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ABSTRACT. Dengue, a mosquito-borne disease, poses a tremendous burden to
human health with about 390 million annual dengue infections worldwide. The
environmental temperature plays a major role in the mosquito life-cycle as well
as the mosquito-human-mosquito dengue transmission cycle. While previous
studies have provided useful insights into the understanding of dengue diseases,
there is little emphasis put on the role of environmental temperature variation,
especially diurnal variation, in the mosquito vector and dengue dynamics. In
this study, we develop a mathematical model to investigate the impact of sea-
sonal and diurnal temperature variations on the persistence of mosquito vector
and dengue. Importantly, using a threshold dynamical system approach to
our model, we formulate the mosquito reproduction number and the infection
invasion threshold, which completely determine the global threshold dynam-
ics of mosquito population and dengue transmission, respectively. Our model
predicts that both seasonal and diurnal variations of the environmental tem-
perature can be determinant factors for the persistence of mosquito vector and
dengue. In general, our numerical estimates of the mosquito reproduction num-
ber and the infection invasion threshold show that places with higher diurnal
or seasonal temperature variations have a tendency to suffer less from the bur-
den of mosquito population and dengue epidemics. Our results provide novel
insights into the theoretical understanding of the role of diurnal temperature,
which can be beneficial for the control of mosquito vector and dengue spread.
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1. Introduction. With the worldwide situation of 2.5 billion people living in areas
with risk of dengue, about 390 million annual new dengue infections, and 500,000
annual hospitalization [4, 5, 41], dengue fever poses serious global health concerns.
Moreover, dengue fever is rapidly spreading in the world [4, 35, 41] affecting more
than a hundred countries, and actual cause for its rapid spread is still in debate. Be-
cause of uncertainty in its transmission mechanism and absence of licensed vaccines
or specific therapeutics, studies on the transmission dynamics of dengue are be-
coming increasingly important. Mathematical modeling can reveal some important
insights into dengue transmission dynamics.

Increase in dengue cases, particularly in tropical and subtropical regions, might
be due to multiple factors, including inefficient control of its vector (the Aedes ae-
gypti mosquito), expansion of the vector, human population growth, urbanization,
and climate change [3, 11, 23, 27, 34]. Among various causes, the majority of the
cases are linked to climatic factors and human and vector mobility [4, 3, 23, 25].
Specifically, it is known that the environmental temperature can highly affect the
dengue transmission [4, 35, 24], and as a consequence there remains substantial
threat that continuous increase of global temperature can exacerbate the geograph-
ical expansion of the endemic range of dengue [3, 24, 10, 14, 15, 42]. Therefore, it
is critical to understand how the environmental temperature can impact the trans-
mission dynamics of dengue epidemics.

Dengue viruses are transmitted to humans through bites of infected Aedes
mosquitos and uninfected mosquitos can become infected when they bite infected
humans. These inter-species transmission rates as well as incubation periods fol-
lowing transmission have been found to depend on the environmental temperature
[9, 17]. More importantly, a change in the environmental temperature can also alter
many mosquito entomological parameters [45, 43], such as oviposition rate, matu-
ration rate, and mortality rate, eventually impacting the dengue transmission dy-
namics. Limiting mosquito population is a commonly practiced method of dengue
control as effective vaccines or therapeutics are yet to be developed [4, 45, 31].
Therefore, it is important to include such temperature-influenced entomological
and transmission parameters properly into the transmission dynamics models in
order to provide useful information for developing prevention and control measures.

As far as the vector-borne diseases are concerned, the temporal variation of the
environmental temperature constitutes an important feature impacting disease dy-
namics [37, 40, 46]. It is a common practice to consider constant temperatures
or intraannual seasonally varying temperatures to study the effects of environmen-
tal temperature on the insect populations and pathogen transmission [17, 22, 28].
However, in case of dengue virus transmission, only seasonal variation of the en-
vironmental temperature can not fully explain the disease epidemics; the diurnal
(daily) temperature variation also plays an important role in the dengue trans-
mission dynamics [17]. For example, a temporal change of dengue epidemics in
Thailand is not associated with seasonal variation of the temperature, rather it
is associated with variation of diurnal temperature fluctuation [17, 8, 20, 29, 30].
Moreover, in nature, mosquitoes and their pathogens undergo temperature condi-
tions that fluctuate throughout the day, on top of experiencing seasonal conditions.
Hence, in addition to seasonal variation, diurnal temperature variation needs to be
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considered in order to accurately evaluate the effects of environmental temperature
on dengue epidemics.

While the previous studies have explored temporal dynamics [17, 18, 21, 26, 44]
and spatial spread [35, 23, 24, 15, 7, 36] of dengue, those existing models lack the
temperature profiles with coupled diurnal and seasonal variations. How such two
different periodic natures embedded in the environmental temperature can impact
on disease outcomes and prevention effectiveness still remains unknown. In this
study, we develop a model to describe the transmission dynamics of dengue under
the environmental temperature with seasonal as well as diurnal variations. Non-
linear effects of the environmental temperature in our non-autonomous model are
incorporated through entomological and dengue dynamics parameters, which are
derived based on laboratory experimental data. We focus on the theoretical and
numerical aspects of the non-autonomous model analysis to study how seasonal
and diurnal variations of the environmental temperature impact the mosquito re-
production number and the infection invasion threshold, consequently affecting the
persistence of mosquito vector and dengue.

2. Mathematical model. We consider mutually exclusive compartments related
to aquatic (A), susceptible (My), exposed (M), and infected (M;) groups of the
female mosquitos as well as susceptible (Hy), exposed (H.,), infected (H;) and recov-
ered (H,) groups of humans. We denote the total female mosquito population and
the total human population by N (¢) and Ng(t), respectively. Interactions cap-
tured in our model are shown in a schematic diagram (Fig. 2.1) and the governing
equations are given by the following system:

@ = ko(t) (1= &) Nar — (B(1) + pra(1)) 4,
e = g(t)A — QLI () M,

bBm M H;
e = W WMHe (o (1) + o (1)) M,

Wi — () M — i () M;,
= Ap — pnHs — %ﬁé%v

dt
dH. _ bBn(t)HsM; (’7h +Mh)He

dt Ng
UL — v, He — (ap + ) Hi,
e = apH; — pnH,,
A(0) >0, M,(0) >0, M.(0) >0, M;(0) >0,
HS(O) Z 07 HE(O) 2 07 HZ(O) 2 07 H’I’(O) 2 0.

In this model, matured mosquitos (Ny; = Ms + M. + M;) lay eggs with the
per capita oviposition rate §(¢), among which a fraction k (a combination of the
fraction of eggs hatching to larvae and the fraction of female mosquitoes hatched
from all eggs) grow to the aquatic phase (larvae and pupae). Similar to the concept
used in the standard logistic equation, a parameter C' is introduced to represent
the carrying capacity of the mosquito aquatic population, giving the net rate of
change of the aquatic mosquito population as kd(¢)(1 — %)N M per unit time. The
aquatic mosquitos develop into adult female mosquitoes at a maturation rate 6(¢)
and die at a mortality rate p,(t). We assume that female mosquitos newly emerged
from the aquatic phase are all susceptible, which die with a natural mortality rate
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tm(t). Here, Ay, and pj represent recruitment rate and natural mortality rate of
susceptible humans.

Environmental temperature

T(t)

Un Un Hp Up

FIGURE 2.1. A schematic diagram of the dengue transmission
model. A, M,, M., M;: aquatic, susceptible, exposed, and infected
mosquitos. Hg, H., H;, H,: susceptible, exposed, infected, and re-
covered humans. Solid arrows represent birth, maturation, infec-
tion, transfer, death, while dashed arrows indicate the effects of
time dependent periodic environmental temperature, T(t).

