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Abstract
Drugs of abuse, such as opiates, have been widely associated with the enhancement
of HIV replication, the acceleration of disease progression, and severe neuropatho-
genesis. Specifically, the presence of drugs of abuse (morphine) switches target cells
(CD4+ T cells) from lower-to-higher susceptibility to HIV infection. The effect of
such switching behaviors on viral dynamics may be altered due to the intracellular
delay (the replication time between viral entry into a target cell and the production of
new viruses by the infected cell). In this study, we develop, for the first time, a viral
dynamics model that includes an intracellular delay under the conditioning of drugs
of abuse. We parameterize the model using experimental data from simian immun-
odeficiency virus infection of morphine-addicted macaques. Results from thorough
mathematical analyses and numerical simulations of our model show that the intracel-
lular delay can play a significant role in HIV dynamics under the conditioning of drugs
of abuse, particularly during the acute phase of infection. Our model and the related
results provide new insights into the HIV dynamics and may help develop strategies
to control HIV infections in drug abusers.
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1 Introduction

Human immunodeficiency virus (HIV) remains an ongoing public health challenge
across the globe.Worldwide, over 37million people are currently living with the virus.
Approximately 1.8 million new infections and one million HIV-related deaths occur
annually (Avert 2018; Joint United Nations Programme on HIV and AIDS 2018). HIV
is a retrovirus that invades the human body and attacks the immune system responsible
for fighting against various infections in the body. Individuals infected with HIV can
eventually progress to acquired immunodeficiency syndrome (AIDS). At AIDS, the
immune system is severely weakened to fight off opportunistic infections, which may
lead to the patient’s death (U.S. Department of Health and Human Services 2018b).

HIV spreads through contact with certain body fluids from a person infected with
HIV. The most common modes of viral transmission are sexual intercourse, contam-
inated blood transfusion, and needle sharing among drug abusers (Levy 1993; U.S.
Department of Health and Human Services 2018a). Drug abusers constitute one of
the major portions of HIV infected population within the USA and other parts of the
world. In 2017, people who inject drugs accounted for approximately 10% of HIV
diagnoses in the USA (Centers for Disease Control and Prevention 2019), and a third
of 1.1 million US residents who are currently living with HIV use drugs or binge
on alcohol (National Institute on Drug Abuse 2015; U.S. Department of Health and
Human Services 2019). These statistics show that drugs of abuse are a significant
problem among HIV infected individuals. Conditioning of drugs of abuse has been
shown to exacerbate HIV infections, including a higher viral load, rapid disease pro-
gression, and higher HIV-associated neurocognitive disorders (HAND) (Kumar et al.
2004; Wang et al. 2012; Friedman et al. 2003). One of the effects that conditioning of
drugs of abuse has on CD4+ target cells is an upregulated expression of co-receptors
in these cells. HIV interacts with chemokine co-receptors of the target cell, such as
CCR5 or CXCR4, to effectively bind to the target cell and eventually enter it. Increas-
ing the expression of these co-receptors due to drugs of abuse such as morphine leads
to a higher susceptibility of the CD4+ target cells (Guo et al. 2002; Li et al. 2003;
Suzuki et al. 2002).

Mathematical models have been widely used to provide insights into the dynamics
of infectious diseases, including viral dynamics (Perelson and Ribeiro 2013; Nowak
and May 2000; Bonhoeffer et al. 1997; Stafford et al. 2000; Vaidya et al. 2018).
Vaidya et al. (2016) modeled the effect of morphine on HIV dynamics by introducing
an additional target cell subpopulation of higher susceptibility due to upregulated
co-receptor expression in the presence of morphine. Their model can explain the
experimental observation that the presence of morphine can cause a higher viral set
point and a higher loss of CD4+ T cells. However, in their model, it was assumed
that viral replication occurs instantaneously, ignoring the intracellular delay, the time
required for this replication process to complete. This intracellular delay represents
the actual time from the virus entry into a target cell to the time of virions being
released from the infected cells (Nelson et al. 2000). Since target cells dynamically
switch between two subpopulations during the intracellular delay, the viral dynamics
may be affected by the intracellular delay in the presence of morphine.
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In this study, we develop a novel viral dynamics model that includes, for the first
time, the effects of intracellular delay on HIV dynamics under the conditioning of
morphine. In the absence of morphine, it has already been shown that the intracellular
delay can alter the stability of equilibria and initiate otherwise stable populations to
fluctuate (Cai et al. 2009). We are interested in examining whether there is a similar
behavior in the presence of morphine as well. We analyze our delay differential equa-
tion model, derive the basic reproduction number, and perform numerical simulations
to evaluate how intracellular delay affects viral load, CD4 count, and subpopulation
switch in the presence of morphine.

2 Model

We extend a previous SIV dynamics model under morphine conditioning (Vaidya
et al. 2016) by including an intracellular delay. We focus on upregulated co-receptor
expression in the target cells (CD4+ T cells) due to morphine concentration. We do
not include the effect of morphine on the immune response since our main goal is
to examine the acute phase of HIV infection, where immune responses are primarily
absent (Mutua et al. 2019). As in the previous models (Li and Shu 2010; Nelson et al.
2000; Zhu and Zou 2009; Herz et al. 1996), we introduce the intracellular phase of
the virus life-cycle through a constant delay τ , which represents the time lag between
the time the virus enters a target cell and the time the infected cell produces virions.
Because of this intracellular delay, the virus-producing cells (I ) at time t are those
target cells into which the virus successfully enters at time t − τ and are still alive at
time t . Assuming a constant death rate s during the delay phase for an initially infected
cell but not yet producing virus, the survival probability of these cells from time t − τ

