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Introduction

Architectural, engineering, and construction (AEC) project teams
are interorganizational and interdisciplinary with members gather-
ing temporarily to devise a unique built environment product.
Starting from early stages of planning and design, team mem-
bers with different expertise areas and work procedures develop
knowledge-transfer networks to collaborate. The structures of
such knowledge-transfer networks can determine the capabilities
and eventually performance of project team members (Reagans and
McEvily 2003). For example, project network structures can deter-
mine individuals’ roles, responsibilities, and power in decision
making (Davison et al. 2012), their opportunities to access required
knowledge for their tasks (Chinowsky et al. 2011), the degree of

match between their cognitive capacities and received knowledge
(Tortoriello 2015), and levels of trust or opportunistic behavior in
knowledge-transfer interactions with others (Coleman 1988).

The structure of knowledge-transfer networks emerges from
individual action (Foss et al. 2010). As such, network characteris-
tics at the node, dyadic, and network configuration levels can shape
network structures (Broekel and Hartog 2013). For example, at the
node level, individuals’might rather interact with those with higher
capacity to understand knowledge (Szulanski 1996; Garcia and
Mollaoglu 2020); at the dyadic level, pairs of individuals might
interact based on their level of trust, or shared values and goals
(Chinowsky et al. 2008; Javernick-Will 2012); and at the network
configuration level, individuals might preferably develop ties that
close network triads (Broekel and Hartog 2013). The combination
of these characteristics can contribute to generate dynamic net-
works in complex systems such as interorganizational AEC project
teams. Dynamic networks evolve displaying different structures
that are connected to each other with some degree of continuity.
That is, a given network structure depends on the network’s state
at the previous time point and influences the network’s state at
the following time point (Abotaleb and El-Adaway 2018; Lee
et al. 2018).

Therefore, in dynamic networks of AEC project teams, a given
structure can partially cause and help predict subsequent struc-
tures. Because these structures convey critical knowledge and
facilitate coordination, knowledge of them can help managers en-
hance the performance of such project teams (Abotaleb and El-
Adaway 2018). The dynamic nature of networks in the AEC in-
dustry has been mostly studied in long-term networks across multi-
ple projects and built upon interactions among organizations
(e.g., Tang et al. 2018; Qiang et al. 2021) or interdependencies
among project items (e.g., Liu et al. 2019; Eisenberg et al.
2020). Thus, there is a research gap regarding the emergence
and evolution of AEC project team networks where a group of
individuals from different organizations and disciplines gather
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temporarily for a single project and generate a short-term network to
collaborate. Addressing such research gap can help us understand
how knowledge-transfer networks dynamically evolve adapting to
changing project needs to accomplish project goals. To address this
gap, this study examined what are the knowledge-transfer network
structures that emerge in AEC project teams, why, and how do they
evolve interdependently.

Thus, we first reviewed the literature to identify the network
structures for knowledge transfers that are likely to emerge in
AEC project teams. In the light of this literature, we tested the
presence and interdependence of the identified network structures
using longitudinal data from a real-world AEC project. This
project team’s composition fluctuated between 79 and 102 mem-
bers from multiple disciplines and organizations during the period
the study focused on (i.e., early design phases). We analyzed the
knowledge-transfer networks mainly via statistical exponential
random graph models (Butts et al. 2014) during different intervals
of the project.

Results suggest that the project team initially generated a
knowledge-transfer network with a core-periphery structure. By
the end of the schematic design phase, multiple cohesive subgroups
emerged via triangular patterns around the members in the core
subnetwork. The development of network triangles did not dis-
solve the core-periphery structure. Core-periphery networks en-
abled team coordination, whereas cohesive subgroups emphasized
deep knowledge transfers. The study findings help explain the
dynamic nature of knowledge-transfer networks and their evolution
in complex AEC project teams including various disciplines and
organizations.

Literature Review

AEC Project Team Networks and Functions

As individuals draw on networks to coordinate action and ex-
change knowledge, performance of project teams is influenced by
structure of network relationships among their members (Cohen
and Levinthal 1990; Reagans and McEvily 2003). The network
structures that individuals unfold through their interactions are
meant for specific functions (Lee et al. 2018). For example: in
AEC project teams, small-world network structures can facilitate
team formation processes, and changing scale-free structures can
impulse collaboration across organizational and disciplinary boun-
daries (Kereri and Harper 2019); structures containing subgroups
coordinated with appointed or spontaneous network bridges can
enhance conflict resolution (Di Marco et al. 2010; Iorio et al.
2012); and hierarchical network structures can speed up knowledge
flows from owner and contractor project managers to field person-
nel (Lin 2015). In addition, network structures possess global
(e.g., density, centrality, and clustering coefficients) and local net-
work parameters (e.g., between centrality, and eigenvector central-
ity) that can help assess overall team collaboration and individuals’
roles and leadership, respectively (e.g., Chinowsky et al. 2008;
Wang et al. 2018).

In AEC project teams, the network structures for knowledge
transfer should be flexible to adapt to project demands over time
(Zhang et al. 2013). Therefore, although network structures’ char-
acteristics can be planned beforehand (e.g., Chinowsky et al. 2011;
Wang et al. 2018), project networks can help optimize team per-
formance when individuals can develop additional informal and
unanticipated network connections to access the knowledge that
they deem necessary (Senaratne et al. 2017; Verschoore and Adami
2020). Because members of AEC project teams belong to widely

diverse disciplines and organizations, they frequently fail to trans-
fer necessary knowledge to others in a timely fashion and collabo-
rate efficiently (Franz et al. 2016). Thus, AEC project teams’ main
challenge is to coordinate a diverse group of team members while
they engage in many activities involving deep knowledge transfers
across organizational and disciplinary boundaries. Therefore, we
focus herein on examining dynamic network structures that can
help team members coordinate and transfer deep knowledge.

