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Semiconductor heterostructures1 and ultracold neutral 
atomic lattices2 capture many of the essential proper-
ties of one-dimensional electronic systems. However, fully 
one-dimensional superlattices are highly challenging to fabri-
cate in the solid state due to the inherently small length scales 
involved. Conductive atomic force microscope lithography 
applied to an oxide interface can create ballistic few-mode 
electron waveguides with highly quantized conductance and 
strongly attractive electron–electron interactions3. Here we 
show that artificial Kronig–Penney-like superlattice potentials 
can be imposed on such waveguides, introducing a new super-
lattice spacing that can be made comparable to the mean 
separation between electrons. The imposed superlattice 
potential fractures the electronic subbands into a manifold of 
new subbands with magnetically tunable fractional conduc-
tance. The lowest plateau, associated with ballistic transport 
of spin-singlet electron pairs3, shows enhanced electron pair-
ing, in some cases up to the highest magnetic fields explored. 
A one-dimensional model of the system suggests that an 
engineered spin–orbit interaction in the superlattice contrib-
utes to the enhanced pairing observed in the devices. These 
findings are an advance in the ability to design new families of 
quantum materials with emergent properties and the devel-
opment of solid-state one-dimensional quantum simulation 
platforms.

Quantum theory provides a unified framework for understand-
ing the fundamental properties of matter. However, there are many 
quantum systems whose behaviour is not well understood because 
the relevant equations cannot be solved using known approaches. 
The idea of ‘quantum simulation’, first articulated by Feynman4, 
aims to exploit the quantum-mechanical properties of materials 
to compute the properties of interest and gain an insight into the 
quantum nature of matter. There are two main ‘flavours’ of quan-
tum simulation: one based on the known efficiency of circuit-based 
quantum computers to solve the Schrödinger equation, and the 
other based on microscopic control over quantum systems to emu-
late a given Hamiltonian. The former approach is limited by the 
capabilities of present-day quantum computers. The latter approach 
has shown great promise using a variety of methods including 
ultracold atoms2,5,6, spin systems from ion-trap arrays7, supercon-
ducting Josephson junction arrays8, photonic systems9 and various 
solid-state approaches1,10–12. Platforms capable of quantum simula-
tion of Hubbard models would be of enormous value in condensed 
matter physics and beyond.

Complex oxides offer new opportunities to create a platform for 
quantum simulation in a solid-state environment. Their complexity 
gives access to quantum phases of matter, such as superconductiv-
ity, where the model Hamiltonians (for example, two-dimensional 
Hubbard model) are challenging to understand theoretically. In 
addition, their nanoscale reconfigurability makes it possible to 
engineer new forms of quantum matter with extreme nanoscale 
precision13,14.

Here we present experiments that contribute to a solid-state 
quantum simulation platform based on a reconfigurable 
complex-oxide material system. Using conductive atomic force 
microscope (c-AFM) lithography, we create Kronig–Penney-like15 
one-dimensional (1D) superlattice structures by spatially modulat-
ing the potential of a 1D electron waveguide device at the interface. 
Further, c-AFM lithography has been used to create a variety of 
devices at the LaAlO3/SrTiO3 interface16. A c-AFM tip—moving in 
contact with the LaAlO3 surface and positively biased with respect 
to the interface—locally creates (‘writes’) conducting regions at 
the interface (Fig. 1a), while a negatively biased tip locally restores 
(‘erases’) the interface to an insulating state. This technique achieves 
nanoscale control, with precision as high as 2 nm (ref. 14), over the 
conductivity of the interface and most of its properties.

The work described here concerns electron waveguide devices3 
that have been perturbed by a spatially periodic potential, similar 
to the one first envisioned by Kronig and Penney15. Unperturbed 
waveguides exhibit highly quantized ballistic transport with con-
ductance steps at or near integer values of the conductance quantum 
e2 h–1, where e is the electron charge and h is the Planck constant. 
The subband structure of electron waveguides can be described by 
a waveguide model that takes into account the vertical, lateral and 
spin degrees of freedom3. Representative orbitals for electron wave-
guides, subject to parabolic lateral confinement and half-parabolic 
vertical confinement, are shown in Fig. 1b, where |m, n, s⟩ is a state 
specified by quantum numbers m, n and s that correspond to the 
number of lateral (m) and vertical (n) modes of the wavefunction 
and spin s. The complete set of states form a basis for describing 
extended states along the waveguide direction x. The periodic mod-
ulation of the waveguide may couple different vertical modes (for 
example, those highlighted in black in Fig. 1b) with the ground state 
|0, 0, ↑⟩. Due to attractive electron–electron interactions, subband 
energy minima can ‘lock’ together to form electron pairs3 that also 
propagate ballistically. Pairing in electron waveguides arises from 
the same electron–electron interactions that give rise to supercon-
ductivity17. In some cases, more exotic locking of subbands can 
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occur, for example, the Pascal conductance plateaus that indicate 
the binding of n ≥ 2 electron states18. The presence of strong, tunable 
electron–electron interactions19 makes these electron waveguide 
devices an interesting starting point for engineering 1D quantum 
systems.