to t is given by e−sτ . As in Vaidya et al. (2016), we consider two subpopulations of
target cells with different susceptibility and allow the cells to switch between these
two subpopulations. As a result, the ratio between higher susceptible target cells (Th)
and lower susceptible target cells (Tl) at time t − τ might differ from the ratio at time
t . The model is described by the following set of delay-differential equations:

dTl(t)

dt
= λ + qTh(t) − dTl(t) − rTl(t) − βlV (t)Tl(t),

dTh(t)

dt
= rTl(t) − dTh(t) − qTh(t) − βhV (t)Th(t),

d I (t)

dt
= βlV (t − τ)Tl(t − τ)e−sτ + βhV (t − τ)Th(t − τ)e−sτ − δ I (t),

dV(t)

dt
= pI (t) − cV (t), (1)

with initial conditions and history

Tl(t) = Tl0, t ∈ [−τ, 0],
Th(t) = Th0, t ∈ [−τ, 0],
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Fig. 1 Schematic diagram of the delay model of HIV infection under morphine conditioning. The model
contains two subpopulations of target cells: one with higher susceptibility, Th and another with lower
susceptibility, Tl. Cells can switch between these populations with transition rates r from Tl to Th and q
from Th to Tl. Both target cell populations die at per capita rate d and become initially infected cells, Ĩ ,
upon contact with the free virus, V , at rates βl and βh, respectively. Initially, infected cells survive the
intracellular delay τ with probability e−sτ , before they become productively infected cells, I , and produce
new virions at a rate p virions per cell per day. Productively infected cells die at a rate δ per day, and virus
gets cleared at rate c

V (t) =
{
0, for t ∈ [−τ, 0),

V0, for t = 0,

I (t) = 0, t ∈ [−τ, 0].

Here, for simplicity, we assume that target cells newly recruited at a constant rate
λ are all in the lower susceptible subpopulation Tl. The per capita loss rate d is a
result of the difference between loss from cell death and gain due to cell division. The
transition rates from Tl to Th and Th to Tl are denoted by r and q, respectively. Lower
and higher susceptible target cells can become initially infected, Ĩ , upon contact with
the free virus, V , at rates βl and βh, respectively. These initially infected cells become
productively infected cells, I , with survival probability e−sτ and start producing new
virions at rate p virions per cell per day. Productively infected cells die at rate δ per
day. The virus clearance rate is denoted by c. A schematic diagram of the model is
shown in Fig. 1.

As our model is in the form of delay-differential equations, we also have to consider
the history of virus and cell populations τ time units before the initial infection to obtain
the solution of themodel. For simplicity, we choose the history functions to be constant
such that Tl(t) = Tl0 and Th(t) = Th0 for t ∈ [−τ, 0]. As there are no infected cells
and no virus before the primary infection at t = 0, we set these two history functions
equal to 0 for t < 0. At t = 0, the infection takes place, and we assume that the
infection begins with the free virus. Hence, we take V (0) = V0 and I (0) = 0.

3 Data Fitting andModel Parameters

In this section, we estimate the model parameters by fitting the model solution to
experimental data.
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3.1 Data

The viral load data we used for the parameter estimation of our model was obtained
from a published study on 12 male rhesus macaques (Kumar et al. 2004; Vaidya
et al. 2016). Six of the monkeys were morphine-dependent, and the other six animals
were the control group. The morphine dependence was established and maintained
by injecting doses of morphine intramuscularly over 20 weeks. For the control group,
a saline injection was used. All animals were infected intravenously with SIV and
monitored for 12 weeks. During this time, the plasma viral load was measured at
weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 after the infection.

Due to the complexity of the delay differential equation system as well as the high
number of parameters to be estimated, the limited data were insufficient to properly
run the data fitting. Therefore, we generated additional data points using the model in
Vaidya et al. (2016), which successfully describes the experimental data from the SIV
infectedmacaques.We considered the geometricalmean viral load data among animals
from the control group and calculated the standard deviation (sd) of the residuals in
the results obtained from the previous model. We then extracted 45 data points from
the model solution and added noise from random, normally distributed errors with
mean 0 and variance sd2. Using this generated data, we estimated the parameters of
our delay differential equation model. We repeated the process by generating 1000
different data sets.

3.2 Parameter Estimation

Each macaque was infected intravenously with a 2-ml-inoculum containing 104

TCID50 of each of three chosen SIV viruses (SHIVKU−1B , SHIV89−6P , and
SIV17E−Fr ) (Kumar et al. 2004). The total of 3 × 104 TCID50 of viruses contains at
least 3× 105 HIV RNA copies (Ma et al. 2009). A macaque, on average, weighs 1/10
of a human, which approximately gives 1.5 liters of extracellular water in a macaque.
Assuming that the infused RNA copies are dispersed into extracellular water, the ini-

tial viral load, V0, can be estimated as V0 ≈ 3×105
1.5L ≈ 200 viral RNA copies/ml. As

discussed in Vaidya et al. (2016), we take Th0 = 40, 980 and Tl0 = T0 − Th0 as
the initial populations of target cells, where T0 = 106 cells/ml is the total number of
CD4+ T cells per ml in a macaque (Kumar et al. 2004; U.S. Department of Health
and Human Services 2017). Chen et al. (2007) estimated the SIV burst size in vivo in
rhesus macaques as approximately 5× 104 virions per day per infected cell. With one
day average lifespan of productively infected cells (Markowitz et al. 2003) and only
5% of the total CD4 count as susceptible target cells for SIV infection in macaques
(Vaidya et al. 2010), this burst size provides the virus production rate p = 2500 vRNA
cell−1 day−1. Further, Ramratnam et al. (1999) estimated the virion clearance rate dur-
ing chronic infection in humans between 9.1 and 36.0 day−1, with an average of 23
day−1. We, therefore, take c = 23 day−1 as a minimal estimate and acknowledge that
this value might be larger in macaques (Zhang et al. 2002). As estimated in Stafford
et al. (2000), we take 100 days as the average life span of uninfected target cells,
i.e., d = 0.01 day−1. Since there is no conclusive estimate for the death rate of ini-
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Fig. 2 Fitting of the model to generated data and experimental observations. [Left] The model prediction
and one particular set of data, generated based on the model in Vaidya et al. (2016) with noise added.
[Middle] The 2.5th percentile, the median, and the 97.5th percentile of the best-fit solutions corresponding
to the 1000 data sets. [Right] The viral load predicted by themodel (solid line) with the estimated parameters
compared to the experimental data (cross)