Core-Periphery Networks for Team Coordination

Highly dense and homogeneous networks at initial stages of AEC
project delivery might be counterproductive for generating project
goals and coordinating team members at the earliest stages of
project delivery. Members from different disciplines and organiza-
tions might hold dissimilar or even opposing perceptions about
project goals (Firth et al. 2015). In addition, too many network links
for knowledge transfer might blur team members’ understanding of
their roles, responsibilities, or hierarchical positions in decision-
making processes (Davison et al. 2012; Frank et al. 2015). Instead,
knowledge-transfer networks might optimally feature a starlike
shape with low clustering coefficients and high centrality at the
beginning of project delivery (Parraguez et al. 2015). This struc-
ture resembles a core-periphery network composed of a highly
dense core subnetwork surrounded by a low-density peripheral
subnetwork.

With such network configuration, members in the core subnet-
work possess high control over the knowledge flowing through the
whole network (Csermely et al. 2013). They can become the only
source from which project goals emanate, avoiding network
polarization due to the emergence of conflicting goals from sep-
arate network areas (Frank et al. 2015, 2018). Therefore, the core
members can set and diffuse project goals ensuring that all team
members’ tasks are aligned with the same goals. Peripheral mem-
bers can engage in the creation of project goals by providing the
necessary resources to the core. Ideally, all members in the core
interact with each other to coordinate, whereas peripheral mem-
bers do not interact much with each other but with some members
in the core subnetwork (Borgatti and Everett 2000). Core members
primarily work with each other with strong ties while scanning key
pieces of knowledge from peripheral members with weaker ties
(Capaldo 2007). Hence, this study poses the following research
question:

RQ1: Do core-periphery structures emerge in knowledge-
transfer networks in AEC project teams at the early stages
of project delivery? If so, why, and how do they evolve?

Cohesive Subgroups and Network Triangles for Deep
Knowledge Transfer

After the earliest stages of AEC project delivery, the core-periphery
networks discussed previously might not be effective for transfer-
ring complex knowledge in detailed design activities (Parraguez
et al. 2015). Peripheral members are embedded in sparse network
areas; however, deep knowledge transfers might require increased
cohesion among team members. In highly cohesive networks, ties
are denser and individuals can easily access each other’s knowledge
with fewer intermediaries that could attenuate or distort it (Hansen
1999, 2002). When team members can interact directly and fre-
quently, they can improve their joint capacity to detect and solve
project issues (Dossick et al. 2014). Thus, higher network cohesion
can generate deep knowledge transfers, that is, reinforcing and re-
current interactions that improve understanding of the transferred
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knowledge, especially among members from distinct organizations
and disciplines (Tortoriello et al. 2012). In addition, network cohe-
sion helps promote common collaborative norms because shared
partners can attribute status to those who transfer knowledge
(Blau 1964; Coleman 1988; Frank et al. 2020).

Networks where the density of ties is unevenly distributed might
develop cohesive subgroups. The subgroups are highly cohesive
network areas with interactions concentrated within subgroups
boundaries and sparse between the boundaries (Frank 1995, 1996;
Holland and Leinhardt 1978). These structures allow increasing co-
hesion only in local network areas where selected individuals need
to collaborate tightly, thus mitigating the need to increase the global
network cohesion via unnecessary ties that could overwhelm team
members (Zhang et al. 2020). Lastly, in AEC project teams, sub-
groups can expand the scope of individuals’ ties beyond their own
organizations to acquire new knowledge and improve their capacity
to innovate (Xu et al. 2019). As opposed to core-periphery struc-
tures, cohesive subgroups decentralize power in decision making
(Csermely et al. 2013). Individuals in a subgroup can focus on
deeply discussing every matter and, thus, make the most important
decisions about it.

AEC project team networks typically develop cohesive sub-
groups with a dynamic composition and size, incorporating or
dropping members based on project needs (Zhang et al. 2013;
Poleacovschi and Javernick-Will 2016; Laurent and Leicht 2019).
The challenge is to coordinate action between subgroups through
boundary spanning or bridging ties (Di Marco et al. 2010; Iorio
et al. 2012; Comu et al. 2013) and avoid team fragmentation
(Franz et al. 2016). Individuals can transition from core-periphery
structures to cohesive subgroups by forming triangular patterns
for knowledge transfers. Triangles increase cohesion within local
network areas; thus, they can accumulate as seeds around which
cohesive subgroups emerge. The emergence of subgroups does not
necessarily entail the dissolution of a prior core-periphery structure.
Subgroups typically involve members from the core subnetwork
but might also involve some from the periphery (Rombach et al.
2017). Thus, we pose the following research question:

RQ2: Do triangles and cohesive subgroups emerge in
knowledge-transfer networks in AEC project teams after the
earlier stages of project delivery? If so, why, and how do they
evolve?

Summarizing, AEC project teams face two challenges during
project delivery. First, they must coordinate all team members
to create and disseminate project goals. The literature suggests
core-periphery structures as the most suitable ones for team co-
ordination. However, AEC project teams must also engage in deep
knowledge-transfer activities that, based on the literature, are better
performed within networks via cohesive subgroups that can be
formed through network triangles. Fig. 1 visualizes the three

knowledge-transfer structures that can emerge in complex interor-
ganizational AEC project teams during project delivery.

Methodology

Data Collection and Coding

To respond to the research questions, we collected data from an
AEC project team that designed and built an institutional renova-
tion and addition project [3,252 m2 (35,000 sq ft)] located in a Mid-
west state in the US. The project duration was 2 years, with
7 months in the design phase and 17 months in the construction
phase. The project started with a $20 million budget and was de-
livered via Construction Management at Risk. The study followed
mixed methods to data collection (i.e., archival documents, surveys,
observations, and email exchange data) and analysis (i.e., statistical
and qualitative analyses). The scope of this paper is limited to the
emergence and early stages of network structures’ evolution during
project delivery that took place during schematic design.

