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We provide an overview of how to apply statistical learning methods to di-
rectly track the role of alloying additions in the multiscale properties of alloys.
This leads to a mapping process analogous to the Periodic Table where the
resulting visualization scheme exhibits the grouping and proximity of ele-
ments based on their impact on the properties of alloys. Unlike the conven-
tional Periodic Table of elements, the distance between neighboring elements
in our Alloy Periodic Table uncovers relationships in a complex high-dimen-
sional information space that would not be easily seen otherwise. We embed
this machine learning approach with an epistemic uncertainty assessment
between data. We provide examples of how this data-driven exploratory
platform appears to capture the alloy chemistry of known engineering alloys
as well as to provide potential new directions for tuning chemistry for en-
hanced performance, consistent with accepted mechanistic paradigms gov-
erning alloy mechanical properties.

INTRODUCTION

The complexity of the role of elemental chemistry
in the properties, processing, and performance of
superalloys has been and continues to be an area of
intense study. Of course, this is due to the well-
known multidimensional/multiscale impact of alloy-
ing additions on the phase stability, microstructural
evolution, dislocation dynamics, and chemical and
thermal resistance, to mention just a few of the
metrics that need to be met. At present, there are
sophisticated models and experimental techniques
that address specific segments of engineering design
such as: developing new materials (e.g., first-prin-
ciples calculations), refining legacy materials (e.g.,
through processing and microstructural modifica-
tion), and engineering design and manufacturing.
Linking together information across multiple scales
requires accounting for the interaction of the myr-
iad parameters that govern materials development
and the complexity of the engineering perfor-
mance.1–4 Current approaches that utilize a data-
driven approach do so in conjunction with physical-
based and/or heuristically driven models. The

computational design of alloys has largely focused
on the issue of phase stability,5–8 and this in itself is
a massive combinatorial problem in selecting which
combination of elements need to be added to the
base alloy chemistry.

The search for elemental substitutions and/or
additions needed to refine metal alloy compositions
and enhance their properties is a classical problem
in metallurgical alloy design. Finding appropriate
alloy chemistries based on a systematic exploration
using either computational and/or experimental
approaches is often guided by prior heuristic knowl-
edge that harnesses expected trends captured in the
Periodic Table that can influence phase stability
coupled to optimization schemes for linking chem-
istry to different properties/mechanisms.9,10 Despite
decades of work, we have, as of yet, no unified
mathematical formalism for harnessing this heuris-
tic knowledge and thus more rapidly targeting our
next potential discovery of an alloy.

The magnitude of the combinatorial problem in
alloy design was succinctly pointed out by Brewer11

over 50 years ago when he noted that predictions of
the phase behavior for multicomponent systems
containing the 30 metals of the three transition
series (from potassium through nickel, rubidium(Received July 6, 2020; accepted September 14, 2020;
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through palladium, and cesium through platinum)
require over two billion diagrams. For example, the
number of 14-component diagrams is 582,000,000,
there are 142,500 four-component diagrams, and
even 435 diagrams are required for only the binary
systems. Brewer and others have proposed different
ways in which such high-dimensional data could be
linked to elemental compositions (see, for example,
Fig. 1); however, their complexity of interpretation
has limited their application and extensive use.

Clearly, we are still left with the daunting task of
exploring the parametric trajectory of systematic
changes in chemistry, both computationally and
experimentally; i.e., inwhat directionswill systematic
changes in chemistry most likely lead to promising
materials with the desired properties? The challenge
and the source ofuncertainty here is that knowledge of
both chemistry and properties exists for many mate-
rial systems,but it isnot clear howtheyall connect and
influence each other and ultimately define the perfor-
mance of the alloy. This therefore represents an
epistemic uncertainty problem, because in principle
the connection is represented in some form in the data,
but it is just not known how. It is not obvious from
simple inspection of known data or the examination of
property trends of elements from the Periodic Table,
despite the decades of theoretical and empirical
research in the field of alloy optimization and design.

