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Numerical Method for Direct
Solution to Form-Finding
Problem in Convex Gridshell
Elastic gridshell is a class of net-like structure formed by an ensemble of elastically deform-
ing rods coupled through joints, such that the structure can cover large areas with low
self-weight and allow for a variety of aesthetic configurations. Gridshells, also known as
X-shells or Cosserat Nets, are a planar grid of elastic rods in its undeformed configuration.
The end points of the rods are constrained and positioned on a closed curve—the final
boundary—to actuate the structure into a 3D shape. Here, we report a discrete differential
geometry-based numerical framework to study the geometrically nonlinear deformation of
gridshell structures, accounting for non-trivial bending-twisting coupling at the joints. The
form-finding problem of obtaining the undeformed planar configuration given the target
convex 3D topology is then investigated. For the forward (2D to 3D) physically based simu-
lation, we decompose the gridshell structure into multiple one-dimensional elastic rods and
simulate their deformation by the well-established discrete elastic rods (DER) algorithm. A
simple penalty energy between rods and linkages is used to simulate the coupling between
two rods at the joints. For the inverse problem associated with form-finding (3D to 2D), we
introduce a contact-based algorithm between the elastic gridshell and a rigid 3D surface,
where the rigid surface describes the target shape of the gridshell upon actuation. This tech-
nique removes the need of several forward simulations associated with conventional opti-
mization algorithms and provides a direct solution to the inverse problem. Several
examples—hemispherical cap, paraboloid, and hemi-ellipsoid—are used to show the effec-
tiveness of the inverse design process. [DOI: 10.1115/1.4048849]
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1 Introduction
Traditional three-dimensional shell structures can resist external

loads through their inherent shapes; however, if regular holes are
made in the shell, with the removed material concentrated into the
remaining strips, a structurally flexible gridshell can be achieved.
Several spectacular architectures, e.g., Helsinki Zoo’s observatory
tower and Centre Pompidou Metz, were manufactured with a
network of one-dimensional beams, such structures serve both aes-
thetical and functional purposes in the civil engineering community
[1]. Besides the construction of buildings in civil engineering [2–4],
abundant applications in mechanical systems, e.g., micro/nano-
structures [5–7], stretchable electronics [8,9], and bio-inspired pat-
terns [10,11], employ gridshell as a major structural component in
their design step to achieve specific functionalities. While the grid-
shells studied by Baek et al. [12,13] had joints that were free to
rotate and twist, recent work by Panetta et al. [14] constrained the
bending and twisting at the joints. This leads to non-trivial twisting
and bending coupling between two rods at the joints, which can
improve the robustness of the structure and increase the design
space of the architectural shapes [3]. Computationally efficient
numerical simulation tools for this class of structures can allow
simulation-guided design and eliminate the need for painstaking
trial-and-error prototyping.
In the computational mechanics community, modeling and simu-

lation of thin elastic objects, e.g., rods and shells, are of sufficient
general interest because of the preponderance of geometrically non-
linear deformation. Finite element method has been the most

commonly used method in structural analysis over the past few
decades [15,16]. Recently, discrete differential geometry
(DDG)-based methods [17] are becoming popular in the computer
graphics community to simulate the thin elastic structures, e.g.,
hair and clothes, due to the computational efficiency and the robust-
ness in handling geometric nonlinearity, collision, and contact. Pre-
vious DDG-based methods have shown surprisingly successful
performance in simulating slender structures, e.g., rods [18–22],
beams [23], beam networks [24], ribbons [25,26], and plates/
shells [26,27–30]. Gridshell, on the other hand, usually represents
a curved surface comprised of multiple 1D elastic rods and differs
from the traditional 1D rods or 2D shells. This leaves room for
new numerical methods for accurate and efficient simulation of
gridshells. Baek et al. first proposed a method based on discrete
elastic rods (DER) to investigate the buckling instability and
form-finding of gridshells [12] and found excellent agreement
between experiments and simulations. A stiff spring is used in
that framework to simulate the joint between two rods and the
spring force is treated using an explicit approach. The joint
between two intersecting rods is free to twist as well as rotate
such that the twisting and bending coupling between two rods are
not taken into account. This numerical framework was later used
to study the elastic rigidity of hemispherical gridshells [13]. Numer-
ical methods to capture the bending and twisting coupling at the
joints either use a penalty energy between the neighboring material
frames of two rods system [31,32], or a geometric constraint-based
energy functional [14]. Finite element-based numerical methods to
simulate this class of structures have also been introduced [33,34].
An even more intriguing feature of elastic gridshell is its form-

