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Robust Trajectory Optimization Over Uncertain
Terrain With Stochastic Complementarity

Luke Drnach and Ye Zhao

Abstract—Trajectory optimization with contact-rich behaviors
has recently gained attention for generating diverse locomotion
behaviors without pre-specified ground contact sequences. How-
ever, these approaches rely on precise models of robot dynamics
and the terrain and are susceptible to uncertainty. Recent works
have attempted to handle uncertainties in the system model, but
few have investigated uncertainty in contact dynamics. In this
letter, we model uncertainty stemming from the terrain and design
corresponding risk-sensitive objectives for contact-implicit trajec-
tory optimization. In particular, we parameterize uncertainties
from the terrain contact distance and friction coefficients using
probability distributions and propose a corresponding expected
residual minimization cost approach. We evaluate our method in
three simple robotic examples, including a legged hopping robot,
and we benchmark one of our examples in simulation against a
robust worst-case solution. We show that our risk-sensitive method
produces contact-averse trajectories that are robust to terrain
perturbations. Moreover, we demonstrate that the resulting tra-
jectories converge to those generated by a traditional, non-robust
method as the terrain model becomes more certain. Our study
marks an important step towards a fully robust, contact-implicit
approach suitable for deploying robots on real-world terrain.

Index Terms—Optimization and optimal control, motion and
path planning, contact modeling.

I. INTRODUCTION

TRAJECTORY optimization has become a powerful tool
for designing dynamic motions for robots with nonlin-

ear, hybrid, under-actuated dynamics and constraints [1]–[6].
Although impressive locomotion applications abound in the
literature and transfer to hardware has been reliably demon-
strated in laboratory conditions [7], successful application of
trajectory optimization to locomotion in general, unstructured
environments is still challenging: success depends critically on
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multiple factors including model fidelity, environmental uncer-
tainty, and the ability to design effective closed-loop strategies
for executing planned motions [3], [5]. As optimal strategies
often lie on the boundary of the feasible region, errors in the
dynamic model could result in the planned trajectory becoming
dynamically infeasible. Additionally, unmodeled disturbances
from the environment can introduce deviations from the nominal
trajectory, which propagate through the dynamics and can result
in large errors over time. While fast online re-planning and robust
low-level control can aid in recovering from local disturbances,
reasoning about robustness in the high-level planning could
fundamentally improve the overall system performance.

Within trajectory optimization, designing reliable behaviors
for dynamic robot locomotion tasks that require intermittent
frictional contact has been a persistent challenge over the past
few decades. Contact sequences and forces can be calculated
during trajectory planning using contact-implicit trajectory op-
timization [4]; however, this method requires exact knowledge
of the terrain geometry and friction coefficients beforehand. As
friction coefficients require specialized sensors to estimate and
real-world terrain geometry can be intractable to model out-
side the laboratory, the contact-implicit method becomes highly
prone to errors and failures. Errors in modeling the friction
characteristics could cause a robot to slip, and errors in modeling
terrain geometry could cause the robot to trip, both of which
could result in a fall. We hypothesize that the failure to explicitly
account for uncertainties and feedback during trajectory design
is a key contributor to slow progress in translating trajectory
optimization, and in particular contact-implicit trajectory opti-
mization, research results into a depolyable technology.

Our study takes one step toward addressing this problem
by deriving a risk-sensitive variant of contact-implicit trajec-
tory optimization. We develop objective functions derived from
statistics related to the traditional complementarity constraints
for contact and reason about the robustness by comparing tra-
jectories generated by our robust method to those generated
using the conventional complementarity constraint method. To
contribute specifically to the field, we:
� Include parametric models of uncertainty in the friction

coefficient and in the contact distance into contact-implicit
trajectory optimization.

� Develop risk-sensitive objectives that produce contact-
averse trajectories which are robust to perturbations in
terrain parameters when the terrain model is uncertain.

� Demonstrate that our method represents a smooth gener-
alization of the traditional complementarity constraints in
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that it converges to a relaxed complementarity method as
the contact parameters become certain.

We evaluate our framework in three examples and benchmark
one of our examples against a worst-case robust approach in
simulation. We show that the control trajectories resulting from
our approach are robust to perturbations in the contact param-
eters, since uncertainty in the contact constraints is explicitly
modeled. Although our work assumes the contact constraints
are uncertain, and thus we cannot enforce the exact physical
constraints, we show that the solution sets of our robust objective
correspond with the solution of the complementarity constraints,
and we prove this correspondence in limiting cases. Thus, tra-
jectories generated under our robust objective may facilitate
implementing robust motion plans on physical robots.