Project Meetings, Documents, and Observations
One of the authors and an additional coder attended the project
team’s weekly meetings, collected meeting minutes and other
project documents (i.e., archival data), and coded observations
of the meetings to gain additional insights about team member par-
ticipation in meetings, project status, activities, and goals. Coders
identified participants’ contributions in project team meetings in
one of the three categories: (1) providing input (e.g., “We will
add a wall to separate these two areas”); (2) asking a question
(e.g., “Are there any power boxes on the floor?”); and (3) other
(e.g., “Let’s get [the meeting] started”). We calculated the interrater
reliability for each of 21 meetings across all pairs of coders with
a range of 6 to 14 team members per meeting. The average corre-
lation between coders was high r ¼ 0.89 (n ¼ 21) (Cohen and
Cohen 1983). This implies an 80% overlap in the variance of
the rankings of any two coders, leaving very little residual differ-
ences. Given the large correlation of 0.89 [with standard error of
1=ðn − 3Þ5 ¼ 0.23, with n ¼ 21 meetings], it was not necessary to
pursue stronger evidence for intercoder reliability.

Project Intervals
We determined the study project’s intervals based on project
progress toward key project goals (Garcia et al. 2014; Marks et al.
2001). Based on the aforementioned project meetings, documents,
and observations, we used scope, budget, and schedule as the key
project goals. We identified three project intervals ranging between
4 and 4.5 weeks during the schematic design based on the follow-
ing milestones which highlighted the progress accomplished to-
ward the key project goals: Initial concept estimate based on
design and scope changes (Interval 1), design efforts on hold for
owner and general contractor to consolidate estimates (Interval 2),
and owner’s approval of scope, budget, and continuation to design
development phase (Interval 3).

Project intervals can help detect those stages where project
teams emphasize either coordination or deep knowledge trans-
fers based on the progress made to fulfill project goals and,
consequently, where the project team’s knowledge-transfer net-
work might display different structures. Therefore, we ran our
network and qualitative analyses considering these three project
intervals.

Knowledge-Transfer Network
We used email exchange data among team members to cap-
ture the network ties, namely, the knowledge-transfer network.

Core-periphery Triangles Subgroups

Fig. 1. Network structures in complex interorganizational AEC project
teams.
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Knowledge-transfer network herein refer to flows of project-related
understanding that can help individuals develop their tasks. Knowl-
edge can be either tacit or explicit; whereas the former is frequently
referred to as knowledge that is intuitive, proceeds from experience
and is hard to codify, the latter is typically referred to as information
because it can be easily codified with words or algebraic symbols in
books or manuals (Nonaka and Takeuchi 1995; Smith 2001).

However, knowledge and information are interrelated because
knowledge can somehow be expressed with information (Nonaka
1991). For example, a project estimator can send an email with the
subject “Project duration to take 15 months.” The email subject is
information because it is codified; however, it reflects the knowl-
edge of the estimator because it knows the project duration based
on its experience. Because every AEC project is complex, unique,
and not codified in any manual or book, we considered the email
exchange data as representative of knowledge transfers.

The data proceeded from owner, general contractor (GC), and
designer representatives and consisted of email headers including
sender, receiver, time, and subject. The weight of the network
ties was determined based on the frequency of email exchanges
(i.e., 3 = daily, 2 = weekly, and 1 = monthly). Although a single
and unofficial channel of communication among many other medi-
ums (e.g., in person, phone calls, text messages, and web-based
platforms), email data allows researchers to model team collabora-
tion and examine complex AEC networks (Albino et al. 2002;
Dogan et al. 2015; Durugbo et al. 2011; Franz et al. 2018), provid-
ing a representative and reliable data source in comparison with
retrospectively collected and self-reported data (Kadushin 2012).
To ensure that our study captured a representative reflection of team
knowledge-transfer networks, we interviewed core team members
at multiple intervals during project delivery and verified our net-
work findings.

Team Member (Node) Characteristics
Five main characteristics were considered:
• Main roles in the project (i.e., owner, designer, or contractor).

These were determined using the project team roster and organi-
zational charts.

• Tiers of decision-making in project operations. Tiers were also
determined using the project team roster and organizational
charts (i.e., Tier 1 includes lead representatives from each
main role, Tier 2 members are those in Tier 1 members’ home
organizations, and Tier 3 includes subcontractors, vendors,
consultants, and other stakeholders) (Mollaoglu-Korkmaz et al.
2014; Garcia et al. 2020).

• Expertise areas such as project management, architectural de-
sign, construction, and various engineering fields. These were
determined via online or paper-based surveys and comple-
mented with web searches whenever possible.

• Years working in the AEC industry. These were also determined
via online or paper-based surveys and complemented with web
searches whenever possible.

• Meeting participation data (i.e., measured through provide input
as explained previously). These data were collected and coded
by two coders who attended and observed the weekly project
team meetings.

Data Analysis

In the light of the literature, because core-periphery configurations
are likely to emerge first in project teams, we tested for the pres-
ence of a core-periphery structure at each interval starting with
Interval 1. If it was present, then we tested whether the network
had a significant probability to display triangular patterns and sub-
groups at that interval and develop them in the following interval

around specific nodes or dyads within/across the core and periphery
subnetworks. At the following intervals, we examined evidence
for how subsequent structures emerged out of individual action
embedded in the previous network. If a core-periphery network was
not present, then we tested the tendency for triadic patterns and
subgroups around all nodes and dyads. After this quantitative
analysis, we qualitatively examined the activities that the study
project team developed at each interval to match them with the
adopted structures.

Core-Periphery Networks
We used Borgatti and Everett’s (2000) algorithm in the UCINET
version 6.675 software (Borgatti et al. 2002) to examine the pres-
ence of core-periphery structures in the observed networks of the
study project team. The algorithm finds the highest correlation be-
tween the observed network matrix and an ideal core-periphery ma-
trix partitioned into four blocks: a1-block at the top left of the ideal
core-periphery matrix represents a core subnetwork with all mem-
bers connected to each other; another 0-block at the bottom right
represents a peripheral subnetwork with all members disconnected;
two additional blocks representing interactions between core and
peripheral members complete the ideal core-periphery matrix at
the top right and bottom left. The last two blocks are treated
as missing data to allow the algorithm to focus on maximizing
densities within core and minimizing densities in peripheral subnet-
works. In summary, the algorithm maximizes the following unnor-
malized Pearson correlation coefficient between the observed and
ideal core-periphery network matrices (Borgatti and Everett 2000):

R ¼
X

ij

yijρij ð1aÞ

ρij ¼ f1 if ði; jÞ ∈ core; 0 if ði; jÞ ∈ periphery;

“missing” otherwiseg ð1bÞ

where R = correlation between the observed and ideal core-
periphery networks (i.e., the extent to which the observed network
of the study project team resembles an ideal or perfect core-
periphery network); i and j = network nodes (i.e., team members
in the observed network); yij = weight of the tie from i to j in the
observed network (i.e., frequency of knowledge transfer from a
team member to another one); and ρij = presence of a tie from i
to j in the ideal core-periphery network (i.e., 1 if there should
be a tie in an ideal core-periphery structure between two team
members of the observed network, and 0 otherwise).

