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Abstract. Dengue, a mosquito-borne disease, poses a tremendous burden to

human health with about 390 million annual dengue infections worldwide. The

environmental temperature plays a major role in the mosquito life-cycle as well

as the mosquito-human-mosquito dengue transmission cycle. While previous

studies have provided useful insights into the understanding of dengue diseases,

there is little emphasis put on the role of environmental temperature variation,

especially diurnal variation, in the mosquito vector and dengue dynamics. In

this study, we develop a mathematical model to investigate the impact of sea-

sonal and diurnal temperature variations on the persistence of mosquito vector

and dengue. Importantly, using a threshold dynamical system approach to

our model, we formulate the mosquito reproduction number and the infection

invasion threshold, which completely determine the global threshold dynam-

ics of mosquito population and dengue transmission, respectively. Our model

predicts that both seasonal and diurnal variations of the environmental tem-

perature can be determinant factors for the persistence of mosquito vector and

dengue. In general, our numerical estimates of the mosquito reproduction num-

ber and the infection invasion threshold show that places with higher diurnal

or seasonal temperature variations have a tendency to suffer less from the bur-

den of mosquito population and dengue epidemics. Our results provide novel

insights into the theoretical understanding of the role of diurnal temperature,

which can be beneficial for the control of mosquito vector and dengue spread.
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1. Introduction. With the worldwide situation of 2.5 billion people living in areas

with risk of dengue, about 390 million annual new dengue infections, and 500,000

annual hospitalization [4, 5, 41], dengue fever poses serious global health concerns.

Moreover, dengue fever is rapidly spreading in the world [4, 35, 41] affecting more

than a hundred countries, and actual cause for its rapid spread is still in debate. Be-

cause of uncertainty in its transmission mechanism and absence of licensed vaccines

or specific therapeutics, studies on the transmission dynamics of dengue are be-

coming increasingly important. Mathematical modeling can reveal some important

insights into dengue transmission dynamics.

Increase in dengue cases, particularly in tropical and subtropical regions, might

be due to multiple factors, including inefficient control of its vector (the Aedes ae-

gypti mosquito), expansion of the vector, human population growth, urbanization,

and climate change [3, 11, 23, 27, 34]. Among various causes, the majority of the

cases are linked to climatic factors and human and vector mobility [4, 3, 23, 25].

Specifically, it is known that the environmental temperature can highly affect the

dengue transmission [4, 35, 24], and as a consequence there remains substantial

threat that continuous increase of global temperature can exacerbate the geograph-

ical expansion of the endemic range of dengue [3, 24, 10, 14, 15, 42]. Therefore, it

is critical to understand how the environmental temperature can impact the trans-

mission dynamics of dengue epidemics.

Dengue viruses are transmitted to humans through bites of infected Aedes

mosquitos and uninfected mosquitos can become infected when they bite infected

humans. These inter-species transmission rates as well as incubation periods fol-

lowing transmission have been found to depend on the environmental temperature

[9, 17]. More importantly, a change in the environmental temperature can also alter

many mosquito entomological parameters [45, 43], such as oviposition rate, matu-

ration rate, and mortality rate, eventually impacting the dengue transmission dy-

namics. Limiting mosquito population is a commonly practiced method of dengue

control as effective vaccines or therapeutics are yet to be developed [4, 45, 31].

Therefore, it is important to include such temperature-influenced entomological

and transmission parameters properly into the transmission dynamics models in

order to provide useful information for developing prevention and control measures.

As far as the vector-borne diseases are concerned, the temporal variation of the

environmental temperature constitutes an important feature impacting disease dy-

namics [37, 40, 46]. It is a common practice to consider constant temperatures

or intraannual seasonally varying temperatures to study the effects of environmen-

tal temperature on the insect populations and pathogen transmission [17, 22, 28].

However, in case of dengue virus transmission, only seasonal variation of the en-

vironmental temperature can not fully explain the disease epidemics; the diurnal

(daily) temperature variation also plays an important role in the dengue trans-

mission dynamics [17]. For example, a temporal change of dengue epidemics in

Thailand is not associated with seasonal variation of the temperature, rather it

is associated with variation of diurnal temperature fluctuation [17, 8, 20, 29, 30].

Moreover, in nature, mosquitoes and their pathogens undergo temperature condi-

tions that fluctuate throughout the day, on top of experiencing seasonal conditions.

Hence, in addition to seasonal variation, diurnal temperature variation needs to be
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considered in order to accurately evaluate the effects of environmental temperature

on dengue epidemics.

While the previous studies have explored temporal dynamics [17, 18, 21, 26, 44]

and spatial spread [35, 23, 24, 15, 7, 36] of dengue, those existing models lack the

temperature profiles with coupled diurnal and seasonal variations. How such two

different periodic natures embedded in the environmental temperature can impact

on disease outcomes and prevention effectiveness still remains unknown. In this

study, we develop a model to describe the transmission dynamics of dengue under

the environmental temperature with seasonal as well as diurnal variations. Non-

linear effects of the environmental temperature in our non-autonomous model are

incorporated through entomological and dengue dynamics parameters, which are

derived based on laboratory experimental data. We focus on the theoretical and

numerical aspects of the non-autonomous model analysis to study how seasonal

and diurnal variations of the environmental temperature impact the mosquito re-

production number and the infection invasion threshold, consequently affecting the

persistence of mosquito vector and dengue.

2. Mathematical model. We consider mutually exclusive compartments related

to aquatic (A), susceptible (Ms), exposed (Me), and infected (Mi) groups of the

female mosquitos as well as susceptible (Hs), exposed (He), infected (Hi) and recov-

ered (Hr) groups of humans. We denote the total female mosquito population and

the total human population by NM (t) and NH(t), respectively. Interactions cap-

tured in our model are shown in a schematic diagram (Fig. 2.1) and the governing

equations are given by the following system:

dA
dt = kδ(t)

(
1− A

C

)
NM − (θ(t) + µa(t))A,

dMs

dt = θ(t)A− bβm(t)MsHi
NH

− µm(t)Ms,
dMe

dt = bβm(t)MsHi
NH

− (γm(t) + µm(t))Me,
dMi

dt = γm(t)Me − µm(t)Mi,
dHs
dt = Λh − µhHs − bβh(t)HsMi

NH
,

dHe
dt = bβh(t)HsMi

NH
− (γh + µh)He,

dHi
dt = γhHe − (αh + µh)Hi,
dHr
dt = αhHi − µhHr,

A(0) ≥ 0, Ms(0) ≥ 0, Me(0) ≥ 0, Mi(0) ≥ 0,

Hs(0) ≥ 0, He(0) ≥ 0, Hi(0) ≥ 0, Hr(0) ≥ 0.

(2.1)

In this model, matured mosquitos (NM = Ms + Me + Mi) lay eggs with the

per capita oviposition rate δ(t), among which a fraction k (a combination of the

fraction of eggs hatching to larvae and the fraction of female mosquitoes hatched

from all eggs) grow to the aquatic phase (larvae and pupae). Similar to the concept

used in the standard logistic equation, a parameter C is introduced to represent

the carrying capacity of the mosquito aquatic population, giving the net rate of

change of the aquatic mosquito population as kδ(t)(1− A
C )NM per unit time. The

aquatic mosquitos develop into adult female mosquitoes at a maturation rate θ(t)

and die at a mortality rate µa(t). We assume that female mosquitos newly emerged

from the aquatic phase are all susceptible, which die with a natural mortality rate
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µm(t). Here, Λh and µh represent recruitment rate and natural mortality rate of

susceptible humans.

Figure 2.1. A schematic diagram of the dengue transmission

model. A,Ms,Me,Mi: aquatic, susceptible, exposed, and infected

mosquitos. Hs, He, Hi, Hr: susceptible, exposed, infected, and re-

covered humans. Solid arrows represent birth, maturation, infec-

tion, transfer, death, while dashed arrows indicate the effects of

time dependent periodic environmental temperature, T (t).

