/10.1371/journal.pcbi.1008305.g006

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 10 / 18

https://doi.org/10.1371/journal.pcbi.1008305.g006
https://doi.org/10.1371/journal.pcbi.1008305


of these parameters from the literature, there is uncertainty with these values. Therefore, we

performed sensitivity analysis of the data-fitting parameter estimates to the choice of the initial

conditionsM0 andMB0 and the choice of dM and pM (S2 and S3 Figs).

First, we performed 200 different data fittings using M0 andMB0 values chosen randomly

from the uniform distribution between 10% less and 10% more values than the base value. We

observed that the median change in the estimated parameters remained below 10% for each

parameter and for each monkey except for βM in Monkey 2 (22% change) (S2 Fig). This high

sensitivity of βM for Monkey 2 is likely due to the lack of enough data points in the brain for

this monkey. The overall mean change of each estimated parameter also remained less than

10% from the base case estimate, suggesting our estimates were robust within these ranges of

M0 andMB0.

Then, we performed 200 data fittings using dM and pM values sampled randomly from the

values between 10% less and 10% more than the base values. In this case, we observed that

both the median and the mean change in the estimated parameters never exceeded more than

8% for each parameter for each monkey. This suggests that our parameter estimates for dM
and pM were also robust within these ranges for dM and pM.

Sensitivity of model dynamics on the general parameter space. Given the limited num-

ber of data sets and extreme complications for the study of brain virus, the results based on the

model dynamics from our limited estimates require further analysis on a wider parameter

space. To examine the robustness of our model dynamics we performed 200 simulations using

a Latin hypercube sampling (LHS) of nine parameters (δM, ψ, φ, βM, β,MB0,M0, pM, and dM).

The box-plots and partial rank correlation coefficients (PRCC) of this sensitivity analysis is

shown in Figs 7 and 8, respectively. The dynamics from the data fitting estimates (solid lines)

are clearly captured within the boxes of the LHS results. Predicted dynamics are more sensitive

to the parameters during early part of the infection. Variation of the viral dynamics in the

brain is much wider than that in the plasma (Fig 7).

We calculated PRCC values at weeks one, two, three, and 26, corresponding to the timings

for pre-peak, peak, post-peak, and set point viral load, respectively (Fig 8). The computed par-

tial rank correlation coefficients indicate that parameters, in general, have stronger correlation

to the viral load in the CSF compared to that in the plasma. Both plasma and CSF viral load are

most correlated with parameters related to infection rates, βM and β, and macrophage life-

span, δM. In addition, the CSF viral load is highly correlated with the BBB related parameter,

φ. These parameters, except δM, mainly have larger effect on early viral load than on late viral

load. Both plasma and CSF viral loads are positively impacted by βM and β, and negatively

impacted by δM, while φ has positive impact on CSF viral load and negative impact (but with

smaller magnitude) on the plasma viral load.

We also computed PRCC values for the timing of the peak viral loads in the plasma and the

CSF (Fig 8). Out of the nine parameters sampled, only the parameters β, φ, and pM impact the

timing of the peak viral load in the CSF and the plasma in the similar manner (i.e., either both

positive correlation or both negative correlation), with β being the most impactful parameter.

In the case of the other parameters, there is an opposite effect on the timing of peak viral loads

in the plasma compared to the CSF.

Discussion

HIV-1 remains a major public health challenge and one of the leading causes of death world-

wide [1]. While HIV-1 is one of the most studied diseases, viral dynamics in the brain remains

one of the least studied aspects of the disease. In particular, the transport of the virus through

the BBB and the presence of ongoing viral replication in the brain are poorly understood. To
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gain insights into these issues, here we developed a mathematical model that can explain the

experimental viral load data in the plasma and the CSF from SIV/SHIV infected macaques.