II. RELATED WORK

A. Contact-Implicit Trajectory Optimization

Contact-implicit trajectory optimization includes contact
forces as decision variables in an optimal control problem [4],
[8]–[12]. The contact forces are governed by set of complemen-
tarity constraints [13], and the resulting direct transcription prob-
lem is solved through a large-scale nonlinear program. Com-
pared to approaches with predefined contact sequences [14],
[15], a remarkable advantage of this contact-implicit method lies
in avoiding an exhaustive search of combinatorial contact mode
possibilities, which are computationally prohibitive for contact-
rich robotic systems. Building on top of this contact-implicit
approach, our study focuses on reasoning about robustness
to uncertainties with respect to contact surface geometry and
friction properties.

B. Robust Trajectory Optimization

Reasoning about the robustness of trajectory optimization
has been extensively explored in robotics [16]–[18]. One robust
approach is ensemble contact-invariant optimization [3] which
samples uncertain physical model parameters and generates a
collection of specific model instances. Trajectories associated
with each model instance are coupled via a penalty cost and a
single nominal trajectory is generated with a notion of robust-
ness. In more recent works [16], [19], uncertainty in friction
coefficients has been addressed by updating model parameters
from errors between planned motions and simulated or ex-
perimental motions; however, these methods require multiple
physical interactions to improve the estimate of the friction
coefficient, and early interactions can fail due to a lack of
robustness. Differing from modeling parameter uncertainties or
learning friction parameters, our study reasons about robustness
to contact uncertainties, which is critical for safe contact-rich
planning.

Risk-sensitive optimal control, a powerful approach to rea-
son about robustness, employs high-order statistics in the cost
function design [20]–[23]. A seminal work in [24] proposed
a Linear-Exponential Gaussian algorithm which includes the
high-order statistics by using the expectation of the exponential
transformation of a performance index as the cost. In these

works, uncertainty is assumed to enter through either the state
estimation or control actuation, and the cost function is trans-
formed to produce risk-sensitive behaviors. However, these
works have yet to address uncertainty from constraints dealing
with contact. Here we consider uncertainty arising from the con-
tact model, which is normally included in trajectory optimization
as complementarity constraints, and we derive additional cost
terms to produce risk-sensitive behaviors.

C. Stochastic Complementarity Problems

One approach to handling uncertainty in complementarity
constraints is to recast them as expected residual minimization
(ERM) problems. The ERM formulation, which is a smooth
alternative for both linear and nonlinear complementarity con-
straints (LCPs and NCPs), has been extensively investigated in
the context of stochastic complementarity problems (SCPs) [25].
Smoothed residual functions are often introduced as approxima-
tions of the original constraints [26], and solutions to the ERM
problem are robust in the sense that they have minimum sen-
sitivity to random SCP parameter variations. Another approach
is to cast the complementarity problem as a worst-case robust
optimization, as in [27]. In the case of LCPs, the worst-case
variant can be solved by a single convex program. Nevertheless,
the convexity assumption is conservative since many robotic
problems are inherently non-convex and nonlinear. Moreover,
application of both the ERM and the worst-case methods to
trajectory optimization has been largely under-explored. An
initial effort applied the ERM framework to solve robotic prob-
lems with stochastic complementarity [28], where uncertainty is
assumed to be derived from errors in state estimation. However,
that work mainly applies the ERM method as a smoothing
technique so the complementarity constraints could be included
in indirect trajectory optimization. In our study, we further
explore the ERM technique as a method for encoding uncertainty
about the terrain model into direct trajectory optimization and
explicitly analyze the robustness of the resulting trajectories.

III. PROBLEM FORMULATION

A. Contact-Implicit Trajectory Optimization

Contact-implicit trajectory optimization solves for the states,
controls, and contact force of a robot’s motion with intermittent
contact through the optimal control problem:

min
x,u,λ

∫ T

0

L(x, u, λ)dt+ LF (x(T )) (1a)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(q)q̈ + C(q̇, q) = Bu+ J�
c (q)λ (1b)

x(0) = x0, x(T ) = xf
0 ≤ λN ⊥ φ(q) ≥ 0 (1c)
0 ≤ λT ⊥ γ + JT q̇ ≥ 0 (1d)
0 ≤ γ ⊥ μλN − e�λT ≥ 0 (1e)

where x = (q, q̇) is the state, q is t he system configuration, x0
and xf are the initial and final states respectively, and L and LF

are the running and terminal costs respectively. Eq. (1b) repre-
sents the rigid-body dynamics with mass matrixM , Coriolis and
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conservative forces C, control selection matrix B, and contact
Jacobian Jc. Eqs. (1c)–(1e) are the nonlinear complementarity
constraints encoding the contact conditions. Eq. (1c) encodes a
normal distance constraint, where λN is the normal force and
φ(q) is the normal distance. Eq. (1d) encodes a constraint on
the sliding velocity, where γ is a slack variable related to the
magnitude of the sliding velocity, JT is the tangential part of
the contact Jacobian, and λT is the tangential contact force.
Eq. (1e) encodes a linearized friction cone constraint, where
μ is the coefficient of friction and e is a vector of 1 s. The
shorthand 0 ≤ a ⊥ b ≥ 0 denotes a complementarity constraint:
a ≥ 0, b ≥ 0, a�b = 0.