One-dimensional superlattice devices are created by first writ-
ing a conductive nanowire with a constant positive voltage applied 
to the atomic force microscope (AFM) tip (Vtip ≈ 10 V). This path 
is re-traced along the same direction while applying a sinusoidally 
varying tip voltage Vtip(x) = V0 + Vk sin(kx), where V0 is a d.c. 
voltage, Vk is the amplitude of the sinusoidal voltage and k is the 
spatial frequency of the sinusoidal signal producing a spatially peri-
odic potential modulation. A short unpatterned waveguide is writ-
ten in series next to the superlattice, which helps in controlling the 
chemical potential in the device structure3. Four-terminal magneto-
transport measurements are carried out in a dilution refrigerator at 
or near its base temperature in the range of T ≈ 15–50 mK, unless 
otherwise indicated. Data are presented for three 1D superlattice 
devices, namely, devices A, B1 and B2, and two control devices 
(straight electron waveguides without superlattice modulation), 
namely, devices C1 and C2.

Figure 2a shows the transconductance dG/dVsg as a function of 
out-of-plane magnetic field B and side-gate voltage Vsg for device 
A. The transconductance map provides a visual indication of the 
subband structure. Purple regions, where the transconductance is 
nearly zero, represent conductance plateaus. Bright coloured (red/
yellow/green/blue) regions signify increases in conductance that 
generally correspond to the emergence of new subbands. White 
regions indicate negative transconductance, which is associated 
with non-monotonic behaviour in the range of 4 T < ∣B∣ < 7 T. The 
transconductance is generally found to be highly symmetric with 
respect to the applied magnetic field. Figure 2b shows a series of 

conductance curves versus Vsg for a sequence of out-of-plane mag-
netic fields B, ranging between 0 T (leftmost) to 16 T (rightmost). 
Curves are offset by ΔVsg ≈ 7.5 mV T–1 for clarity and curves at 1 T 
intervals are highlighted in black. At low magnetic fields (∣B∣ ≈ 2 T), 
a plateau at around 1.80 e2 h–1 develops before bifurcating into two 
distinct plateaus, one of which decreases in value, while the other 
increases towards a nearly quantized value of 1.99e2 h–1. The onset 
of the two plateaus can be clearly seen in the transconductance  
(Fig. 2a) as a minigap that appears in the lowest subband.

In addition to the plateau at 2 e2 h–1, many other subband  
features are readily seen at higher conductance values. Close ups  
of three selected areas (Fig. 2c–e) reveal several conductance  
plateaus. Conductance increases between these plateaus correspond 
to new subbands—the so-called ‘fractured’ states—that become 
available in the transconductance map. These appear to be frac-
tional subbands as the increase in conductance between the plateaus 
are fractions of the conductance quanta e2 h–1. Figure 2e shows the 
fractional conductance feature occurring below the 2 e2 h–1 plateau 
in more detail. The feature first appears in the form of a conduc-
tance peak and then bifurcates forming the 2 e2 h–1 plateau, and a 
lower fractional conductance feature that evolves with the magnetic 
field.