Using our model and experimental data we estimated key parameters, including those related

to the BBB. In addition, we performed thorough sensitivity analyses, including with Latin

Hypercube sampling, to examine the robustness of the dynamics described by our model. Our

model predicts a number of interesting results that may be helpful to control the virus in the

Fig 7. Box-plots of the results of 200 simulations of the model from Latin hypercube sampling. The sensitivity of the dynamics of plasma

viral load (top) and the CSF viral load (bottom) based on 200 Latin Hypercube sampling. The black solid line represents the viral dynamics

predicted by the model with median parameters estimated from three monkey data.

https://doi.org/10.1371/journal.pcbi.1008305.g007
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brain, thereby potentially reducing the occurrence of HAND since HIV replication in the

brain can contribute to neurocongnitive decline [14].

Our model predicts that the entry of HIV virus and/or viral protein via macrophages cross-

ing the BBB is time-varying in nature and the rate of entry may depend on the virus dynamics

outside the brain. This shows that while the chronic phase HIV dynamics in the brain may be

studied with the brain compartment in isolation, as done in some previous studies [17], the

modeling study for acute phase HIV-1 dynamics in the brain should include both the brain

and the plasma as one coupled system. This underscores the importance of getting deeper

insights into the BBB and viral transport across it.

In addition to the virus entering into the brain from outside, our model comparison on the

basis of AIC values reveals that there is a possibility of ongoing viral replications and produc-

tion of new virus inside the brain. However, the infection rate of macrophages, the major tar-

get cells for viral replication inside the brain, is significantly smaller than that of CD4+ T cells.

This implies that macrophages are less susceptible to HIV-1 than CD4+ T cells, but once

Fig 8. Partial rank correlation coefficients from the Latin hypercube sampling method. PRCC values of the plasma (top, left) and the CSF (bottom,

left) viral loads at weeks 1 (pre-peak), 2 (peak), 3 (post-peak), and 26 (set-point) post infection along with the PRCC values of the timing of the peak

viral loads in the plasma (top right) and in the CSF (bottom right).

https://doi.org/10.1371/journal.pcbi.1008305.g008
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infected they remain so for a much longer time as indicated by our estimate of a significantly

lower death rate of infected macrophages than of infected CD4+ T cells. As a result of these

infections outside and inside the brain, our model predicts that in the long run the virus in the

brain reaches a steady-state nearly three-fold lower than the virus in the plasma. Similarly,

there can be persistence of infected macrophages in the brain with a steady state level signifi-

cantly lower than the infected cells in the plasma. This indicates that without treatment the

virus maintains infectiousness throughout an individual’s lifetime not only in the plasma, but

also in the brain. This long-term persistence of the virus inside the brain is likely linked to

HAND including early-onset dementia and encephalitis [2–4, 11, 12].

Importantly, our estimates show that the rate of viral exit from the brain, ψ, is significantly

higher than the rate of viral entry into the brain, φ. It should, however, be noted that the time

dependent net flow of the virus also depends on the available infected macrophages carrying

viral RNAs. This flow rate of the virus across the BBB combined with persistent low level ongo-

ing viral replication and viral production inside the brain indicate that the brain can be an

important reservoir supplying virus to the bloodstream. Because of the high viral load outside

the brain compared to the viral load in the brain (3-fold lower in the brain) in untreated indi-

viduals, the contribution of the virus coming out of the brain may not be significant to the

plasma viral load for untreated individuals. However, this contribution can be extremely

important for viral persistence in the presence of HAART (S3 Text). Since many antiretroviral

drug molecules cannot enter the brain through the BBB [3], viral replication can continue in

the brain despite suppression of the virus to undetected levels in the plasma, thereby causing

an obstacle to the cure of HIV through treatment. Upon treatment interruption, the virus pro-

duced in the brain may contribute to further replication outside the brain resulting in the viral

rebounds. Therefore, antiretroviral agents that can obstruct the replication inside the brain are

necessary for successful control of HIV-1 infection.