Fig. 2 shows an example of an ideal core-periphery network
with the highest correlation with a hypothetical observed network
based on the algorithm in Eqs. (1a) and (1b). The networks are
expressed as matrices where each cell in row i and column j con-
tains the value of the network tie from node i to j. Lastly, we
used team members’ characteristics as explained previously to
qualitatively examine the composition of the core and periphery
subnetworks.

Triangular Network Patterns
To examine the presence of triangular patterns within the observed
network of the study project team and whether they are related to
dyad and node characteristics (Broekel and Hartog 2013), we used
exponential random graph models (ERGMs), which express the
conditional probability of a network tie with the following stochas-
tic model (Butts et al. 2014):

log
Pðyij ¼ 1jYc

ijÞ
Pðyij ¼ 0jYc

ijÞ
¼ θTΔ½gðyÞ�ij ð2Þ
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where Yc
ij = observed network of the study project team without a

tie between team members (network nodes) i and j; and yij = tie
between i and j (i.e., 1 if there is a tie, 0 otherwise), so therefore,
Pðyij ¼ 1jYc

ijÞ and Pðyij ¼ 0jYc
ijÞ are the probabilities of the pres-

ence or absence of a tie between i and j given the observed network
Yc
ij ; and gðyÞ is a vector containing the network statistics that are

potential predictors of the probability of a tie between team mem-
bers i and j. We developed gðyÞ using Morris et al.’s (2008) ERGM
terms:

gðyÞT ¼ ðgwesp; dyadcov; nodefactor; gwesp × dyadcov;

gwesp × nodefactor; edgesÞ ð3Þ
where gðyÞ includes the following network statistics: gwesp (geo-
metrically weighted edgewise shared partner) at the network con-
figuration level represents the number of triads that would be closed
if a network tie between nodes or team members i and j occurs.
This term applies a discount for each additional shared partner via
a decay parameter α (Hunter and Handcock 2006; Hunter 2007;
Broekel and Hartog 2013). The statistic dyadcov at the dyad level
relates to a pair of team members i and j and represents their
expertise similarity and their type of relation based on their net-
work position [i.e., core-to-core (CC), periphery-to-periphery (PP),
and core-to-periphery (CP) dyads]. The statistic nodefactor at the
node level represents team members’ characteristics explained
previously (i.e., main role, tiers, expertise areas, years working
in the AEC industry, and project team meeting participation). The
interaction term gwesp × dyadcov at the network configuration
and dyad levels allows us to estimate whether the effect of gwesp
(associated with closed triads in the network) is greater for
certain dyadic covariates (e.g., CC dyads). The interaction term
gwesp × nodefactor allows us to estimate whether the effect of
gwesp is greater for certain types of actors (e.g., a team member
of the owner role). Finally, edges is a control variable, with the
corresponding model coefficient representing the overall density
of network ties.

Overall, Eq. (2) expresses the changes in the log odds of a tie
between team members i and j given a one unit increase in the
network statistics in gðyÞ. In Eq. (2), the vector θ contains the model
coefficients, six in total (i.e., θ1, θ2, θ3, θ4, θ5, and θ6), one for each
of the six network statistics within the vector Δ½gðyÞ�ij, which
refers to the increment of the network statistics in gðyÞ when
the tie yij in the network y switches from 0 (no tie) to 1 (tie between
i and j). Thus, for example, θ1 is associated with the increment of
the network statistic gwesp [Eq. (3)], meaning that if θ1 turns out to
be positive and significant in the ERGM analysis, then the statistic

gwesp significantly influences the probability of occurrence of net-
work ties; that is, network ties between team members are more
likely to emerge if they close network triangles.

Conversely, if θ1 is negative, it means that team members avoid
engaging in closed triangles for knowledge transfers. We estimated
the ERGM parameters in vector θ [Eq. (3)] with RStudio version
1.2.1335 software using the Markov chain Monte Carlo maximum
likelihood estimation (MCMLE) method (Hunter et al. 2008). For
the analysis, we used the unweighted and undirected network of the
study project team because members in network triangles can col-
laborate under a set of social norms regardless of the directionality
and weight of knowledge flows (Coleman 1988; Reagans and
McEvily 2003).

Cohesive Subgroups
To examine the presence of cohesive subgroups within the ob-
served network of the study project team, we used Frank’s (1995)
selection model (with KliqueFinder version 0.15 software), which
expresses the probability of network ties based on their member-
ship to a cohesive subgroup:

log
Pðyij ¼ 1Þ

1−Pðyij ¼ 1Þ ¼ θ0 þ θ1SGij ð4aÞ

SGij ¼ f1 if ði; jÞ ∈ same subgroup; 0 otherwiseg ð4bÞ
where Pðyij ¼ 1Þ = probability of a tie between team members
(network nodes) i and j; and SGij = whether i and j belong to
a common cohesive subgroup in the observed network (1 if yes,
0 otherwise). Thus, Eq. (4a) represents the changes in the log odds
of a tie between team members i and j given the fact that they be-
long to the same subgroup. Thus, if θ1 is positive and significant, it
means that team members are more likely to interact if they belong
to the same cohesive subgroup, whereas they tend to remain dis-
connected if they belong to different subgroups. Larger values of
θ1 indicate a higher concentration of ties within subgroups of the
observed network.