finding process. Figure 1(a) shows three examples of convex 3D
gridshells, whereas Fig. 1(b) describes the actuation process. In
Fig. 1(b), the undeformed gridshell is planar and the extremities
of the elastic rods fall on a closed curve, G0. In order to actuate
the gridshell, the end points of the rods are constrained to fall on
a second closed curve, G. The form-finding problem, i.e., the
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inverse problem in this case, calls for computation of G0 given the
target 3D shape and the final boundary, G. This transformation
between the 2D planar structures and the complex 3D topologies
by using the geometry and structural instability is of interest
[5,6,11,34,35] and might lead many applications in mechanical
systems [36–48]. Prior works on mechanically guided assembly
of 3D structures range from macroscopic origami-inspired struc-
tures [49,50] to microscopic buckling of elastic ribbons attached
to a pre-stretched substrate [6]. While a number of studies investi-
gated the forward dynamics, we focus on a computationally effi-
cient method to solve the inverse design problem of finding the
initial planar shape with a given 3D target configuration. Reference
[51] considered Chebyshev net theory to map a group of rods onto a
given surface, e.g., human face, to design wire mesh. Prior works on
the inverse problem include analytical solution to a pair of ordinary
differential equations (ODEs) on the basis of Gauss equation [12],

or numerical optimization coupled with physics-based simulations
[11,14,30]. Recently, a genetic algorithm-based method [30] and
an optimization-based simulation framework [14] have been intro-
duced to study the form-finding problem in elastic gridshells;
however, these methods require running the physics-based simula-
tion numerous times in order to find the optimal solution, especially
when a good initial guess is not available. As an example, the
form-finding problem of a hemispherical gridshell in Fig. 1(a)
may take approximately 102 generations with 5 × 102 individuals
in a population in genetic algorithm, corresponding to 5 × 104

forward simulations. The proposed method reduces this problem
to a single forward simulation.
Here, we develop a numerical method for the inverse form-

finding problem of gridshells. Different from above analytic and
optimization methods that typically require numerous “forward”
simulations to predict the deformation of the gridshell under

(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 1 (a) 3D gridshells: (a1) hemispherical cap, (a2) paraboloid, and (a3) hemi-ellipsoid and
(b) their corresponding initial and final boundaries
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various boundary conditions imposed by G and G0, this method
implements a mechanics-based forward simulation of a gridshell
draping around the target rigid shape under gravity. This single
forward simulation can offer an excellent solution to the inverse
problem. The simulation relies on a DER-based numerical frame-
work, where both the rods and the joints are represented by the
discrete elastic rod model. Discrete equations of motions, based
on the balance of elastic and external forces, are solved to update
the structural configuration with time. The main contribution of
this paper is a numerical method for form-finding of convex
gridshells based on contact [52]. In Fig. 1, we show several 3D
configurations of convex gridshell structures as well as their corre-
sponding initial planar boundaries constructed by the contact-based
method described in this paper. The boundary of the 2D unde-
formed shape, G0, can be almost exactly obtained by draping the
elastic gridshell under gravity over the rigid 3D target surface.
This calls for simulation of contact between the gridshell and the
rigid surface and is handled via the modified mass method
[27,53]. Discrete simulations are naturally suited to handle
contact, which underlines the need for DDG-based methods in the
study of form-finding of gridshells. The initial planar pattern of
grid can be easily obtained by only running the physically based
simulation once, which can significantly reduce the computational
time when solving the form-finding problem.
Our paper is organized as follows. In Sec. 2, we discuss the DER-

based numerical framework of gridshell simulation, with a focus on
geometric decomposition and bending-twisting coupling at rota-
tional joints. Then, in Sec. 3, we introduce a modified mass-based
contact algorithm for the form-finding problem associated with
gridshells. Finally, concluding remarks and avenues for future
research are presented in Sec. 4.