We also computed the basic reproduction number,R0, for each monkey, and found that

the value ofR0 (1.33 to 1.55) is consistent with previous estimates [26]. Furthermore, we per-

formed a sensitivity analysis to identify the parameters most affectingR0. Our results show

that those parameters related closely to T cells are the most impactful for determining the

value ofR0, and thus best characterize the initial infection. This suggests that the brain has

minimal effect on the initial infectiousness of HIV-1. This result is consistent with the facts

that infection initiates outside the brain first, and it takes some time for the virus to penetrate

the BBB and enter the brain [12].

We acknowledge several limitations of our study. Our parameter estimates are based on a

limited number of macaques. Furthermore, the available data was not enough for our model

to determine whether viral replication occurs in the brain. Also, note that the infection in

these macaques was initiated using a mixture of different viruses (SHIV and SIV), thus the

obtained results, including computedR0 values, should be interpreted as the combined effect

of these viruses in the mixture. More data with infection from individual virus types is neces-

sary to identify whether the results remain the same for the single virus type. We considered

only macrophages as targets of HIV-1 inside the brain. However, brain macrophages may dif-

ferentiate into microglia. Also, a small amount of CD4+ T cells may exists within the brain

[30] and other cells such as astrocytes may be HIV-1 targets. We did not consider the immune

responses, which might be particularly important for the long-term dynamics. Since the pri-

mary objective of this study was to analyze viral dynamics inside the brain and the data did not

include other potential viral reservoirs, we considered only the brain and the circulation in our

model. While our study provided important insights into the potential role of the brain as a

viral reservoir, other important reservoirs, such as Infected Resting Cells [13, 45, 46], should
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also be considered to accurately describe the viral persistence. For such study, we require the

data collected simultaneously from other reservoirs as well. Moreover, a detailed study of mac-

rophage transport across the BBB is needed to properly model the transport mechanism to

accurately evaluate the impact of the BBB. Further experimental and theoretical study could

also examine the persistent HIV-1 replication in the brain while individuals are under ongoing

treatment.

In summary, we developed a novel mathematical model to examine the viral load dynamics

in the plasma and the CSF of HIV-1. From this model and experimental data we estimated key

parameters related to the BBB and viral transport through the BBB which may indicate the

behavior of the brain as a virus reservoir. Results from this model may help offer insight into

better ways to control HIV-1, and thus reducing the development of HAND.
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4. Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters.

Nature Reviews Neuroscience. 2005; 6(8):591–602. https://doi.org/10.1038/nrn1728

5. Smit TK, Brew BJ, Tourtellotte W, Morgell S, Gelman BB, Saksena NK. Independent evolution of

human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-

infected patients, with and without dementia, on antiretroviral treatment. Journal of virology. 2004;

78(18):10133–10148. https://doi.org/10.1128/JVI.78.18.10133-10148.2004

6. Bednar M, Sturdevant CB, Tompkins LA, Arrildt KT, Dukhovlinova E, Kincer LP, et al. Compartmentali-

zation, viral evolution, and viral latency of HIV in the CNS. Current HIV/AIDS Reports. 2015; 12

(2):262–271. https://doi.org/10.1007/s11904-015-0265-9 PMID: 25914150

7. Béguelin C, Vázquez M, Bertschi M, Yerly S, de Jong D, Gutbrod K, et al. Viral escape in the central ner-

vous system with multidrug-resistant human immunodeficiency Virus-1. In: Open forum infectious dis-

eases. vol. 3. Oxford University Press; 2016. p. ofv210.

8. Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, et al. The central

nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA

in brain from acute through asymptomatic infection. The Journal of Infectious Diseases. 2002;

186(7):905–913. https://doi.org/10.1086/343768 PMID: 12232830

9. Fois AF, Brew BJ. The potential of the CNS as a reservoir for HIV-1 infection: implications for HIV eradi-

cation. Current HIV/AIDS Reports. 2015; 12(2):299–303. https://doi.org/10.1007/s11904-015-0257-9

10. Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a

reservoir of HIV-1? Current Opinion in HIV and AIDS. 2014; 9(6):552. https://doi.org/10.1097/COH.