Dengue virus transmission occurs from infected humans to susceptible mosquitos
and from infected mosquitos to susceptible humans through mosquito bites. Trans-
mission related parameters b, 5,,,(t), and Sy, (¢) represent the per capita biting rate of
mosquitoes, the transmission probability from human to mosquito, and the trans-
mission probability from mosquito to human, respectively. An average extrinsic
period of mosquitos (i.e., an average duration of mosquitos in exposed class) and an
average intrinsic period of humans (i.e., an average duration of humans in exposed
class) are denoted by 1/7,,(t) and 1/, respectively. Infected humans get recovered
from dengue at a rate «y,, and once recovered, these recovered humans do not loose
immunity as mentioned in Bhatt et al. [4]. As described in [4, 31], dengue virus
is generally non-pathogenic. Therefore, our model does not include deaths due to
disease.

Based on experimental evidences [9, 17, 44], our model incorporates the effects of
environmental temperature via entomological and dengue dynamics parameters. In
particular, parameters (t), pq(t), 0(t), tm (), Ym (t), Bm(t), and B (t) of our model
are influenced by the diurnally and seasonally varying environmental temperature.
In the absence of detailed diurnal and seasonal temperature profile, i.e., homo-
geneous environment, our system (2.1) is similar to the dengue model proposed
previously in Pinho et al. [26].



PERSISTENCE OF MOSQUITO VECTOR AND DENGUE 5

2.1. Entomological parameters. We denote the temperature profile by T'(¢) that
captures both diurnal and seasonal variation of the environmental temperature. We
used the experimental data [43, 44], which measure how a change in temperature
changes the oviposition rate, aquatic phase mortality rate, rate of emergence of
female mosquito from aquatic phase, and female mosquito mortality rate. As in our
previous study [36], we fitted the data to appropriate functional curves (Fig. 2.2),
which give the following relationships:

500 { €5, T(t) < as, (22)
t) = S [T(1)—as)™s .
€5+ r———2 — T(t) >a
P e L) 2
2 3 4
pa(t) = aop, + 1, T() + a2, T(X)" + a3, T(t)” + aa, T(£)", (2.3)
€0, T(t) < axp,
0(t) = €0 + apgT(t) (T(t) — aip) \Jage — T(t), arg <T(t) < agg, (2.4)
€9, T(t) > asg,
2
pm(t) = aop,, + a1, T(t) + az,,, T(t)". (2.5)
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FIGURE 2.2. Best-fit curves provided by the experimental data [44]
for §(T') (oviposition rate), p,(T) (aquatic phase mortality rate),
0(T) (mosquito emergence rate from acuatic phase), and p,(T)
(mosquito mortality rate).

2.2. Dengue dynamics parameters. We follow the similar techniques imple-
mented in our previous study [36] to reasonably estimate the functional form of
dengue dynamics parameters depending on the environmental temperature. Briefly,
based on an enzyme kinetic model [9, 17], the incubation time period of dengue, i.e.
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the average duration for which mosquitos stay in exposed class before they become
infectious, is given by
Y (t) = LeammT(t)_ (2.6)
A0,

Lambrechts et al. [17] have provided reasonable estimates of dengue transmission
probability from humans to mosquitos as well as from mosquitos to humans. Fol-
lowing the trend identified by Lambrechts et al. [17], we use the E-max model (Fig.
2.3) to describe the temperature-dependent formula of the transmission probability
from humans to mosquitos as follows [36]:

Eﬁma T(t) < ale7
/8m<t) = [T(t)faﬁmr]Nﬁm (27)
“ BB LT (1) —ag ] Vom (t) = ag
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FIGURE 2.3. Best-fit curve provided by the data generated from
the previous estimates [17] for the transmission probability from
human to mosquito, 5,,(T).

Similarly, as done in Lambrechts et al. [17], we approximate the temperature-
dependent transmission probability from mosquitos to humans to the proportion of
midgut-infected mosquitoes transmitting virus, and obtain the following expression:

€8h, T(t) < aig,,
Bu(t) = q €sn + aos, T(t) (T(t) — ai,) azp, —T(t), arp, <T(t) < asg,,
€8h, T(t) > agg,, -

(2.8)

2.3. Temperature profile. As done in previous studies [37], seasonal variation of
the environmental temperature can be described well by the following sinusoidal
function of seasonal period 7,,:

2
T (t) = To + €, sin <7_77t + (bm) ,

where Ty represents the annual mean temperature, €,, denotes the amplitude of
the seasonal temperature, and ¢,, represents the phase shift in the seasonal tem-
perature. To the seasonal mean temperature, T, (t), we now impose the diurnal
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temperature fluctuation ¥,4(¢) using another sinusoidal function of period 74:

2
\I/d(t) = €4sin (Trt + ¢d) R
Td

where €4 and ¢4 denote the amplitude and the phase shift in the diurnal temperature
variation. As a result, net time varying temperature profile introduced into the
model is:

T(t) =T (t) + Pa(t).

Note that T, (¢) is T,,-periodic and ¥ 4(t) is 74-periodic. Then choosing 7 as the
least common multiple of 7,,, and 74, the temperature function T'(t) = Tp,, (t) + ¥ 4(t)
becomes 7-periodic. Thus, (t), pa(t), 0(t), m(t), Ym(t), Bm(t), and By (t) of our
model all become T-periodic, implying that our system is also 7-periodic. A typical
example of the temperature profiles of T, (t), ¥4(t), and T'(t) are shown in Fig. 2.4.
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FIGURE 2.4. Temperature profile of T,,(t) [Left], ¥4(¢t) [Middle],
and T'(t) [Right]. Parameters used are Ty = 25°C, €, = 5°C, 7, =
365 day, ¢m =0, ¢ = 5°C, 74 = 1 day, and ¢4 = 0.

The model parameters are given in Table 2.1.

3. Mathematical analysis. From [32, Theorem 5.2.1], we can show that for any
(AO,MS,MEO’MS’HS,HS,H?,HS) e Ri—’
the system (2.1) has a unique local nonnegative solution

(A(t), My(t), Me(t), Mi(t), H(t), He(t), Hi(t), Hr () € RY.

Since
Ny (t) = Ho(t) + He(¢) + Hi(t) + H,.(¢), (3.1)
(2.1) implies
dn 2 © Ay = N (t). (3.2)

By the same arguments as in Zhao [47, Section 5.2], we have the following result:

Lemma 3.1. System (3.2) admits a unique positive constant H* := % such that
every solution Ny (t) of (3.2) with N (0) > 0 satisfies

lim Ny (t) = H*. (3.3)
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TABLE 2.1. Model parameters

Parameter Description Value Reference
k Fraction of female larvae from eggs 0.5 (0-1) [18, 26]
b Per capita biting rate 0.1 [6, 26]
h Natural death rate of humans 4.22x107% d=! Calculated, [16]
/v Intrinsic period 10 days [6, 16, 18, 206]
ap Human recovery rate 0.1d7! [18, 26]
Om In 4(¢) 9.531 Data fitting
on In 6(t) 22.55 Data fitting
Ns In 6(t) 7.084 Data fitting
as In 6(t) 0 Data fitting
€5 In §(t) 1076 Data fitting
Aoy, In fuq(t) 2,914 Data fitting
014, In f14(t) -0.4986 Data fitting
azy, In pe(t) 0.03099 Data fitting
asy, In p14(t) -0.0008236 Data fitting
Gap, In pq(t) 7.975x1076 Data fitting
aoe In 6(t) 8.044x107° Data fitting
ap In 6(t) 11.386 Data fitting
aze In 6(t) 40.1461 Data fitting
€9 In 6(¢) 1076 Data fitting
aopu,, In pip (t) 0.1901 Data fitting
a1, In fim (%) -0.0134 Data fitting
asp,, In fo (%) 2.739x1074 Data fitting
Aoy, In 7., () 5x10%/3 Data fitting
A1,, In 7, () 0.0768 Data fitting
B In B (t) 18.9871 Data fitting
Ng,, In B, (t) 7 Data fitting
€8m In B (t) 10~ Data fitting
agm In B (t) 0 Data fitting
aog, In By (t) 1.044x1073 Data fitting
aig, In By (t) 12.286 Data fitting
asg, In By (t) 32.461 Data fitting
€3h In Br(t) 10-¢ Data fitting
Since
Nar(t) = My () + Mo (t) + Mi(t), (3.4)

we are able to demonstrate the following mass conservation for aquatic phase A(t)
and the total population of female mosquitos Njs(t) in (2.1). By computations, we
obtain that (A(t), Nas(t)) satisfies the following coupled differential equations

G = ko(t) (1= 2) Nar = (000) + a(D)4,
A = 0(t) A — pn () Nt (3.5)
A(0) = A% Np(0) = Ny,

It is easy to verify that (0,0) is a trivial solution of the system (3.5).

