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SUPERCONVEXITY OF THE HEAT KERNEL ON HYPERBOLIC
SPACE WITH APPLICATIONS TO MEAN CURVATURE FLOW

YONGZHE ZHANG

ABSTRACT. We prove a conjecture of Bernstein that the superconvexity of
the heat kernel on hyperbolic space holds in all dimensions and, hence, there
is an analog of Huisken’s monotonicity formula for mean curvature flow in
hyperbolic space of all dimensions.

1. INTRODUCTION

Throughout the paper, let H” be the hyperbolic space of dimension n and let
H,(t, p;to, po) be the heat kernel on H" with singularity at p = pg at time ¢t = ¢,.
Thus, H,, is the unique positive solution to

{ (%_AHTL)H”:O for t > to,
limuto Hn:(spo'

By the symmetries of H", there is a positive function K, (t, p) on (0,00) x (0, 00)
such that
Hy(t,pito, po) = Kn(to — t, distu (p, po)) > 0

where p = distyn (p, po) is the hyperbolic distance between p and pg. As remarked
in [1], although K, can be explicitly computed, the formulas become unmanageable
for large n; see [8] for more details.

In this short note we use observations from [8] and [11] to prove the following
convexity estimate for K.

Theorem 1.1. If o0 = cosh p, then log K,, is superconvex in o, i.e., for any t > 0
and p > 0,

0? 1 9\?
1.1 — log K, = — | logK, >0.
(1.1) do2 8 (sinhp 8p) 08 Kn >
Observe that by the chain rule (1.1) is equivalent to
(1.2) 85 log K,,(t, p) — coth(p)d, log K, (t, p) > 0.

In [1], Bernstein proved (1.2) for small n and conjectured it for all n. Hence we
confirm this conjecture in Theorem 1.1.

We also give an application of Theorem 1.1 to the mean curvature flow in hy-
perbolic space. We say an n-dimensional submanifold ¥ ¢ H"** has exponential
volume growth, provided that there is a constant M > 0 and a point py € H*** so
that for any R > 0

Volgnir (0 BE" (po)) < MeME
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where Bgn+k(po) is the (open) geodesic ball in H"** centered at py with radius
R. As noted in [1, Remark 1.2], we can use Theorem 1.1 to extend [1, Theorem
1.1], an analog of Huisken’s monotonicity formula [10] for mean curvature flow in
hyperbolic space in low dimensions, to higher dimensions.

Corollary 1.2. If {¥:}ic0,1) is a mean curvature flow of n-dimensional complete
submanifolds ¥y C H"** that have exponential volume growth, then, for to € (0,T],
po € H™* and t € (0,to),

d
pn K, (to — t,distgn+x(p, po)) dVols, (p) <0
p

and the inequality is strict unless X¢ is a minimal cone over py.

Remark 1.3. In [1], Bernstein introduced a notion of hyperbolic entropy for sub-
manifolds in hyperbolic space, which is analogous to the one introduced by Colding-
Minicozzi for hypersurfaces in Euclidean space [7]. Using Corollary 1.2 and some
observations of [1], one may adapt the arguments of [2-4,6,9,12] to prove that
closed hypersurfaces in hyperbolic space with small hyperbolic entropy are simple
in various senses.

Remark 1.4. Another consequence of Corollary 1.2 is that the second part of [1,
Theorem 1.5] (i.e., “If, in addition, ¥ is minimal and n < N...”) holds true for all
dimensions n. Thus there is a natural relationship between the hyperbolic entropy
of an asymptotic regular submanifold of hyperbolic space and the conformal volume
of its asymptotic boundary, which is analogous to the relationship between the
entropy of an asymptotically conical self-expander and the entropy of its asymptotic
cone [5, Lemma 3.5].

2. PROOF OF THEOREM 1.1

Set 0 = cosh p. Let

P
= f 0

and

fra(p) =~ _

do
It is shown in [8] that

'S

Tol for p > 0.

_n (=12, p?
K,(t,p) = (drt)"2e”" 7 ‘e” T a,(t,p)

and o, (t, p) satisfies the following recurrence relation:

day,
an:flan—2_2t “ 2'
do

As H!' is the one-dimensional Euclidean space, we have

2
Ky = (4m)"2e T,
so ap = 1.
Using the definition of f; and the recurrence relation for «,,, Davies and Man-
douvalous prove the following properties for f; and «,, for odd n.

Lemma 2.1 ( [8]). The following is true:
(1) For eachl > 1, f; is positive and decreasing.



SUPERCONVEXITY OF THE HEAT KERNEL ON HYPERBOLIC SPACE 3

(2) For allm > 1,
m—1

A2m+1 — Z tiPm.,i(flvaa- 7fm) >0

i=0
where Py, ; are all polynomials with nonnegative coefficients.