2 Numerical Method
In this section, we discuss the forward physically based simulation

of gridshells. Gridshell is a type of structure that comprises multiple
one-dimensional rods connected through joints. These joints may
twist and rotate [14]. Here, in Sec. 2.1, we first briefly review the
DER method for a single elastic rod, then extend this method to a
numerical framework for the simulation of gridshells in Sec. 2.2.
Finally, Sec. 2.3 presents two simple cases to demonstrate the twist-
ing and bending coupling between two rods at the joint.

2.1 Discrete Elastic Rods Method. In the discrete setting
of DER, shown schematically in Fig. 2(a), the rod centerline is dis-
cretized into N nodes: [x1, x2,…, xN], and (N− 1) edges: [e1, e2,…,
eN−1], with ei= xi+1− xi, where i= 1, …, N− 1. Each edge, ei, has
an orthonormal adapted reference frame d(1)i , d(2)i , ti

{ }
and a mate-

rial frame m(1)
i , m(2)

i , ti
{ }

; both the frames share the tangent ti= ei/
‖ei‖ as one of the directors. The reference frame is updated at each
time-step through parallel transport in time, and, referring to
Fig. 2(b), the material frame can be obtained from a scalar twist
angle θi, see Ref. [21] for a detailed exposition of the DER algo-
rithm. Nodal positions (total 3N) and the twist angles (total N− 1)
constitute the (4N− 1)-sized degrees-of-freedom (DOF) vector,
q = [x1, θ1, x2, …, xN−1, θN−1, xN], of the discrete rod. Based on

this kinematic representation, in the remainder of this section, we
discuss the formulation of elastic energies, elastic forces, and the
time stepping procedure of the rod solver.
An elastic rod is modeled as a mass-spring system, with a

lumped mass (and angular mass) at each node (and edge), and asso-
ciated discrete stretching, bending, and twisting energies. For a rod
with Young’s modulus E, shear modulus G, and isotropic circular
cross section, the elastic energies—stretching, bending, and
twisting—are given by [18,19]

Es =
1
2

∑N−1
i=1

EA(ϵi)
2‖�ei‖ (1a)

Eb =
1
2

∑N
i=1

EI

Δli
κi − �κi( )2 (1b)

Et =
1
2

∑N
i=1

GJ

Δli
(τi)2 (1c)

where A is the area of the cross section, I is the area moment of
inertia, J is the polar moment of inertia, ϵi is the stretching strain
associated with the ith edge, ‖�ei‖ is its undeformed length, κi =
κ(1)i , κ(2)i

[ ]
is the bending curvature at the ith node (�κi is the curva-

ture in the undeformed configuration), τi= θi− θi−1+mi is the twist
at the ith node (mi is the twist of the reference frame, details can be
found in Refs. [19,21]), and Δli= (‖ei‖+ ‖ei+1‖)/2 is its Voronoi
length. The strain measures, i.e., ϵi, κi, and τi, can be expressed
in terms of q (specifically, xi−1, θi−1, xi, θi, xi+1). The case of non-
circular cross-section can be included in the above formulation with
minor changes [14,18,19].
At each degree-of-freedom, qj ( jth element of the vector q), the

elastic forces (associated with nodal positions) and elastic
moments (associated with the twist angles) are given by

Fint
j = −

∂
∂q j

Es + Eb + Et( ) (2)

where j is an integer between 1 to 4N− 1 and Fint
j is the jth element

of the (4N− 1)-size elastic force vector.
In the time stepping scheme of the DER method, implicit Euler

integration is used to solve the following 4N− 1 equations of
motion and update the DOF vector q as well as its velocity (time
derivative of DOF) v = q̇ from time-step tk to tk+1= tk+ h (h is
the time-step size):

MΔq(tk+1) − hMv(tk) − h2 Fint(tk+1) + Fext(tk+1)
[ ]

= 0 (3a)

q(tk+1) = q(tk) + Δq(tk+1) (3b)

v(tk+1) =
1
h
Δq(tk+1) (3c)

where Fext is the external force vector (e.g., gravity, damping, or
reaction force due to contact) and M is the diagonal mass
matrix comprised of the lumped masses [54]. The Jacobian

(a) (b)