tially infected target cells during the intracellular phase, we set s = d. The remaining
parameters (βl, βh, r , q, τ, δ, λ) are estimated by fitting the model to the data.

We solved model (1) using the delay differential equation solver “dde23” (The
MathWorks Inc. 2019a) in MATLAB. The parameters were estimated by minimiz-
ing the residual sum of squares between the model solution and the generated viral
load data with the MATLAB optimization function “fmincon” (The MathWorks Inc.
2019b). By generating 1,000 sets of data and fitting the model to each of them,
we computed 95% confidence intervals for the estimated parameters. The estimated
parameters, their parameter descriptions, and confidence intervals are summarized in
Table 1. In Fig. 2, we present the fitting of the model to generated data, showing that
the curve fits the generated data well. The small confidence interval of the estimated
parameter assures reasonable parameter estimates. Furthermore, we compared the
model solution for the estimated parameters with the experimental data and observed
a good agreement between them (Fig. 2).

4 Model Analysis

To investigate the dynamics of system (1), we first consider suitable phase space and
a feasible region. For τ > 0, we consider X = C([−τ, 0],R), the Banach space of
continuous functions from [−τ, 0] into R, with norm ||�|| = sup−τ≤t≤0|�(t)| for
� ∈ X. The nonnegative cone of X is defined as X+ = C([−τ, 0],R+).

4.1 Positivity and Boundedness of Solutions

We first establish the positivity and boundedness of solutions of (1) in the following
theorem.

Theorem 1 With the initial conditions �(0) chosen from X
+ × X

+ × R+ × X
+ with

�(0) > 0, all solutions of system (1) are positive and ultimately bounded.

Proof We implement the method of contradiction to prove the positivity of the solu-
tions. If possible, suppose that Tl(t) > 0 for all t > 0 is not true, and let tl1 > 0
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Table 1 Initial values and parameters. The values along with their 95% confidence intervals obtained from
the data fitting

Sym. Description Value Sources
[Confidence Interval]

Initial values

Tl0 Low susceptible
CD4+ target cells

959,020 ml−1 Vaidya et al. (2016)

Th0 High susceptible
CD4+ target cells

40,980 ml−1 Vaidya et al. (2016)

I0 Infected CD4+
target cells

0 ml−1 Assumption, Stafford et al.
(2000), Vaidya et al. (2016)

V0 Viral RNA copies 200 ml−1 Derived, Kumar et al. (2004),
Ma et al. (2009)

Parameter

p Virus production
rate

2500 vRNA cell−1 day−1 Derived, Chen et al. (2007),
Markowitz et al. (2003),
Vaidya et al. (2010)

c Virus clearance
rate

23 day−1 Ramratnam et al. (1999)

d Uninfected target
cell death rate

0.01 day−1 Stafford et al. (2000)

s Initially infected
target cell death
rate3

0.01 day−1 Assumption

δ Productively
infected target
cell death rate

0.795 day−1 Data fitting

[0.408, 1.984]

λ Constant produc-
tion rate of Tl cells

3689.99 ml−1day−1 Data fitting

[3659.58, 3690.26]

r Transition rate
from Tl to Th

0.205 day−1 Data fitting

[0.104, 0.319]

q Transition rate
from Th to Tl

0.239 day−1 Data fitting

[0.085, 0.996]

βl Infection rate of Tl
cells

1.03×10−11 vRNA/day Data fitting

[1.00×10−11, 1.46×10−11]

βh Infection rate of Th
cells

1.04×10−7 vRNA/day Data fitting

[4.48×10−8, 5.63×10−7]

τ Intracellular delay 0.231 days Data fitting

[0.031, 0.704]

During intracellular phase of viral replication
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be the first time point such that Tl(tl1) = 0. Then, form the first equation of system

(1), we obtain dTl
dt

∣∣∣
t=tl1

= λ + qTh(tl1). We claim that Th(tl1) cannot be negative. If

Th(tl1) < 0, we can find the first time point th1 ∈ [0, tl1) such that Th(th1) = 0. Then,

the second equation of system (1) provides dTh
dt

∣∣∣
t=th1

= rTl(th1). Since th1 < tl1,

Tl(th1) > 0, which provides dTh
dt

∣∣∣
t=th1

> 0. This implies that Th(t) < 0 for t

in (th1 − εh1, th1), where εh1 is sufficiently small. This contradicts Th(t) > 0 for

t ∈ [0, th1). This follows that Th(tl1) ≥ 0, which provides dTl
dt

∣∣∣
t=tl1

> 0. This implies

that Tl(t) < 0 for t in (tl1 − εl1, tl1), where εl1 is sufficiently small. This contra-
dicts Tl(t) > 0 for t ∈ [0, tl1). Therefore, Tl(t) > 0 for t > 0. This also implies that
Th(t) > 0 for t > 0. Otherwise, the first time point th2 with Th(th2) = 0 along with the

second equation of system (1) provides dTh
dt

∣∣∣
t=th2

= rTl(th2) > 0. This again implies

that Th(t) < 0 for t in (th2 − εh2, th2), where εh2 is sufficiently small, contradicting
Th(t) > 0 for t ∈ [0, th2). Hence we conclude that Tl(t) > 0, Th(t) > 0 for t > 0.