We will also need the following fact proved by C. Yu and F. Zhao.
Lemma 2.2 ( [11, Proposition 3.1]). For alll > 1,

d fi41
do (_T) =0

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By [1, Proposition 2.1], it is sufficient to prove the claim for
odd n > 3. To that end, suppose n = 2m + 1 for some m > 1. We first compute
0, log K, (t, p):

0,K
Oplog K,, = £
and
n—1)2 2
0Ky = (47rt)*fe*( Tt (—%an + 8,)04") e T,
Thus
—£La, + 8pan p
Oplog K,, = %a—n =y + 0, log a,.

Then we differentiate the above identity with respect to p:
1
85 log K, = ~o + (’9’3 log av,

Thus, using the chain rule,

sinh?(p)d? log K, = (?i log K,, — coth(p)0, log K,

1
- (—— +92log an) — coth(p) (—% + 9 log 0‘")

2t
h(p) —1
- % + (07 log vy, — coth(p)d, log vy )
th(p) — 1
_ % + sinh? ()92 log av,.

Using x > tanh(z) for > 0, it is easy to see that the first term is always positive
and independent of n. Therefore, it suffices to show that

(’“)3 loga, >0
for n = 2m + 1. Since
(6130471)@71 - (600471)2

2
n

D2loga, =
«

it would be sufficient if we proved the following claim:

Ap € (B2an)an — (Opom)? >0 for n=2m + 1.
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To see this, we need to use Lemma 2.1 and Lemma 2.2 to compute the o-derivatives
of o, where n = 2m + 1 for some m > 1. Since

m—1
Q2mi1 = Y ' Pri(frs - s fm)

=0

it follows that

m—1
A2m+1 - [Z

i=0

m—1 ide7i
B [Zt do

1=0

d* P i
Z i
2m—

2
X d?P,, g APm.o dPnp
— tZ Pm o il _ 9 9 .
; Z [ ’ do do do ]

a+pB=1
0<a,B<m—1

To show Agp,11 > 0, it is sufficient to show that for each 0 < i < 2m — 2

d?P, dPp, o dP,
Bt Y s dBuadbiy
k _ do do do
a+pB=1
0<a,B<m—1
By Lemma 2.1, we know that P, »(y1, -+ ,Ym) is a polynomial in yq,- -+ , Yy, with
nonnegative coefficients, so we can assume that
Pm,r(yla"' 7ym) = Z am,r,jy--jmy{l y%n
Jiy 5 Jm 20

where all @,y j, .. > 0 with only finitely many nonzero. Then, applying chain

rule, one gets

der— Z amr,h Jm>OZf ..(jsfjsldfs> me

'jwn

1,5 Jm
m
1 ; ..ferl
5wt (S22
Ji,,0m 20 s=1 8

and from P, , > 0 and Lemma 2.2, one gets

2
d*P, $ ; ; Zm Jst1
m,r = s J1 L fIm — 'S il
do? Amyrogr-jm J1 fm < J fs

Ji,r3dm 20 s=1
m
. fs+1
+ Z Am,rj; - fm do (Z —Js _f )
J1s 3 Jm >0 s=1 s
.. Jm . Jstl
2 E Amrgiegm Ji 00 fin <§ —Js I;
J1, 2dm >0 s=1 s

Now, we realize that we can symmetrize the expression of B, ;:

&Py, 5 APy . dPpodPo s
9B, ; = p, 2omb L p. _odm, *
: > o Tgpz T Eme T do  do

a+pB=1
0<a,B<m—1
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and from the previous computation we know that

def d2Pm,B dzpm,a _ 2de,a de,B

Cm.i = Ppo——=-+P
™o ™ o2 B g2 do  do
Ji Im, k km s+1
z Y magign i T Y mprkn 1 fE (D ks f
Ji,,dm 20 k1, km=>0 s=1 s
Ji im . Js+1 k Em
2l GO DR Y e i DD A S mskka S S
G1, 0 jm >0 s=1 S ki, km>0
m
J1 im . ferl
-2 Y i 1 D s
Ji,5dm >0 s=1 i
m
k km fs+1
X Y ampkakn ST (D ks f
ki, km >0 s=1 $
j1+k jm -+
> Y Y Qi @Bk 1 R
j17~'7jm20 kl,---,kaO
2 2
m m m m
- fsr1 fs+1 . fst1 fsr1
X Z_]S f + Z_ks T —2 Z_js T Z_ks f
s=1 i s=1 $ s=1 $ s=1 i
Therefore, by completing squares and the facts that f; > 0 and ay,.0,4,...5,, > 0 and
Am,B,ky--km > 0, we conclude Chy, ; .3 > 0 and prove the claim. O
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