Dengue virus transmission occurs from infected humans to susceptible mosquitos

and from infected mosquitos to susceptible humans through mosquito bites. Trans-

mission related parameters b, βm(t), and βh(t) represent the per capita biting rate of

mosquitoes, the transmission probability from human to mosquito, and the trans-

mission probability from mosquito to human, respectively. An average extrinsic

period of mosquitos (i.e., an average duration of mosquitos in exposed class) and an

average intrinsic period of humans (i.e., an average duration of humans in exposed

class) are denoted by 1/γm(t) and 1/γh, respectively. Infected humans get recovered

from dengue at a rate αh, and once recovered, these recovered humans do not loose

immunity as mentioned in Bhatt et al. [4]. As described in [4, 31], dengue virus

is generally non-pathogenic. Therefore, our model does not include deaths due to

disease.

Based on experimental evidences [9, 17, 44], our model incorporates the effects of

environmental temperature via entomological and dengue dynamics parameters. In

particular, parameters δ(t), µa(t), θ(t), µm(t), γm(t), βm(t), and βh(t) of our model

are influenced by the diurnally and seasonally varying environmental temperature.

In the absence of detailed diurnal and seasonal temperature profile, i.e., homo-

geneous environment, our system (2.1) is similar to the dengue model proposed

previously in Pinho et al. [26].
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2.1. Entomological parameters. We denote the temperature profile by T (t) that

captures both diurnal and seasonal variation of the environmental temperature. We

used the experimental data [43, 44], which measure how a change in temperature

changes the oviposition rate, aquatic phase mortality rate, rate of emergence of

female mosquito from aquatic phase, and female mosquito mortality rate. As in our

previous study [36], we fitted the data to appropriate functional curves (Fig. 2.2),

which give the following relationships:

δ(t) =

{
εδ, T (t) < aδ,

εδ + δm[T (t)−aδ]Nδ
δ
Nδ
h +[T (t)−aδ]Nδ

, T (t) ≥ aδ,
(2.2)

µa(t) = a0µa + a1µaT (t) + a2µaT (t)2 + a3µaT (t)3 + a4µaT (t)4, (2.3)

θ(t) =


εθ, T (t) < a1θ,

εθ + a0θT (t) (T (t)− a1θ)
√
a2θ − T (t), a1θ ≤ T (t) ≤ a2θ,

εθ, T (t) > a2θ,

(2.4)

µm(t) = a0µm + a1µmT (t) + a2µmT (t)2. (2.5)
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Figure 2.2. Best-fit curves provided by the experimental data [44]

for δ(T ) (oviposition rate), µa(T ) (aquatic phase mortality rate),

θ(T ) (mosquito emergence rate from acuatic phase), and µm(T )

(mosquito mortality rate).

2.2. Dengue dynamics parameters. We follow the similar techniques imple-

mented in our previous study [36] to reasonably estimate the functional form of

dengue dynamics parameters depending on the environmental temperature. Briefly,

based on an enzyme kinetic model [9, 17], the incubation time period of dengue, i.e.
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the average duration for which mosquitos stay in exposed class before they become

infectious, is given by

γm(t) =
1

a0γm

ea1γmT (t). (2.6)

Lambrechts et al. [17] have provided reasonable estimates of dengue transmission

probability from humans to mosquitos as well as from mosquitos to humans. Fol-

lowing the trend identified by Lambrechts et al. [17], we use the E-max model (Fig.

2.3) to describe the temperature-dependent formula of the transmission probability

from humans to mosquitos as follows [36]:

βm(t) =

 εβm, T (t) < aβm,

εβm +
[T (t)−aβm]

Nβm

β
Nβm
mh +[T (t)−aβm]

Nβm
, T (t) ≥ aβm. (2.7)
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Figure 2.3. Best-fit curve provided by the data generated from

the previous estimates [17] for the transmission probability from

human to mosquito, βm(T ).

Similarly, as done in Lambrechts et al. [17], we approximate the temperature-

dependent transmission probability from mosquitos to humans to the proportion of

midgut-infected mosquitoes transmitting virus, and obtain the following expression:

βh(t) =


εβh, T (t) < a1βh ,

εβh + a0βhT (t) (T (t)− a1βh)
√
a2βh − T (t), a1βh ≤ T (t) ≤ a2βh ,

εβh, T (t) > a2βh .
(2.8)

2.3. Temperature profile. As done in previous studies [37], seasonal variation of

the environmental temperature can be described well by the following sinusoidal

function of seasonal period τm:

Tm(t) = T0 + εm sin

(
2π

τm
t+ φm

)
,

where T0 represents the annual mean temperature, εm denotes the amplitude of

the seasonal temperature, and φm represents the phase shift in the seasonal tem-

perature. To the seasonal mean temperature, Tm(t), we now impose the diurnal
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temperature fluctuation Ψd(t) using another sinusoidal function of period τd:

Ψd(t) = εd sin

(
2π

τd
t+ φd

)
,

where εd and φd denote the amplitude and the phase shift in the diurnal temperature

variation. As a result, net time varying temperature profile introduced into the

model is:

T (t) = Tm(t) + Ψd(t).

Note that Tm(t) is τm-periodic and Ψd(t) is τd-periodic. Then choosing τ as the

least common multiple of τm and τd, the temperature function T (t) = Tm(t)+Ψd(t)

becomes τ -periodic. Thus, δ(t), µa(t), θ(t), µm(t), γm(t), βm(t), and βh(t) of our

model all become τ -periodic, implying that our system is also τ -periodic. A typical

example of the temperature profiles of Tm(t), Ψd(t), and T (t) are shown in Fig. 2.4.

0 200 400 600

Time in day

10

15

20

25

30

35

40

T
m

(t
) 

[o
C

]

0 0.5 1 1.5 2

Time in day

-8

-6

-4

-2

0

2

4

6

8

d
(t

) 
[o

C
]

0 200 400 600

Time in day

10

15

20

25

30

35

40

T
(t

) 
[o

C
]

Figure 2.4. Temperature profile of Tm(t) [Left], Ψd(t) [Middle],

and T (t) [Right]. Parameters used are T0 = 25oC, εm = 5oC, τm =

365 day, φm = 0, εd = 5oC, τd = 1 day, and φd = 0.

The model parameters are given in Table 2.1.

3. Mathematical analysis. From [32, Theorem 5.2.1], we can show that for any

(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ R8

+,

the system (2.1) has a unique local nonnegative solution

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) ∈ R8
+.

Since

NH(t) = Hs(t) +He(t) +Hi(t) +Hr(t), (3.1)

(2.1) implies

dNH(t)

dt
= Λh − µhNH(t). (3.2)

By the same arguments as in Zhao [47, Section 5.2], we have the following result:

Lemma 3.1. System (3.2) admits a unique positive constant H∗ := Λh
µh

such that

every solution NH(t) of (3.2) with NH(0) ≥ 0 satisfies

lim
t→∞

NH(t) = H∗. (3.3)
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Table 2.1. Model parameters

Parameter Description Value Reference

k Fraction of female larvae from eggs 0.5 (0-1) [18, 26]

b Per capita biting rate 0.1 [6, 26]

µh Natural death rate of humans 4.22×10−5 d−1 Calculated, [16]

1/γh Intrinsic period 10 days [6, 16, 18, 26]

αh Human recovery rate 0.1 d−1 [18, 26]