Similarly, we apply the method of contradiction to show the solutions I (t) and V (t)
of system (1) are positive for t > 0. If V (t) > 0 for all t > 0 is not true, we can find
the first time point tv1 > 0 such that V (tv1) = 0. Then, the fourth equation of system

(1) provides dV
dt

∣∣∣
t=tv1

= pI (tv1). Also, from the third equation of system (1), we get

I (tv1) = e−δtv1

[
I (0) +

∫ tv1

0
{βlTl(η − τ) + βhTh(η − τ)} V (η − τ)e−sτ+δηdη

]
> 0.

This implies that dVdt

∣∣∣
t=tv1

> 0, and with the same argument as above we get V (t) > 0

for t > 0. Furthermore, we obtain

I (t) = e−δt
[
I (0) +

∫ t

0
{βlTl(η − τ) + βhTh(η − τ)} V (η − τ)e−sτ+δηdη

]
> 0.

This completes the proof of the positivity of the solutions of system (1).
To prove the boundedness, we first assume T = Tl + Th, and then from the first

two equations of (1), we get

dT (t)

dt
= λ − dT (t) − [βlTl(t) + βhTh(t)]V (t) ≤ λ − dT (t).

This implies lim supt→∞ T (t) ≤ λ
d , and consequently lim supt→∞ Tl(t) ≤ λ

d and
lim supt→∞ Th(t) ≤ λ

d . Then, from the first three equations of (1), we obtain

d

dt
[Tl(t) + Th(t) + I (t + τ)] =λ − d[Tl(t) + Th(t)] − δ I (t + τ)
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+ [βlTl(t) + βhTh(t)]V (t)(e−sτ − 1)

≤λ − dmin[Tl(t) + Th(t) + I (t + τ)],

where dmin = min{d, δ}. Here, we can take dmin = d as the life-span of infected
cell (∼ 1 day) is extremely shorter than the life-span of uninfected cell (∼100 days),
i.e., d << δ. Thus, lim supt→∞[Tl(t) + Th(t) + I (t + τ)] ≤ λ

d . Then, from the last
equation of (1), we obtain

dV (t)

dt
= pI (t) − cV (t) ≤ p

λ

d
− cV (t)

which implies lim supt→∞ V (t) ≤ pλ
dc . Therefore, Tl(t), Th(t), I (t), and V (t) are

ultimately bounded in X
+ × X

+ × R+ × X
+. 	


Using above conditions, we observe that the dynamics of system (1) can be analyzed
in the following bounded feasible region


 =
{
(Tl, Th, I , V ) ∈ X

+ × X
+ × R+ × X

+ : ||Tl + Th|| ≤ λ

d
,

||Tl + Th + I || ≤ λ

d
, ||V || ≤ pλ

dc

}
.

Moreover, the region 
 is positively invariant with respect to model (1).
We now compute and analyze the basic reproduction number R0. We also study the

equilibria of the model and their stability.

4.2 Infection Free Equilibrium and Basic Reproduction Number

The basic reproduction number, R0, is the average number of secondary infected
cells resulted from one infected cell in its lifetime. We derive R0 by computing the
dominate eigenvalue of the next-generation operator (Diekmann et al. 1990; Van den
Driessche andWatmough 2002; Heffernan et al. 2005; Nakata and Omori 2015) while
we acknowledge that there may be other methods. In the absence of HIV infection,
i.e., I = V = 0, model (1) reduces to

dTl(t)

dt
= λ + qTh(t) − dTl(t) − rTl(t),

dTh(t)

dt
= rTl(t) − dTh(t) − qTh(t).

By setting the equations above equal to 0, we obtain the unique infection free equilib-
rium E0 = (T 0

l , T 0
h , 0, 0), where

T 0
l = λ(d + q)

d(d + q + r)
, T 0

h = λr

d(d + q + r)
.

123



   81 Page 10 of 23 N. K. Vaidya, M. Peter

In model (1) we have two infected compartments I and V . We define y1 = I , y2 = V ,

F1(t) = βlV (t−τ)Tl(t−τ)e−sτ

+ βhV (t−τ)Th(t−τ)e−sτ , V1(t) = δ I (t),

F2(t) = 0, V2(t) = −pI (t) + cV (t).

We now introduce two matrices

F =
[
∂Fi

∂ y j

(
E0

)]
=

(
0 λ

d(d+q+r) [βl(d + q) + βhr ]e−sτ

0 0

)

V =
[

∂Vi

∂ y j

(
E0

)]
=

(
δ 0

−p c

)
⇒ V

−1 = 1

δc

(
c 0
p δ

)

These expressions give

FV
−1 =

(
λp

δcd(d+q+r) [βl(d + q) + βhr ]e−sτ λ
cd(d+q+r) [βl(d + q) + βhr ]e−sτ

0 0

)

and R0 corresponds to the spectral radius of FV−1:

R0 = ρ
(
FV

−1
)

= λp

δcd(d + q + r)
[βl(d + q) + βhr ]e−sτ .