Numerical methods have already been developed to solve the
problem (1a)–(1e) using either direct [4], [8], [9] or indirect [28],
[29] methods. In this work, instead of developing a more com-
putationally efficient or more accurate high-order method, as
was the case in [8], [29], and [9], our goal is to develop and
evaluate a framework for including contact uncertainties. Thus,
we used a direct transcription method to convert the continuous
dynamics and costs into their discrete analogs. We evaluated the
dynamics using backward Euler integration, enforced the contact
constraints at the end of each interval, and used the following
quadratic cost:

L(x, u, λ) =
1

2

(
(x− xf )

�Q(x− xf ) + u�Ru
)
.

B. Stochastic Complementarity Constraints

The preceding formulation assumes perfect knowledge of
the contact parameters. If any of the terms in (1c)–(1e) are
uncertain or random, then resolving the contact forces becomes
a stochastic complementarity problem (SCP) [30]:

0 ≤ z ⊥ F (z, ω) ≥ 0, ω ∈ Ω (2)

where ω represents a random quantity on probability space
(Ω,F ,P)with given probability distributionP , z is the decision
variable, and F (·) is a vector-valued function. Because ω is
stochastic, (2) is not well-defined and in general will not have a
solution for all ω ∈ Ω. One approach is to replace the function
F with its expected value:

0 ≤ z ⊥ E[F (z, ω)] ≥ 0 (3)

The expected value method is largely equivalent to solving the
deterministic problem at the mean value ofF , and is not expected
to be robust to random variations in the parameters.

C. Expected Residual Minimization

Theoretical works have studied robust solutions to Eq. (2) in
both the case when F is affine [25], [26], [31] and in the case
when F is nonlinear [30]. In these works, it is common to define
a residual function ψ such that the residual is zero when the
complementarity conditions are satisfied:

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, aT b = 0 (4)

One common choices for the residual function is the “min”
function ψmin(a, b) = min(a, b). Then, the expectation of the
residual can be taken to form a deterministic objective for the

original SCP, which can then be minimized. This is the Expected
Residual Minimization (ERM) approach that we use in this
work, which is commonly formulated as:

min
z

E[‖ψ(z, F (z, ω))‖2] (5)

The ERM formulation Eq (5) has an advantage over the
expected value method, in that it has minimum sensitivity to
variations in the random parameters [31]:

E[‖ψ‖2] = ‖E[ψ]‖2 + E[‖ψ − E[ψ]‖2]
where, for vector-valued ψ, E[‖ψ − E[ψ]‖2] = tr(Cov(ψ)) is
the trace of the covariance matrix, or the total variance. Thus,
the ERM approach minimizes the mean-squared residual and
the total variation with respect to random parameters.

IV. CONTACT-ROBUST TRAJECTORY OPTIMIZATION

A. Stochastic Complementarity in Trajectory Optimization

Previous work using SCPs in trajectory optimization de-
veloped ERM closed-form cost functions for the special case
when the elements of F are normally distributed or logistically
distributed [28]. In this work, we make use of the ERM for
Gaussian distributed variables:

F ∼ N (μF , σF )

E[min(z, F )2] =

z2 − σ2
F (z + μF )p(z) + (σ2

F + μ2
F − z2)P (z)

p(z) =
1

σF
√
2π
e
− 1

2 (
z−μF
σF

)2

P (z) =

∫ z

−∞
p(t)dt =

1

2

(
1 + erf

(
z − μF

σF
√
2

))
(6)

where p(z) and P (z) are the probability density and cumulative
density functions for the normal distribution, respectively, eval-
uated at z. However, the previous work assumed the uncertainty
resulted from state estimation and propagated directly to the
SCP function F [28], which may not be consistent with the true
uncertainty effects.

In this work, we assume the uncertainty lies directly in the
contact parameters - specifically the friction coefficient μ and
normal distance φ (Fig. 1(a)) - and derive the corresponding
distributions F . We replace contact constraints with an ERM
cost which encodes uncertainty about the terrain parameters:

min
x,u,λ

N−1∑
i=0

(
L(xi, ui, λi) + βE[‖ψ(zi, F (zi, ω))‖2]