The estimation of θ1 consists of iteratively reassigning nodes to
subgroups until finding a set of subgroups within the observed net-
work that maximizes θ1. Frank (1995) showed how a Monte Carlo
sampling distribution for θ1 can be generated by repeatedly apply-
ing the KliqueFinder algorithm to data simulated from the degree
distribution of the observed data. This provides a p-value for the
parameter θ1 of the observed network. We also used the study
team’s unweighted and undirected network in this analysis because
the subgroups are based on network cohesion, which promotes the
creation of social norms for collaboration regardless of the direction
and weight of knowledge flows (Coleman 1988; Reagans and
McEvily 2003). Finally, based on team members’ characteristics
explained previously, we qualitatively evaluated the composition
of the subgroups.

Project Team Activities
Using the study project’s meeting minutes and documents
(i.e., archival data), and observations in the weekly team meetings,
we qualitatively examined the project activities under Coordination
and/or Deep Knowledge Transfer categories. The Coordination
category included statements related to project goals and team
collaboration such as “We’re doing things differently [ : : : ]. Cost
control items should be eliminated, and [the] total reduction [of
project cost] would be [$X] million.” The Deep Knowledge Trans-
fer category included discussions where team members gain a
deeper knowledge about a specific topic such as the following
among three team members (i.e., M1, M2, and M3) regarding site
utilities:

1 2 3 4 5 6 7 8

1 1 1 - - - - -

2 1 1 - - - - -

3 1 1 - - - - -

4 - - - 0 0 0 0

5 - - - 0 0 0 0

6 - - - 0 0 0 0

7 - - - 0 0 0 0

8 - - - 0 0 0 0

1 2 3 4 5 6 7 8

1 2 3 0 3 2 0 0

2 1 1 0 0 0 1 0

3 2 1 0 0 0 1 0

4 0 2 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 1 0 0 1

7 0 0 0 0 0 0 0

8 0 1 0 0 0 0 0

(a) (b)

Fig. 2. Example of correlation between ideal and observed core-
periphery networks: ideal core-periphery network (a) with highest cor-
relation with an observed network (b) based on Borgatti and Everett’s
(2000) algorithm (R = 0.83). Block at top left = core subnetwork; and
and block at bottom right = peripheral subnetwork.
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• M1: “Send us whatever you have, a more formal utility map;”
• M2: “There’s an existing telecom duct bank under the sidewalk,

they said there is no way you will be able to go under there. We
would go under the green space, patch it;”

• M3: “They want cover on top of it;” M1: “[ : : : ] we put in a
manhole, but we need to make sure there is no conflict between
that and the telecom.”
Lastly, we overlaid the activities and their categories with the

network structure adopted at the same interval to gain further
insights.

Results

Network Findings

During the schematic design phase, 179 individuals in total partici-
pated in the knowledge-transfer network during at least one interval
(i.e., 79, 101, and 102 members at Intervals 1, 2, and 3 respectively)
from more than 15 expertise areas and 20 different organizations.
Those individuals included but were not limited to owner represent-
atives, architects, engineers, contractors, subcontractors, consul-
tants, and vendors.

The observed network was highly correlated with an ideal core-
periphery network throughout all three intervals. The correlations
between the observed and ideal networks were r1 ¼ 0.75, r2 ¼
0.74, and r3 ¼ 0.73 at Intervals 1, 2, and 3, respectively. Table 1
presents the composition of the observed core-periphery networks.

The core included between 8 and 10 team members (network
nodes) mainly with primary expertise in project management and

architecture under owner and designer roles, and Tiers 1 and 2.
Nodes carrying other primary areas of expertise (e.g., mechanical
and civil engineering), and roles (i.e., contractor) moved in and
out of the core during these intervals. The peripheral subnetwork
contained mostly members from Tier 2 and 3 from all roles and
expertise areas (e.g., architecture, project planning, strategic man-
agement, final user needs, mechanical and civil engineering, and
construction).

We tested multiple ERGMs to examine the tendency to form
triangles within different areas of the core-periphery structure.
We used as an indicator of model fit the MCMLE and generalized
linear models’ convergence to a solution when combining the
gwesp network statistic at the network configuration level with
other network statistics at the node and dyad levels. Table 2
presents the results of the ERGM analysis.

The parameter estimates for the interaction term gwesp × CC-
Tie were positive and significant at each interval (θ1 ¼ 6.03, p ¼
0.001; θ2 ¼ 5.55, p ¼ 0.001; and θ3 ¼ 11.19, p ¼ 0.001). There-
fore, network members showed a tendency to develop core-to-core
ties closing triangles during all the intervals. Conversely, the esti-
mates for gwesp × PP-Tie were negative and significant across
the three intervals, suggesting that network members avoided
periphery-to-periphery ties that would form triangles at any in-
terval. Finally, the estimate for gwesp × CP-Tie was positive and
significant only at Interval 3 (θ3 ¼ 3.33 and p ¼ 0.001), indicating
the emergence of team members’ tendency to establish core-to-
periphery ties closing network triangles during Interval 3. All the
models excluded dyads’ expertise similarity, and nodes’main roles,
tiers, expertise areas, years working in the AEC industry, and meet-
ing participation because, otherwise, they were not convergent.