Data for the second superlattice device (device B1; Extended Data 
Fig. 1) yield qualitatively similar behaviour. The overall subband 
structure resembles the subband structure of an electron waveguide 
device with no superlattice patterning, but the subbands are, simi-
lar to device A, fractured into additional manifolds with fractional 
conductance plateaus, including a plateau at 2 e2 h–1 (Extended Data 
Fig. 2). Device B1 also shares the prominent highly quantized con-
ductance plateau at 2 e2 h–1. We present the third device (device B2; 
Extended Data Fig. 3) that also exhibits fractional conductance  
plateaus (Supplementary Information).
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Fig. 1 | Schematic of c-AFM writing and 1D superlattice device. a, Writing schematic of the c-AFM. A positive bias on the AFM tip protonates the LaAlO3 
surface, locally creating a conducting channel at the interface. b, Table showing different representative wavefunctions calculated using a single-particle 
model for electron waveguide devices3. The imposed vertical superlattice structure may cause mixing of the vertical modes of an electron waveguide 
device, mixing the ground state with the modes highlighted in black. c, Schematic of a 1D vertical superlattice device. The superlattice is created by first 
writing the main channel with a positive tip voltage. The same path is then traced while applying a sinusoidal tip voltage to periodically modulate the 
confining potential of the device. The superlattice is created in series with two highly transparent tunnel barriers.
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Finite-bias spectroscopy data of device A (Extended Data Fig. 4) 
reveal a characteristic diamond structure in the transconductance. 
This feature is associated with clean ballistic transport20,21 and is due 
to unevenly populated subbands at large finite biases that give rise 
to half plateaus. The diamond visible in the transconductance corre-
sponds to a fractional conductance feature below the 2 e2 h–1 plateau 
at around 0.5 e2 h–1 at zero bias and about half that value at finite 
bias. The presence of this characteristic diamond structure makes 
it unlikely that the fractional features are due to trivial causes, for 
example, reduced transmission due to partial reflection at one end 
of the nanowire. Finite-bias spectroscopy data of device B2 also fea-
ture a similar diamond structure, as shown in Extended Data Fig. 5.

Unmodulated control devices (two of which are shown in 
Extended Data Fig. 6 and more than ten are published elsewhere3,18) 
do not exhibit fractional conductances. The characteristic behav-
iour of such control electron waveguide devices is a series of con-
ductance plateaus that are quantized in integer values of e2 h–1, that 
is, lacking the fractionalized subbands observed here.

Fractional conductances in 1D transport have been reported in 
a variety of systems, and this phenomenon generally arises when 

there are strong electron–electron interactions. The fractional quan-
tum Hall state22 is perhaps the best known and most investigated 
example. The 0.7 anomaly23 in quantum point contacts24,25 has been 
extensively investigated. Electron–electron interactions are believed 
to play a central role in the formation of the conductance plateau 
observed at 0.7 × (2 e2 h–1) (ref. 26). Fractional conductances have 
been observed in several 1D quantum wire systems such as strained 
Ge-based hole quantum wires27 and GaAs-based quantum wires28.

Shavit et al. have considered a theoretical framework29,30 in which 
fractional conductances arise in multichannel 1D quantum wires 
due to high-order backscattering processes. Such fractional con-
ductances were shown to require strong repulsive electron–electron 
interactions to be observed, but a recent theory suggests that this 
could also be the case for strong attractive modulated interactions31. 
For the simplest high-order scattering process involving three par-
ticles, this theory predicts a plateau at 1.8 e2 h–1, which can become 
gap protected for strong modulated interactions. Our observation 
of a stable conductance plateau near 1.8 e2 h–1 near B = 2 T, together 
with its absence in unmodulated waveguides, is consistent with this 
prediction.
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Fig. 2 | Magnetotransport characteristics and fractional conductance features. a, Transconductance dG/dVsg is plotted as a function of magnetic field 
B and side-gate voltage Vsg. Purple regions indicate zero transconductance (conductance plateaus). Bright regions indicate increasing conductance—
energies where new 1D subbands become available. Negative transconductance is indicated in white, mainly in two lobes above the 2 e2 h–1 plateau near 
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voltage Vsg at magnetic fields ranging from B = 0 T to 16 T. Curves are offset by ΔVsg ≈ 7.5 mV T–1 for clarity. Curves at 1 T intervals are highlighted in black. 
Coloured boxes indicate the corresponding locations in a and c–e. c,d, Conductance curves showing the conductance plateaus that correspond to the 
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curves highlighting the fractional conductance feature occurring below the 2 e2 h–1 plateau. Data shown are for device A and taken at T = 15 mK.
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A defining characteristic of the system is the prevalence of 
strong attractive electron–electron interactions3,17–19. Both verti-
cal superlattice devices show signs of (weak) superconductivity  
at B = 0 T (Extended Data Fig. 7). Empirically, unperturbed  
electron waveguides (which possess attractive interactions) 
do not exhibit fractional conductance plateaus. Devices at the  
interface exhibit electron pairing without superconductivity3,17. 
In electron waveguides, this interaction causes electron subband 
energy minima to lock together, either near the zero magnetic  
field or at re-entrant values, resulting in conductance steps of 2 e2 h–1.  