)
(7)

where β is a weighting scalar, N is the total number of knot
points, x,u and λ represent collections of the respective vari-
ables across knot points, and zi ∈ {x, λ} represents the vari-
ables in the complementarity constraints. Except where noted
otherwise, we used β = 104 to keep the ERM cost within a few
orders of magnitude of the quadratic costs (Fig. 1 c). Maintaining
similar orders of magnitude prevents the optimization from trad-
ing off physical feasibility for reduced control effort, especially
as the uncertainty vanishes. However, we also caution against
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Fig. 1. (a) Contact geometry with uncertainty in terrain height (left) and friction coefficient (right). (b) ERM cost map for different values of uncertainty as a
function of the decision variable z and mean of the uncertain constraint μF . Both subplots share the same logarithmic color axis for the ERM function value. For
uncertainty less than 1, the minima of the ERM cost approaches the nonnegative axes. As uncertainty increases, the values on the positive μF -axis still represent
local minima, but only at higher values of μF . (c) Convergence of the ERM and quadratic cost terms for the sliding block example shown on a logarithmic scale.
A large multiplier β on the ERM cost ensures the two cost terms are within similar orders of magnitude of each other.

using arbitrarily large values of β which could cause numerical
ill-conditioning.

Remark 1: A notable feature of the Gaussian ERM is that,
as the uncertainty decreases, the ERM objective function ap-
proaches the residual function objective evaluated at the mean
value of the uncertain variable:

lim
σ→0+

E[min(z, F )2] = min(z, μF )
2 (8)

This property can be proved by using L’Hopital’s rule to show
that limσ→0+ σ

2p(z) = 0 and thatP (z) → 1 if z − μF > 0 and
P (z) → 0 if z − μF < 0 as σ → 0+.

Note that in our formulation the ERM term is added as
a weighted cost. Thus, as σ → 0+, we recover a solution to
a relaxed complementarity problem. A solution to the strict
complementarity problem is recovered as β → ∞.

B. Worst-Case Optimization

To compare against the ERM formulation, we also consider
a worst-case scenario of the LCP formulation as a robust opti-
mization [27]. A general robust counterpart (RC) of the uncertain
optimization problem can be formulated as:

min
z≥0

max
ω∈Ω

ψ(z, F (z, ω)) s.t. min
ω∈Ω

Fi(z, ω) ≥ 0, ∀i ∈ I (9)

where the index set I comprises all the possible LCP instances.
However, this RC is computationally challenging to solve in
general. To derive a tractable RC, we impose an ∞-norm as-
sumption on the uncertainty set Ω as Ω∞ = {ω : ||ω||∞ ≤ 1}.
Given this set, we can express the residual value as F (z, ω) =
F0(z) +

∑K
k=1 ωkFk(z). Accordingly, the robust optimization

of LCP contact dynamics becomes

min
z≥0,ε

ε, s.t. Fk(z) ≥ 0, zFk(z) ≤ ε, ∀k ∈ {1, . . . ,K}

where ε is a slack variable to minimize. Compared with the
ERM formulation, this robust LCP formulation does not require
a probability distribution over the uncertain parameters. Dif-
ferent from the expected value formulation which minimizes
the mean scenario, the robust formulation version reasons about
the worst-case scenario by enumerating K LCP instances in
the uncertainty set Ω∞. In practice, the worst-case scenario cor-
responds to a specific LCP instance; in this work we benchmark
the performance of the ERM against this worst-case instance in
one of our examples.

C. Characterizing Physical Contact Uncertainties

Here we explicitly parameterize uncertainties in the friction
cone and in the contact geometry and develop the correspond-
ing ERM cost functions. Specifically, we assume a normally
distributed friction coefficient and a normally distributed error
in the distance to the terrain and then derive the corresponding
distributions used in the ERM objective.

1) Uncertainty in the Friction Coefficient: We assume the
friction coefficient μ is normally distributed with mean μ̄ and
standard deviation σμ : μ ∼ N (μ̄, σμ). By linearity, the friction
cone defect FFC is also normally distributed:

FFC = μλN − eλT ∼ N (μ̄λN − eλT , σμλN ) (10)

Thus, we can replace the constraint (1) with the ERM objective
(6), where μF = μ̄λN − eλT and σF = σμλN .

2) Uncertainty in the Contact Distance: We assume the ter-
rain is flat but that the contact distance is uncertain. The normal
distance φ to the terrain is φ(q) = η�(h(q)− r) where η is
surface normal of the terrain, and h(q) and r are the Cartesian
positions of the end effector and the nearest point on the terrain,
respectively. We assume the normal distance φ is normally
distributed: φ(q) ∼ N (φ̄(q), σφ). In practice, the uncertainty
can vary along the terrain therefore depend on configuration, i.e.,
σφ = σφ(q). In either case, we can replace the normal distance
constraint (1) with the ERM objective (6), whereμF = φ̄(q) and
σF = σφ.

Remark 2: In theory, uncertainty in contact distance can also
be expressed as uncertainty in the Cartesian coordinates of
the nearest contact point, r ∼ N (r̄,Σr). However, because the
terrain orientation η is known, the normal distance becomes
φ ∼ N (η�(h(q)− r̄), η�ΣRη), which is equivalent to the pre-
ceding formulation in terms of normal distance.