To address this challenge, we describe a data-
driven methodology for tracking the collective influ-
ence of the multiple attributes of minor alloying

elements on both thermodynamic and mechanical
properties of engineering alloys. By mapping the
high-dimensional nature of the systematics of ele-
mental and alloy data embedded in the Periodic
Table into the form of a network graph, one can
identify the influence of specific elements on tar-
geted properties. This provides a fundamentally
new means to rapidly identify new stable alloy
chemistries with enhanced high-temperature prop-
erties. The resulting visualization scheme exhibits
the grouping and proximity of elements based on
their impact on the properties of the alloy in the
limited parameter space. We fuse information from
multiple sources (legacy data, first-principles calcu-
lations, etc.) in an iterative fashion, provide insights
into the physics of the materials behavior, and
rapidly establish the connections and pathways
through the complex information network that links
fundamental materials chemistry to materials
design.

MAPPING ELEMENTAL CHEMISTRY
OF ALLOYS

Manifold Learning

The IsoMap approach,13 which is briefly described
here, gives results which vary depending on two
different inputs. The first is the selection of data,
and the second is the number of nearest-neighbor
connections defined for each node. Beyond the
tracking of known information in the final network,

Fig. 1. Mapping the influence of elements on phase chemistry and structure in multicomponent alloys: (left) traditional two-dimensional
isothermal projection, (center) three-dimensional isothermal projection, and (right) polar projection mapping the influence of alloying additions
based on a string of elements in a period of the Periodic Table on the phase stability of a binary matrix composition. Adapted from Ref. 12.
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we have developed an automated approach for
tracking the sensitivity of the networks as a func-
tion of input data. The approach inputs a subset of
the data of a given dimensionality and develops the
network, defining the nearest neighbors and the
geodesic distance contained by each dimension. This
is repeated multiple times for the same dimension-
ality but with different descriptors chosen in each
iteration for that given number of descriptors. The
dimensionality is then increased, and the process
repeated with multiple descriptor combinations for
a given dimensionality. This then defines how much
the result is dependent on the descriptors selected
and provides a measure of uncertainty associated
with the data selection.

The selection of data (or ‘‘descriptors’’) was orga-
nized into broad classes of information: discrete
scalar parameters that relate to solid-state proper-
ties of single elements and static thermodynamic
and physical properties of potential alloy chemis-
tries using Miedema’s model, coupled to alloy design
rules from the classical theories on phase stability of
Villars, Mooser–Pearson, Pettifor, and Hume-Roth-
ery.14–16 Beyond these descriptor sets built around
elemental characteristics and from the Miedema
model, two additional descriptors were developed
which account for more microstructural aspects of
the alloy: lattice mismatch and phase volume
change, which are based on the differences between
the matrix of binary Me-Al (where Me refers to the
dominant transition metal, and in our examples
either Ti or Ni) and for Me-Al-X. The list of
descriptors corresponding with Fig. 2 are listed in
the Electronic Supplementary Material.

The IsoMap algorithm was used to discover the
optimal low-dimensional graph embedding of ele-
ments in terms of their role as alloying additions,

such that the geodesic distance between the ele-
ments in the higher-dimensional manifold is pre-
served when it is mapped onto the lower-
dimensional graph (Fig. 3).

The objective of the IsoMap algorithm is to map
the distribution of elements in the high-dimensional
space, represented by the set of data points {xi} � R

n,
onto a convex nonlinear manifold Md of lower
dimension d< n. Then through dimensionality
reduction, we obtain a two- or three-dimensional
embedding of the elements onto a weighted graph.
The mapping is carried out such that the geodesic
distances between the elements in the higher-
dimensional manifold are preserved when it is
mapped onto the lower-dimensional graph, such
that the edges of the graph are weighted in their
length according to the original geodesic distances.
The similarity/dissimilarity between alloying ele-
ments with respect to their effect on the alloy as
compared with targeted alloy properties is captured
by the distances between the vertices along the
edges that connect them to their nearest neighbors.
The mathematics and interpretation of the IsoMap
approach have been detailed in our prior work.17–20

As a brief summary, the IsoMap procedure involves
mapping xi (points within the larger data manifold)
to yi (calculated points within the lower-dimensional
sub-manifold), and sequentially comprises the
following:

1. Computation of the Euclidean distance matrix
[E] between each pair of points (xi, xj) in Rn.

2. Retention of only those entries of [E] which
connect every point to its k nearest neighbors to
obtain the reduced matrix [Ek].

3. Calculation of the geodesic distances matrix [G]
by approximating with the graph distances

Fig. 2. Heat map representing the descriptor space screened in this paper. This figure contains descriptors derived from various well-established
models. The distribution of correlation demonstrates that our analysis will not be overly sensitive to outliers, while containing sufficient physical
diversity.
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between each pair of points (xi, xj) in Rn from
[Ek].