δm In δ(t) 9.531 Data fitting

δh In δ(t) 22.55 Data fitting

Nδ In δ(t) 7.084 Data fitting

aδ In δ(t) 0 Data fitting

εδ In δ(t) 10−6 Data fitting

a0µa In µa(t) 2.914 Data fitting

a1µa In µa(t) -0.4986 Data fitting

a2µa In µa(t) 0.03099 Data fitting

a3µa In µa(t) -0.0008236 Data fitting

a4µa In µa(t) 7.975×10−6 Data fitting

a0θ In θ(t) 8.044×10−5 Data fitting

a1θ In θ(t) 11.386 Data fitting

a2θ In θ(t) 40.1461 Data fitting

εθ In θ(t) 10−6 Data fitting

a0µm In µm(t) 0.1901 Data fitting

a1µm In µm(t) -0.0134 Data fitting

a2µm In µm(t) 2.739×10−4 Data fitting

a0γm In γm(t) 5×104/3 Data fitting

a1γm In γm(t) 0.0768 Data fitting

βmh In βm(t) 18.9871 Data fitting

Nβm In βm(t) 7 Data fitting

εβm In βm(t) 10−6 Data fitting

aβm In βm(t) 0 Data fitting

a0βh In βh(t) 1.044×10−3 Data fitting

a1βh In βh(t) 12.286 Data fitting

a2βh In βh(t) 32.461 Data fitting

εβh In βh(t) 10−6 Data fitting

Since

NM (t) = Ms(t) +Me(t) +Mi(t), (3.4)

we are able to demonstrate the following mass conservation for aquatic phase A(t)

and the total population of female mosquitos NM (t) in (2.1). By computations, we

obtain that (A(t), NM (t)) satisfies the following coupled differential equations
dA
dt = kδ(t)

(
1− A

C

)
NM − (θ(t) + µa(t))A,

dNM
dt = θ(t)A− µm(t)NM ,

A(0) = A0, NM (0) = N0
M .

(3.5)

It is easy to verify that (0, 0) is a trivial solution of the system (3.5).

3.1. Mosquito reproduction number. Following the approaches provided by

Bacaër and Guernaoui [2] and Wang and Zhao [40] for analysis of models with
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seasonality, we derive the mosquito reproduction number, RM , for our periodic

compartmental system (3.5). Linearizing the system (3.5) at (0, 0), we get the

following linear system
dA
dt = kδ(t)NM − (θ(t) + µa(t))A,
dNM
dt = θ(t)A− µm(t)NM ,

A(0) = A0, NM (0) = N0
M .

(3.6)

In view of system (3.6), we assume

FM (t) =

(
0 kδ(t)

0 0

)
, (3.7)

and

VM (t) =

(
θ(t) + µa(t) 0

−θ(t) µm(t)

)
. (3.8)

Suppose ΨVM (·)(t) is the monodromy matrix of the linear τ -periodic differential

system dv(t)
dt = VM (t)v, and r(ΨVM (·)(τ)) is the spectral radius of ΨVM (·)(τ).

Assume Z(t, s), t ≥ s, is the evolution operator of the linear τ -periodic system

dz(t)

dt
= −VM (t)z, (3.9)

that is, for each s ∈ R, the 2× 2 matrix Z(t, s) satisfies

d

dt
Z(t, s) = −VM (t)Z(t, s),∀t ≥ s, Z(s, s) = I,

where I is the 2× 2 matrix. Thus, the fundamental solution matrix Ψ−VM (·)(t) of

(3.9) is equal to Z(t, 0), t ≥ 0.

We assume that ϕ(s), τ -periodic in s, is the initial distribution of adult mosquito

population. Then FM (s)ϕ(s) is the rate of new aquatic mosquitos produced by the

adult mosquitos who were introduced at time s. Given t ≥ s, then Z(t, s)FM (s)ϕ(s)

gives the distribution of those adult mosquitos who were newly produced in aquatic

phase at time s and remain in the adult compartments at time t. It follows that

ψM (t) :=

∫ t

−∞
Z(t, s)FM (s)ϕ(s)ds =

∫ ∞
0

Z(t, t− a)FM (t− a)ϕ(t− a)da

is the distribution of accumulative new adult mosquitos at time t produced by all

those adult mosquitos ϕ(s) introduced at time previous to t.

Let CMτ be the ordered Banach space of all τ -periodic functions from R to R2,

which is equipped with the maximum norm ‖ ·‖ and the positive cone CMτ,+ := {ϕ ∈
CMτ : ϕ(t) ≥ 0, ∀ t ∈ R}. Then we define a linear operator LM : CMτ → CMτ by

(LMϕ)(t) =

∫ ∞
0

Z(t, t− a)FM (t− a)ϕ(t− a)da, ∀ t ∈ R, ϕ ∈ CMτ . (3.10)

Then LM represents the next mosquito-generation operator [40], and we define the

mosquito reproduction number as RM := r(LM ), the spectral radius of LM .

Here, if WM (t, s, λM ), t ≥ s, s ∈ R is the monodromy matrix of the linear

τ -periodic system on R2

dw

dt
=

(
−VM (t) +

FM (t)

λM

)
w, t ∈ R, (3.11)
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with parameter λM ∈ (0,∞), then by Theorem 2.1 of [40], we have the following

results.

Lemma 3.2. The following statements hold

(i) If r
(
WM (τ, 0, λM )

)
= 1 has a positive solution λM0 , then λM0 is an eigenvalue

of operator LM , and hence, RM > 0.

(ii) If RM > 0, then λM = RM is the unique solution of r
(
WM (τ, 0, λM )

)
= 1.

(iii) RM = 0 if and only if r
(
WM (τ, 0, λM )

)
< 1 for all λM > 0.

RM for homogeneous (constant temperature) case. We now briefly men-

tion the homogeneous case, in which the environmental temperature remains con-

stant over time. In this case, δ(t) ≡ δ, θ(t) ≡ θ, µa(t) ≡ µa, and µm(t) ≡ µm
are all positive constants. Then FM (t) ≡ FM and VM (t) ≡ VM become constant

matrices. Substituting constant matrices FM and VM , we obtain (see also [40, 38])

FM
(
VM

)−1
=

( kδθ
µm(θ+µa)

kδ
µm

0 0

)
.

Then RM can be expressed as the following explicit form

RM = r
(
FM

(
VM

)−1
)

=
kδθ

µm(θ + µa)
.

We have the results related to mosquito population extinction as stated in the

following Lemma.

Lemma 3.3. [40, Theorem 2.2] The following statements hold.

(i) RM = 1 if and only if r(ΨFM (·)−VM (·)(τ)) = 1;

(ii) RM > 1 if and only if r(ΨFM (·)−VM (·)(τ)) > 1;

(iii) RM < 1 if and only if r(ΨFM (·)−VM (·)(τ)) < 1.

Thus, the mosquito-free equilibrium (0, 0) is locally asymptotically stable for system

(3.5) if RM < 1, and unstable if RM > 1.

Moreover, we have the following results related to the global dynamics of (3.5):

Lemma 3.4. Let ∆ := {(A,M) ∈ R2
+ : 0 ≤ A ≤ C}. Then the following statements

hold.

(i) If RM < 1, then the trivial solution (0, 0) is globally attractive in ∆ for (3.5);

(ii) If RM > 1, then the system (3.5) admits a unique positive τ -periodic solu-

tion (A∗(t),M∗(t)) which is globally attractive in ∆\{(0, 0)}, that is, for any

(A(0), NM (0)) ∈ ∆\{(0, 0)}, we have

lim
t→∞

[(A(t), NM (t))− (A∗(t),M∗(t))] = 0, (3.12)

where A∗(t) = C
{

1− µm(t)[θ(t)+µa(t)]
kδ(t)θ(t)

}
, and M∗(t) = θ(t)

µm(t)A
∗(t).

Proof. From [32, Theorem 5.2.1], we observe that ∆ is positively invariant for system

(3.5). We first prove the following claim.

Claim.

A(t) < C, ∀ t > 0. (3.13)
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Proof of the claim. Assume, by contradiction, that (3.13) is not true. Then there

exists a t0 > 0 such that A(t0) = C. It follows from the first equation in system

(3.5) that

0 =
dA

dt

∣∣∣∣
t=t0

= kδ(t0)

(
1− A(t0)

C

)
NM (t0)− [θ(t0) + µa(t0)]A(t0),

which implies that θ(t0) + µa(t0) = 0. This contradiction shows that (3.13) holds.

From (3.13), it is easy to see that system (3.5) is strongly monotone in ∆ (see,

e.g., [32]). On the other hand, we assume that{
g1(A,NM ) = kδ(t)

(
1− A

C

)
NM − (θ(t) + µa(t))A,

g2(A,NM ) = θ(t)A− µm(t)NM .