Rewriting this formula leads to a more heuristic approach previously implemented (Li
and Shu 2010) to derive the basic reproduction number for delay differential equation
model of within-host viral dynamics:

R0 = λ(d + q)

d(d + q + r)
· p

δ
· βle−sτ

c
+ λr

d(d + q + r)
· p

δ
· βhe−sτ

c

= T 0
l · p

δ
· βle−sτ

c
+ T 0

h · p

δ
· βhe−sτ

c

Note, an infected target cell produces p
δ
virions over its entire lifetime 1

δ
. Each of these

virions can infect T 0
l and T 0

h susceptible target cells at a rate of βl
c or βh

c , respectively,
over its life span 1

c . Out of these initially infected cells only a fraction e−sτ survives
the delay period τ to become infectious and start producing virus. Therefore, the
total number of secondary productively infected cells from one initial infected cell is

T 0
l · p

δ
· βle−sτ

c + T 0
h · p

δ
· βhe−sτ

c , which is equal to R0 derived above.

4.3 Stability Analysis of the Infection Free Equilibrium

We will prove the local stability of E0 in the following theorem.
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Theorem 2 The infection-free equilibrium E0 is locally asymptotically stable if R0 <

1 and unstable if R0 > 1.

Proof For convenience,we let−→u (t)be the transposeof vector (Tl(t), Th(t), I (t), V (t)).
Linearizing the model system (1) at E0, we obtain

d

dt
−→u (t) = A

0
4×4

−→u (t) + B
0
4×4

−→u (t − τ), (2)

with

A
0
4×4 =

(
W 0

2×2 X0
2×2

02×2 Y 0
2×2

)
, B

0
4×4 =

(
02×2 02×2

02×2 Z0
2×2

)
,

where

W 0 =
(−d − r q

r −d − q

)
, X0 =

(
0 −βlT 0

l
0 −βhT 0

h

)
, Y 0 =

(−δ 0
p −c

)
,

Z0 =
(
0 (βlT 0

l + βhT 0
h )e−sτ

0 0

)
.

Denoting eigenvalues by ζ , the characteristic equation for (2) is

Δ(ζ) = det[ζ I4×4 − A
0 − e−ζ τ

B
0] = 0

⇒det[ζ I2×2 − W 0] · det[ζ I2×2 − Y 0 − e−ζ τ Z0] = 0,

where I represents identity matrix. Since d, q, r > 0, it holds that

trace(W 0) = −(2d + r + q) < 0,

det(W 0) = (−d − r)(−d − q) − rq = d(d + q + r) > 0.

Therefore, both eigenvalues ofW 0 are negative.Hence the stability of E0 is determined
by the roots of equation

det[ζ I2×2 − Y 0 − e−ζ τ Z0] = 0,

which reduces to

ζ 2 + (c + δ)ζ + cδ(1 − R0e
−ζ τ ) = 0. (3)

If R0 < 1, then ζ = 0 is not a root of (3) because cδ(1 − R0) > 0. When τ = 0, (3)
becomes

ζ 2 + (c + δ)ζ + cδ(1 − R0) = 0. (4)
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In this case, R0 < 1 implies cδ(1− R0) > 0 under which all roots of (4) have negative
real parts.

Note that all roots of (3) depend continuously on τ (Busenberg and Cooke 1993).
We denote ζ = χ(τ) + iω(τ), (ω > 0). As mentioned above χ(0) < 0. Also, as in
some previous studies (Beretta and Kuang 2002; Zhu and Zou 2009), we can assure
that Re(ζ ) < +∞ for any root of (3). Therefore, as the delay τ increases, the roots
of (3) can only enter the right half in complex plane by crossing the imaginary axis.
Here, ζ = iω with ω > 0 is a purely imaginary root of (3) if and only if

−ω2 + iω(c + δ) + cδ(1 − R0e
−iωτ ) = 0.

Separating the real and imaginary parts, we get

−ω2 + cδ = cδR0 cosωτ,

ω(c + δ) = −cδR0 sinωτ. (5)

Squaring and adding these two equations, we obtain

ω4 + (c2 + δ2)ω2 + c2δ2(1 − R2
0) = 0. (6)

If R0 < 1, then c2δ2(1− R2
0) > 0, and also c2 + δ2 > 0. This implies that (6) has no

nonnegative real root. Therefore, there is no root ζ = iω with ω > 0 for (3), implying
that the roots of (3) cannot cross the purely imaginary axis. Hence, all roots of (3)
have negative real parts provided R0 < 1.

On the other hand, if R0 > 1, then c2δ2(1− R2
0) < 0. In this case, (6) has a positive

root ω0 such that

ω2
0 = 1

2

{
−(c2 + δ2) +

√
(c2 + δ2)2 + 4c2δ2(R2

0 − 1)

}
.

From (5), we have

τ j = 1

ω0
arctan

(
ω0[c + δ]
ω2
0 − cδ

)
+ 2π

ω0
j, j = 0, 1, 2, ...

Also, differentiation of (3) and algebraic simplification allow us to show

d

dτ
χ(τ)

∣∣∣∣
τ=τ0

= d

dτ
Reζ(τ )

∣∣∣∣
τ=τ0

> 0.

By continuity, χ(τ) becomes positive when τ > τ0 and the infection free equilibrium,
E0, becomes unstable. This completes the proof. 	
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4.4 Infected Equilibrium

Using symbolic computation in MATLAB, we found two other possible equilibria
E∗ = (T ∗

l , T ∗
h , I ∗, V ∗) and E∗∗ = (T ∗∗

l , T ∗∗
h , I ∗∗, V ∗∗) in addition to the infection-

free equilibrium, E0:

T ∗
l = A − √

S

2βl p(βhd − βld)
+ βhλp − cdδesτ

p(βhd − βld)
, I ∗ = −e−sτ A − √

S

2βhβlδ p
,

T ∗
h = A − √

S

2βh p(βhd − βld)
+ βlλp − cdδesτ

p(βhd − βld)
, V ∗ = −e−sτ A − √

S

2βhβlcδ
,

and

T ∗∗
l = A + √

S

2βl p(βhd − βld)
+ βhλp − cdδesτ

p(βhd − βld)
, I ∗∗ = −e−sτ A + √

S

2βhβlδ p
,

T ∗∗
h = A + √

S

2βh p(βhd − βld)
+ βlλp − cdδesτ

p(βhd − βld)
, V ∗∗ = −e−sτ A + √

S

2βhβlcδ
,

where

A = βhcdδesτ − βhβlλp + βlcdδesτ + βlcδqe
sτ + βhcδre

sτ ,

S = β2
hβ

2
l λ

2 p2 − 2esτ β2
hβlcdδλp + 2esτ β2

hβlcδλpr + e2sτ β2
hc

2d2δ2

+ 2e2sτ β2
hc

2dδ2r +e2sτ β2
hc

2δ2r2+2esτ βhβ
2
l cdδλp+2esτ βhβ

2
l cδλpq

−2e2sτ βhβlc
2d2δ2−2e2sτ βhβlc

2dδ2q −2e2sτ βhβlc
2dδ2r + 2e2sτ βhβlc

2δ2qr

+ e2sτ β2
l c

2d2δ2 + 2e2sτ β2
l c

2dδ2q + e2sτ β2
l c

2δ2q2.

4.5 R0 in Threshold Dynamics: Impact of Intracellular Delay andMorphine

An equilibrium is biologically existent if all of its populations are positive. Figure 3
(left) displays the viral load steady states V ∗ and V ∗∗ with respect to R0. We clearly
see that V ∗∗ is negative on the whole range of R0, and therefore, the equilibrium E∗∗
is never biologically existent. V ∗ is positive for R0 > 1 and the same is true for I ∗
(data not shown), and since T ∗

l and T ∗
h are strictly positive for all R0, the infected

equilibrium E∗ is existent for R0 > 1. We also summarize the numerically obtained
stability through the bifurcation diagram in Fig. 3 (right). As revealed by our numerical
experiment, the stability of the equilibria and hence the dynamics of the model are
completely determined by the basic reproduction number R0.

Using our parameter estimates, we obtain R0 = 2.35. As R0 > 1, the infection
spreads, consistent with the data. We now study how R0 is affected by the intracellular
delay τ . As we are particularly interested in the effect of the intracellular delay in the
presence of morphine, we analyze the relation between the basic reproduction number
R0 and the delay τ as well as the relation between R0 and the morphine-related param-
eters r and q in greater detail. Figure 4 shows the effects of τ , r , and q on R0 while
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Fig. 3 [Left] Existence of the infected equilibrium E∗. Existence of the infected equilibrium E∗. The viral
load steady states of the equilibria E∗ and E∗∗ are shown with respect to the basic reproduction number,
R0. If a population is negative, which is shown by a dashed line, it is not biologically existent. [Right]
Numerically obtained transcritical bifurcation diagram of steady-state viral load. The steady-state viral
load is given by the infection-free equilibrium, E0, and the infected equilibrium, E∗. Numerically tested
stability of each equilibrium is also indicated with a solid line representing a stable equilibrium and a dashed
line representing an unstable equilibrium

Fig. 4 Dependence of R0 on τ , r and q. The effect of changing one particular parameter τ , r or q, while
keeping all others fixed, on the basic reproduction number R0 is shown. The dashed line indicates R0 = 1

keeping all other parameters fixed. The expression of R0 shows that the basic repro-
duction number is a decreasing function of the delay τ . Therefore, ignoring the delay
might overestimate the basic reproduction number. Increasing the delay τ eventually
leads to R0 < 1, at which the infection is avoided. For our estimated parameters, this
happens at a delay of approximately 86 days (Fig. 4). We note that the delay of 86 days
is unrealistic to achieve in general. Nevertheless, the required delay can come down
to realistic ranges and might become important in determining whether the infection
occurs when we consider treatment, particularly pre-/post-exposure prophylaxis.

Furthermore, we observe that R0 is significantly affected by changes in r and q.
We notice that the presence of morphine, which results in higher r and lower q values,
increases R0 causing further obstacles to control the disease with ART (Fig. 4). We
also computed the threshold delay τ ∗ corresponding to R0 = 1 for different values
of the morphine-related parameters, r and q. We observe that for low values of r and
high values of q, i.e., for small amount of morphine presence, small (realistic) values
of τ can play a role in determining whether infection occurs (R0 > 1) or dies out
(R0 < 1) (Fig. 5).
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Fig. 5 Dependence of threshold τ∗ corresponding to R0 = 1 on r and q. For parameter combinations of
τ and r or q above the curves, R0 < 1 and the HIV infection dies out, while for parameter combinations
below the curves, R0 > 1 and the infection spreads. The estimated value, drawn as circles, signifies the
threshold delay τ∗ corresponding to R0 = 1 based on our current parameter estimates

5 Simulation Results

In this section, we conduct simulations of the developed model to study the effects of
morphine concentration and the intracellular delay on the viral load, the CD4 count,
and the proportion of target cells with high susceptibility. The effect of morphine can
be studied by altering the transition rates r and q between the two subpopulations of
target cells in our model. A higher morphine concentration leads to an increase in r
and to a decrease in q. The dependency of r and q on the morphine concentration is
described by an Emax model of the form (Ting 2006)

r(M) = rc + (rm − rc)ηr (M),

q(M) = qc + (qm − qc)ηq(M),

where

ηr (M) = Mn

Mn
h + Mn

,

ηq(M) = 1 − ηr (M).