3.1. Mosquito reproduction number. Following the approaches provided by
Bacaér and Guernaoui [2] and Wang and Zhao [40] for analysis of models with



PERSISTENCE OF MOSQUITO VECTOR AND DENGUE 9

seasonality, we derive the mosquito reproduction number, R, for our periodic
compartmental system (3.5). Linearizing the system (3.5) at (0,0), we get the
following linear system

LA = kS(t)Nas — (0(t) + pa(t)) A,
4B — O(t) A — pum () N, (36)
A(0) = A°, Ny (0) = NY,.

In view of system (3.6), we assume

FM(t) = ( 8 Mo(t) ) (3.7)
and

M _ 9<t)+ a(t) 0
o= (M0 ) (38)

Suppose Wy (.y(t) is the monodromy matrix of the linear 7-periodic differential
system dg—(tt) = VM(t)v, and r(Uya()(7)) is the spectral radius of Wyar(.(7).
Assume Z(t,s),t > s, is the evolution operator of the linear 7-periodic system

dz(t)
dt
that is, for each s € R, the 2 x 2 matrix Z(t, s) satisfies

= —VM(t)z, (3.9)

%Z(t, s)=-VM)Z(t,s),Vt > s, Z(s,5) = I,

where [ is the 2 x 2 matrix. Thus, the fundamental solution matrix W_vy.y(t) of
(3.9) is equal to Z(¢,0),t > 0.

We assume that ¢(s), 7-periodic in s, is the initial distribution of adult mosquito
population. Then FM (s)p(s) is the rate of new aquatic mosquitos produced by the
adult mosquitos who were introduced at time s. Given t > s, then Z(t, s)F(s)p(s)
gives the distribution of those adult mosquitos who were newly produced in aquatic
phase at time s and remain in the adult compartments at time ¢. It follows that

M = t S MS S S = - —Qa M —Qa — ajaa
B (8) = / 2(t, 5)FM (s)p(s)d / Z(tt — a)FM (t — a)p(t — a)d

— 00
is the distribution of accumulative new adult mosquitos at time ¢ produced by all
those adult mosquitos ¢(s) introduced at time previous to ¢.
Let CM be the ordered Banach space of all T-periodic functions from R to R2,
which is equipped with the maximum norm || -|| and the positive cone CY, := {p €
CM : p(t) >0, Vte€R}. Then we define a linear operator LM : CM — CM by

(LMp)(t) = /Oo Z(t,t —a)FM(t —a)p(t —a)da, VtER, p € CM.  (3.10)
0

Then LM represents the next mosquito-generation operator [40], and we define the
mosquito reproduction number as R := r(LM), the spectral radius of L.

Here, if WM(t,5,AM) t > s, s € R is the monodromy matrix of the linear
T-periodic system on R?

dw
— = (-VM( teR 11
= (-vro+ T e ter (3.11)
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with parameter AM € (0, 00), then by Theorem 2.1 of [40], we have the following
results.

Lemma 3.2. The following statements hold
(i) If r WM (7,0, AM)) =1 has a positive solution \}!, then \}! is an eigenvalue
of operator LM, and hence, RM > 0.
(ii) If RM >0, then \M = RM is the unique solution of r (VVM(7'707 )\M)) =1.
(iii) RM =0 if and only if r (WM (7,0, AM)) < 1 for all A > 0.

RM for homogeneous (constant temperature) case. We now briefly men-
tion the homogeneous case, in which the environmental temperature remains con-
stant over time. In this case, §(t) = 0, 0(t) = 0, pa(t) = pa, and pp(t) = pm
are all positive constants. Then FM (t) = FM and VM (t) = VM become constant
matrices. Substituting constant matrices FM and VM we obtain (see also [40, 38])

L k56 kS
FA/[ (VM)_ — /Lm,(0+lia,) Hm .
0 0

Then R™ can be expressed as the following explicit form
- koo
RM = (FM (VM) 1) = 2
P (0 + f1a)

We have the results related to mosquito population extinction as stated in the
following Lemma.

Lemma 3.3. [40, Theorem 2.2] The following statements hold.

(i) RM =1 if and only if T(\IJFM(,)_VAI(‘)(’T)) =1;

(i) RM > 1 if and only if r(Vpr(y—vr()(1)) > 1;

(iii) RM <1 if and only if r(¥pm(y_var(y(7)) < 1.
Thus, the mosquito-free equilibrium (0,0) is locally asymptotically stable for system
(3.5) if RM < 1, and unstable if R™ > 1.

Moreover, we have the following results related to the global dynamics of (3.5):
Lemma 3.4. Let A := {(A,M) € R2 : 0 < A < C}. Then the following statements
hold.

(i) If RM < 1, then the trivial solution (0,0) is globally attractive in A for (3.5);

(ii) If RM > 1, then the system (3.5) admits a unique positive T-periodic solu-
tion (A*(t), M*(t)) which is globally attractive in A\{(0,0)}, that is, for any
(A(0), Np(0)) € A\{(0,0)}, we have

Tim [(A(r), Nag (1)) — (A°(8), M*(£))] = 0, (3.12)

where A*(t) = C {1 — W}, and M*(t) = H?,(Lt&) A*(t).

Proof. From [32, Theorem 5.2.1], we observe that A is positively invariant for system
(3.5). We first prove the following claim.

Claim.
Alt) < C, Vt>0. (3.13)
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Proof of the claim. Assume, by contradiction, that (3.13) is not true. Then there
exists a tg > 0 such that A(tg) = C. It follows from the first equation in system
(3.5) that

dA

A(to)
0= dt

= kot (1 25 ) Naslto) = 0000 + ot Alt),

t=to

which implies that 6(tg) + pa(to) = 0. This contradiction shows that (3.13) holds.
From (3.13), it is easy to see that system (3.5) is strongly monotone in A (see,
e.g., [32]). On the other hand, we assume that

91(A, Nap) = ko(t) (1= &) Nar = (0(8) + (1) 4,
92(A, Nap) = 0(t)A — pun (£) Nas -
Then for all A >0, Ny >0, 0 <9 <1, we have
91(VA, INr) > 9g1(A, Nar), g2(9A, INy) = 9g2(A, Nur),

that is, system (3.5) is strictly subhomogeneous in A (see, e.g., [47]). Then we can
use Lemma 3.3, [47, Theorem 2.3.4], and the similar arguments as in [39, Lemma
2.5] to complete the rest of the proof. O

Let
X:={(A, My, M., M;,Hs,H.,H;,H,) e R} :0< A< C}.

Then we can prove the following Lemma.