Then for all A > 0, NM > 0, 0 < ϑ < 1, we have

g1(ϑA, ϑNM ) > ϑg1(A,NM ), g2(ϑA, ϑNM ) = ϑg2(A,NM ),

that is, system (3.5) is strictly subhomogeneous in ∆ (see, e.g., [47]). Then we can

use Lemma 3.3, [47, Theorem 2.3.4], and the similar arguments as in [39, Lemma

2.5] to complete the rest of the proof.

Let

X := {(A,Ms,Me,Mi, Hs, He, Hi, Hr) ∈ R8
+ : 0 ≤ A ≤ C}.

Then we can prove the following Lemma.

Lemma 3.5. X is positively invariant for system (2.1) and the system (2.1) has a

unique and bounded solution with the initial value in X. Further, the system (2.1)

admits a connected global attractor G on X in the sense that G attracts all positive

orbits in X.

Proof. From [32, Theorem 5.2.1], we can observe that X is positively invariant for

system (2.1). By (3.4), (3.5), Lemma 3.1, and Lemma 3.4, it follows that solutions

of the system (2.1) are uniformly and ultimately bounded. Also, by [12, Theorem

3.4.8], it follows that the system (2.1) admits a connected global attractor G on

X.

3.2. Infection invasion threshold. In order to find the disease-free periodic state

of (2.1), we set Me = Mi = He = Hi = Hr = 0. Then Hs(t) and (A,Ms) satisfy

(3.2) and (3.6), respectively. By Lemma 3.4 and Lemma 3.1, we see that

E0 = (A,Ms,Me,Mi, Hs, He, Hi, Hr) = (0, 0, 0, 0, H∗, 0, 0, 0)

always exists, and

E1(t) = (A,Ms,Me,Mi, Hs, He, Hi, Hr) = (A∗(t),M∗(t), 0, 0, H∗, 0, 0, 0)

exists if RM > 1.

Theorem 3.1. Assume that (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))

is a solution of the system (2.1) with initial value (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )

∈ X. If RM < 1, then

lim
t→∞

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) = E0.
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Proof. If RM < 1, then by (3.4), (3.5) and Lemma 3.4 (i), we see that

lim
t→∞

A(t) = lim
t→∞

Ms(t) = lim
t→∞

Me(t) = lim
t→∞

Mi(t) = 0.

This implies that He is asymptotic to

dHe

dt
= −(γh + µh)He,

which gives limt→∞He(t) = 0. Similarly, Hi is asymptotic to dHi
dt = −(αh+µh)Hi,

and hence, limt→∞Hi(t) = 0. Finally, Hr is asymptotic to dHr
dt = −µhHr, and

hence, limt→∞Hr(t) = 0. Given these asymptotic behaviors for He, Hi, and Hr,

we see that Hs is asymptotic to system (3.2). Then by the theory of asymptot-

ical semiflows (see, e.g., [48] or [47, section 3.2]) and Lemma 3.1, it follows that

limt→∞Hs(t) = H∗. This completes the proof.

Linearizing system (2.1) at the disease-free periodic state E1(t), we get the fol-

lowing system for the (Me,Mi, He, Hi) components:

dMe

dt = −[γm(t) + µm(t)]Me + bβm(t)M∗(t)
H∗ Hi,

dMi

dt = γm(t)Me − µm(t)Mi,
dHe
dt = bβh(t)Mi − (γh + µh)He,
dHi
dt = γhHe − (αh + µh)Hi,

Me(0) ≥ 0, Mi(0) ≥ 0, He(0) ≥ 0, Hi(0) ≥ 0.

(3.14)

We next introduce infection invasion threshold R0 for our periodic compartmen-

tal epidemic model (2.1) by using the general theory in [40]. From (3.14), we define

F(t) =


0 0 0 bβm(t)M∗(t)

H∗

0 0 0 0

0 bβh(t) 0 0

0 0 0 0

 ,

and

V(t) =


γm(t) + µm(t) 0 0 0

−γm(t) µm(t) 0 0

0 0 γh + µh 0

0 0 −γh αh + µh

 .

Suppose ΦV(·)(t) is the monodromy matrix of the linear τ -periodic differential sys-

tem dz(t)
dt = V(t)z, and r(ΦV(·)(τ)) is the spectral radius of ΦV(·)(τ). Assume

Y (t, s), t ≥ s, is the evolution operator of the linear τ -periodic system

dy(t)

dt
= −V(t)y, (3.15)

that is, for each s ∈ R, the 4× 4 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V(t)Y (t, s), ∀ t ≥ s, Y (s, s) = I,

where I is the 4 × 4 matrix. Thus, the fundamental solution matrix Φ−V(·)(t) of

(3.15) is equal to Y (t, 0), t ≥ 0.

We assume that φ(s), τ -periodic in s, is the initial distribution of infectious

individuals. Then F(s)φ(s) is the rate of new infections produced by the infected
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individuals who were introduced at time s. Given t ≥ s, then Y (t, s)F(s)φ(s) gives

the distribution of those infected individuals who were newly infected at time s and

remain in the infected compartments at time t. It follows that

ψ(t) :=

∫ t

−∞
Y (t, s)F(s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F(t− a)φ(t− a)da

is the distribution of accumulative new infections at time t produced by all those

infected individuals φ(s) introduced at time previous to t.

Let Cτ be the ordered Banach space of all τ -periodic functions from R to R4,

which is equipped with the maximum norm ‖ · ‖ and the positive cone C+
τ := {φ ∈

Cτ : φ(t) ≥ 0, ∀ t ∈ R}. Then we define a linear operator L : Cτ → Cτ by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F(t− a)φ(t− a)da, ∀ t ∈ R, φ ∈ Cτ . (3.16)

Then L represents the next infection operator [40], and we define infection invasion

threshold as R0 := r(L), the spectral radius of L.

Here, ifW(t, s, λ0), t ≥ s, s ∈ R is the monodromy matrix of the linear τ -periodic

system on R4

dw

dt
=

(
−V(t) +

F(t)

λ0

)
w, t ∈ R, (3.17)

with parameter λ0 ∈ (0,∞), then by Theorem 2.1 of [40], we have the following

results.

Lemma 3.6. The following statements hold

(i) If r
(
W(τ, 0, λ0)

)
= 1 has a positive solution λ0

0, then λ0
0 is an eigenvalue of

operator L, and hence, R0 > 0.

(ii) If R0 > 0, then λ0 = R0 is the unique solution of r
(
W(τ, 0, λ0)

)
= 1.

(iii) R0 = 0 if and only if r
(
W(τ, 0, λ0)

)
< 1 for all λ0 > 0.

R0 for homogeneous (constant temperature) case. We now briefly mention

that R0 formulated above can also recover the basic reproduction number, R̄0,

that we derived previously for the dynamics when the environmental temperature

remains constant over time [36]. In the homogeneous (constant temperature) case,

i.e. T (t) = T , all of δ(t) = δ, µa(t) = µa, θ(t) = θ, µm(t) = µm, γm(t) = γm, βm(t) =

βm, βh(t) = βh are constant. In this case, E1 = (Ā∗, M̄∗s , 0, 0, H̄
∗, 0, 0, 0), where

Ā∗ = C
[
1− 1

RM
]
, M̄∗s = θĀ∗/µm, and H̄∗ = Λh/µh. Clearly, E1 exists if RM > 1.

Here, the system linearized about E1 provides both F(t) ≡ F and V(t) ≡ V to be

constant matrices. Substituting constant matrices F and V, we obtain (see also

[40, 38])

R0 = r(L) = r(FV−1).

By computations, we can obtain that

FV−1 =


0 0 Dγh/(γh + µh)(αh + µh) D/(αh + µh)

0 0 0 0

Eγm/µm(γm + µm) E/µm 0 0

0 0 0 0

 ,
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where D =
bβmM

∗
s

H̄∗ and E = bβh. Then R0 can be expressed as the following explicit

form

R0 =

√
DEγmγh

µm(γm + µm)(γh + µh)(αh + µh)
.