Here, M represents the concentration of morphine in the blood plasma. Olkkola et al.
(1988) measured the kinetics and dynamics of morphine in children and observed
peak plasma concentrations of morphine between 135 and 330 microgram per liter.
Therefore, we will vary the concentration of morphine, M , between 0 (i.e., no mor-
phine) and 300 µg/L. rc and qc reflect the transition rates in the absence of morphine,
which are taken as the values listed in Table 1. rm = 0.5 and qm = 4.42 × 10−7 are
the values of r and q under a high amount of morphine conditioning, as estimated in
Vaidya et al. (2016). Mh represents the morphine concentration at which q(M) and
r(M) reach the average (midpoint) of their maximum and minimum values. Since
there is no information about this value, we assume Mh = 100 µg/L for our base
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case computation. The Hill coefficient is taken as n = 8, estimated based on in vitro
co-receptor expression data.

5.1 Viral Load

Ourmodel predicts that a higher delay, as well as highermorphine concentration, leads
to more oscillation in the curve before it reaches a set point, and it takes longer to reach
the steady state (Fig. 6). All solutions converge toward the steady state, consistent with
the above results (Sect. 4) of the infected equilibrium being asymptotically stable for
this parameter set, which gives R0 > 1. The peak of the viral load curve is shifted
to the right with increasing τ , i.e., the peak time of the viral load is delayed due to
intracellular delay (Fig. 6c). For example, assuming no intracellular delay, the viral
load peak occurs approximately 7 days after the infection. In contrast, an intracellular
delay of 2 days causes the viral load peak to occur at 32 days post-infection. The viral
peak occurs earlier for an increased morphine concentration. However, the impact of
morphine on the viral peak time is less intense than the impact of the intracellular
delay (Fig. 6c). For example, in the absence of morphine, the viral load peak occurs
at 11 days post-infection, whereas it occurs at 7 days with a morphine concentration
of 300 µg/L.

We further observe that the peak value slightly decreases with increasing intracel-
lular delay and increases with the concentration of morphine (Fig. 6d). We notice that
the viral load peak value changes are not significant, since the maximum of change
is below a half log-scale in each case. In the experimental data (Kumar et al. 2004),
there was no significant difference in the viral load peak values regarding themorphine
concentration; hence, our model is consistent with this observation in the experimental
data.

Regarding the steady-state viral load, there are negligible effects of τ and only
small effects of a change in the morphine concentration (Fig. 6e). As presented in
the surface plot and the contour plot (Fig. 6e), morphine has a higher effect on the
steady-state viral load than the intracellular delay. The steady-state viral load slightly
increases with increasing morphine concentration, consistent with experimental data
(Kumar et al. 2004). In the absence of morphine, the steady-state level of viral load is
5.4 log10, while with a morphine concentration of 300 µg/L, it reaches 5.6 log10.

5.2 CD4 Count

TheCD4 count, which is given by Tl+Th+I
1000 cells permicroliter, is often used tomeasure

the HIV patient’s immune status. We observe a higher loss for a higher concentration
of morphine (to 30 cells per μL at a morphine concentration of 300 µg/L vs. to 140
cells perμL in the absence ofmorphine, Fig. 7). In addition, with an intracellular delay,
the sharp drop in the beginning is also delayed in the model solution, with a slower
steady decrease during the lag time. As we found, in the absence of the intracellular
delay, the model predicts that the CD4 count drops to 150 cells per μL, whereas it
drops to 115 cells per μL for an intracellular delay of 2 days.
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Fig. 6 Viral dynamics predicted by themodel for (a) different intracellular delays and (b) differentmorphine
concentrations. (c)Viral load peak for different intracellular delay and morphine concentration. (d) Time to
viral load peak for different intracellular delay and morphine concentration. (e) Viral load steady state for
different intracellular delay and morphine concentration. The parameters used are the same as in Table 1

Fig. 7 Model prediction of [Left] the CD4 count dynamics for different intracellular delays, [Middle] CD4
count dynamics for different morphine concentrations, and [Right] the steady-state of CD4 count for the
different intracellular delays andmorphine concentrations. All the parameters used are the same as in Table 1

The steady-state CD4 count is not affected significantly by the delay (Fig. 7),
while the effect of the morphine concentration on the steady-state CD4 count is quite
significant. For a highmorphine concentration, themodel predicts a significantly lower
steady-state CD4 count (80 cells per μL for M = 300 µg/L) than in the absence of
morphine (170 cells per μL), consistent with experimental data (Kumar et al. 2004).
Hence, a higher morphine concentration leads to a significantly higher total loss in the
CD4 count (92% loss for M = 300 µg/L vs 83% loss for M = 0).
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5.3 Proportion of Higher Susceptible Target Cells

We now study how the percentage of higher susceptible target cells, i.e., ( Th
Tl+Th

×
100%), are affected by the intracellular delay andmorphine concentration.Weobtained
an early drop in the percentage of higher susceptible target cells (Fig. 8a, b). After this
early loss, the Th-percentage quickly recovers and converges toward its steady state
for all parameter sets. The initial drop in the percentage of Th cells is delayed due to
an intracellular delay.

In the early phase of infection, the Th-proportion is significantly affected by the
intracellular delay, particularly for a high morphine concentration, as shown by the
model predicted Th-percentage at weeks 1, 2, 3, and 4 (Fig. 8c–f). For example, at one-
week post-infection, we observe that the Th-percentage increases from about 20% to
40%with increasing delay for small morphine concentrations. In contrast, we observe
an increase from 10% to 90%with increasing delay for high morphine concentrations.
In general, the intracellular delay has pronounced effects on the Th-percentage in the
early phase of HIV infection.

We note that the percentage of higher susceptible target cells, in the long run, is
not affected much by the delay (Fig. 8a). However, the morphine concentration sig-
nificantly affects the steady state Th-percentage (Fig. 8b). For example, in the absence
of morphine (M = 0), the steady-state level of Th-percentage is 43%, whereas, for a
morphine concentration of 300 µg/L, the Th-percentage reaches 91%.