Lemma 3.5. X is positively invariant for system (2.1) and the system (2.1) has a
unique and bounded solution with the initial value in X. Further, the system (2.1)
admits a connected global attractor G on X in the sense that G attracts all positive
orbits in X.

Proof. From [32, Theorem 5.2.1], we can observe that X is positively invariant for
system (2.1). By (3.4), (3.5), Lemma 3.1, and Lemma 3.4, it follows that solutions
of the system (2.1) are uniformly and ultimately bounded. Also, by [12, Theorem
3.4.8], it follows that the system (2.1) admits a connected global attractor G on
X. O

3.2. Infection invasion threshold. In order to find the disease-free periodic state
of (2.1), we set M, = M; = H. = H; = H, = 0. Then H(t) and (A, M) satisfy
(3.2) and (3.6), respectively. By Lemma 3.4 and Lemma 3.1, we see that

Eo = (A, Mg, M., M;, H,, H,, H;, H,) = (0,0,0,0, H*,0,0,0)
always exists, and
Ey(t) = (A, Mg, M., M;,Hs,H,., H;, H.) = (A*(t), M*(t),0,0, H*,0,0,0)
exists if RM > 1.

Theorem 3.1. Assume that (A(t), M, (), M. (), My(t), Hy(t), Ho (£), Hi(#), Hy (1))
is a solution of the system (2.1) with initial value (A, M2, MO, M?, H?, H?, H?, H?)
eX. If RM < 1, then

lim (A(t), Ms(t), M(t), M;(t), Hs(t), He(t), H;(t), H.(t)) = Ep.

t—o0
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Proof. If RM < 1, then by (3.4), (3.5) and Lemma 3.4 (i), we see that
Mim A(t) = Jim M, (t) = Jim M.(t) = lim Mi(t) = 0.

This implies that H. is asymptotic to

dH,
= - He>
dt (Yn + pn)
which gives lim;_,~ He(t) = 0. Similarly, H; is asymptotic to dgi = —(ap + up) Hy,
and hence, lim;_, o, H;(t) = 0. Finally, H, is asymptotic to dgr = —upH,, and

hence, lim; o, H,(t) = 0. Given these asymptotic behaviors for H., H;, and H,,
we see that H, is asymptotic to system (3.2). Then by the theory of asymptot-
ical semiflows (see, e.g., [48] or [47, section 3.2]) and Lemma 3.1, it follows that
lim;_, oo Hs(t) = H*. This completes the proof. O

Linearizing system (2.1) at the disease-free periodic state E1(t), we get the fol-
lowing system for the (M., M;, H., H;) components:

e =~ (t) + (D] M, + PG

dt
U = () M — pu (£) M,
0 = 0Bu(t)M; — (y + ) He, (3.14)

Ul — vy H, — (o, + pn) Hi,
Me(o) Z Oa Ml(o) Z 07 HC(O) 2 07 Hl(o) 2 O
We next introduce infection invasion threshold R for our periodic compartmen-
tal epidemic model (2.1) by using the general theory in [40]. From (3.14), we define
bBm (1) M* (¢
0 0 0 b=OM@®

0 0 0 0
F(t) = ,
®) 0 bBu(t) O 0
0 0 0 0
and
)+ pim(®) 00 0
—Ym (1) fim () 0 0
V() =
®) 0 0 Y+ un 0
0 0 —Yn o+ s
Suppose ®y(.)(t) is the monodromy matrix of the linear 7-periodic differential sys-
t dz(tt) = V(t)z, and r(®y((7)) is the spectral radius of ®y()(7). Assume
Y(t,s), t > s, is the evolution operator of the linear 7-periodic system
dy(t)
— =-V(t 3.15
M~ Vi, (315)
that is, for each s € R, the 4 x 4 matrix Y (¢, s) satisfies

d
aY(t,s) =-V@)Y(ts), Vt>s, Y(s,s)=1,
where I is the 4 x 4 matrix. Thus, the fundamental solution matrix ®_y.(t) of
(3.15) is equal to Y'(¢,0), t > 0.

We assume that ¢(s), 7-periodic in s, is the initial distribution of infectious
individuals. Then F(s)¢(s) is the rate of new infections produced by the infected
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individuals who were introduced at time s. Given ¢t > s, then Y (¢, s)F(s)¢(s) gives
the distribution of those infected individuals who were newly infected at time s and
remain in the infected compartments at time ¢. It follows that

oo

t
P(t) = / Y (t,s)F(s)p(s)ds = Y(t,t —a)F(t —a)p(t — a)da
—o0 0
is the distribution of accumulative new infections at time ¢ produced by all those
infected individuals ¢(s) introduced at time previous to t.
Let C, be the ordered Banach space of all T-periodic functions from R to R*,
which is equipped with the maximum norm || - || and the positive cone C := {¢ €
C:: ¢(t) >0, Vit e R} Then we define a linear operator L : C; — C, by

(Lo)(t) = /O T Yt — a)F(t— a)6(t — a)da, Yt ER, $ € C,. (3.16)

Then L represents the next infection operator [40], and we define infection invasion
threshold as R? := r(L), the spectral radius of L.

Here, if W(t, s,\%), t > s, s € R is the monodromy matrix of the linear 7-periodic
system on R4

dw

(w04 5w, rem o

U
with parameter A’ € (0,00), then by Theorem 2.1 of [40], we have the following
results.

Lemma 3.6. The following statements hold

(i) If r (W(T,O, /\0)) =1 has a positive solution N3, then \J is an eigenvalue of
operator L, and hence, R? > 0.
(i) If R® > 0, then A = R is the unique solution of r (W(’T, 0, )\0)) =1.
(iii) R° = 0 if and only if r (W(T, 0, /\0)) <1 for all \° > 0.

RY for homogeneous (constant temperature) case. We now briefly mention
that R? formulated above can also recover the basic reproduction number, R,
that we derived previously for the dynamics when the environmental temperature
remains constant over time [36]. In the homogeneous (constant temperature) case,
iLe. T(t) =T, all of 6(t) = 6, pa(t) = pa, 0(t) =0, Uwz(_t) :_,Uma'Ym(_t) = Y, Bm (t) =
B, Br(t) = Br are constant. In this case, E; = (A4*, M*,0,0,H*,0,0,0), where
A*=C [1 — R#M], M} = 0A* /iy, and H* = Ay /pp. Clearly, Ey exists if RM > 1.
Here, the system linearized about E; provides both F(t) = F and V(¢) = V to be
constant matrices. Substituting constant matrices F and V, we obtain (see also
[40, 38])

Ro =r(L) = r(FV1).

By computations, we can obtain that

0 0 Dyn/(yn + pn)(an 4+ pn)  D/(an + pin)
FV~—! = 7
Evm/pm (Ym + pm) B/ pm 0 0

0 0 0 0
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where D = "Bgiiw* and E = bB),. Then R can be expressed as the following explicit
form

RO — DE~myn
P (Y + o) (Ve + pon) (0 + pin)

Here, R = Ry, which is the basic reproduction number [36] that we derived using
the second generation matrix method [38] for constant temperature case.

We have the result about the local stability of the disease-free state Fi(t) as
stated in the following theorem.

Lemma 3.7. [40, Theorem 2.2] The following statements hold.
(i) R® =1 if and only if r(Pp)—v(y (7)) = 1;
(i) R? > 1 if and only if r(Pp(y_v() (7)) > 1;
(iii) RY < 1 if and only if r(Pr()—_v()(1)) < 1.
Thus, the disease-free state E1(t) is locally asymptotically stable if R® < 1, and
unstable if R® > 1.