The superlattice modulation of electron waveguides is empirically 
linked to enhanced electron pairing fields: superlattice devices 
have been observed with pairing fields of BP > 16 T, substan-
tially higher than control devices written in the same area of the  
sample. The largest pairing field observed in an unmodulated  
waveguide is BP ≈ 11 T (ref. 3). The enhanced pairing strength appears 
to be influenced by the potential modulation, but a direct correla-
tion is obscured by other variations between devices. Superlattices 
formed by lateral modulation do not show an enhanced pairing 
field32.
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masses along the x, y and z directions, me is the electron mass, g is the Landé factor, ly is the waveguide width and lz is the waveguide depth into SrTiO3.
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Another effect that is correlated with vertical modulation is a 
spin–orbit-like effect in the device. The lowest subband in device 
A (seen in the transconductance map in Fig. 2a) bends upwards at 
zero magnetic field; therefore, the minima of the lowest subband are 
at a finite magnetic field. This may be due to the engineering of a 
spin–orbit field, and it is not usually observed in quasi-1D electron 
waveguide devices at the interface. As the electrons travel through 
the device with momentum k = kx̂, the periodic vertical modu-
lation will create an effective electric field Eeff(x) = E0 sin(kx)ẑ, 
which will yield an effective spin–orbit field BSO ∝ k× Eeff  in the 
ŷ direction. This could result in a coupling between the spin-up 
and spin-down particles, which may also be the mechanism for 
enhancing the pairing field in these devices. Note that the interface 
is known to exhibit an intrinsic Rashba spin–orbit coupling33,34, but 
theoretical models suggest that confinement along a nanowire could 
significantly reduce it35. The measurements presented here suggest 
that a non-negligible value of spin–orbit coupling could be restored 
when the modulation is present.

We present below a minimal model that provides a basic descrip-
tion of two of the features generated by a modulated waveguide: 
the fracture of the first conductance line and enhanced spin–orbit 
coupling. Figure 3a shows a calculated transconductance map 
for a single-particle model of a straight, unmodulated electron  
waveguide, described in more detail elsewhere3. In this model, 
the states |m, n, s⟩ ⊗ |k⟩ are characterized by single-particle ener-
gies ξmnσk (see equation (1) in Supplementary Information), where 
σ = ↓ (↑) for s = −1/2 (1/2). Transconductance lines appear for 
ξmnσ0 = 0, that is, when the chemical potential reaches the bottom of  
the bands. The waveguide model shows an overall resemblance  
to the experimental data for the superlattice (Fig. 2a), except that  
the subbands are fractured into a manifold of new states with 
fractional conductances. These fractures can be qualitatively 
accounted for by adding a Kronig–Penney potential to the model 
(Supplementary Information). In this model, the potential creates 
bandgaps in each subband single-particle spectrum, which appear 
when the Fermi wavelength of an electron in a given subband corre-
sponds to a fraction of the modulation period. Figure 3b shows the 
corresponding transconductance map, where the bandgaps trans-
late into curved lines above each subband, which notably exhibit 
negative regions. This interference effect is particularly reminis-
cent of the fracture observed in the first transconductance line in  
Fig. 2a, which suggests that it is the basis of the behaviour observed 
in the experiments. This single-particle Kronig–Penney model 
cannot predict the full fractional conductance plateaus, which are 
understood to require the presence of strong electron–electron 
interactions29–31.