Remark 3: Our formulation for uncertainty in the contact
distance can be reformulated to account for uncertainty in the
terrain orientation η. If we assume the contact distance is known
but that the terrain orientation is normally distributed - i.e. η ∼
N (η̄,Ση), then the normal distance follows a normal distribu-
tion: φ ∼ N (η̄�(h(q)− r), (h(q)− r)�Ση(h(q)− r)) which
is again equivalent to a distribution over the normal distance:
φ ∼ N (φ̄(q), σ(q)φ). However, as the terrain orientation η also
partly defines the contact Jacobian Jc, additional care should
be taken to ensure the uncertainty effects are consistent across
the normal distance, sliding velocity, and dynamics. Propagating
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Fig. 2. Trajectories generated by the ERM method at different levels of
uncertainty compared to the reference trajectory, for the same value of the
friction coefficient. The control force (a) and frictional force (b) in the reference
trajectory (shown on the right axis of each subplot) are linear for the entire
motion. Under different values of uncertainty, the control and friction forces
change and become shorter in duration. (c) As the uncertainty decreases, the
ERM trajectories converge to the reference trajectories. All trajectories were
generated using an expected friction coefficient μ̄ = 0.5.

uncertainty effects to the dynamics and deriving a corresponding
risk-sensitive cost could be possible but is beyond the scope of
the ERM framework we pursue here.

V. SIMULATION EXPERIMENTS

Here we detail a set of simulation experiments to compare our
ERM formulation to a baseline with non-stochastic nonlinear
complementarity constraints, which we will refer to as the
“non-robust” case. We study three examples: a block sliding
over a surface with friction, a cart and double pendulum driven
by contact with the ground, and a footed hopper with toe and
heel contact. We compare the trajectories generated by our ERM
formulation to those generated by the non-robust case for a
range of uncertainty parameter values and used a mean-squared
difference (MSD) criterion to assess convergence to the refer-
ence trajectory. All of our trajectory optimization examples were
implemented in MATLAB using Drake [32] and solved using
SNOPT [33]. Solution times are reported from unoptimized
MATLAB code and are presented to evaluate the effect of the
ERM cost on convergence speed; faster times could be achieved
with optimized and compiled code. Unless otherwise noted, all
of our examples were discretized using 101 kn points, initialized
by linearly interpolating between the initial and final states,
and solved to major optimality and major feasibility tolerances
of 10−6. Additionally, all ERM solutions were warm-started
using the non-robust solution. Our code is available at https:
//github.com/GTLIDAR/RobustContactERM.

A. Sliding a Block Over a Surface With Unknown Friction

To benchmark the performance of the ERM method, we
first study a two-dimensional 1 kg block with height 1 m
sliding over a surface with uncertain friction (see Fig. 3(d)).
The configuration of the block q = [xb, zb]

� is given by its
planar center of mass (CoM) and the control is a horizontal
force acting on the block. The initial and final states are x0 =
[0, 0.5, 0, 0]� and xN = [5, 0.5, 0, 0]�, and the total time is 1 s.
The running cost has weight matricesR = diag([100, 100]) and
Q = diag([1, 1, 1, 1]). We first solved to a tolerance of 10−6 and

Fig. 3. Comparison of trajectories generated by the reference (a) and ERM
(b) controls under terrain friction perturbations. The horizontal line represents
the target position. (c) The mean and range of the final position error for different
models of friction uncertainty. As uncertainty increases, the range of final
positions decreases. However, if the uncertainty is too large, the planned motion
is infeasible, and the simulation produces large position errors. (d) Selected
frames of the block’s motion from the reference and ERM trajectories. The
arrow indicates the direction of motion.

then solved to a tolerance of 10−8. For the reference, non-robust
trajectory we used a friction coefficient ofμ = 0.5. For the ERM
trajectories, we assumed a mean friction μ̄ = 0.5 and tested
9 values of σ logarithmically spaced between σ = 0.001 and
σ = 1.0.

We compared the open-loop performance of the ERM controls
to the non-robust controls in simulation using a time-stepping ap-
proach [13], [34] and 10 values of terrain friction linearly spaced
between μ = 0.3 and μ = 0.7. All simulations started from the
initial state x0 and ran for 1 s. We also compared the simulations
to a control generated using the worst-case scenario, where the
friction uncertainty set was considered to be μ ∈ [0.3, 0.7] -
in this case, the worst-case solution corresponds to using the
lowest friction coefficient value, μ = 0.3. We quantified the
performance of the controls as the difference between target
position of the block and the position achieved after 1 s.