Fig. 2 (a) Schematic of a discrete rod. (b) Notations used in our discrete model. Bending curvature is related to
turning angle, ||κi||=2tan(ϕi/2).
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associated with Eq. (3a) necessary for Newton’s iteration can be
expressed as

Jij = miδij − h2
∂Fint

i

∂q j
+
∂Fext

i

∂q j

( )
(4)

where i and j are integers between 1 to 4N− 1, the mass (or angular
mass) associated with the ith DOF ismi, and both the elastic internal
force, Fint

i , and external force, Fext
i , are evaluated at t= tk+1. If the

gradient of the external forces cannot be evaluated, ∂Fext
i /∂q j can

be ignored so that these forces are handled explicitly. Importantly,
the Jacobian J is a banded matrix and the time complexity of this
algorithm is O(N ) (the computational time linearly scales with the
number of nodes [19]). This computational efficiency has motivated
its application in the animation industry (e.g., hair simulation for
movies) as well as its adoption in mechanical engineering [55–57].

2.2 Discrete Elastic Gridshells. Now we formulate the dis-
crete numerical framework for simulation of gridshells. We con-
sider a basic element of the gridshell in Fig. 3(a), where two rods
intersect each other at a shared point. The position of the jth node
on the ith rod within the gridshell system is denoted as xi,j. The
twist angle of the jth edge on the same rod is θi,j. In Fig. 3(a),
the two nodes, x1,3 and x2,3, from two different rods overlap at
the joint. A straightforward method to enforce the coincidence of
two nodes at the joint is a linear spring-like energy of the form

Ec =
1
2
C‖x1,3 − x2,3‖2 (5)

where C is the Lagrange multiplier. Its negative gradient, −(∂Ec/
∂q), is included as an external force in Eq. (3a). The Hessian of
this energy can be trivially computed to aid the Newton’s method
in the solution of the equations of motion. An alternative approach
to enforce this condition will be discussed next.
In addition to the coincidence of two nodes, there is a non-trivial

coupling between the twisting and bending modes at the joints, e.g.,
twisting rod 1 in Fig. 3(a) can cause rod 2 to rotate. Here, we con-
sider the pin-joints with a specific constraint for rotations at the
contact area. To account for this coupling at the joints, we decom-
pose the basic gridshell element into four elastic rods in Fig. 3(b):
the first two are the physical rods denoted as rod 1 and 2; the
other two are linker rods with 3 nodes to model the joints. Hereafter,
we use subscripts to denote quantities associated with the physical
rods, e.g.,x1,1 is the first node on the first rod, and superscripts when
associated with linker rods, e.g., x1,1 is the first node on Linker
1. Each rod can be simulated by the conventional DER method.
A penalty energy can be used to account for the coupling
between twisting and rotating at the joints. For the first linker and
the first physical rod, the penalty energy is

E′
c =

1
2
C1‖x1,2 − x1,1‖2 + 1

2
C1‖x1,3 − x1,2‖2 + 1

2
C2‖θ1,2 − θ1,1‖2

(6)

whereC1 andC2 represent the stiffness of the joint against the rotation
and twist coupling. A similar penalty energy exists between the first
linker and the second physical rod. At sufficiently high values of C1

and C2, the rods at the joint cannot twist or rotate with respect to
one another. We use C1=C2= 106 EI in the current numerical inves-
tigation after a convergent study [30]. The external force and Jacobian
associated with these energies can again be trivially computed. We
should keep in mind that, when we decompose the basic element of
the gridshell structure into two rods and two linkers, themass and stiff-
ness of the rods at the joint should not be double counted, e.g. the
lumped mass at the joint node should be divided by four and then
used as the mass associated with x1,3, x2,3, x

1,2, and x2,2.
In our numerical implementation, at every time-step, the equa-

tions of motions for the physical and linker rods are independently
solved. This allows us to take advantage of the banded nature of the
Jacobian matrix. The penalty forces in Eqs. (5)–(6) are then calcu-
lated and included as external force in the next time-step, i.e., the
penalty forces are treated explicitly. An alternative to this approach
of solving a number of smaller systems and subsequently bringing
them together is to solve a large system, consisting of all the phys-
ical and linker rods, with an implicit treatment of the penalty forces.
The large system would no longer have a banded Jacobian
matrix since the Hessian matrix of the penalty energies would
occupy non-banded entries within the Jacobian. A second alterna-
tive is to forego the use of penalty energies and treat the overlapping
nodes (e.g. x1,3, x2,3, x