3.3. Threshold dynamics. Let A(t) be a continuous, cooperative, irreducible,
and 7-periodic k x k matrix function. Suppose ®4(.)(t) is the monodromy matrix
of the linear ordinary differential system

dx(t)
—5 = A(t)x, (3.18)

and r(®a(.)(7)) is the spectral radius of ®5(.)(7). From [1, Lemma 2] (see also [13,
Theorem 1.1]), it follows that ®(.)(f) is a matrix with all entries positive for each
t > 0. By the Perron-Frobenius theorem, r(®a(.)(7)) is the principal eigenvalue of
@A (y(7) in the sense that it is simple and admits a positive eigenvector. Then we
have the following result.

Lemma 3.8. ([46, Lemma 2.1]) Let p = Llnr(®a(y(7)). Then there exists a
positive, T-periodic function v(t) such that e’ v(t) is a solution of (3.18).

Suppose P : X — X is the Poincaré map associated with system (2.1), that is,
P(2°) = u(r,2°), ¥ 2 := (A°, M2, MO, M?, 1Y, H?, H? H?) € X,

where u(t,2°) is the unique solution of system (2.1) with u(0,2°) = 2°. It is easy
to see that
P"(z%) = u(nt,2°), Vn > 0.
For convenience, we define & = Ey = (0,0,0,0, H*,0,0,0) and & = FE1(0) =
(A*(0), M*(0),0,0,H*,0,0,0). Let
Xo == {(A, My, M., M;, Hy, H,, H;, H,) € X : M; > 0}.

and
8X0 = X\XO = {(A,Ms,Me,Mi,Hs,He,Hi,Hy-) cX: Ml = O}

Lemma 3.9. Assume that (A(t), Mg(t), M(t), M;(t), Hs(t), He(t), H;(t), H-(t)) is
a solution of the system (2.1) with initial value (A%, M2, MO, M?, H?, H?, H?, H?) €
Xo. Then (A(t), My(t), M. (), Mi(t), Ho(), Ho(t), Hi(t), Ho () > 0, ¥ £ > 0.
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Proof. Given an initial value (A%, M?, M2, M? H? H? H? H?) € Xo. In view of
the fifth equation of system (2.1), it follows that

t
Hs(t) = e_IO’C(Sl)dsl |:Ah/ efl;? s‘(sl)ds1d82 _~_ng| , (319)
0
where
bBw (t) Mi(t)
= —_—. 2
S(t) = pn + 0 (3.20)

Thus, Hs(t) > 0, V¢ > 0. From the first equation of system (2.1), we see that
t 3
A(t) = e Jo blsn)ds: { / elo? bls)dsie (5))dsy + AO] , (3.21)
0

where

b(t) = BN, 4+ 0(t) + pa(t). (3.22)

On the contrary, we assume there exists ¢y > 0 such that A(¢g) = 0. This implies that
AY =0 and ((t) := k6(t)Nps = 0 on [0,t0]. This contradicts that M;(0) = M? > 0.
Thus, A(t) >0, V ¢ > 0. From the second equation of system (2.1), we have

{C(t) = kS(t)Npy > 0,

t
M,(t) = e~ Jo els)ds [ / elo? cs1)ds19(5,) A(sy)dsy + MO (3.23)
0
where
_ bBm()Hi()
c(t) == N D) + fim (1) (3.24)

This implies that M, (t) > 0, ¥V t > 0.
By [32, Theorem 4.1.1] as generalized to nonautonomous systems, the irreducibil-
ity of the cooperative matrix

~(Ym () + p(t) 0 0 i e
Yim () — i (1) 0 0 (
3.25)
0 DB —(yn + pn) 0
0 0 Yh — (o + pin)

implies that (M. (t), M;(t), He.(t), H;(t))T >0, ¥V ¢t > 0.
Finally, it follows from the eighth equation in system (2.1) that

t
H,(t) = et [ah/ et Hy(s)ds + H?| , (3.26)
0

which implies that H,.(¢) > 0, V ¢ > 0. This completes the proof of the lemma. O

Lemma 3.10. Let RM > 1 and RY > 1. Then for j = 0,1, there exists o; >0
such that for any (A%, M2, MO, M? H?, H?, H?, H?) € Xq with

1(A°, M2, M2, MP, H? HY HY, HY) — & < oy,
we have

lim sup dist(P" (A, M?, M0, M?, HY, HY, HY, H°), &;) > 0.

n—oo
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Proof. Since R® > 1, Lemma 3.7 implies that r(®p.)_y(.)(7)) > 1. Thus, we may
choose p1 > 0 small enough such that r(®g, (.)_v()(7)) > 1, where

bBm (1) (M™ () —p1)

0 0 0 H*+4p;

0 0 0 0
Fo (t) = b (£) (H* —p1)

0 i O 0

0 0 0 0

By the continuity of the solutions with respect to the initial values, there exists a
o1 > 0 such that for all (A%, M0, MO, M?, H?, H?, H? H?) € X, with
H(Aoa Mgv Mgv MzO7 H97 H27 Hz(')7 H7(")) - 51” < o1,
there holds |Ju(t, (A°, M2, M2, M2, H?, HO, H?, H?)) — u(t,&)|| < p1, V t € [0, 7).
We first prove the case j =1, i.e.,
limsup dist(P" (A, M2, MO, M?, H?, H?, H?, H®), &) > o;.

n—oo

Assume, by contradiction, that the above conclusion does not hold. Then we have

lim sup dist(P"(A°, MO, MO, M2, HO, H?, H?, H?), &) < 04,

n—o0
for some (A%, M2, MO, M? H? H?, H? H?) € Xo. Without loss of generality, we
assume that
dlSt(Pn(on M?7 Mé)7 M'L'Ov H.?a Hga H’LO? H:“))a 81) <o, Vn > 0.
It follows that
lu(t, Pm(A%, M2, M2, M?, H?, H? H?, H®)) — u(t,&)|| < p1, Yt €[0,7], n > 0.
For any t > 0, let t = m7 + ¢/, where ¢’ € [0,7), and m is the largest integer less
than or equal to £. Therefore, we have [Ju(t, (A°, M2, MO, MP, HY, H?, H? , H?)) —
u(t,&)|| = |lul, P (A% M2, M2, MP H?, H?, H?  H?)) — u(t',&1)|| < p1. Note
that (A(t), Ms(t), Mo(t), M;(t), Hs(t), He(t), Hi(t), H.(t)) = u(t, (A°, MO, M2, M?,
H? H? H? H?)) and u(t, &) = Eq(t), V t > 0. It then follows that for all ¢ > 0,
we have
Ms(t) > M*(t)—pl, H*+p1 > Hs(t) > H*—pl,pl > He(t),pl > Hi(t),pl > Hr(t).
From the equations of M., M;, H. and H; in (2.1), it follows that

dM, ~ me(t)(M*(t)—m)HZ_ _ (’Ym(t) + pim () M., Yt >0,

dt = H*+4p:

Wl = ()Mo — pn ()M, V>0,

dH, < B =p1) g Hoviso (3.27)
di = Hetdp; i — (v + pp)He, V>0,

dgi =pHe — (ap, + pp)H;, YVt > 0.

Since (A, M2, MO, M? H? H? H? H?) € Xy, it follows from Lemma 3.9 that
(M (t), M;(t), He(t), H;(t)) >0, V't > 0.
Thus, we may fix a t; > 0 such that (M (t1), M;(t1), He(t1), H;(t1)) > 0. By
Lemma 3.8, it follows that there exists a positive, 7-periodic function J(t) and
fi=1ln [r(®r,, ()—v((7))] such that J(t) := be(t=1) J(t) is a solution of
da(t)
dt

= (Fp, (t) = V(1)) (1),
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where b satisfies J(t1) := bJ(t1) < (M,(t1), M;(t1), H.(t1), H;(t1)). The standard
comparison theorem (see, e.g., [33, Theorem B.1]) implies that
(M.(t), M;(t), H(t), Hy(t)) > J(t), ¥ t > t;.
In particular, there exists n; such that
(M,(n7), M;(n7), Ho(n7), Hy(n7)) > J(n7), ¥ 0 > ny.