As noted above, the modulation can also produce an enhanced 
spin–orbit interaction, and we can investigate the potential con-
sequences of this in a 1D model for the two first orbitals, namely, 
|0, 0, ↓⟩ and |0, 0, ↑⟩, with a spin–orbit coupling term of the form 
Hso = αsokσy, and to simplify the calculations, with no spatial depen-
dence of the spin–orbit coupling strength αso. Here we neglect the 
bandgaps produced by the modulation to focus on the effect of the 
spin–orbit coupling alone. Starting from a model with Hubbard 
interactions, in the mean-field approximation, our Hamiltonian in 
momentum space3 reads

H =
∑

k

[

∑

σ(ξ00σk + Σσ)c†σkcσk +∆(c†
↑kc

†
↓−k − c↑kc↓−k)

+(iαsok− χ↓↑)c†↑kc↓k − (iαsok+ χ↑↓)c†↓kc↑k
]

,
(1)

where cσk is the annihilation operator of an electron with momen-
tum k and spin σ in the transverse mode |0, 0⟩ (σ = ↓, ↑), and Σσ, Δ 
and χσσ̄ are the Hartree shifts, pairing order parameter, and Fock 
fields, respectively, which are defined as

Σσ = U
2π

∫

⟨c†σ̄kcσ̄k⟩dk, ∆ = U
2π

∫

⟨c↓−kc↑k⟩dk,

χσσ̄ = U
2π

∫

⟨c†σkcσ̄k⟩dk,
(2)

where U ≡ U(B) < 0 is an attractive electron–electron interaction (in 
units of energy × length) rescaled by the magnetic field and σ̄ denotes 
the opposite spin of σ (Supplementary Information). The mean 
fields are found self-consistently, and they indicate the presence of 
electrons and paired electrons (though not superconductivity in this 
1D model) in the waveguide. Calculating these values determines 
phase diagrams for different values of αso and U. Our results are 
shown in Fig. 4. We find an enhanced pairing area, defined as the 
region of non-zero Δ, for increasing αso. This minimal model (which 
could be extended to position-dependent potentials and spin–orbit 
coupling) thus supports the idea that a spin–orbit coupling engi-
neered by the experimental setup can increase the pairing of the two 
lowest subbands |0, 0, ↓⟩ and |0, 0, ↑⟩ up to a higher magnetic field, 
yielding a first conductance step of 2 e2 h–1. A similar effect (that is, 
an enhanced spin–orbit coupling) is seen in lateral 1D superlattice 
devices32. However, the engineered spin–orbit coupling in the lateral 
superlattice devices does not lead to enhanced pairing. This can be 
understood since in our framework, a lateral modulation creates a 
spin–orbit field BSO along the quantization axis z and hence does 
not directly couple the spin-up and spin-down electrons, which is 
in contrast to the case of vertical modulation.

Kronig–Penney devices described here also show variations in 
properties, but the fractional plateaus are not observed in any of  
the unmodulated quantum devices. Moreover, SrTiO3 has 
well-known ferroelastic distortions below T = 105 K, which can 
impact the electronic structure of unmodulated quantum wires; 
the distortions are believed to play a role in parameter variations 
between unmodulated nanowires created under nominally identical 
conditions18. Experiments performed on nanoscale crosses36 show 
highly reproducible behaviour, which is attributed to the pinning 
of ferroelastic domains in the insulating regions by the nanocross 
structure.

The theoretical analysis presented above suggests that spin–orbit 
interactions increase the effective pairing strength in the Kronig–
Penney nanowires. Because of natural variations in the device 
parameters, it is not possible to conclude that this effect is experi-
mentally observed. Future experiments that can constrain the fer-
roelastic domains surrounding the device, coupled with systematic 
variations in modulation amplitude and spatial frequency, may pro-
vide more definitive answers to these questions.

The ability to create new superlattice structures, and modu-
late interactions in 1D systems, opens new frontiers in the devel-
opment of quantum matter. The systems created here focus on 
low-dimensional confined structures, which are challenging to cre-
ate using other methods. The regular superlattice structure can be 
replaced with quasi-periodic order, artificially imposed disorder, 
topological defects or combined with lateral perturbations, which 
are a few possibilities. Unlike the Kronig–Penney description, elec-
tron–electron interactions play a defining role in the resulting quan-
tum phases, and future discoveries of emergent phases in this family 
of 1D systems are highly likely.
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Methods
Pulsed laser deposition was used to grow samples with three to four unit cells of 
LaAlO3 on SrTiO3 (described in more detail elsewhere37). Electrical contact was 
made to the interface by ion milling through the interface and backfilling with  
Ti/Au. Further, c-AFM writing was performed by applying a voltage bias between 
the AFM tip and the interface, with a 1 GΩ resistor in series. Writing was 
performed in 30–40% relative humidity using an Asylum MFP-3D AFM. Written 
samples were then transferred into a dilution refrigerator and cooled to a base 
temperature of ~15 mK. Four-terminal measurements were performed using 
standard lock-in techniques at a frequency of 11 Hz with an oscillation amplitude 
of 1 mV. Four-terminal I–V curves were measured by applying a d.c. source–drain 
bias across the device.