4. Computation of the dissimilarity matrix [A].
5. Solving the eigenvalue problem for [A] to obtain

the eigenpairs (k, v). The product of the eigen-
pairs provide the low-dimensional embedding of
the nonlinear manifold.

Given the complexity of information analyzed here,
it is necessary to provide a brief definition of some
general terms we use throughout this paper. First,
we use ‘‘descriptor’’ as a term describing the con-
trollable condition of the chemistry. For example,
we can modify the size of an atom on a site by
replacing that element with a different element.
Thus, that controllable feature is defined by a
descriptor related to size. Additionally, regarding
the concept of descriptor versus attribute, the
descriptor refers to a specific value (for example,
ionic radius versus atomic radius), while we use the
term ‘‘attribute’’ to refer, for example, to the broad
category of size effects. We define ‘‘property’’ as the
response resulting from the collective influence of
those descriptors (for example, mechanical proper-
ties, which we cannot control directly through the
chemical modification but rather which results from
those changes). Finally, we refer to the dimension-
ality at two different points in the process. The first
is our input dimensionality, which refers in this
case to the number of descriptors we have input into
our analysis (i.e., the descriptors corresponding
with Fig. 2). The other use of dimensionality refers
to the dimensionality of our output, which is signif-
icantly lower than our input dimensionality. For all
analyses in this paper, the number of output
dimensions is four, as this captured greater than
90% of the variance in all cases. For visualization
purposes, only the first two or three dimensions are
shown, although the connections shown are based
on a four-dimensional analysis.

Uncertainty Assessment

Since the manifold in high-dimensional space can
vary depending on the number of nearest neighbors
chosen, a measure of statistical uncertainty in the
geodesic distances can be obtained by varying the
number of nearest neighbors to check for short-
circuit errors as well as by ensuring the optimum
number of dimensions for low-dimensional

representation. In this case, we define uncertainty
in terms of the sensitivity in the identified connec-
tions to the input parameters of neighborhood size
and number of dimensions. For this reason, we
explored the relationships and pathways for various
nearest-neighbor values and with changing dimen-
sions. Specifically, we modify the input parameters
of number of nearest neighbors and number of
dimensions and information captured by each
respective IsoMap. By defining uncertainty in this
way, we ensure we do not short-circuit the pathway.

Uncertainty is tracked by exploring permutations
and combinations of how attributes to alloy chem-
istry appear to influence properties. Unlike using a
large database perspective of more data, we are
exploring what ‘‘statistical’’ proximity exists among
groups of elements in a given alloy system. Our
measure of proximity is defined by what are the
nearest neighbors for a given element. Just as the
Periodic Table maps proximity of elements associ-
ated with their intrinsic properties as single atoms,
we strive to develop a mapping of elements that
reflects their similarity/dissimilarity in the context
of the alloy chemistry in which they reside.

A key issue is to assess the level of confidence we
have on the nearest-neighbor relationships between
elements. The uncertainty of the connections iden-
tified can be assessed by changing the number of
nearest-neighbor connections, as well as the num-
ber of dimensions included in the analysis. The
change of connections and neighboring lengths are
correlated to the uncertainty in the results. To
assess the sensitivity of the network to the available
data, we performed a series of analyses after
removing parts of the data. The logic is that, if we
see significant change in the network (represented
by the variance captured by the first dimensions) at
the final selection of data, then the network may be
sensitive to additional data inputs. The choice of
descriptor combinations was optimized by statisti-
cally determining the smallest value that could
minimize the residual variance |dM � dG|, while
providing the maximum number of alternative
paths. For each data point, we also compute the
ratio of the distance to its closest and farthest
neighbor. These ratios are then averaged over all
data points to calculate a scale-invariant, global
parameter, D21 to estimate the measure of uncer-
tainty introduced by sparsity in high-dimensional

Fig. 3. Description of the nonlinear manifold process used. b is a norm, representative of the pairwise geodesic distances between elements i
and j.
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spaces, given that the data points must have
sufficient density on the manifold.22 D can range
between 0 and 1, and a small value indicates a
healthy variance in pairwise distances k. Once the
graph is constructed, the geodesic distance dG
between elements xi and xj for |i � j|> k is
estimated by calculating the pairwise Euclidean
distances along the edges connecting all the inter-
mediate vertices between xi and xj.