B. A Contact Driven Cart With Unknown Terrain Height

Our second example is a double-pendulum connected to a
cart which is constrained along a horizontal frictionless track
(see Fig. 4(a)). The mass of the cart is 1 kg; each of the
pendulums have mass 1 kg, length 1 m, and their CoMs coincide
with their geometric centers. The configuration of the cart is
q = [xc, θ1, θ2], where xc is the horizontal position of the center
of the cart and θ1 and θ2 are the angles of the pendulums. Only
the joints of the pendulums are actuated; the cart must propel
itself through contact with the ground.

The cart must travel from xc,0 = 0 m to xc,N = 5 m in
1 s, starting and stopping at rest and with the end-effector
in contact with the terrain. We used a R = diag([1, 1]) and
Q = diag([1100, 10, 1100, 10]) in the cost function. For the
reference trajectory, we first solved for a feasible trajectory
which we used to warm-start the optimal solve. In the ERM
experiments, we assumed a flat terrain with a mean distance
of 1.5 m from the center of the cart and tested 7 values of
height uncertainty logarithmically spaced between σ = 0.001
and σ = 1. Here we weighted the ERM cost by β = 105.
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Fig. 4. Illustration of the relationship between contact uncertainty and foot
clearance height. As uncertainty increases, ERM increases the distance to
the terrain. (a) Selected configurations of the cart under different values of
uncertainty, where the cart is constrained along a horizontal track. For σ < 0.1,
the configurations are indistinguishable from the non-ERM reference trajectory.
(b) The normal distance between the endpoint of the contact-driven cart and the
terrain over the entire trajectory. As uncertainty increases, the distance increases
until the second link flips over. (c) Normal ground reaction forces between the
terrain and the endpoint of the cart. (d). Mean-squared difference between the
ERM and reference solutions. As uncertainty decreases, the ERM trajectories
converge to the reference trajectory.

Fig. 5. Illustration of the hopper experiments with both friction and terrain
uncertainty. (a) Selected configurations of the hopper in both the reference
trajectory and in the ERM trajectory for height uncertaintyσ = 0.50 and friction
coefficient uncertainty σ = 0.01. Traces indicate the center of mass trajectories.
(b) Base and (c) foot height trajectories under different uncertainties. The ERM
cost increases the foot, but not the base, height. (d) Normal impulse trajectories
across different height uncertainties.

C. A Single-Legged Hopper

Our final example is a single-legged hopper, free to move
in the plane and with contact points at the toe and heel
(see Fig. 5(a)). The configuration of the system is q =
[xc, yc, θ1, θ2, θ3] and the controls are the joint torques. In this
example, the hopper must traverse 4 m in 3 s, starting and
stopping at rest. The weights in the running cost were R =
diag([0.01, 0.01, 0.01]) and Q = diag([1, 10, 10 100 100, 1, 1,
1, 1, 1]). As this example is more complex than our previous
examples, we initialized the problem with all zeros and em-
ployed a relaxation technique [4], [35]. We first solved a series of
problems in which we relaxed and then progressively tightened
the complementarity constraints in powers of 10 from 10 to
10−4, and then solved the strictly feasible problem. We then
used the feasible solution to warm-start the optimal solve. In our
ERM experiments, we used a friction ERM with mean μ̄ = 0.5
and uncertainty of σ = 0.01 and a distance ERM with expected
distance between the hopper base and terrain of 1.5 m under
three uncertainties, σ ∈ {0.05, 0.28, 0.50}.

TABLE I
SELECTED SOLVE TIMES (S) FOR THE PUSHBLOCK EXAMPLE (COMPARED TO

THE REFERENCE SOLVE TIME OF 101.0 S)

VI. RESULTS

A. ERM Biases Away From Contact Interaction

To understand the effect of uncertainty on the solutions, we
mapped the ERM cost landscapes for different levels of uncer-
tainty (Fig. 1 b). At σ = 0.1, the ERM costmap has a set of low
values near the nonnegative axes, which supports the claimed
property that the ERM converges to the relaxed complementarity
constraint when the uncertainty vanishes (Eq. (8)). However, as
the uncertainty increases, the cost along the decision variable
axis increases and, when the uncertainty is high enough, the
cost for low values of the mean of the uncertain constraint
also increases. For contact problems, a high uncertainty should
bias the optimal trajectory towards reducing the friction force
(therefore increasing the friction cone residuals) for uncertain
friction and towards increasing ground clearance for uncertain
terrain height.

B. ERM Increases Solve Time

Using the block example as a benchmark, we compared
the total solve times for the ERM problem across a range of
uncertainties when the ERM was and was not warm-started
with the reference trajectory solution (Table I). As a note,
across uncertainties the average number of iterations before
the ERM converged was 772 for the ERM with warm-start
(including iterations to get the warm-start) and 2357 without
the warm-start; the reference trajectory converged in a total of
430 iterations. The large number of iterations is due in part to
the tight tolerances used in the optimization. In most cases, we
found that warm-starting the ERM with the reference resulted
in a faster total solve time (including the warm-start solve time)
compared to solving the ERM from the naive linear interpolation
initialization, indicating the main benefit of the ERM lies in its
robustness and not its smoothing properties. The remainder of
this section therefore deals with solve times for ERM problems
which were warm-started from the reference solution only.