Data availability
Source data are available at the Harvard Dataverse38. Other data and code that 
support the findings of this study are available from the corresponding author upon 
reasonable request.
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Extended Data Fig. 1 | Magnetotransport data for vertical superlattice Device B1. a, Transconductance map dG/dVsg as a function of side gate voltage 
Vsg and magnetic field B. Purple regions indicate conductance plateaus, zero transconductance. Red/yellow/green/blue regions indicate increases in 
conductance when new subbands become available. White regions indicate negative transconductance. Colored boxes are guides to the eye indicating 
the location of highlighted conductance curves. b, Plot showing full conductance data. Conductance curves at 1 T intervals are highlighted in black and 
are offset for clarity. c-e, Conductance G as a function of side gate voltage Vsg curves at different out-of-plane magnetic field B values highlighting some 
fractional conductance features. T=15 mK.
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Extended Data Fig. 2 | Device B1 1.8 Feature. a, Conductance data - same as shown in Extended Data Fig. 1b. b, Zoom on region highlighting feature at 
G ≈ 1.8e2/h. Red lines are guides to the eye to show that the feature near 1.6 is in fact 0.2 below the 2e2/h plateau, which itself is not fully resolved until the 
highest magnetic fields.
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Extended Data Fig. 3 | Magnetotransport data for vertical superlattice Device B2. a, Transconductance map dG/dVsg as a function of side gate voltage Vsg 
and magnetic field B. Purple regions indicate conductance plateaus, that is, zero transconductance. Red/yellow/green/blue regions indicate increases in 
conductance when new subbands become available. Colored boxes are guides to the eye indication the location of highlighted conductance curves. b, Plot 
showing full conductance data. Each curve is colored according to the transconductance at each side gate value (white indicates a plateau, black indicates 
rapidly increasing conductance). Curves are offset clarity. c, d, Conductance G as a function of side gate voltage Vsg curves at different out-of-plane 
magnetic field B values highlighting some fractional conductance features. T=50 mK.
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Extended Data Fig. 4 | Finite-bias spectroscopy. a, Conductance G intensity map as a function of four-terminal voltage V4t and side gate voltage Vsg. Pink 
and blue dashed lines indicate the locations for the vertical linecuts shown in c. b, Transconductance (dG/dVsg) intensity map as a function of four-terminal 
voltage V4t and side gate voltage Vsg. The transconductance map shows the diamond features indicating ballistic transport in the superlattice devices.  
c, Vertical conductance linecuts at V4t = 0 and 90 ≈ μV. Circles indicate fractional conductance values below the (2e2)/h plateau (corresponding to the 
lowest diamond features visible in the transconductance map in panel b) that become half of their value at a finite bias. Curves are offset for clarity. Data 
shown is from Device A and taken at B = 13 T and T=15 mK.
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Extended Data Fig. 5 | Device B2 Finite Bias Spectroscopy. a, Conductance G intensity map as a function of four-terminal voltage V4t and side gate voltage 
Vsg. Pink and blue dashed lines indicate the locations for the vertical linecuts shown in c. b, Transconductance (dG/dVsg) intensity map as a function of 
four-terminal voltage V4t and side gate voltage Vsg. The transconductance map shows the diamond features indicating ballistic transport in the superlattice 
devices. c, Vertical conductance linecuts at V4t=0 and 121 μV. Circles indicate fractional conductance values below the 2e2/h plateau (corresponding to the 
lowest diamond features visible in the transconductance map in panel b) that become half of their value at a finite bias. Curves are offset for clarity. Data 
shown is from Device B2 and taken at B = 9 T and T=50 mK.
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Extended Data Fig. 6 | Magnetotransport data for control electron waveguide devices. a, Transconductance map dG/dVsg as a function of side gate 
voltage Vsg and magnetic field B for Device C1. Data previously published in ref. 3. b, Transconductance map for Device C2. T = 50 mK.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


Letters NATurE PHySiCS

Extended Data Fig. 7 | Superconductivity in Device A. Conductance map G4t as a function of side gate voltage Vsg and four-terminal voltage V4t. A small 
increase of G4t near V4t = 0μV is associated with superconductivity. B=0 T and T = 15 mK.
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