1,2, and x2,2) and edges (e.g. θ1,2 and θ1,1)
with the same degrees-of-freedom. For example, instead of using
3 × 4 degrees-of-freedom for the overlapping nodes in Fig. 3(b),
we can introduce three degrees-of-freedom, xjoint, for the joint
node and apply the sum of forces from all the four nodes onto the
newly introduced single node. A simulation code developed for
one method can be easily re-purposed to employ a different
method. While solving extremely large systems, correct choice of
the time integration scheme may depend on the computer
memory as well as the degree of parallelism. A detailed comparison
among the explicit method (used in the current study), implicit
method, and the mapping method can be found in Ref. [30].

2.3 Demonstration of Bending and Twisting Coupling. We
use two simple demonstrations to show the coupling between
two rods at the joint. In Fig. 4(a), we show the response of
the basic element of a gridshell when one rod is twisted. The
first twist angle of one rod, θ1,1, referring to Fig. 4(a), is
rotated with a prescribed angular velocity, ω= 10 rpm, such that
θ1,1(t)=ωt. Due to the two linkers at the joint, the centerline of the
other rod rotates about the former one with the same angular velocity
ω. This demonstrates the twisting coupling between two rods.

(a) (b)

Fig. 3 Schematic of geometric decomposition of gridshell. The configuration of gridshell
(a) before decomposition and (b) after decomposition.
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We now turn to bending coupling in Fig. 4(b) and specify the
position of the first node of the first rod, x1,1≡ [x1,1 (t), y1,1 (t),
z1,1 (t)], highlighted in Fig. 4(b), where

x1,1(t) =
1
2
L cosωt (7a)

y1,1(t) =
1
2
L sinωt (7b)

z1,1(t) = 0 (7c)

L is the total length of the undeformed rod, and ω= 10 rpm. The
location of the middle node on the first rod that falls on the joint
is kept fixed with time to avoid rigid body motion. Due to these
fixed degrees-of-freedom, the first rod rotates about the z-axis
with a prescribed angular velocity ω. Also, because of the coupling
of bending between two rods at the joint, the second rod also rotates
about the z-axis at the same angular velocity.

3 Form-Finding
We now focus on the inverse problem of obtaining the unde-

formed 2D shape, given the target 3D shape. This method relies
on draping the gridshell around a rigid body with the target geom-
etry. In this section, first, the discrete gridshell algorithm is coupled
with the modified mass method [27,53] to simulate the draping
process; then, the procedure to obtain the initial boundary, G0 in
Fig. 1(a), is described, accompanied by a number of examples.

3.1 Modified Mass Method. In Fig. 5(a), the target rigid
shape is described by the function z= f (x, y). The position of a
node, xi(tk), in a discrete gridshell structure at time t= tk, approaches

the target rigid surface, z= f (x, y). If the rigid surface is not
accounted for, the position of this node at the next time-step is,
say, xi′(tk+1)≡ [x0, y0, z0]. In the time marching scheme of the simu-
lation, if this node falls under the target surface so that

z0 < f x0, y0
( )

(8)

a correction is required to move xi′(tk+1) onto the target surface
along the the surface normal vector

pn(x0, y0) = −
∂f (x0, y0)

∂x0
, −

∂f (x0, y0)
∂y0

, 1
[ ]

(9)

and the necessary displacement vector for correction is

δi = ‖δzi‖ cosψ
pn
‖pn‖

(10)

where δzi = f (x0, y0) − z0[ ]nxy, ‖pn‖ is the magnitude of the vector
pn, and ψ is the angle between nxy (the normal vector to the x− y
plane), and pn (the surface normal vector), as shown in Fig. 5(b).
In order to enforce this displacement, the equations of motion for

the nodal positions in Eq. (3) have to be slightly modified. For the
three degrees-of-freedom at the ith node, xi= [xi, yi, zi], the updated
form of Eq. (3a) is

Δẋi(tk+1) −
h

mi
Si(tk+1) Fint

i (tk+1) + Fext
i (tk+1)