However, if we capture a near-steady-state behav-
ior in a graph of amount of data included versus
variance, we can consider our graph network to be
reasonably robust. Therefore, in this case we choose
k = 4 to ensure that the resulting graph embedding
is neither overconnected, leading to loss of pairwise
geodesic distances, nor are critical neighbors dis-
connected. Further, the comparison of connections
under the different input parameters does not
change significantly, demonstrating that the results
presented here have low levels of uncertainty for
every node. In this study, from our starting 40
descriptors, we tested nearly 400,000 combinations
of descriptors and were able to select the graph that
provides the greatest constancy of nearest-neighbor
relationships between nodes (elements). That graph
is then the most robust and minimizes the
uncertainty.

The role of this step in our overall framework is
laid out in Fig. 4. In the first step, we develop our
descriptor set, as described above. The procedure
laid out in this section was then used to assess these
descriptors. The inclusion of descriptors beyond
what is needed does not result in any issues, as we
are tracking the robustness of the network and just
need to ensure that additional descriptors do not
result in changing results. The nonlinear manifold
analysis is then performed. In this paper, the

descriptor dimensionality is 40 and the number of
nearest neighbor connections is 4. From this, we
apply existing knowledge onto the network to
provide new interpretations of the information. In
each of our case studies, the known information
maps onto the respective networks; however, we
also discuss how this process can guide the selection
of descriptors in cases where the network does not
map the known relationships (as highlighted in step
4a). At the end of the analysis, we have an
interpretable measure of the similarities and antic-
ipated impact of the different applicable elements.

PERIODIC
TABLES FORHIGH-TEMPERATURE ALLOYS

We have previously introduced the use of graph
theory for the design of new multicomponent alloys,
where we identified new stable Co-based alloys with
the subsequent literature showing the same results
through experimental or computational
approaches.17 In this section, we provide additional
examples of the utility of the graph network repre-
sentations for a ‘‘Periodic Table for Alloys’’. As noted
above, the elemental selection for designing new
superalloys has been an area of study for over
80 years. Using published literature data on
selected commercial alloys over decades, we have
found that the evolution of the addition of new
alloying elements mapped as first and second
nearest-neighbor correlations are mapped onto our
network graphs (Figs. 5 and 6).

The Ni-based superalloy Periodic Table not only
maps the apparent connectivity of minor alloying
additions but also provides clues and suggestions
regarding what trajectories in chemical space may
serve as substitutions. For instance, Fig. 7 (using
another projection of the high-dimensional network)

Fig. 4. Process for ranking the impact of elements on target alloy properties. This process was developed in a generalized manner and thus can
be applied to multiple types of material properties. Beyond the standard application of graph networks, steps 3 and 4 link the unsupervised
network with existing information from literature and handbooks, and therefore the network becomes labeled and target pathways are defined.
The distance a node (representing a chemical addition) is from the pathway defines its similarity to those elements and corresponds to the
probability of contributing to the property.
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shows how the rare earth (RE) elements cluster in a
very discrete manner (in dashed circle) compared
with the rest of the alloy network, just as they do in
the conventional Periodic Table. However, unlike
the Periodic Table, the ‘‘Alloy Periodic Table’’ iden-
tifies the similarity/dissimilarity via nearest-neigh-
bor connections of other elements that may hold
promise as RE substitutions. So, using a dissimi-
larity metric relative to the RE cluster, Fig. 7
suggests via the connectivity of the network where
to explore in a semisupervised manner. It would be
reasonable for instance to explore refractory ele-
ments, leading to the subnetwork identified by the
cluster in Fig. 7. Based on our network analysis
that ranks the dissimilarity from rare earth