Here, R0 = R̄0, which is the basic reproduction number [36] that we derived using

the second generation matrix method [38] for constant temperature case.

We have the result about the local stability of the disease-free state E1(t) as

stated in the following theorem.

Lemma 3.7. [40, Theorem 2.2] The following statements hold.

(i) R0 = 1 if and only if r(ΦF(·)−V(·)(τ)) = 1;

(ii) R0 > 1 if and only if r(ΦF(·)−V(·)(τ)) > 1;

(iii) R0 < 1 if and only if r(ΦF(·)−V(·)(τ)) < 1.

Thus, the disease-free state E1(t) is locally asymptotically stable if R0 < 1, and

unstable if R0 > 1.

3.3. Threshold dynamics. Let A(t) be a continuous, cooperative, irreducible,

and τ -periodic k × k matrix function. Suppose ΦA(·)(t) is the monodromy matrix

of the linear ordinary differential system

dx(t)

dt
= A(t)x, (3.18)

and r(ΦA(·)(τ)) is the spectral radius of ΦA(·)(τ). From [1, Lemma 2] (see also [13,

Theorem 1.1]), it follows that ΦA(·)(t) is a matrix with all entries positive for each

t > 0. By the Perron-Frobenius theorem, r(ΦA(·)(τ)) is the principal eigenvalue of

ΦA(·)(τ) in the sense that it is simple and admits a positive eigenvector. Then we

have the following result.

Lemma 3.8. ([46, Lemma 2.1]) Let µ = 1
τ lnr(ΦA(·)(τ)). Then there exists a

positive, τ -periodic function v(t) such that eµtv(t) is a solution of (3.18).

Suppose P : X→ X is the Poincaré map associated with system (2.1), that is,

P (x0) = u(τ, x0), ∀ x0 := (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X,

where u(t, x0) is the unique solution of system (2.1) with u(0, x0) = x0. It is easy

to see that

Pn(x0) = u(nτ, x0), ∀ n ≥ 0.

For convenience, we define E0 = E0 = (0, 0, 0, 0, H∗, 0, 0, 0) and E1 = E1(0) =

(A∗(0),M∗(0), 0, 0, H∗, 0, 0, 0). Let

X0 := {(A,Ms,Me,Mi, Hs, He, Hi, Hr) ∈ X : Mi > 0}.

and

∂X0 := X\X0 = {(A,Ms,Me,Mi, Hs, He, Hi, Hr) ∈ X : Mi = 0}.

Lemma 3.9. Assume that (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) is

a solution of the system (2.1) with initial value (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈

X0. Then (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))� 0, ∀ t > 0.
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Proof. Given an initial value (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0. In view of

the fifth equation of system (2.1), it follows that

Hs(t) = e−
∫ t
0
ς(s1)ds1

[
Λh

∫ t

0

e
∫ s2
0 ς(s1)ds1ds2 +H0

s

]
, (3.19)

where

ς(t) := µh +
bβh(t)Mi(t)

NH(t)
. (3.20)

Thus, Hs(t) > 0, ∀ t > 0. From the first equation of system (2.1), we see that

A(t) = e−
∫ t
0
b(s1)ds1

[∫ t

0

e
∫ s2
0 b(s1)ds1ζ(s2)ds2 +A0

]
, (3.21)

where {
ζ(t) := kδ(t)NM ≥ 0,

b(t) := kδ(t)
C Nm + θ(t) + µa(t).

(3.22)

On the contrary, we assume there exists t0 ≥ 0 such thatA(t0) = 0. This implies that

A0 = 0 and ζ(t) := kδ(t)NM ≡ 0 on [0, t0]. This contradicts that Mi(0) = M0
i > 0.

Thus, A(t) > 0, ∀ t > 0. From the second equation of system (2.1), we have

Ms(t) = e−
∫ t
0
c(s1)ds1

[∫ t

0

e
∫ s2
0 c(s1)ds1θ(s2)A(s2)ds2 +M0

s

]
, (3.23)

where

c(t) :=
bβm(t)Hi(t)

NH(t)
+ µm(t). (3.24)

This implies that Ms(t) > 0, ∀ t > 0.

By [32, Theorem 4.1.1] as generalized to nonautonomous systems, the irreducibil-

ity of the cooperative matrix
−(γm(t) + µm(t)) 0 0 bβm(t)Ms(t)

NH(t)

γm(t) −µm(t) 0 0

0 bβh(t)Hs(t)
NH(t) −(γh + µh) 0

0 0 γh −(αh + µh)

 (3.25)

implies that (Me(t),Mi(t), He(t), Hi(t))
T � 0, ∀ t > 0.

Finally, it follows from the eighth equation in system (2.1) that

Hr(t) = e−µht
[
αh

∫ t

0

eµhsHi(s)ds+H0
r

]
, (3.26)

which implies that Hr(t) > 0, ∀ t > 0. This completes the proof of the lemma.

Lemma 3.10. Let RM > 1 and R0 > 1. Then for j = 0, 1, there exists σj > 0

such that for any (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0 with

‖(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )− Ej‖ ≤ σj ,

we have

lim sup
n→∞

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), Ej) ≥ σj .
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Proof. Since R0 > 1, Lemma 3.7 implies that r(ΦF(·)−V(·)(τ)) > 1. Thus, we may

choose ρ1 > 0 small enough such that r(ΦFρ1 (·)−V(·)(τ)) > 1, where

Fρ1(t) =


0 0 0 bβm(t)(M∗(t)−ρ1)

H∗+4ρ1

0 0 0 0

0 bβh(t)(H∗−ρ1)
H∗+4ρ1

0 0

0 0 0 0

 .

By the continuity of the solutions with respect to the initial values, there exists a

σ1 > 0 such that for all (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0 with

‖(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )− E1‖ ≤ σ1,

there holds ‖u(t, (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))− u(t, E1)‖ < ρ1, ∀ t ∈ [0, τ ].

We first prove the case j = 1, i.e.,

lim sup
n→∞

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E1) ≥ σ1.

Assume, by contradiction, that the above conclusion does not hold. Then we have

lim sup
n→∞

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E1) < σ1,

for some (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0. Without loss of generality, we

assume that

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E1) < σ1, ∀ n ≥ 0.

It follows that

‖u(t, Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))− u(t, E1)‖ < ρ1, ∀ t ∈ [0, τ ], n ≥ 0.

For any t ≥ 0, let t = mτ + t′, where t′ ∈ [0, τ), and m is the largest integer less

than or equal to t
τ . Therefore, we have ‖u(t, (A0,M0

s ,M
0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))−

u(t, E1)‖ = ‖u(t′, Pm(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )) − u(t′, E1)‖ < ρ1. Note

that (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) = u(t, (A0,M0
s ,M

0
e ,M

0
i ,

H0
s , H

0
e , H

0
i , H

0
r )) and u(t, E1) = E1(t), ∀ t ≥ 0. It then follows that for all t ≥ 0,

we have

Ms(t) > M∗(t)−ρ1, H
∗+ρ1 > Hs(t) > H∗−ρ1, ρ1 > He(t), ρ1 > Hi(t), ρ1 > Hr(t).

From the equations of Me, Mi, He and Hi in (2.1), it follows that
dMe

dt ≥
bβm(t)(M∗(t)−ρ1)

H∗+4ρ1
Hi − (γm(t) + µm(t))Me, ∀ t ≥ 0,

dMi

dt = γm(t)Me − µm(t)Mi, ∀ t ≥ 0,
dHe
dt ≥

bβh(t)(H∗−ρ1)
H∗+4ρ1

Mi − (γh + µh)He, ∀ t ≥ 0,
dHi
dt = γhHe − (αh + µh)Hi, ∀ t ≥ 0.

(3.27)

Since (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0, it follows from Lemma 3.9 that

(Me(t),Mi(t), He(t), Hi(t))� 0, ∀ t > 0.