[ ]
− Δvprei (tk+1) = 0

(11)

wheremi is the lumped mass;Δvprei is the prescribed change in velo-
city that can be obtained from the prescribed displacement, δi; Fint

i is
the three-element elastic force vector on the ith node; Fext

i is the

(a) (b)

Fig. 4 Illustration of non-trivial coupling between two intersected rods at joint: (a) twisting coupling
and (b) bending coupling

(a) (b)

Fig. 5 (a) Notations and schematic used in modified mass-based contact method and
(b) zoom in figure of (a)
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external force vector; and the modified mass matrix is

Si =

I if free DOF of ith node = 3

I −
pnp

T
n

‖pn‖2
( )

if free DOF of ith node = 2

I −
pnp

T
n

‖pn‖2
−

qnq
T
n

‖qn‖2
( )

if free DOF of ith node = 1

0 if free DOF of ith node = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where I is the 3 × 3 identity matrix; pn is the constrained direction
when free DOF=2; and pn and qn are the constrained directions
when free DOF=1. Note that when a node is free, Δvprei = 0, and
Eq. (12) can thus be simplified to Eq. (3). If the node is fully
constrained (Si = 0), Eq. (12) reduces to Δẋi(tk+1) − Δvprei (tk+1) =
0 and the change in position (as well as the velocity) is enforced
to take the prescribed value. In our case, we only constrain
the node along surface normal, pn, such that the number of
free DOFs of the ith node is 2. In our numerical implementation,
we employ inelastic collision between the i-th node and the target
3D surface, i.e. once the node is in contact with the target
surface, we manually set its velocity to zero at the end of the
current time-step.
Every time-step in simulation accounting for the contact with a

rigid surface may require integration of the equations of motion
twice. The first solve is the predictor step that determines if any
node fell under the target surface. The optional second solve is
the corrector step that is only necessary if any node was detected
to fall through the rigid surface. A pseudo code of contact-based
form-finding simulation is provided in Algorithm 1.

Algorithm 1 Modified mass-based contact simulation of elastic
gridshell

Require: m — Number of rods
Require: n — Number of linkers
Require: q(i)(0), where i ∈ [1,m] — Initial DOFs of rods
Require: q(i)(0), where i ∈ [1, n] — Initial DOFs of linkers
Require: h — time step size
Require: T — total simulation time
Ensure: q(i)(T), where i ∈ [1,m] — Final DOFs of rods
Ensure: q(i)(T), where i ∈ [1, n] — Final DOFs of linkers

k ← 0
tk ← 0.0
while tk ≤ T do
tk+1 = tk + h
k ← k + 1
for i = 1 to i = m do
solved ← 0
while solved= 0 do
Update DOFs in i-th rod (q(i))
solved ← 1
for each node on i-th rod do
[x0, y0, z0] ← x, y, z coordinates of the node
if z0 < f (x0, y0) then
Constrain the normal direction of xi,j
solved ← 0

end if
end for

end while
end for
for i = 1 to i = n do

Update DOFs in i-th linker (q (i)) based on Eq. (3b)
end for

end while
return q(i) (T ), where i ∈ [1,m].
return q (i) (T ), where i ∈ [1, n].

3.2 Initial Boundary From the Draping Method. Three
target shapes—hemisphere, paraboloid, and hemi-ellipsoid
shapes—are used as examples to demonstrate the form-finding
process of gridshell structures. The physical parameters are as
follows: rod length s= 1.2m, rod radius r0= 1mm (and, therefore,
second moment of inertia, I = πr40/4, polar moment of inertia,
J = πr40/2, and cross-sectional area A = πr20), Young’s modulus E
= 1MPa, shear modulus G=E/3 (assuming incompressible mate-
rial), material density ρ= 1.0 g/cm3, distance between two parallel
rods Δs= 3 cm, discrete edge length ‖�e‖ = 5mm, and distance
between planar X-shell and 3D surface top (choosing arbitrarily)
is H= 5 cm. As long as the rod can be assumed to be soft enough
and inextensible, these parameters do not significantly influence
the actuated shape of the gridshell [12]. The geometries of the
target surfaces are given by