Table 1. Descriptive analysis of core-periphery networks and cohesive subgroups

Network attributes

Core-periphery networks Cohesive subgroups

SD Int. 1 SD Int. 2 SD Int. 3 SD Int. 3

Core Peri. Core Peri. Core Peri. SG.1 SG.2 SG.3 SG.4 SG.5 SG.6 SG.7 SG.8 SG.9

Total number of members 8 71 10 91 8 94 15 25 10 18 4 4 7 16 3

Aver. eigenv. (×10−3) 286 48 259 32 295 36 86 84 71 69 63 11 11 2 0

Density (×10−2) 150 1 147 1 153 1 20 17 27 18 50 33 38 13 67

Members per tier Tier 1 6 1 4 3 7 — 2 3 1 1 — — — — —
Tier 2 2 49 3 57 1 62 12 12 4 14 2 3 2 11 3
Tier 3 — 21 3 31 — 32 1 10 5 3 2 1 5 5 —

Members per role Owner 1 27 2 48 2 56 5 2 9 16 — 3 7 16 —
Designer 4 32 8 32 3 30 — 23 1 2 4 — — — 3
Contractor 3 12 — 11 3 8 10 — — — — 1 — — —

Members per
expertise area

Architecture 3 11 4 12 2 15 — 10 — 2 1 1 — — 3
Project planning 1 15 — 12 1 14 7 5 — 1 — — — 2 —
Strategic manage. — 6 — 8 — 20 — 3 1 6 — 2 2 6 —
Final user needs — 8 — 8 1 14 2 — 6 1 — — 5 1 —
Mechanical eng. — 5 2 14 — 7 2 3 — — — — — 2 —
Construction — 7 — 9 — 4 1 — — — — 1 — 2 —

Civil engineering — 7 1 5 — 5 — — — 3 2 — — — —
Information tech. — 4 — 6 — 4 — — 1 — — — — 3 —
Project manage. 4 — 2 2 4 — 2 1 — 1 — — — — —
Electrical eng. — 2 1 2 — 4 1 3 — — — — — — —
Landscape — 2 — 2 — 4 — — — 3 1 — — — —

Specialty design — — — 6 — 1 — — 1 — — — — — —
Vendor — 3 — 2 — 1 — — 1 — — — — — —

Interior design — 1 — 2 — 1 — — — 1 — — — — —
Subcontractors — — — 1 — — — — — — — — — — —

Note: SD Int. = schematic design interval; Core = core subnetwork; Peri. = periphery subnetwork; SG = subgroup; Aver. eigenv. = average eigenvector
centrality per member; Manage. = management; Eng. = engineering; and Tech. = technology.
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Although some standard errors were high, there are not strong con-
cerns about multicollinearity because the number of endogenous
variables was close to three (e.g., gwesp, CC-Tie, gwesp × CC-
Tie, and edges in Model 1) and the density of the observed net-
works was low at the three intervals (ρ1 ¼ 0.05, ρ2 ¼ 0.04, and
ρ3 ¼ 0.03 < 0.3) (Duxbury 2018).

In summary, based on the ERGM results, the study network de-
veloped triangles (i.e., closed triads for communication) connecting
only core members at Intervals 1 and 2, indicating a tendency to
increase or keep network cohesion in the core while maintaining
the peripheral members sparsely connected. Only at Interval 3,
the triangles involved both core and peripheral members.

At Interval 3, when the triangles emerged involving core and
peripheral members, cohesive subgroups also emerged within
the core-periphery structure (θ3 ¼ 0.30 and p < 0.001) without
eliminating it. Thus, triangles and subgroups emerged simultane-
ously. The results suggested nine subgroups (SGs) where the
four most central ones had one to three members from the core
subnetwork (i.e., SG.1 to SG.4) (Fig. 3). On average, the core mem-
bers participated in more network triangles than peripheral mem-
bers (46.8 triangles per core member versus 3.3 per peripheral
member) (Table 3). Therefore, the accumulation of network trian-
gles around members in the core subnetwork supported the emer-
gence of the cohesive subgroups at Interval 3. Table 1 indicates that
the subgroups had between 3 to 25 members, and they were inter-
disciplinary with 4.4 different areas of expertise on average. The
expertise area that was present across more subgroups was strategic
management (six subgroups) followed by architecture, and final
user needs (five subgroups), project planning (four subgroups),
and mechanical and civil engineering, and construction (three sub-
groups). Members from the owner role participated in almost all the
subgroups, whereas those from the GC role were concentrated in
the most central subgroup (i.e., SG.1). Members from Tier 1 only
participated in the subgroups with higher centrality (SG.1 to SG.4)
whereas those from Tiers 2 and 3 were distributed across all the
subgroups.

The study network size varied between 79 and 102 members
across the intervals with 179 in total involved at some interval
at least. Thus, some members came in and out during network
evolution. However, only 14 members participated in the core

subnetwork at some point, and all of them were present in the net-
work permanently. Moreover, the triangles and subgroups emerged
primarily them; therefore, the variation in team size did not affect
substantially the emergence and changes of the team network
structures.

Qualitative Findings

Project representatives reported satisfactory project progress at the
observed team meetings and during study interviews, signaling the
presence of a preferable network structure during the study period.
Qualitative analysis of the network data (i.e., examination of node
characteristics such as expertise and role), observational, and ar-
chival data complemented our understanding of the functions of
the core and periphery subnetworks and showed that members
in the core subnetwork had the potential to diffuse project goals
to coordinate the whole project team and that the network structure
can evolve in parallel to the changing project needs.

More specifically, we observed that project team discussions in-
volved coordination intentions during all three intervals while the
team gradually shifted the emphasis of the discussions toward deep
knowledge transfers by the end in the last interval. At Interval 1, the
core subnetwork was mostly composed of project management and
architectural design experts to create and transmit design expect-
ations (e.g., systems and layout) based on the budget. For example,
at a team meeting, core members of project management and ar-
chitectural design, respectively, stated “What the programming
is showing does not fit into [the] budget. Once we have a concep-
tual estimate, then we can have a better understanding of the budget
drivers so we can make decisions based [on the project priorities]”
and “I am recommending reducing 19 m2 (200 square ft) and reduc-
ing the [ : : : ] scope but the answer is no, therefore recommending
eliminating the patio, but it is not cost saving.”

At Interval 2, design expectations were further detailed with as-
sistance from mechanical, electrical, and civil engineers that moved
from the peripheral to the core subnetwork. For example, one
stated, “Two options for mechanical are no rooftop unit with
two chiller units or rooftop unit and a big unit.” Another stated,
“ : : :Every door on the exterior will be electrified. Panic holds
will be electrified : : : .” Finally, another stated, “We might end up
getting new pumps : : : for backflow precaution.”