0000000000000108

11. Nath A. Eradication of human immunodeficiency virus from brain reservoirs. Journal of Neurovirology.

2015; 21(3):227–234. https://doi.org/10.1007/s13365-014-0291-1

12. Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. Journal of Virus

Eradication. 2015; 1(2):67. https://doi.org/10.1016/S2055-6640(20)30489-1

13. Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. Journal of Theoreti-

cal Biology 2009; 260(2):308–331. https://doi.org/10.1016/j.jtbi.2009.06.011

14. Schnell G, Joseph S, Spudich S, Price R, Swanstrom R. HIV-1 Replication in the Central Nervous Sys-

tem Occurs in Two Distinct Cell Types. PLoS Pathogens 2011; 7(10). https://doi.org/10.1371/journal.

ppat.1002286 PMID: 22007152

15. Atluri VSR, Hidaldo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, et al. Effect of human immu-

nodeficiency virus on blood-brain barrier integrity and function: an update. Frontiers in Cellular Neuro-

science. 2015; 9:212. https://doi.org/10.3389/fncel.2015.00212 PMID: 26113810

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 16 / 18

https://doi.org/10.1126/science.3016903
http://www.ncbi.nlm.nih.gov/pubmed/3016903
https://doi.org/10.1038/nrn1728
https://doi.org/10.1128/JVI.78.18.10133-10148.2004
https://doi.org/10.1007/s11904-015-0265-9
http://www.ncbi.nlm.nih.gov/pubmed/25914150
https://doi.org/10.1086/343768
http://www.ncbi.nlm.nih.gov/pubmed/12232830
https://doi.org/10.1007/s11904-015-0257-9
https://doi.org/10.1097/COH.0000000000000108
https://doi.org/10.1097/COH.0000000000000108
https://doi.org/10.1007/s13365-014-0291-1
https://doi.org/10.1016/S2055-6640(20)30489-1
https://doi.org/10.1016/j.jtbi.2009.06.011
https://doi.org/10.1371/journal.ppat.1002286
https://doi.org/10.1371/journal.ppat.1002286
http://www.ncbi.nlm.nih.gov/pubmed/22007152
https://doi.org/10.3389/fncel.2015.00212
http://www.ncbi.nlm.nih.gov/pubmed/26113810
https://doi.org/10.1371/journal.pcbi.1008305


16. Huang Y, Zhang C, Wu J, Lou J. Modelling the HIV persistence through the network of lymphocyte recir-

culation in vivo. Infectious Disease Modelling. 2017; 2(1):90–99. https://doi.org/10.1016/j.idm.2017.02.

003

17. Roda WC, Li MY, Akinwumi MS, Asahchop EL, Gelman BB, Witwer KW, et al. Modeling brain lentiviral

infections during antiretroviral therapy in AIDS. Journal of Neurovirology. 2017; 23(4):577–586. https://

doi.org/10.1007/s13365-017-0530-3 PMID: 28512685

18. Callaway D, Perelson AS. HIV-1 infection and low steady state viral loads. Bulletin of Mathematical Biol-

ogy. 2002; 64(1):29–64. https://doi.org/10.1006/bulm.2001.0266

19. Hernandez-Vargas EA, Middleton RH. Modeling the three stages in HIV infection. Journal of Theoretical

Biology 320. 2013; 320:33–40. https://doi.org/10.1016/j.jtbi.2012.11.028

20. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS. Modeling plasma virus concentration dur-

ing primary HIV infection. Journal of Theoretical Biology. 2000; 203(3):285–301. https://doi.org/10.