Γ1(x, y, z):
x2

R2
h

+
y2

R2
h

+
z2

R2
h

= 1, with 0 ⩽ x2 + y2 ⩽ R2
h and z ⩾ 0

(13a)

Γ2(x, y, z):
x2

R2
p

+
y2

R2
p

+
z

Hp
= 1, with 0 ⩽ x2 + y2 ⩽ R2

p and z ⩾ 0

(13b)

Γ3(x, y, z):
x2

a2e
+
y2

b2e
+
z2

c2e
= 1, with 0 ⩽ x2

a2e
+
y2

b2e
⩽ 1 and z ⩾ 0

(13c)

where Rh= 0.2m (for hemisphere); Rp= 0.2m and Hp= 0.12m (for
paraboloid); ae= 0.2m, be= 0.15m, and ce= 0.12m (for
hemi-ellipsoid).
In Figs. 6(a1)–6(c1), the undeformed planar gridshells are

located above the 3D rigid surfaces described by Eqs. (13). The
elastic rods are symmetrically distributed about the x and y-axes
in case of the hemisphere (17 × 17 grid) and the paraboloid (15 ×
15 grid); for the hemi-ellipsoid, on the other hand, there are 11
rods along the x-axis and 15 along the y-axis. Note that the rod
number for each case is determined by the size of the desired
shapes, i.e. we want at least one node on each rod to contact the
target surface. The planar gridshells are dropped under a gravity-
type load that is large enough to drape the structure around the
target rigid surface. In Fig. 6, gravitational acceleration of g=
9.81 m/s2 was sufficient. Figures 6(a2)–6(c2) shows the deformed
shapes of the gridshells. Parts of the gridshell are in contact with
the rigid surface (located above the x− y plane) and the other
parts remain suspended under gravity below the x− y plane. The
suspended parts (i.e. nodes that fall below the minimum
z-coordinate of the target rigid shape) are trimmed in Figs. 6(a3)–
6(c3) to obtain the new extremities (first and last nodes) on each
elastic rod. This describes the final boundary G of the form-finding
problem (also see Fig. 1). In Figs. 6(a4)–6(d4), the extremities upon
trimming are mapped back to the initial planar gridshell, i.e., the
planar shape is also trimmed to get rid of the suspended portions.
This gives the initial boundary, G0, of the gridshell. Then, the
target 3D pattern described in Eqs. (13) can be obtained by
moving the nodes on the extremities of the rods from the initial foot-
print, G0, to the final boundary, G.
The analytical solution to the initial boundary in case of a hemi-

sphere [12] is also shown in Fig. 6(a4). For the cases of paraboloid
and hemi-ellipsoid, the analytical solutions are not easy to derive
and, therefore, we compare the planar boundaries obtained from
the draping process and the ones found by genetic algorithm-based
optimization [30] in Fig. 6(b4) and 6(c4). The good match indicates
the correctness and the validity of the proposed method. Even when
the solution from the process outlined in Fig. 6 is not accurate
enough, it provides an excellent initial guess for conventional opti-
mization algorithms.
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For a physical understanding of this method, we consider the
balance of forces. Each node in the simulation is balanced by
three forces: (1) gravity, (2) contact force from the target rigid
surface, and (3) elastic forces (primarily bending). This competition
of forces yields a deformed shape that conforms to the target
surface. On the other hand, in the “pop-up” fabrication process
[12] of gridshell where the nodes on G0 are moved to G, gravity
and contact forces are replaced by forces acting on the extreme
nodes (located on the boundary) by an external agent. Our results
show that, surprisingly, the deformed shape remains almost the
same despite substitution of gravity and contact with boundary con-
ditions on a handful of nodes. Next, to demonstrate that the numer-
ical method is robust against initial grid spacing, in Figs. 7(a) and
7(b), we show the hemispherical gridshell with different grid spa-
cings. Here, the distance between two parallel rods are Δs= 4 cm
(for Fig. 7(a)) and Δs= 5 cm (for Fig. 7(b)); the rod number is
changed to 13 × 13 and 11 × 11, respectively, to ensure that each
rod comes in contact with the target surface. As shown in
Figs. 7(a2) and 7(b2), the initial planar grids match well with the
analytical solution in both of these two cases.