For completeness, the total solve times for the ERM in the
cart example in Fig. 4(a) were 291.0 s, 218.9 s, and 414.7 s
respectively for σ = 0.1, 0.32, and 1.0, compared to the solve
time of 92.4 s for the reference. Likewise, the solve times for
the footed hopper were 6705 s, 3859 s, and 5875 s respectively
for height uncertainties σ = 0.05, 0.28, and 0.5 compared to the
reference time of 794.8 s.

C. ERM Generates Controls Robust to Changes in Friction

For low values of uncertainty (σ ≤ 0.01), the ERM method
produced trajectories that were nearly indistinguishable from
the non-robust reference trajectory (Fig. 2), with mean-squared
deviations less than 10−6 for state, 10−4 for control, and 10−3
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for contact force trajectories. For moderate values of uncertainty
(0.01 < σ < 1.0), the generated trajectories deviate from the
nominal trajectory, and the magnitude of the deviation grows
with the magnitude of the uncertainty. Specifically, the controls
are more aggressive and nonzero for only part of the duration and
the friction forces are also nonzero for only part of the trajectory.
At the highest value for uncertainty we tested (σ = 1.0), the
control approaches a bang-bang control, and the friction forces
are zero for the duration, which indicates that the ERM may
produce infeasible solutions if the uncertainty is too high.

In open-loop simulation, the ERM generated controls with
low uncertainty (σ ≤ 0.01, σ < 0.01 not shown) produced tra-
jectories with a spread in final state similar to the reference con-
trol (Fig. 3). Under frictional perturbations, the ERM controls
with σ ≤ 0.01 resulted in final positions within 1 m of the target
and with an average error of 0 m. As the uncertainty increased,
the spread in final positions decreased from 1 m to 0.22 m,
indicating the uncertainty produced controls that were more
robust to frictional perturbations. However, for σ = 1.0, the
performance degraded and the open-loop average position error
was −2.4 m. In this case, the ERM cost landscape corresponds
to that in Fig. 1(b) (σ = 10), as the uncertainty in friction is
multiplied by the normal force, λN = 9.8N . Moreover, the
ERM solution set no longer corresponds to the complementarity
solution, and therefore produces a physically infeasible solution.
However, this behavior is sensitive to the scaling of the normal
force; if we had used a different scale, such as kilonewtons, then
the uncertainty also would have been multiplied by the scaling,
altering the ERM landscape to produce feasible solutions.

In contrast, the worst-case scenario always produced a fea-
sible trajectory with respect to at least one value of the
friction coefficient in the uncertainty set. However, in open-
loop simulations, the worst-case control had an average er-
ror of −0.95 m and a range of −1.9 m, which was com-
parable to the range produced by the reference non-robust
control.

D. ERM Increases Foot Ground Clearance

In the cart example, low values of uncertainty (σ ≤ 0.01) in
the ERM objective resulted in trajectories that were close to the
optimal non-robust trajectory (Fig. 4). However, as the uncer-
tainty increased, the ERM-generated trajectories increased the
distance between the terrain and the end-effector. The average
distance to the terrain was 0.84 m for σ = 1.0 and 0.79 m for
σ = 0.001, compared to an average distance of 0.79 m in the
reference non-robust trajectory.

For all values of terrain height uncertainty tested in the hop-
ping example, incorporating terrain and friction uncertainties
increased the foot clearance of the hopper (Fig. 5). Moreover,
the increase in foot clearance trended with the uncertainty in
the terrain contact distance, with increases of 4.7% (σ = 0.05),
4.32% (σ = 0.28) and 74.1% (σ = 0.50) in our experiments.
In contrast, the height of the base of the hopper increases only
marginally, with increases of 0.8% (σ = 0.05), 1.7% (σ = 0.28),
and 3.1% (σ = 0.50). In all cases, the friction uncertainty was
fixed at σμ = 0.01.

VII. DISCUSSION AND CONCLUSION

Our ERM method for modeling terrain uncertainties is an im-
portant step towards a deployable terrain-robust contact-implicit
trajectory optimization. As explored in previous work [28], the
ERM approach represents a stochastic variant of a smoothed
complementarity problem [36] and permits some nonzero con-
tact force at a nonzero distance (Fig. 5(c,d)). While in principle
the ERM method could also act as a soft contact model and
permit ground penetration, we did not observe that behavior
in our work here, although that result could be due to our
choice of β. One advantage of our approach over the previous
work [28] is that our approach explicitly models and is robust
to uncertainty in the contact parameters. By evaluating a variety
of uncertainty parameters, we demonstrated that our approach
generates trajectories of varying robustness and converges to the
traditional, non-robust solution as the uncertainty vanishes.