Since fi > 0, it follows that .J(n7) — oo as n — oo. Thus, (M, (n7), M;(n7), H.(n7),
H;(nT)) = oo as n — oo. This contradiction completes the proof of the case j = 1.

Next, we will use the fact R™ > 1 to show that the conclusion is also true for the
case j = 0. Since RM > 1, Lemma 3.3 implies that r(Upnm(y_vm(y(T)) > 1. Thus,
we may choose pp > 0 small enough such that ’I“(\IJF%(.)_V%(.)(T)) > 1, where

Fl(t) = ( 8 k(1 _?)5(” ) (3.28)
and
0 o 0
VIt = ( (t)_z(;z) (t) Sation |, (1) ) (3.29)

By the continuity of the solutions with respect to the initial values, there exists a
oo > 0 such that for all (A%, M2, MO, M?, H?, H?, H? H?) € X, with

H(AO,MS,MS,M?,HE,HS,H?,HE) *50” < oo,

there holds |Ju(t, (A°, M2, M2, M2, H?, HO, H?, H?)) — u(t,&)|| < po, V t € [0, 7).
For the case j = 0, we need to prove that
limsup dist(P"(A°, M2, M2, M?, H?, H?, H), H?), &) > 0o,
n—oo

where, dist(A, B) is the distance between A and B.
Assume, by contradiction, that the above conclusion does not hold. Then we
have

limsupdist(P"(AO,MS,M&M?,HS,HS,H?,HE),EO) < 0o,

n—oo
for some (A% MO MO MP H? HO H? HP) € Xo. Without loss of generality, we
assume that
dist(P™(A°, M2, M2, M? HO HO  HY  H?), &) < 09, ¥ n > 0.
It follows that
|u(t, P"(A°, M2, MO, M?, HO HY, HY, HY)) — u(t, &) < po, ¥V t € [0,7], n>0.
For any t > 0, let ¢t = ¢7 + ", where ¢’ € [0,7), and ¢ is the largest integer less
than or equal to £. Therefore, we have [Ju(t, (A°, M2, MO, M, HY, H?, HY , H?)) —
u(t,&)|| = |lu@’, PY(A°, MO, MO, M2, HO HO, H?, H?)) — u(t",&)| < po. Note
that (A(t), M (t), Me(t), Mi(t), Hs(t), He(t), Hi(t), Hy () = ul(t, (A% M], M, M7,
H? HY H?, H?)) and u(t, &) = E = Eo, ¥V t > 0. It then follows that for all ¢ > 0,
we have
A(t) < po, Ms(t) < po, V1 =0.
By Lemma 3.1, it follows that there exists a tg > 0 such that

NH<t) >H*—p0, Y t>t.
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Then it follows from the equations of A and M; in (2.1) that

{ff;;‘ > k(1) (1= ) My — (8(t) + pa(t) 4, t > to,
Wl > 0(1)A — [Pgl800 4y, (0]M,, t > to.
Since (A% M2, M2 MP HO H? H? H?) € X, it follows from Lemma 3.9 that
(A(to), Ms(to)) > 0.

By Lemma 3.8, it follows that there exists a positive, 7-periodic function Q(t) and
k= LIn [r(Vpar(y_yar()(7))] such that Q(t) := de®(*"*)Q(t) is a solution of

WO (0(1) ~ V1)) (),
where d satisfies Q(to) = dQ(to) < (A(to), My(to)). The standard comparison
theorem (see, e.g., [33, Theorem B.1]) implies that

(A(t), M, (1) > Q(t), ¥ t > to.
In particular, there exists ng such that

(A(nT), My(n7)) > Q(n7), ¥ n > ng.

Since & > 0, it follows that Q(n1) — 0o as n — co. Thus, (A(nt), M(nT)) = 00
as n — o0o. This contradiction completes the proof of the case j = 0. O

(3.30)

H*—po

Now we prove that R is a threshold index for disease persistence if R > 1 as
stated in the following theorem.

Theorem 3.2. Assume that RM > 1. Then the following statements hold.

(i) If R < 1, then the disease-free periodic state E1(t) is globally attractive for
system (2.1) in the sense that if (A%, M?) # (0,0), we have

tli}m [(A(t)v Ms(t)a Me(t)> Mi(t)7 Hs(t)7 HE(t)7 Hi(t)7 Hr(t)) - El(t)} = (Oa 0,0,0,0,0,0, O);
(i) If R® > 1, there exists an m > 0 such that for any solution
(A<t)a MS(t)7 Me(t)’ Mi(t>7 HS(t>7 He(t>7 Hi(t>7 HT(t))
with initial value (A%, M2, M2, M?, H?, HO, H?, H?) € Xq satisfies
. () >
htrgérolf M;(t) > n.
Further, system (2.1) admits at least one positive T-periodic solution
(A(t), My (t), Me(t), Mi(t), Hy (t), He (1), Hit), H,(t)).

Proof. Part (i). We first consider the case where R < 1. From Lemma 3.7, it
follows that 7(®p(.y_y(.y(7)) < 1. Now we choose & > 0 sufficiently small such that
T(@Fso(.),v(.)(T)) < 1, where

0 0 0 Um0 0re)
0 0 0 0

Fe, (t) = BB (1) (H" +£0)
0 )LHT&)O 0 0
0 0 0

Assume that

(A<t)a Ms(t)7 Me(t)a Mi(t>7 Hs(t)v He(t>7 Hi(t>7 Hr(t))
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is a nonnegative solution of system (2.1) in X. Note that Ng(t) and (A(t), Nas(t))
satisfy (3.3) (Lemma 3.1) and (3.12) (Lemma 3.4), respectively. Then there is a
T > 0 such that for any ¢t > T, we have

M, (t) < Nag(t) < M*() + &, Ho(t) < Nu(t) < H + &, Nu(t) > H* —&.

By Lemma 3.8, it follows that there exists a positive, T-periodic function v(t)
and p = 2In [r(®p, ()—v(,)(7))] such that o(t) := ae**v(t) is a solution of

PO _ (Fey (1)~ V(D) 2(0),

where a satisfies o(T") := av(T) > (M.(T), M;(T), H.(T), H;(T)).
From the equations of M., M;, H. and H; in (2.1), it follows that

M, < bﬁm(%i\{ (t)+£0)Hi - (’Ym(t) + Nm(t))Mea vt 2 T,

dt = 7

d(]i\fi = ’Ym(t)Me - Mm(t)M“ V t 2 T,

dH, o bBu()(H +80) g7 o VisT (3.31)
dt — H*—¢&o i = (Y + pn) He, =z 4,

dgi =ypHe — (ap + pp)H;, V> T.

The standard comparison theorem (see, e.g., [33, Theorem B.1]) implies that
(M (t), M;(t), He(t), H;i(t)) < 9(t), Vit >T.

Since pu < 0, it follows that 9(t) — 0 as t — oo. Thus, (M. (t), M;(¢t), He(t), H;(t))
— 0 as t — oco. This implies that (A, M) is asymptotic to (3.6). By the theory of
asymptotically periodic semiflows (see, e.g., [48] or [47, section 3.2]) and Lemma 3.4,
it follows that lim; oo [(A(t), Ms(t)) — (A*(t), M*(t))] = (0,0). This completes the
proof of Part (i).