elements via nearest-neighbor relationships, this
refractory element cluster includes Re, which sig-
nificantly improves creep life.23 Different genera-
tions of superalloys have involved the use of
different levels of Re and Ru combinations to
enhance creep life, and they in fact coexist in our
Alloy Periodic Table as first nearest neighbors.
However, Re and Ru are expensive and rare, but
this network suggests that exploring other nearby
heavy elements such as W, Mo, and Ta may be a
promising choice of elements to tune the composi-
tion without resorting to the use of rare earth
elements. This in fact is consistent with recent
suggestions in the literature, where these elements
have been shown to impose a drag effect on dislo-
cation movement, thus reducing the creep strain
rate.24 This example serves to highlight that our
Alloy Periodic Table concept serves as a data-driven
exploratory tool to identify trajectories of chemical
pathways that rapidly identify new directions for
alloy design. By coupling this identification with
prior knowledge of the theoretical and mechanistic
influence of nearby elements, one can be guided by
physical principles. With additional or new data,
this network can change and evolve, permitting a
dynamic process of refinement in alloy design.
These interpretations emphasize the amount of
information contained within our input descriptor
set described earlier. It should be noted, for
instance, that although no information specific to
creep behavior was included in our inputs, our
analysis identifies correlations related to creep. This
serves as an example of how the Alloy Periodic
Table can serve as an exploratory data-mining tool
for tracking potential chemistry–property
correlations.

Fig. 5. Tracking the evolution of Ni-based superalloys. Our graph
network (inset) captures the availability of commercial alloys
corresponding with an increase in operating temperature. An
expanded view of the elemental mapping for Nickel-based
superalloys is shown in Fig. 6. Adapted from Ref. 4

Fig. 6. Compositional mapping of some commercial alloys. Subsections of the graph shown in Fig. 5 are expanded for clarity for each alloy. The
elemental nodes representing new alloying additions associated with each alloy are highlighted. In each case, we see how the networks capture,
in terms of nearest-neighbor linkages, the chemical ‘‘trajectory’’ that was actually used in the design of these alloys.
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We conclude with another example where we
have produced a Periodic Table for alloying addi-
tions to TiAl. The c-TiAl phase has the L10 struc-
ture, which causes low room-temperature ductility
due to the limited number of slip systems. There
have been many attempts at improving the ductility
through alloying.25–29 Typically, the improvements
in the room-temperature ductility occur when there
are multiple phases present, such as lamellar
mixtures of the c-TiAl tetragonal L10 phase and
the hexagonal a2 phase.30–32 An approach to link
alloy chemistry with phase formation and
microstructure would have a significant impact on
tailoring the design of alloys for targeted mechan-
ical properties.

As an initial step in that direction, we developed a
graph network for TiAl alloys, and consider the
identification of elemental additions that may
impact the behavior of single-phase systems (future
work will report on the use of the graph network for
chemical design of multiphase TiAl alloys). For our
case study, we focus on the solid-solution strength-
ening and precipitation hardening of c-TiAl through
the additions of Nb, Cr, Mn, and V (typically 1–3%
composition). The interpretation of the network can
be applied to other impacts of chemical additions,
such as increased diffusion activation energy and
decreased dislocation climb rates for Hf, Mo, Ta, and
W, or the precipitate formation and increased
nucleation rate promoted by addition of interstitial
elements such as B, C, N, Si, and Y. Finally, beta

stabilizers such as Mo, Nb, and W have been shown
to improve room-temperature ductility through beta
solidification instead of peritectic reaction.33 It
should be noted though that there are competing
mechanisms and the substitution rules cannot be
simply defined, warranting the need for a machine
learning analysis. For example, we include Nb in
our list of beta stabilizers, but its addition at low Al
content reduces ductility due to microsegregation
while it improves ductility at high Al content. Thus,
for the given set of descriptors, we provide one
compression of this information that provides an
interpretable framework for developing chemical
design guidelines.

The resulting network is shown in Fig. 8a. After
constructing the network, we track how the infor-
mation regarding the role of elements maps out on
this network. While we could apply this for any of
the cases described, we focus here on the improve-
ment of ductility through solid-solution strengthen-
ing contributed by Nb, Cr, Mn, and V, and therefore
we are imposing known information25,26 onto the
network. These four elements are denoted by filled
circles, and the general region of the network
associated with these elements is circled.

Following step 4 from the flowchart described in
Fig. 4, we seek to define a pathway connecting these
points. The paths are defined as along the connect-
ing edges between nodes. Nb and V are connected,
as are Cr and Mn. However, one continuous path-
way between all four nodes is not available.