1006/jtbi.2000.1076

21. Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in Human Immuno-

deficiency Virus Type I infection. Retrovirology. 2012; 9(1):82. https://doi.org/10.1186/1742-4690-9-82

22. Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses. 2014; 6(4):1837–

1860. https://doi.org/10.3390/v6041837

23. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric

disease. Nature Reviews Neuroscience. 2014; 15(5):300–312. https://doi.org/10.1038/nrn3722

24. Kumar R, Orsoni S, Norman L, Verma AS, Tirado G, Giavedoni LD, et al. Chronic morphine exposure

causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/

SHIV-infected Indian rhesus macaques. Virology. 2006; 354(1):192–206. https://doi.org/10.1016/j.

virol.2006.06.020 PMID: 16876224

25. Kumar R, Torres C, Yamamura Y, Rodriguez I, Martinez M, Staprans S, et al. Modulation by morphine

of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human

immunodeficiency virus. Journal of Virology. 2004; 78(20):11425–11428. https://doi.org/10.1128/JVI.

78.20.11425-11428.2004 PMID: 15452267

26. Vaidya NK, Ribeiro RM, Perelson AS, Kumar A. Modeling the effects of morphine on simian immunode-

ficiency virus dynamics. PLoS Computational Biology. 2016; 12(9). https://doi.org/10.1371/journal.

pcbi.1005127 PMID: 27668463

27. Green SJ, Meltzer MS, Hibbs J, Nacy CA. Activated macrophages destroy intracellular Leishmania

major amastigotes by an L-arginine-dependent killing mechanism. The Journal of Immunology. 1990;

144(1):278–283.

28. McDaniel MM, Ganusov VV. Estimating residence times of lymphocytes in ovine lymph nodes. Fron-

tiers in Immunology. 2019; 10:1492. https://doi.org/10.3389/fimmu.2019.01492

29. Wodarz D, Skinner PJ, Levy DN, Connick E. Virus and CTL dynamics in the extrafollicular and follicular

tissue compartments in SIV-infected macaques. PLoS Computational Biology. 2018; 14(10):

e1006461. https://doi.org/10.1371/journal.pcbi.1006461

30. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi-Egea JF. T-lymphocytes traffic into the brain

across the blood-CSF barrier: evidence using a reconstituted choroid plexus epithelium. PLoS One

2016; 11(3). https://doi.org/10.1371/journal.pone.0150945 PMID: 26942913

31. Green LA, Nebiolo JC, Smith CJ. Microglia exit the CNS in spinal root avulsion. PLoS Biology. 2019;

17(2):e3000159. https://doi.org/10.1371/journal.pbio.3000159

32. Vaidya NK, Ribeiro RM, Miller CJ, Perelson AS. Viral dynamics during primary simian immunodefi-

ciency virus infection: effect of time-dependent virus infectivity. Journal of Virology 2010; 84(9):4302–

4310. https://doi.org/10.1128/JVI.02284-09

33. Haney AF, Muscato JJ, Weinberg JB. Peritoneal fluid cell populations in infertility patients. Fertility and

sterility. 1981; 35(6):696–698. https://doi.org/10.1016/S0015-0282(16)45567-6

34. Chen HY, Di Mascio M, Perelson AS, Ho DD, Zhang L. Determination of virus burst size in vivo using a

single-cycle SIV in rhesus macaques. Proceedings of the National Academy of Sciences. 2007;

104(48):19079–19084. https://doi.org/10.1073/pnas.0707449104

35. Schwartz EJ, Vaidya NK, Dorman KS, Carpenter S, Mealey RH. Dynamics of lentiviral infection in vivo

in the absence of adaptive immune responses. Virology. 2018; 513:108–113. https://doi.org/10.1016/j.

virol.2017.09.023

36. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, et al. Rapid production and clear-

ance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. The Lancet. 1999;

354(9192):1782–1785. https://doi.org/10.1016/S0140-6736(99)02035-8 PMID: 10577640

37. Bates DM, Watts DG. Nonlinear regression analysis and its applications. vol. 2. Wiley New York;

1988.