6 Discussion and Conclusion

Drugs of abuse are known to exacerbate HIV infections, but the exact effects on HIV
viral dynamics are not well understood yet, particularly in the context of intracellular
delay. In this study, we developed, for the first time, an HIV viral dynamics model
that includes the effects of intracellular delay under the conditioning of morphine
(a drug of abuse). The intracellular delay, defined as the time in the viral life cycle
between the stage of virus entry into the target cell and the stage at which the infected
cell produces new viruses, in the presence of morphine is the novel feature of our
model. As predicted by the analysis of our model, the intracellular delay significantly
affects different aspects of viral dynamics, particularly during early infection. Thus,
our study underscores the need for intracellular delay inmodeling to accurately predict
the effects of morphine on HIV dynamics.

Byfittingourmodel to experimental data fromSIV infectedmacaques,we estimated
τ = 0.231 days, equivalent to an intracellular delay of approximately 6 hours. The
delay estimated by our model is consistent with previous studies (Rong et al. 2007;
Kirschner andWebb 1996), inwhich a value of 0.25 dayswas used as themaximumage
of a cell at which reverse transcription occurs. This value was also used by Alshorman
et al. (2017) as an intracellular delay. Furthermore, Mittler et al. (1998) and Dixit et al.
(2004) estimated the range of the intracellular delay to be between 0.2 and 1.8 days and
between 0.6 and 1.2 days, respectively. Notably, the estimates for the transition rates
between subpopulations of target cells are in a similar time scale as the intracellular
delay (r = 0.205 day−1 and q = 0.239 day−1). This indicates that many target cells
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Fig. 8 Th-percentage dynamics for different intracellular delay and morphine concentration. Th-percentage
dynamics predicted by the model for (a) three selected values of delay (τ ) and (b) three selected values of
morphine concentration (M). Contour plot of Th-percentage for various intracellular delay and morphine
concentration at (c)week 1, (d)week 2, (e)week 3, and (f)week 4 after the initial infection. The parameters
used are the same as in Table 1
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might switch between the subpopulations during this intracellular delay, resulting in
different amounts of de novo infections, as seen in their dynamics (Fig. 8).

Using our model, we derived the basic reproduction number, R0, and showed that
the stability of the equilibria and hence the dynamics of the model are completely
determined by R0. Specifically, our investigations on the model reveal that if R0 < 1,
the infection-free equilibrium is asymptotically stable (i.e., the infection is avoided),
and if R0 > 1, the infection spreads. We found that an increase in intracellular delay
decreases R0.

For increasing intracellular delay, there is slower growth in the viral load and a
significantly longer time (25 days) to the viral load peak. A high concentration of
morphine makes the viral peak reach earlier (19 days). In line with the increased
longer time for the viral peak to occur with increasing τ , the immediate loss in the
CD4 count and the early drop in the percentage of higher susceptible target cells also
take a longer time for increasing intracellular delay. This effect is pronounced on the
proportion of higher susceptible target cells. The peak value of the viral load, on the
other hand, is not significantly affected by the intracellular delay or the morphine
concentration.

In general, a higher intracellular delay or a higher concentration of morphine leads
to more oscillation in the solution curves. Nevertheless, the nonzero steady states
were eventually reached for all parameter sets, consistent with the results showing the
asymptotical stability of E∗. The level of steady state was not significantly affected by
changes in the intracellular delay. However, we could observe that a higher morphine
concentration leads to a noticeable higher viral set point and a significantly higher total
loss in the CD4 count (83% loss of the initial CD4 count in the absence of morphine
vs. 92% loss in the presence of a high morphine concentration). These results are
consistentwith results in earlier studies (Vaidya et al. 2016;Mutua 2018). Furthermore,
the Th-percentagewas significantly higher at the steady state with increasingmorphine
concentration, whereas the intracellular delay has almost no effect on the steady state
Th-percentage.

We acknowledge several limitations of our study. Because of the limited data set,
we generated artificial data based on previous models and used them to estimate model
parameters. A larger data set would allow us to gain more confidence in the estimated
parameter values. As there are no reliable estimates for the death rate of target cells
during the intracellular phase, s, we set it to be equal to the death rate of susceptible
target cells, i.e., s = d, assuming that the cell remains healthy even after the viral entry
until it starts producing new virions. Presumably, the actual value of s might be higher
than the death rate of healthy cells due to ongoing viral replication inside these cells.
If the death rate is higher during the intracellular delay, the effects of the delay would
be even higher than we obtained in this study. Because of highly complex expressions
obtained in the model analysis, mainly due to the presence of two types of uninfected
cells, we were able to test the stability of infected equilibrium using only numerical
techniques with wide parameter spaces.

Since our objective in this study is to provide a first basic model that includes the
effects of intracellular delay under morphine conditioning, we made some simplifica-
tions in the model. We only considered the effect of morphine on altering co-receptor
expression and ignored immune responses, as this is reasonable for early viral dynam-
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ics in the first few months post-infection, during which immune responses are largely
absent. However, for the long-term analysis of viral dynamics, antibodies should be
included in the model as done by Mutua et al. (2019). We also did not include latently
infected cells in the model. Moreover, further study could be to include effects of
treatment in the model. Note that the effects of treatment can also be modeled using
another type of delay, known as the pharmacological delay, which describes the time
between ingestion of the drug and its appearance within the cells.

In summary, by analyzing our new HIV dynamics delay model, which includes
intracellular delay in the presence of morphine, we found that the intracellular delay
can be of significant importance in the initiation of the virus and during the acute phase
of infection. Our study highlights the intracellular delay in viral dynamics modeling
for the accurate prediction of the effects of morphine on HIV dynamics.
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