Part (ii). We next consider the case where R® > 1. From Lemma 3.5, it follows
that the discrete-time system {P"},,>¢ admits a global attractor in X. Now we prove
that {P"},,>0 is uniformly persistent with respect to (Xg, 9Xy). By Lemma 3.9, it
follows that X and Xg are positively invariant. Clearly, 0Xg is relatively closed in
X. Let

My = {(A°, MO, M2, M?, H?, H?, H?, H?) € 90X,
P (A%, MO M2 MY HO HY HY HY) € X0, ¥V n > 0}.
We are going to prove that
My = {(A° M2, M0, M?, H?, HY HY H?) € X: M =0}, (3.32)
for which, it suffices to prove that for any (A%, M9, M2 M? HO HO H? H?) € My,
we have M;(nt) =0, V n > 0. If it is not true, there exists an n; > 0 such that

It is easy to see from A equation of (2.1) that

t
A(t) = o~ Jrar oS [ /

17T

elnir b(sl)dSIC(SQ)dSQ + A(an):| , (3.34)

where ((t) and b(t) are defined in (3.22). Thus, A(t) > 0, V ¢t > ny7. Similarly,
from M, equation of (2.1) we have

t
M (t) = ¢~ Jrar con)dn { /

1T

ef;fT c(s1)ds1 G(SQ)A(SQ)CZS2 + M, (an):| , (335)
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where c¢(t) is defined in (3.24). This implies that M,(t) > 0, ¥V ¢ > n;7. By [32,
Theorem 4.1.1] as generalized to nonautonomous systems, the irreducibility of the
cooperative matrix (3.25) implies that

(Me(t),Mi(t),He(t),Hi(t) >0, Vt>nT,

where the initial value (M,(ni7), M;(n17), He(n17), Hi(n17)) > 0. In particu-
lar, we have (M.(n1), M;(n7), He(n7), H;(nT)) > 0, ¥V n > ny, which contra-
dicts the fact that (A, M2, M2, M2 H? HY H? H?) € Mpy. This implies that
(3.32) holds. It is clear that there are two fixed points of P in My, which are
& = Ey = (0,0,0,0,H*,0,0,0) and & = E4(0) = (A*(0),*(0),0,0,H*,0,0,0).
If (A(t), Ms(t), Mo (t), M;(t), Hs(t), He(t), H;(t), H-(t)) is a solution of system (2.1)
initiating from Mp, it follows from system (2.1) and the fact M;(t) = 0 that
(A(t), Mq(t), M(t), M;(t), Hs(t), He(t), H;(t), H-(t)) approaches Ey or Fj(t) as t
approaches oo.

It follows from Lemma 3.10 that {£y} U {&1} is an isolated invariant set in X
and W*(&;)NXy =0, j = 0,1, where W*(&;) is the stable set of £;. Note that
every orbit in My approaches to {£o} U{&1}, and {Ep} U {&1} is acyclic in My. By
[47, Theorem 1.3.1], it follows that {P™},>¢ is uniformly persistent with respect
to (Xo,0Xp). By [47, Theorem 3.1.1], the solutions of system (2.1) are uniformly
persistent with respect to (Xg, 0Xp), that is, there exists an 1 > 0 such that for any
solution

(A(t), M (t), Mc(t), Mi(t), Hs(t), He(t), Hi(t), Hr (1))
with initial value (A%, M?, M2, M? H? H? HY H?) € X, satisfies

o >
htrgérolf M;(t) > n.

Furthermore, [47, Theorem 1.3.6] implies that P has a fixed point

(A(0)7 Ms<0)7 Me(())v Mi(o)a ﬁs<0)’ g@(o)v ﬁz(0)7ﬁr(0)) € XO,

and hence, M;(0) > 0. By the same arguments as those in Lemma 3.9, one can
show that

(‘Zl(t)’ Ms(t>7 Me(t)?Mi<t)a Ijls(t)a Ijle(t)a ﬁi(t)a gr(t)) > 0.

This completes the proof of Part (ii). O

4. Numerical computation. In this section we present some numerical results
demonstrating how mean temperature, seasonal temperature variations, and diurnal
temperature variations can impact the mosquito reproduction number (R*) and
the infection invasion threshold (R°?). We used Lemma 3.11 to compute R and
Lemma 3.17 to compute R numerically as done in previous studies ([37, 40, 19]).
Our results show that the value of RM is greater than R° for every temperature
profile. This indicates that RM < 1 (extinction of mosquito population) implies
RY < 1 (eradication of dengue), which is practically true as mosquito bites are the
only route of dengue transmission.
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4.1. Effects of mean temperature, 7y. We performed computations to study
how varying annual mean temperature, Tp, from 10 °C' to 45 °C' affects R and R°
(Fig. 4.1). On increasing Tp, both RM and RY increase, reach the corresponding
maximum values and then decrease, with RM < 1 and R? < 1 for extremely low
mean temperatures as well as extremely high mean temperatures. Therefore, there
exist optimal ranges of the mean temperature for both persistence of mosquito
population and persistence of dengue fever. However, the interval of the mean
temperature for mosquito persistence is larger than that for the dengue persistence.
For example, in our computation (Fig. 4.1), mosquito persists (i.e., RM > 1) for
13.5°C < Ty < 44.5°C, while dengue persists (i.e., R® > 1) for 16.5°C < Ty <
36.5°C'. Note that there are small ranges of the mean temperature during which
mosquito persists, but dengue does not persist.

—Time-varying temperature —Time-varying temperature
- Constant temperature «Constant temperature
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FIGURE 4.1. Mosquito reproduction number (R™) [Left] and in-
fection invasion threshold (R°) [right] for different values of the
mean temperature (Tp) with amplitudes of seasonal temperature
and diurnal temperature fixed at ¢,, = 5 °C and ¢4 = 5 °C, re-
spectively. For comparison purposes, RM and R for the constant
temperature (i.e., €, = ¢4 = 0 °C) are also plotted.

For comparison purposes, we also computed both the mosquito reproduction
number and the infection invasion threshold for the constant temperature (Figure
4.1). For the parameter range considered in this study, the mosquito population
hardly persists for temperatures maintained constant at values greater than 40 °C.
However, for the time-varying temperature, the mosquito population may persist
also for the mean temperatures slightly higher than 40 °C. It should be noted that
for the time-varying periodic temperature, even though the mean temperature is 40
°C, the temperature in our base case computation can reach as low as 30 °C' due
to the seasonal and diurnal variations. Therefore, the time-varying temperature
provides the values of RM and R° different from their values with constant tem-
perature. Our estimates show that the constant temperature underestimates R
and RY for low and high mean temperatures while it overestimates for the middle
temperature range.

4.2. Effects of seasonal temperature variation, ¢,,. In this subsection, we
use the parameter ¢,,, the amplitude of the seasonal temperature, to evaluate the
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effects of seasonal temperature variation on the mosquito reproduction number and
the infection invasion threshold. We compute R™ (Fig. 4.2, left column) and R°
(Fig. 4.2, right column) for various values of ¢,, with all other parameters fixed.
As we discussed above, since the values of RM and R" may highly depend on
the mean temperature with maximum values occurring at some temperature, we
consider three cases: a lower mean temperature (Ty = 16 °C) (Fig. 4.2, top row),
an optimal mean temperature (Tp = 28 °C') (Fig. 4.2, middle row), and a higher
mean temperature (Tp = 38 °C) (Fig. 4.2, bottom row).

For the amplitude of seasonal temperature considered, the mosquito reproduction
number mostly remains larger than 1 (Fig. 4.2, right column). This shows that the
mosquito population persists for this range of temperature as observed in reality.
We observed that in each of the three mean temperatures considered, there is a
decreasing trend of R™ for an increasing amplitude of the seasonal temperature
(Fig. 4.2, right column). This shows that in places, where the temperature remains
relatively stable over the seasons, the growth of mosquito population is favored,
compared to the places with large seasonal variation of temperature. This effect
is mainly pronounced in the case of the optimal mean temperature (Tp = 28 °C)
(Fig. 4.2, middle row). At Tp = 28 °C, RM decreases from 65 to 13 when e,
increases from 5 °C' to 15 °C, while at Ty = 16 °C' and Ty = 38 °C, the change of
RM is from 4.9 to 2 and from 13.6 to 6, respectively.