Thus, we may fix a t1 > 0 such that (Me(t1),Mi(t1), He(t1), Hi(t1)) � 0. By

Lemma 3.8, it follows that there exists a positive, τ -periodic function J(t) and

µ̃ = 1
τ ln [r(ΦFρ1 (·)−V(·)(τ))] such that J̃(t) := b̃eµ̃(t−t1)J(t) is a solution of

dx(t)

dt
= (Fρ1(t)− V(t))x(t),
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where b̃ satisfies J̃(t1) := b̃J(t1) ≤ (Me(t1),Mi(t1), He(t1), Hi(t1)). The standard

comparison theorem (see, e.g., [33, Theorem B.1]) implies that

(Me(t),Mi(t), He(t), Hi(t)) ≥ J̃(t), ∀ t ≥ t1.

In particular, there exists n1 such that

(Me(nτ),Mi(nτ), He(nτ), Hi(nτ)) ≥ J̃(nτ), ∀ n ≥ n1.

Since µ̃ > 0, it follows that J̃(nτ)→∞ as n→∞. Thus, (Me(nτ),Mi(nτ), He(nτ),

Hi(nτ))→∞ as n→∞. This contradiction completes the proof of the case j = 1.

Next, we will use the fact RM > 1 to show that the conclusion is also true for the

case j = 0. Since RM > 1, Lemma 3.3 implies that r(ΨFM (·)−VM (·)(τ)) > 1. Thus,

we may choose ρ0 > 0 small enough such that r(ΨFMρ0 (·)−VM
ρ0

(·)(τ)) > 1, where

FMρ0 (t) =

(
0 k(1− ρ0

C )δ(t)

0 0

)
, (3.28)

and

VM
ρ0 (t) =

(
θ(t) + µa(t) 0

−θ(t) bβm(t)ρ0
H∗−ρ0 + µm(t)

)
. (3.29)

By the continuity of the solutions with respect to the initial values, there exists a

σ0 > 0 such that for all (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0 with

‖(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )− E0‖ ≤ σ0,

there holds ‖u(t, (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))− u(t, E0)‖ < ρ0, ∀ t ∈ [0, τ ].

For the case j = 0, we need to prove that

lim sup
n→∞

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E0) ≥ σ0,

where, dist(A,B) is the distance between A and B.

Assume, by contradiction, that the above conclusion does not hold. Then we

have

lim sup
n→∞

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E0) < σ0,

for some (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0. Without loss of generality, we

assume that

dist(Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ), E0) < σ0, ∀ n ≥ 0.

It follows that

‖u(t, Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))− u(t, E0)‖ < ρ0, ∀ t ∈ [0, τ ], n ≥ 0.

For any t ≥ 0, let t = `τ + t′′, where t′′ ∈ [0, τ), and ` is the largest integer less

than or equal to t
τ . Therefore, we have ‖u(t, (A0,M0

s ,M
0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ))−

u(t, E0)‖ = ‖u(t′′, P `(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r )) − u(t′′, E0)‖ < ρ0. Note

that (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) = u(t, (A0,M0
s ,M

0
e ,M

0
i ,

H0
s , H

0
e , H

0
i , H

0
r )) and u(t, E0) = E0 = E0, ∀ t ≥ 0. It then follows that for all t ≥ 0,

we have

A(t) < ρ0, Ms(t) < ρ0, ∀ t ≥ 0.

By Lemma 3.1, it follows that there exists a t0 > 0 such that

NH(t) > H∗ − ρ0, ∀ t ≥ t0.
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Then it follows from the equations of A and Ms in (2.1) that{
dA
dt ≥ kδ(t)

(
1− ρ0

C

)
Ms − (θ(t) + µa(t))A, t ≥ t0,

dMs

dt ≥ θ(t)A− [ bβm(t)Msρ0
H∗−ρ0 + µm(t)]Ms, t ≥ t0.

(3.30)

Since (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0, it follows from Lemma 3.9 that

(A(t0),Ms(t0))� 0.

By Lemma 3.8, it follows that there exists a positive, τ -periodic function Q(t) and

κ = 1
τ ln [r(ΨFM (·)−VM (·)(τ))] such that Q̃(t) := d̃eκ(t−t0)Q(t) is a solution of

dy(t)

dt
=
(
FM (t)−VM (t)

)
y(t),

where d̃ satisfies Q̃(t0) := d̃Q(t0) ≤ (A(t0),Ms(t0)). The standard comparison

theorem (see, e.g., [33, Theorem B.1]) implies that

(A(t),Ms(t)) ≥ Q̃(t), ∀ t ≥ t0.

In particular, there exists n0 such that

(A(nτ),Ms(nτ)) ≥ Q̃(nτ), ∀ n ≥ n0.

Since κ > 0, it follows that Q̃(nτ) → ∞ as n → ∞. Thus, (A(nτ),Ms(nτ)) → ∞
as n→∞. This contradiction completes the proof of the case j = 0.

Now we prove that R0 is a threshold index for disease persistence if RM > 1 as

stated in the following theorem.

Theorem 3.2. Assume that RM > 1. Then the following statements hold.

(i) If R0 < 1, then the disease-free periodic state E1(t) is globally attractive for
system (2.1) in the sense that if (A0,M0

s ) 6= (0, 0), we have

lim
t→∞

[(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))− E1(t)] = (0, 0, 0, 0, 0, 0, 0, 0);

(ii) If R0 > 1, there exists an η > 0 such that for any solution

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))

with initial value (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0 satisfies

lim inf
t→∞

Mi(t) ≥ η.

Further, system (2.1) admits at least one positive τ -periodic solution

(Ã(t), M̃s(t), M̃e(t), M̃i(t), H̃s(t), H̃e(t), H̃i(t), H̃r(t)).

Proof. Part (i). We first consider the case where R0 < 1. From Lemma 3.7, it

follows that r(ΦF(·)−V(·)(τ)) < 1. Now we choose ξ0 > 0 sufficiently small such that

r(ΦFξ0 (·)−V(·)(τ)) < 1, where

Fξ0(t) =


0 0 0 bβm(t)(M∗(t)+ξ0)

H∗−ξ0
0 0 0 0

0 bβh(t)(H∗+ξ0)
H∗−ξ0 0 0

0 0 0 0

 .

Assume that

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))
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is a nonnegative solution of system (2.1) in X. Note that NH(t) and (A(t), NM (t))

satisfy (3.3) (Lemma 3.1) and (3.12) (Lemma 3.4), respectively. Then there is a

T > 0 such that for any t ≥ T , we have

Ms(t) ≤ NM (t) ≤M∗(t) + ξ0, Hs(t) ≤ NH(t) ≤ H∗ + ξ0, NH(t) ≥ H∗ − ξ0.

By Lemma 3.8, it follows that there exists a positive, τ -periodic function v(t)

and µ = 1
τ ln [r(ΦFξ0 (·)−V(·)(τ))] such that v̄(t) := āeµtv(t) is a solution of

dx(t)

dt
= (Fξ0(t)− V(t))x(t),

where ā satisfies v̄(T ) := āv(T ) ≥ (Me(T ),Mi(T ), He(T ), Hi(T )).

From the equations of Me, Mi, He and Hi in (2.1), it follows that
dMe

dt ≤
bβm(t)(M∗(t)+ξ0)

H∗−ξ0 Hi − (γm(t) + µm(t))Me, ∀ t ≥ T,
dMi

dt = γm(t)Me − µm(t)Mi, ∀ t ≥ T,
dHe
dt ≤

bβh(t)(H∗+ξ0)
H∗−ξ0 Mi − (γh + µh)He, ∀ t ≥ T,

dHi
dt = γhHe − (αh + µh)Hi, ∀ t ≥ T.

(3.31)

The standard comparison theorem (see, e.g., [33, Theorem B.1]) implies that

(Me(t),Mi(t), He(t), Hi(t)) ≤ v̄(t), ∀ t ≥ T.