The proposed ERM method is similar to the previous en-
semble approach in that both achieve robustness by introduc-
ing a cost with respect to random parameter variations [3].
However, unlike the previous approach, we did not need more
than one trajectory to achieve robustness. Instead, we assumed
normal distributions over the friction coefficient and terrain
height and calculated the expected value analytically as in [28].
A closed-form expression for the expectation allowed us to
avoid sampling-based approaches. However, as in the original
work [28], we note that the ERM objective in our study has no
physical meaning - the interpretation of the complementarity
constraints is lost when the constraints are replaced with the
residual function in Eq. (4). Moreover, the normal distribution
assumption places probability density on negative friction co-
efficients, which are physically infeasible. Future work may
improve on our work by developing terrain-robust objectives that
admit a physical interpretation, or by deriving ERM methods for
distributions over the positive reals, such as a truncated Gaussian
or a Gamma distribution.

In the context of risk-sensitive control, our approach is anal-
ogous to the risk-averse control in [22]. For our work under
friction uncertainty, the optimization incurs little additional cost
from the uncertainty if the system is at rest and there are no tan-
gential frictional forces, provided the normal force is sufficiently
large. Thus, the friction ERM cost promotes the short and fast
sliding motions observed in the sliding block example. In the
uncertain terrain distance model, the ERM cost penalizes prox-
imity to the expected terrain, and thus the system tends to move
away from the terrain, using more control and taking higher
steps to reach the goals. These behaviors can be understood
as risk averse, as the ERM minimizes the interactions between
the system and the uncertain terrain. In contrast to our approach,
risk-seeking behaviors could reward the system for making more
contact interactions with the environment and could be useful
for robots to collect more terrain data for estimation. Here we
focused on simple examples to demonstrate these risk-sensitive
behaviors of the ERM approach; however, how these behaviors
scale up to more complex robots and more challenging terrains
remains an open avenue of research.

In this work, we compared our ERM approach to uncertainty
in the complementarity conditions to a worst-case solution. The
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worst-case solution, inspired by [27], is a robust, distribution-
free method to solve complementarity problems. However, un-
like our ERM method, the worst-case method assumes a discrete
set of uncertain values and solves for the value in the set that
maximizes the complementarity residual. This is analogous to
choosing a particular value of the uncertain parameter (for
example, choosing the friction coefficient), and then solving the
corresponding optimization. While the worst-case may achieve a
robust solution to the complementarity problem, that robustness
does not translate to the generated controls, as the worst-case
solutions produce open-loop trajectories with the same end-
point variation as the standard contact-implicit method. Thus,
although our approach may not strictly satisfy the complemen-
tarity constraints for all values of the uncertain parameters, it
does have an advantage over the worst-case method in that the
control trajectories inherit robustness from the ERM solutions.

One important feature of our work is that, as the uncertainty
approaches zero, the trajectories approach the solutions gener-
ated by using the mean value of the uncertain parameters. While
the low uncertainty case can be interpreted as a smooth and accu-
rate approximation to the original nonsmooth complementarity
constraint, we also note that the property alone is important,
as it opens an avenue for combining model-based approaches,
such as contact-implicit trajectory optimization, with model-free
Bayesian optimization methods [20], [37]. Future work could
combine our work here with measurements from the terrain to
estimate the terrain parameters during locomotion and close the
loop of terrain estimation and robust trajectory optimization.

REFERENCES

[1] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489–494.

[2] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251–1270, Aug. 2014.

[3] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body dy-
namic motion planning that transfers to physical humanoids,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015, pp. 5307–5314.

[4] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33,
no. 1, pp. 69–81, 2014.

[5] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabilization
of trajectories for constrained dynamical systems,” in Proc. Int. Conf.
Robot. Automat., 2016, pp. 1366–1373.

[6] S. Kuindersma et al., “Optimization-based locomotion planning, esti-
mation, and control design for atlas,” Auton. Robots, vol. 40, no. 3,
pp. 429–455, 2016.

[7] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for pushing the
limits of dynamic quadruped control,” in Proc. Int. Conf. Robot. Automat.,
May 2019, pp. 6295–6301.

[8] Z. Manchester, N. Doshi, R. J. Wood, and S. Kuindersma, “Contact-
implicit trajectory optimization using variational integrators,” Int. J. of
Robot. Res., vol. 38, no. 12/13, pp. 1463–1476, 2019.

[9] A. Patel, S. Shield, S. Kazi, A. M. Johnson, and L. T. Biegler, “Contact-
implicit trajectory optimization using orthogonal collocation,” IEEE
Robot. and Automat. Lett., vol. 4, no. 2, pp. 2242–2249, Apr. 2019.

[10] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex behaviors
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