Fig. 7. Mapping of information of the design network onto the traditional Periodic Table. The three-dimensional network is shown here in a
different projection from Figs. 5 and 6 to highlight the connections. Based on the number of nearest-neighbor connections between the RE
elements and the other elements, a similarity/dissimilarity ranking was developed. The dashed line cluster captures the rare earth elements
(keeping in mind that Hf is actually out of the plane of this projection and not in the rare earth cluster). The red outline cluster identifies refractory
elements that serve as plausible chemical space for compositional tuning to enhance creep resistance.
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However, we do not prevent additional nodes from
being present, as we allow for information which
has not yet been defined. Therefore, a pathway
which includes an additional node does not require
moving to step 4a. A single connecting pathway for
Nb, V, Cr, and Mn is possible with just one
additional node (either Co or Fe). We define the
most likely additional node as that which minimizes
the length of the pathway, and therefore we define
Co as falling in the category with the other four
elements.

The first NNs of these elements are those which
are most likely to behave similarly to them and are
therefore the most likely to contribute to solid-
solution strengthening. These elements are listed in
Fig. 8b, with the elements further ordered based on
the distance between the nodes (e.g., Pd is closer to
V than Fe, although both are connected to V). First,
we identify Co as having the highest probability for
similar behavior given that it falls on the defined
pathway. The next highest probability is for those

elements which are connected to the pathway
multiple times (i.e., Be, Ni, Fe, and Pd). The ensuing
probabilities follow the ordering of distances of the
remaining NNs. There are few experimental reports
on these alloys, thus representing the identification
of new potentially promising compositions. In the
case of Co, which we rank with the highest proba-
bility, studies are largely limited to addition to
higher-order systems, although the Co addition still
provides a beneficial response.34 In the case of Ni,
Fe, and Pd, there are reports on the beneficial
impacts of these elements, although the exact
mechanism has not been clearly defined.35–39

Considering that those elements which fall under
the other suggested mechanism of decreasing dislo-
cation climb (Hf, Mo, Ta, W, and Zr) are all low
ranked or unranked, this therefore agrees with the
interpretation of our network. In fact, a network
with these elements could be constructed for these
elements with the addition of a Ru node. Further,
these two subnetworks do not intersect, suggesting

Fig. 8. Ranking of probability of alloying elements promoting solid-solution strengthening of Ti-Al alloys. (a) The network for Ti-Al-X, where each
node represents the alloying element. Nb, V, Cr, and Mn have been shown to exhibit solid-solution strengthening. (b) From these previously
reported findings, we define a pathway connecting these elements (with the addition of Co), as well as defining the NNs, which have the highest
probability of having similar behaviors. (c) Based on these, a ranking of the likelihood of elements to promote solid-solution strengthening is
made. Co, Fe, Ni, and Pd are identified as the most promising alloying elements.

Designing a Periodic Table for Alloy Design: Harnessing Machine Learning to Navigate a
Multiscale Information Space

4377



that these separate mechanisms are both being
captured. In terms of beta stabilizers, Mo, Nb, and
W are all connected through Ta, providing an
alternate design pathway that has been shown to
correspond with improved room-temperature duc-
tility. An important point to highlight is that the
network is based on the parameters input and may
adapt with addition of further descriptors. The
descriptors used here were selected with the objec-
tive of providing information across a range of
length scales, while also selecting descriptors which
are widely available. The interpretation of the
network is then based on available domain knowl-
edge. This serves the added benefit of identifying
when additional descriptors are needed. In the cases
discussed here of solid-solution strengtheners and
beta stabilizers, the network captures the known
relationships. However, if there is a property of
interest for which a pathway cannot be defined,
then additional data or other projections of the
network may be needed to capture conflicting
mechanisms. Our mapping not only provides a
convenient representation of the complex alloying
process but also captures known mechanisms, and
so captures other elements which may promote the
same mechanism, while also providing a represen-
tation of the data landscape.

CONCLUSION

It is appropriate to conclude by referencing R.W.
Cahn’s paper in JOM nearly half a century ago,
entitled ‘‘Modern Practice in the Design of Strong
Alloys’’.40 He described the design of alloys as being
driven by a process of discovery that was ‘‘entirely
sensual and the mathematics was only necessary to
be able to communicate with other people.’’ He
espoused on the role that intuition plays in our
integration of theory with phenomenological and
heuristic understanding of materials behavior. This
intuition is needed to capture the uncertainty in
establishing the multiscale linkages between chem-
istry and alloy performance. In this paper we have
provided an example of how statistical/machine
learning-based methods provide a mathematical
framework to harness that intuition. Hence the
‘‘Periodic Table of Alloys’’ platform derived from
statistical learning principles serves as a framework
for exploring the choices and selection of minor
alloying additions to accelerate chemical design of
alloys for enhanced performance.
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