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 17 / 18

https://doi.org/10.1016/j.idm.2017.02.003
https://doi.org/10.1016/j.idm.2017.02.003
https://doi.org/10.1007/s13365-017-0530-3
https://doi.org/10.1007/s13365-017-0530-3
http://www.ncbi.nlm.nih.gov/pubmed/28512685
https://doi.org/10.1006/bulm.2001.0266
https://doi.org/10.1016/j.jtbi.2012.11.028
https://doi.org/10.1006/jtbi.2000.1076
https://doi.org/10.1006/jtbi.2000.1076
https://doi.org/10.1186/1742-4690-9-82
https://doi.org/10.3390/v6041837
https://doi.org/10.1038/nrn3722
https://doi.org/10.1016/j.virol.2006.06.020
https://doi.org/10.1016/j.virol.2006.06.020
http://www.ncbi.nlm.nih.gov/pubmed/16876224
https://doi.org/10.1128/JVI.78.20.11425-11428.2004
https://doi.org/10.1128/JVI.78.20.11425-11428.2004
http://www.ncbi.nlm.nih.gov/pubmed/15452267
https://doi.org/10.1371/journal.pcbi.1005127
https://doi.org/10.1371/journal.pcbi.1005127
http://www.ncbi.nlm.nih.gov/pubmed/27668463
https://doi.org/10.3389/fimmu.2019.01492
https://doi.org/10.1371/journal.pcbi.1006461
https://doi.org/10.1371/journal.pone.0150945
http://www.ncbi.nlm.nih.gov/pubmed/26942913
https://doi.org/10.1371/journal.pbio.3000159
https://doi.org/10.1128/JVI.02284-09
https://doi.org/10.1016/S0015-0282(16)45567-6
https://doi.org/10.1073/pnas.0707449104
https://doi.org/10.1016/j.virol.2017.09.023
https://doi.org/10.1016/j.virol.2017.09.023
https://doi.org/10.1016/S0140-6736(99)02035-8
http://www.ncbi.nlm.nih.gov/pubmed/10577640
https://doi.org/10.1371/journal.pcbi.1008305


38. Efron B, Tibshirani RJ. An introduction to the bootstrap. CRC press; 1994.

39. Akaike H. A new look at the statistical identification model. IEEE Transactions on Automatic Control.

1974; 19:716. https://doi.org/10.1109/TAC.1974.1100705

40. Burnham KP, Anderson DR, Huyvaert KP. Model selection and multimodel inference in behavioral ecol-

ogy: some background, observations, and comparisons. Behavioral Ecology and Sociobiology. 2011;

65(1):23–35. https://doi.org/10.1007/s00265-010-1029-6

41. Pauza CD. HIV persistence in monocytes leads to pathogenesis and AIDS1. Cellular Immunology.

1988; 112(2):414–424. https://doi.org/10.1016/0008-8749(88)90310-3

42. Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Mathematical Biosciences. 2002; 180(1-2):29–48.

https://doi.org/10.1016/S0025-5564(02)00108-6

43. Diekmann O, Heesterbeek J, Roberts MG. The construction of next-generation matrices for compart-

mental epidemic models. Journal of the Royal Society Interface. 2010; 7(47):873–885. https://doi.org/

10.1098/rsif.2009.0386

44. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global sensitivity analysis, the

primer. John Wiley & Sons; 2008.

45. Archin NM, Vaidya NK, Kuruc JD, Liberty AL, Wiegand A, Kearney MF, et al. Immediate antiviral ther-

apy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infec-

tion. Proceedings of the National Academy of Sciences. 2012; 109(24):9523–9528. https://doi.org/10.

1073/pnas.1120248109 PMID: 22645358

46. Vaidya NK and Rong L. Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to

successful cure via early therapy, SIAM Journal on Applied Mathematics. 2017; 77(5):1781–1804.

https://doi.org/10.1137/16M1092003

PLOS COMPUTATIONAL BIOLOGY Modeling HIV-1 infection in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008305 November 19, 2020 18 / 18

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1016/0008-8749(88)90310-3
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1073/pnas.1120248109
https://doi.org/10.1073/pnas.1120248109
http://www.ncbi.nlm.nih.gov/pubmed/22645358
https://doi.org/10.1137/16M1092003
https://doi.org/10.1371/journal.pcbi.1008305