Table 2. Results of the ERGM analysis

Model Network statistics

ERGM estimates

SD Interval 1 SD Interval 2 SD Interval 3

θ1 SE p θ2 SE p θ3 SE p

1 gwesp (α ¼ 0.5) 1.76 0.14 0.001* 1.58 0.11 0.001* 1.61 0.12 0.001*
CC-Tie −8.63 0.89 0.001* −6.19 0.79 0.001* −17.39 1.00 0.001*

gwesp × CC-Tie 6.03 0.79 0.001* 5.55 0.59 0.001* 11.19 0.90 0.001*
Edges −5.40 0.23 0.001* −5.21 0.17 0.001* −5.65 0.20 0.001*

2 gwesp (α ¼ 0.5) 1.71 0.12 0.001* 1.72 0.11 0.001* 1.46 0.11 0.001*
PP-Tie 0.13 0.40 0.730* −0.72 0.55 0.180* −4.46 0.51 0.001*

gwesp × PP-Tie −1.26 0.41 0.001* −2.22 0.38 0.001* −6.61 0.46 0.001*
Edges −5.06 0.19 0.001* −5.19 0.15 0.001* −5.21 0.17 0.001*

3 gwesp (α ¼ 0.5) 1.74 0.12 0.001* 1.70 0.10 0.001* 1.59 0.10 0.001*
CP-Tie 0.58 0.46 0.200* −0.28 0.41 0.490* 2.03 0.44 0.001*

gwesp × CP-Tie −1.80 0.44 0.001* −1.01 0.30 0.001* 3.33 0.31 0.001*
Edges −5.14 0.18 0.001* −5.23 0.16 0.001* −5.13 0.15 0.001*

Note: gwesp = geometrically weighted edgewise shared partner (to test the presence of network triangles); α = decay parameter; CC-Tie = core-to-core tie;
PP-Tie = periphery-to-periphery tie; CP-Tie = core-to-periphery tie; edges = number of ties in the network; SD = schematic design; θi = parameter estimate of
the effect of a network statistic at interval i, meaning the change in the log-odds of the probability of a tie occurring when the tie increases the network statistic
by a unit; SE = standard error; p ¼ p-value; and *p < 0.01.
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At Interval 3, specialists in project planning and experts in final
user needs replaced the engineers in the core subnetwork to initiate
and coordinate a value engineering process to finalize project de-
sign expectations, scope, and budget. For example, a final user
needs specialist stated regarding one item of the interior design:
“What’s the number for [room with specific purpose]? Oh! That’s
a big number. I will talk to the director and take this out [of the
scope].” Meeting minutes also showed a cost control log attached
to the project design for team coordination. Interestingly, although
staying within a core-periphery network structure in all three inter-
vals (supporting team coordination), the network gradually evolved
into developing triangles (i.e., closed triads) and subgroups for
deep knowledge transfers in Interval 3 (Fig. 3).

Network analysis in Interval 3, studied in the light of node char-
acteristics (expertise area, roles, tiers, among others) and analysis
of email headers (i.e., sample keywords reported subsequently in
italics), showed that the project team network’s structure evolved
into subgroups for deep knowledge transfers at this stage following
core subnetwork leads to maintain team coordination in the larger
project network (Fig. 3): Subgroup 1 coalesced around three core
members from the GC role (e.g., cost control logs, value engineer-
ing, and estimate); Subgroup 2 coalesced around three core mem-
bers from the Designer role (e.g., REVIT model, gross square
footage, and site design); and Subgroups 3 and 4 coalesced around
two members from the Owner role, representing different func-
tional departments including final user needs (e.g., flooring, and

Cohesive SubgroupsCore-Periphery and C-P Triangles

SG.5

Core node

Peripheral node

Peripheral node, 
previously in the core

Sample of C-P Triangles

Core-Periphery

SG.2

SG.1

SG.4

SG.3

SG.6 SG.7

SG.8

SG.9

Interval 3

Interval 2

Fig. 3. Evolution of network structures in the study project team during schematic design’s intervals. Members of the core subnetwork at Interval 2
generated triangles at Interval 3 that supported the emergence of cohesive subgroups. Presence of network structures in the study project team over the
schematic design intervals based on statistical analyses. SD Int. = schematic design interval; C-P Triangles = triangles with core and periphery
members; SG = subgroup; nodes are sized based on their eigenvector centrality; and distances among nodes in the core-periphery structures
are approximately based on metric multidimensional scaling in UCINET (Borgatti et al. 2002).
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equipment room) and project management (e.g., budget sheet, and
civil design review), respectively. The remaining five subgroups
(i.e., SG.5 to SG.9) were satellite (i.e., less central in the network)
and did not include members from the core subnetwork. They
connected with the most central subgroups (i.e., SG.1-4) through
core members. The satellite subgroups either provided resources
to the main subgroups (e.g., SG.6 to SG.1) or functioned as bridges
to help coordinate other subgroups (e.g., SG.7 between SG.2
and SG.3).

Discussion

AEC project teams are complex systems composed of members
from multiple disciplines and organizations. These members must
develop proper knowledge-transfer networks to transfer and inte-
grate their expertise and deliver a unique built-environment prod-
uct. Otherwise, AEC project team networks might break up into
subgroups specialized in different building systems and whose
actions and outcomes are incompatible (Chinowsky et al. 2008,
2011; Kereri and Harper 2019). This in-depth analysis of an AEC
project team illustrates how dynamic networks emerge and evolve
for facilitating coordination and deep knowledge transfers in
project-related activities in early stages of project delivery. The
study’s findings bring insights into how project managers can
improve collaboration and performance of complex interorganiza-
tional AEC project teams via informed network interventions.

At the earliest stages of delivery, projects may benefit from a
core subnetwork that coordinates the whole project team toward
common project goals because the scope is likely to be variable.
The core subnetwork should be flexible to accommodate experts
from all roles (i.e., owner, designer, and general contractor) based
on project demands. Therefore, managers should consider optimal
timing of key participants’ involvement in project delivery such
as contractor’s involvement before the design development phase
(Mollaoglu-Korkmaz et al. 2013), and the adoption of integrative
project delivery methods and practices (e.g., design-build and part-
nering) that facilitate the creation of shared goals (Lahdenperä
2012; Franz et al. 2016). Core subnetworks involving owner rep-
resentatives can catalyze their contribution to team goal alignment
and, therefore, help avoid team members’ opportunistic behaviors
(Hetemi et al. 2020). The composition of the core subnetwork in
our study varied between 8 and 10 members, adapting to project
needs. Although the core-periphery structure proved effective for
the study project, managers should consider that the higher the
size of the core subnetwork, the harder to coordinate all team
members (Csermely et al. 2013); thus, there is a need to carefully

select the key areas of expertise that should participate in the core
subnetwork.