Since µ < 0, it follows that v̄(t) → 0 as t → ∞. Thus, (Me(t),Mi(t), He(t), Hi(t))

→ 0 as t→∞. This implies that (A,Ms) is asymptotic to (3.6). By the theory of

asymptotically periodic semiflows (see, e.g., [48] or [47, section 3.2]) and Lemma 3.4,

it follows that limt→∞[(A(t),Ms(t))− (A∗(t),M∗(t))] = (0, 0). This completes the

proof of Part (i).

Part (ii). We next consider the case where R0 > 1. From Lemma 3.5, it follows

that the discrete-time system {Pn}n≥0 admits a global attractor in X. Now we prove

that {Pn}n≥0 is uniformly persistent with respect to (X0, ∂X0). By Lemma 3.9, it

follows that X and X0 are positively invariant. Clearly, ∂X0 is relatively closed in

X. Let

M∂ = {(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ ∂X0,

: Pn(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ ∂X0, ∀ n ≥ 0}.

We are going to prove that

M∂ := {(A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X : M0

i = 0}, (3.32)

for which, it suffices to prove that for any (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈M∂ ,

we have Mi(nτ) = 0, ∀ n ≥ 0. If it is not true, there exists an n1 ≥ 0 such that

Mi(n1τ) > 0. (3.33)

It is easy to see from A equation of (2.1) that

A(t) = e
−

∫ t
n1τ

b(s1)ds1

[∫ t

n1τ

e
∫ s2
n1τ

b(s1)ds1ζ(s2)ds2 +A(n1τ)

]
, (3.34)

where ζ(t) and b(t) are defined in (3.22). Thus, A(t) > 0, ∀ t > n1τ . Similarly,

from Ms equation of (2.1) we have

Ms(t) = e
−

∫ t
n1τ

c(s1)ds1

[∫ t

n1τ

e
∫ s2
n1τ

c(s1)ds1θ(s2)A(s2)ds2 +Ms(n1τ)

]
, (3.35)
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where c(t) is defined in (3.24). This implies that Ms(t) > 0, ∀ t > n1τ . By [32,

Theorem 4.1.1] as generalized to nonautonomous systems, the irreducibility of the

cooperative matrix (3.25) implies that

(Me(t),Mi(t), He(t), Hi(t)� 0, ∀ t > n1τ,

where the initial value (Me(n1τ),Mi(n1τ), He(n1τ), Hi(n1τ)) > 0. In particu-

lar, we have (Me(nτ),Mi(nτ), He(nτ), Hi(nτ)) � 0, ∀ n > n1, which contra-

dicts the fact that (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ M∂ . This implies that

(3.32) holds. It is clear that there are two fixed points of P in M∂ , which are

E0 = E0 = (0, 0, 0, 0, H∗, 0, 0, 0) and E1 = E1(0) = (A∗(0),M∗(0), 0, 0, H∗, 0, 0, 0).

If (A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) is a solution of system (2.1)

initiating from M∂ , it follows from system (2.1) and the fact Mi(t) ≡ 0 that

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t)) approaches E0 or E1(t) as t

approaches ∞.

It follows from Lemma 3.10 that {E0} ∪ {E1} is an isolated invariant set in X
and W s(Ej) ∩ X0 = ∅, j = 0, 1, where W s(Ej) is the stable set of Ej . Note that

every orbit in M∂ approaches to {E0} ∪ {E1}, and {E0} ∪ {E1} is acyclic in M∂ . By

[47, Theorem 1.3.1], it follows that {Pn}n≥0 is uniformly persistent with respect

to (X0, ∂X0). By [47, Theorem 3.1.1], the solutions of system (2.1) are uniformly

persistent with respect to (X0, ∂X0), that is, there exists an η > 0 such that for any

solution

(A(t),Ms(t),Me(t),Mi(t), Hs(t), He(t), Hi(t), Hr(t))

with initial value (A0,M0
s ,M

0
e ,M

0
i , H

0
s , H

0
e , H

0
i , H

0
r ) ∈ X0 satisfies

lim inf
t→∞

Mi(t) ≥ η.

Furthermore, [47, Theorem 1.3.6] implies that P has a fixed point

(Ã(0), M̃s(0), M̃e(0), M̃i(0), H̃s(0), H̃e(0), H̃i(0), H̃r(0)) ∈ X0,

and hence, M̃i(0) > 0. By the same arguments as those in Lemma 3.9, one can

show that

(Ã(t), M̃s(t), M̃e(t), M̃i(t), H̃s(t), H̃e(t), H̃i(t), H̃r(t))� 0.

This completes the proof of Part (ii).

4. Numerical computation. In this section we present some numerical results

demonstrating how mean temperature, seasonal temperature variations, and diurnal

temperature variations can impact the mosquito reproduction number (RM ) and

the infection invasion threshold (R0). We used Lemma 3.11 to compute RM and

Lemma 3.17 to compute R0 numerically as done in previous studies ([37, 40, 19]).

Our results show that the value of RM is greater than R0 for every temperature

profile. This indicates that RM < 1 (extinction of mosquito population) implies

R0 < 1 (eradication of dengue), which is practically true as mosquito bites are the

only route of dengue transmission.
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4.1. Effects of mean temperature, T0. We performed computations to study

how varying annual mean temperature, T0, from 10 oC to 45 oC affects RM and R0

(Fig. 4.1). On increasing T0, both RM and R0 increase, reach the corresponding

maximum values and then decrease, with RM < 1 and R0 < 1 for extremely low

mean temperatures as well as extremely high mean temperatures. Therefore, there

exist optimal ranges of the mean temperature for both persistence of mosquito

population and persistence of dengue fever. However, the interval of the mean

temperature for mosquito persistence is larger than that for the dengue persistence.

For example, in our computation (Fig. 4.1), mosquito persists (i.e., RM > 1) for

13.5oC ≤ T0 ≤ 44.5oC, while dengue persists (i.e., R0 > 1) for 16.5oC ≤ T0 ≤
36.5oC. Note that there are small ranges of the mean temperature during which

mosquito persists, but dengue does not persist.
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Figure 4.1. Mosquito reproduction number (RM ) [Left] and in-

fection invasion threshold (R0) [right] for different values of the

mean temperature (T0) with amplitudes of seasonal temperature

and diurnal temperature fixed at εm = 5 oC and εd = 5 oC, re-

spectively. For comparison purposes, RM and R0 for the constant

temperature (i.e., εm = εd = 0 oC) are also plotted.

For comparison purposes, we also computed both the mosquito reproduction

number and the infection invasion threshold for the constant temperature (Figure

4.1). For the parameter range considered in this study, the mosquito population

hardly persists for temperatures maintained constant at values greater than 40 oC.

However, for the time-varying temperature, the mosquito population may persist

also for the mean temperatures slightly higher than 40 oC. It should be noted that

for the time-varying periodic temperature, even though the mean temperature is 40
oC, the temperature in our base case computation can reach as low as 30 oC due

to the seasonal and diurnal variations. Therefore, the time-varying temperature

provides the values of RM and R0 different from their values with constant tem-

perature. Our estimates show that the constant temperature underestimates RM
and R0 for low and high mean temperatures while it overestimates for the middle

temperature range.

4.2. Effects of seasonal temperature variation, εm. In this subsection, we

use the parameter εm, the amplitude of the seasonal temperature, to evaluate the
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effects of seasonal temperature variation on the mosquito reproduction number and

the infection invasion threshold. We compute RM (Fig. 4.2, left column) and R0

(Fig. 4.2, right column) for various values of εm with all other parameters fixed.

As we discussed above, since the values of RM and R0 may highly depend on

the mean temperature with maximum values occurring at some temperature, we

consider three cases: a lower mean temperature (T0 = 16 oC) (Fig. 4.2, top row),

an optimal mean temperature (T0 = 28 oC) (Fig. 4.2, middle row), and a higher

mean temperature (T0 = 38 oC) (Fig. 4.2, bottom row).

For the amplitude of seasonal temperature considered, the mosquito reproduction

number mostly remains larger than 1 (Fig. 4.2, right column). This shows that the

mosquito population persists for this range of temperature as observed in reality.