Computed values of R? for varying e, (Fig. 4.2, left column) indicate that R°
can be less than 1 for some values of €,,. Therefore, the seasonal variation of the
temperature can be a determinant factor for the dengue epidemic to die out (R® < 1)
or to persist (R® > 1). In general, a larger variation of seasonal temperature
provides a smaller value of the infection invasion threshold. For example, R? < 1
for €, > 11 °C, 16 °C, and 18.5 °C at the mean temperature Ty = 16 °C, T, = 28
°C, and Ty = 38 °C, respectively. However, note that for 7y = 16 °C and Ty = 38
°C, smaller amplitudes also make R° < 1. These results indicate that the places
with a larger variation in seasonal temperature has a less likelihood for a dengue
epidemic to occur.

4.3. Effects of diurnal temperature variation, ¢;. We now vary ¢4, the ampli-
tude of diurnal temperature, from 5° C to 25° C, and compute the mosquito repro-
duction number (RM) (Fig. 4.3, left column) and the infection invasion threshold
RY (Fig. 4.2, right column) for those values of ¢,,. Again, we consider three different
seasonal mean temperature, Ty = 16 °C (Fig. 4.3, top row), Tp = 28 °C (Fig. 4.3,
middle row), and Ty = 38 °C (Fig. 4.3, bottom row). Our results show that the
patterns of RM and R° (Fig. 4.3) for an increasing €4 are similar to those observed
for an increasing €, .

An increase in diurnal temperature variation decreases the mosquito reproduction
number with a bigger effect seen in the mean temperature corresponding to the peak
RM (ie. Ty = 28 °C). In our calculation, the increase in €4 by 10 °C' (from 5 °C
to 15 °C') caused a decrease of the mosquito reproduction number by 3 (from 5 to
2), 55 (from 65 to 10), and 11 (from 13 to 2) when the mean temperature was set
to Ty = 16 °C, 28 °C, and 38 °C, respectively. Thus, places with higher diurnal
temperature variation are less favorable for the growth of mosquito population. It
is worth noting that at Ty = 38 °C', a higher amplitude of diurnal temperature,
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FIGURE 4.2. Mosquito reproduction number (R*) [left column]
and infection invasion threshold (R?) [right column] for different
values of the amplitudes of seasonal temperature (e,,) with the
amplitude of diurnal temperature fixed at ¢4 = 5 °C' and the mean
temperature fixed at Ty = 16 °C' [top row], Ty = 28 °C [middle
row|, and Tp = 38 °C' [bottom row].

for example, 5 > 20 °C, can bring R to a value less than 1, resulting in the
extinction of mosquito population.

Similarly, our results show that higher diurnal temperature can bring the in-
fection invasion threshold, R, to a value less than 1, avoiding dengue epidemics.
According to our computations, the dengue can not persist for amplitude of di-
urnal temperature, €4, greater than 13.5 °C', 19.5 °C, and 13.5 °C, for the mean
temperature Ty = 16 °C, 28 °C, and 38 °C, respectively. Therefore, places with
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environmental temperature with higher diurnal fluctuation are less vulnerable to
dengue epidemics.
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FIGURE 4.3. Mosquito reproduction number (RM) [left column]
and infection invasion threshold (R°) [right column] for different
values of the amplitudes of diurnal temperature (e4) with the am-
plitude of seasonal temperature fixed at €,, = 5 °C’ and the mean
temperature fixed at Ty = 16 °C' [top row], Ty = 28 °C [middle
row], and Ty = 38 °C [bottom row].

5. Discussion and conclusion. It is known that the environmental temperature
can have a substantial impact on the life cycle of mosquito and the mosquito-human-
mosquito transmission cycle of dengue virus [4, 35, 24, 9, 17, 45, 43]. Because of
complexity in the variation of environmental temperature, especially existence of
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diurnal temperature fluctuations on top of the seasonal variations, there remains
much uncertainty on the understanding of the role of temperature on mosquito
population and dengue transmission [17, 28]. The major objective of this study was
to develop a mathematical model to evaluate the impact of seasonal and diurnal
temperature variation on the persistence of mosquito vectors and dengue.

Using techniques from the dynamical system theory, we used our nonautonomous
model to establish two thresholds, the mosquito reproduction number (R™) and
the infection invasion threshold (R?), which fully determine whether the mosquito
population and dengue, respectively, persist or die out in a community. Specifically,
RM > 1 implies the persistence of mosquito population and R°? > 1 implies the
persistence of dengue. Importantly, the formulated expressions show that both of
RM and R depend on seasonal and diurnal temperature variations, highlighting
the importance of considering these factors in the study of mosquito abundance and
dengue spread.

Analysis of threshold dynamics and numerical computations of the threshold
values provide some interesting results related to mosquito vectors and dengue epi-
demics. First, RM is always greater than R°, indicating that a certain temperature
can result in the persistence of mosquitos while avoiding dengue epidemics, as ob-
served in real life situations. This also indicates eradicating the mosquito population
can be much difficult compared to eradicating the dengue. Therefore, relying on
only mosquito population control may not be enough for the successful control of
dengue. Second, we identified that there exists a certain range of annual mean
temperature for the persistence of mosquito population, i.e., the mosquito popu-
lation can not persist when the average environmental temperature is too low or
too high. Similarly, the dengue persistence is favored for a certain range of annual
mean temperature. The temperature range (interval) for the persistence of dengue
is subset of the temperature range (interval) for the persistence of mosquito pop-
ulation. These temperature intervals provide the ranges of temperature for which
mosquitos persist but the dengue epidemic is avoided.

Next, our results show that both seasonal and diurnal temperature variations
are critical for the persistence of mosquito population (R™ > 1) as well as for the
persistence of dengue (R > 1). This explains why only the mean temperature was
unable to describe the observed epidemics in some places, such as Thailand, where
the epidemics are correlated mainly with diurnal temperature variations [17, 8, 20,
29, 30]. In general, our numerical estimates show that a sufficiently large seasonal
or diurnal temperature variation can result in RM < 1 and R® < 1, implying that
places with larger temperature variations suffer less from the mosquito population
burden and dengue epidemics.

We acknowledge the several limitations of our study. Our computations are based
on the parameters estimated using limited data sets. Therefore, we note that our
computations should be considered primarily for the purpose of qualitative results,
and may need to be improved for quantitative applications in real life. More data
sets, particularly those related to diurnal temperature variations, can help improve
the calculation of RM and R°. We primarily focused on the threshold dynamics
predicted by the model. However, it might be important to study detailed temporal
dynamics of the dengue, especially for the case when RY > 1. For this, the future
work with numerical comparison of the model prediction with real data on dengue
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cases will strengthen the validity of our model predictions. We are also unable to
explicitly formulate the endemic equilibrium, which requires more theoretical and
higher computational exercises. Furthermore, models that combine spatial variation
along with the temporal variation of the environmental temperature may be needed
to more accurately describe the rapid worldwide spread of dengue.

In summary, the model developed here is capable of capturing the effects of di-
urnal and seasonal temperature variations on the dynamics of mosquito population
and dengue transmission. As revealed in the results from our model, in addition to
the seasonal temperature variation, the diurnal temperature variation also plays a
significant role in the persistence of mosquito vectors and the persistence of dengue.
Thus, both seasonal as well as diurnal temperature variations should be considered
in the study of mosquito population as well as dengue transmission, control, and
prevention.
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