The study’s findings suggest that project managers can create
and preserve core subnetworks by promoting network triangles
for knowledge transfers among designated core members. Inclu-
sions of peripheral members in these network triangles may lead
to the emergence of cohesive subgroups. The subgroups bring
together core and peripheral members from diverse disciplines
(e.g., strategic management, architecture, and mechanical engineer-
ing) and roles (e.g., owner, designer, and contractors). Subgroup
members carry out complex activities requiring deep knowledge
transfers such as those in value engineering processes. Because
the core members are highly knowledgeable of the project goals,
they can ensure that the subgroups in which they participate
gather adequate experts and work in alignment with project goals.
Therefore, project managers should consider being proactive rather
than reactive in the creation of cohesive subgroups. They should
keep core members responsible in leading their formation and
coordination. As subgroups’ coordinators, core members can have
their performance enhanced if they possess multidisciplinary exper-
tise (Laurent and Leicht 2019).

In summary, project managers can promote core-periphery
structures that help coordinate project teams at the earliest delivery
stages (e.g., schematic design phase or earlier), whereas later, they
can support cohesive subgroups for deep knowledge transfers
(e.g., detailed design phase or later). However, based on our find-
ings, project managers do not need to disassemble an established
core-periphery structure when moving on to delivery stages that
require cohesive subgroups. Instead, they can encourage team
members in the core subnetwork to create triangular patterns with
peripheral members for collaboration (e.g., designer and contractor
representatives in the core subnetwork start collaborating with a
structural engineer in the periphery to further develop the scope
and estimate of the building’s superstructure). In doing so, project
teams can preserve the core-periphery structure that supports team
members’ coordination while generating multiple cohesive sub-
groups for deep knowledge transfers and efficiently adapt to chang-
ing project needs. In addition, network triangles can help improve
team members’ trust (Henry and Vollan 2014) and avoid network
fragmentation due to staff turnovers (Franz et al. 2018).

Lastly, the study’s findings suggest that core-periphery and
subgroups are not mutually exclusive structures and can cohabit
as distinct dimensions of the same network structure. As Rombach
et al. (2017) suggested, network structures can exhibit cohesive
subgroups, each containing its own core-periphery structure or,
the other way around, a core-periphery structure can contain cohe-
sive subgroups. We found in our study that the subgroups can

Table 3. Descriptive statistics of network triangles

Triangles’ attributes

No. of triangles

SD Interval 1 SD Interval 2 SD Interval 3

Total Percent (%) Total Percent (%) Total Percent (%)

All 335.0 — 395.0 — 280.0 —
Only core members 56.0 16.7 99.0 25.1 45.0 16.1
Only periphery members 21.0 6.3 19.0 4.8 4.0 1.4
Core and periphery members 258.0 77.0 277.0 70.1 231.0 82.5
2 core and 1 periphery 152.0 58.9 171.0 61.7 144.0 62.3
1 core and 2 periphery 106.0 41.1 106.0 38.3 87.0 37.7
Average triangles per member 4.2 — 3.9 — 2.7 —
Per core member 51.2 — 44.8 — 46.8 —
Per periphery member 5.1 — 4.2 — 3.3 —

Note: SD = schematic design phase.
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emerge via network triangles involving core and peripheral mem-
bers from a preexisting core-periphery structure. The findings were
drawn from a network structure deployed during the schematic
design phase of an AEC project.

At later stages, AEC project networks might evolve following
the inverse process described herein; that is, networks might tran-
sition back from a clustered structure (e.g., subgroups) into a more
centralized one (e.g., core-periphery alone or with subgroups) to
fully integrate and complete the final product (Parraguez et al.
2015). Researchers should examine this transition and explain
if and how a core-periphery structure can emerge from cohesive
subgroups. As suggested by the study findings, the network struc-
tures are expected to be interdependent across all project delivery
phases.

Conclusion

This study explored the emergence and evolution of knowledge-
transfer networks in an AEC project team. It contributes to the body
of knowledge by expanding our understanding of the dynamic
nature of knowledge-transfer networks in complex interorganiza-
tional and interdisciplinary AEC project teams. These networks
can adopt a succession of structures that are interdependent, and
each of them is suitable for a specific function. They can adopt
core-periphery structures in which multiple cohesive subgroups
can emerge via network triangles. The cohesive subgroups can co-
exist with core-periphery structures if triangles involve core and
peripheral members. Whereas core-periphery structures emphasize
team coordination, cohesive subgroups support deep knowledge
transfers. Via social network interventions, project managers can
shape knowledge-transfer networks that improve team and project
performance.

The study’s main limitation is that the network structures
were explored in a single medium-size project team, and therefore,
the scope and generalizability of the findings might be limited.
The findings might not be applicable to especially small project
teams, where everyone can easily interact with each other. In
addition, although the literature and our participant verifications
provide validity to our methods, it is important to point out that
the weight of network ties in this study was drawn from the fre-
quency of knowledge transfers among team members based on
email exchanges and did not consider other modalities of interac-
tions (e.g., in-person, text messing via cell phone, or telephone
communication), which might entail different interaction frequen-
cies for transmitting similar knowledge or the quality of interac-
tions (e.g., high-quality knowledge might require fewer transfer
interactions).

Thus, future researchers should explore dynamics of networks
in complex interorganizational engineering project teams consider-
ing other modalities and qualities of interactions, and project deliv-
ery methods (e.g., design-bid-build, or design-build) and phases
(e.g., construction) that this study could not account for and that
would further improve management of complex interorganizational
engineering project teams.
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