We observed that in each of the three mean temperatures considered, there is a

decreasing trend of RM for an increasing amplitude of the seasonal temperature

(Fig. 4.2, right column). This shows that in places, where the temperature remains

relatively stable over the seasons, the growth of mosquito population is favored,

compared to the places with large seasonal variation of temperature. This effect

is mainly pronounced in the case of the optimal mean temperature (T0 = 28 oC)

(Fig. 4.2, middle row). At T0 = 28 oC, RM decreases from 65 to 13 when εm
increases from 5 oC to 15 oC, while at T0 = 16 oC and T0 = 38 oC, the change of

RM is from 4.9 to 2 and from 13.6 to 6, respectively.

Computed values of R0 for varying εm (Fig. 4.2, left column) indicate that R0

can be less than 1 for some values of εm. Therefore, the seasonal variation of the

temperature can be a determinant factor for the dengue epidemic to die out (R0 < 1)

or to persist (R0 > 1). In general, a larger variation of seasonal temperature

provides a smaller value of the infection invasion threshold. For example, R0 < 1

for εm > 11 oC, 16 oC, and 18.5 oC at the mean temperature T0 = 16 oC, T0 = 28
oC, and T0 = 38 oC, respectively. However, note that for T0 = 16 oC and T0 = 38
oC, smaller amplitudes also make R0 < 1. These results indicate that the places

with a larger variation in seasonal temperature has a less likelihood for a dengue

epidemic to occur.

4.3. Effects of diurnal temperature variation, εd. We now vary εd, the ampli-

tude of diurnal temperature, from 5o C to 25o C, and compute the mosquito repro-

duction number (RM ) (Fig. 4.3, left column) and the infection invasion threshold

R0 (Fig. 4.2, right column) for those values of εm. Again, we consider three different

seasonal mean temperature, T0 = 16 oC (Fig. 4.3, top row), T0 = 28 oC (Fig. 4.3,

middle row), and T0 = 38 oC (Fig. 4.3, bottom row). Our results show that the

patterns of RM and R0 (Fig. 4.3) for an increasing εd are similar to those observed

for an increasing εm.

An increase in diurnal temperature variation decreases the mosquito reproduction

number with a bigger effect seen in the mean temperature corresponding to the peak

RM (i.e. T0 = 28 oC). In our calculation, the increase in εd by 10 oC (from 5 oC

to 15 oC) caused a decrease of the mosquito reproduction number by 3 (from 5 to

2), 55 (from 65 to 10), and 11 (from 13 to 2) when the mean temperature was set

to T0 = 16 oC, 28 oC, and 38 oC, respectively. Thus, places with higher diurnal

temperature variation are less favorable for the growth of mosquito population. It

is worth noting that at T0 = 38 oC, a higher amplitude of diurnal temperature,
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Figure 4.2. Mosquito reproduction number (RM ) [left column]

and infection invasion threshold (R0) [right column] for different

values of the amplitudes of seasonal temperature (εm) with the

amplitude of diurnal temperature fixed at εd = 5 oC and the mean

temperature fixed at T0 = 16 oC [top row], T0 = 28 oC [middle

row], and T0 = 38 oC [bottom row].

for example, εd > 20 oC, can bring RM to a value less than 1, resulting in the

extinction of mosquito population.

Similarly, our results show that higher diurnal temperature can bring the in-

fection invasion threshold, R0, to a value less than 1, avoiding dengue epidemics.

According to our computations, the dengue can not persist for amplitude of di-

urnal temperature, εd, greater than 13.5 oC, 19.5 oC, and 13.5 oC, for the mean

temperature T0 = 16 oC, 28 oC, and 38 oC, respectively. Therefore, places with
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environmental temperature with higher diurnal fluctuation are less vulnerable to

dengue epidemics.
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Figure 4.3. Mosquito reproduction number (RM ) [left column]

and infection invasion threshold (R0) [right column] for different

values of the amplitudes of diurnal temperature (εd) with the am-

plitude of seasonal temperature fixed at εm = 5 oC and the mean

temperature fixed at T0 = 16 oC [top row], T0 = 28 oC [middle

row], and T0 = 38 oC [bottom row].

5. Discussion and conclusion. It is known that the environmental temperature

can have a substantial impact on the life cycle of mosquito and the mosquito-human-

mosquito transmission cycle of dengue virus [4, 35, 24, 9, 17, 45, 43]. Because of

complexity in the variation of environmental temperature, especially existence of
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diurnal temperature fluctuations on top of the seasonal variations, there remains

much uncertainty on the understanding of the role of temperature on mosquito

population and dengue transmission [17, 28]. The major objective of this study was

to develop a mathematical model to evaluate the impact of seasonal and diurnal

temperature variation on the persistence of mosquito vectors and dengue.

Using techniques from the dynamical system theory, we used our nonautonomous

model to establish two thresholds, the mosquito reproduction number (RM ) and

the infection invasion threshold (R0), which fully determine whether the mosquito

population and dengue, respectively, persist or die out in a community. Specifically,

RM > 1 implies the persistence of mosquito population and R0 > 1 implies the

persistence of dengue. Importantly, the formulated expressions show that both of

RM and R0 depend on seasonal and diurnal temperature variations, highlighting

the importance of considering these factors in the study of mosquito abundance and

dengue spread.

Analysis of threshold dynamics and numerical computations of the threshold

values provide some interesting results related to mosquito vectors and dengue epi-

demics. First, RM is always greater than R0, indicating that a certain temperature

can result in the persistence of mosquitos while avoiding dengue epidemics, as ob-

served in real life situations. This also indicates eradicating the mosquito population

can be much difficult compared to eradicating the dengue. Therefore, relying on

only mosquito population control may not be enough for the successful control of

dengue. Second, we identified that there exists a certain range of annual mean

temperature for the persistence of mosquito population, i.e., the mosquito popu-

lation can not persist when the average environmental temperature is too low or

too high. Similarly, the dengue persistence is favored for a certain range of annual

mean temperature. The temperature range (interval) for the persistence of dengue

is subset of the temperature range (interval) for the persistence of mosquito pop-

ulation. These temperature intervals provide the ranges of temperature for which

mosquitos persist but the dengue epidemic is avoided.

Next, our results show that both seasonal and diurnal temperature variations

are critical for the persistence of mosquito population (RM > 1) as well as for the

persistence of dengue (R0 > 1). This explains why only the mean temperature was

unable to describe the observed epidemics in some places, such as Thailand, where

the epidemics are correlated mainly with diurnal temperature variations [17, 8, 20,

29, 30]. In general, our numerical estimates show that a sufficiently large seasonal

or diurnal temperature variation can result in RM < 1 and R0 < 1, implying that

places with larger temperature variations suffer less from the mosquito population

burden and dengue epidemics.

We acknowledge the several limitations of our study. Our computations are based

on the parameters estimated using limited data sets. Therefore, we note that our

computations should be considered primarily for the purpose of qualitative results,

and may need to be improved for quantitative applications in real life. More data

sets, particularly those related to diurnal temperature variations, can help improve

the calculation of RM and R0. We primarily focused on the threshold dynamics

predicted by the model. However, it might be important to study detailed temporal

dynamics of the dengue, especially for the case when R0 > 1. For this, the future

work with numerical comparison of the model prediction with real data on dengue
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cases will strengthen the validity of our model predictions. We are also unable to

explicitly formulate the endemic equilibrium, which requires more theoretical and

higher computational exercises. Furthermore, models that combine spatial variation

along with the temporal variation of the environmental temperature may be needed

to more accurately describe the rapid worldwide spread of dengue.

In summary, the model developed here is capable of capturing the effects of di-

urnal and seasonal temperature variations on the dynamics of mosquito population

and dengue transmission. As revealed in the results from our model, in addition to

the seasonal temperature variation, the diurnal temperature variation also plays a

significant role in the persistence of mosquito vectors and the persistence of dengue.

Thus, both seasonal as well as diurnal temperature variations should be considered

in the study of mosquito population as well as dengue transmission, control, and

prevention.
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