3.3 Computational Time. Next, we highlight the computa-
tional efficiency of the presented contact-based numerical

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Fig. 6 Form-finding process of gridshells: (a) hemisphere, (b) paraboloid, and (c) hemi-ellipsoid.
(1) Initial setup of planar gridshells and target 3D surfaces. (2) Deformed configuration of the grid-
shells on the rigid surfaces. (3) Gridshells after trimming. (4) Initial planar shapes after mapping
the trimmed gridshell onto the undeformed planar shape. The dashed line in (a4) is the analytical
solution [12], and the ones in (b4) and (c4) are from the genetic algorithm-based optimization in
Ref. [30].

(a1) (b1)

(a2) (b2)

Fig. 7 (a) Hemispherical gridshells with different grid spacing.
(b) Their corresponding initial planar shapes. (1) Hemispherical
grid with Δs=4 cm; (2) hemispherical grid with Δs=5cm.
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simulation of elastic gridshells. In Fig. 8(a), we plot the computa-
tional time as a function of time-step size, h, for three different
cases. Here, the number of DOFs in all scenarios is fixed at
∼8000. The total simulation times are approximately 50 s (for hemi-
sphere), 30 s (for paraboloid), and 20 s (for hemi-ellipsoid), sepa-
rately. Then, referring to Fig. 8(b), we show the reliance of the
computational time on the number of DOFs. The time-step size in
this figure is set to be h= 0.1 s. Unsurprisingly, computational
time dramatically increases as the number of DOFs increases. The
simulations are performed on a single thread of Intel Core
i7-6600U Processor @ 3.4 GHz. Overall, reasonable predictions
can be obtained within one minute.

3.4 Limitations. Via comparison with Refs. [12,30], the effec-
tiveness of our proposed direct-contact method can be indirectly
validated. The proposed method relies on the approximation that
replacing the reaction forces at the boundary of the gridshell with
a gravity-like load on all the nodes and constraints from the rigid
target surface results in the same deformed shape of the gridshell.
In the future, limitations of this approximation can be analyzed
using theoretical mechanics. We also limited ourselves to convex
surfaces with analytical solutions. Future directions of work can
include surfaces with negative curvature and concave shapes; our
contact-based form-finding method fails to handle negative curva-
ture, e.g. hyperbolic surface. In this case, the final footprints are
no longer planar. In addition, the proposed frictionless contact-
based method would fail to fully drape around non-convex geome-
try. One possible approach in these cases is to use the proposed
method to obtain an initial guess and then use this guess to start a
more comprehensive inverse design process, e.g., genetic algorithm
[30] and generative adversarial networks [58]. Another potential
direction is to design multiple simple gridshells and then sew the
solutions together to achieve more complex (potentially concave)
gridshells. This concept was alluded to in Ref. [12].
The amount of twist along the rods in the examples explored in

this manuscript is negligible. We did not find any significant
effect of the coupling between bending and twisting on multiple
rods at the joints. In the future, the role of the mechanics of the
joints on the overall shape of the gridshell can be explored.

4 Conclusions
We introduced a numerical framework for the simulation of grid-

shells and solved the form-finding problem directly, without any
numerical optimization. For the forward physical simulation, we
first decomposed the gridshell as well as its joints into multiple
elastic rods, such that each component can be treated using the well-
established DER method. For the inverse problem of form-finding,
we formulated a modified version of the discrete gridshell

simulation algorithm by coupling it with the modified mass
method to account for the contact between an elastic gridshell and
the target rigid 3D surface. We showed that the gridshell, upon
draping around the target shape, can be simply trimmed to directly
get the initial planar boundary. A good match between the analytical
solution and the contact-based result in case of a hemispherical
target shape indicates the potential use of our method in form
finding problems. Here, we limited ourselves within the convex sur-
faces with analytical solutions. The shape construction for arbitrary
surfaces may need to introduce the frictional contact between the
stretchable gridshells and target surfaces. We hope that our results
and methodology will instigate future work on buckling induced
mechanically guided assembly in physical systems (e.g., pop-up
actuation of a planar grid to a target shape) from macro scale
(e.g., domes in architecture) to micro-scale (e.g., controlled buck-
ling of slender rods for stretchable electronics).
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