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Abstract

Drugs of abuse, such as opiates, have been widely associated with the enhancement
of HIV replication, the acceleration of disease progression, and severe neuropatho-
genesis. Specifically, the presence of drugs of abuse (morphine) switches target cells
(CD4™ T cells) from lower-to-higher susceptibility to HIV infection. The effect of
such switching behaviors on viral dynamics may be altered due to the intracellular
delay (the replication time between viral entry into a target cell and the production of
new viruses by the infected cell). In this study, we develop, for the first time, a viral
dynamics model that includes an intracellular delay under the conditioning of drugs
of abuse. We parameterize the model using experimental data from simian immun-
odeficiency virus infection of morphine-addicted macaques. Results from thorough
mathematical analyses and numerical simulations of our model show that the intracel-
lular delay can play a significant role in HIV dynamics under the conditioning of drugs
of abuse, particularly during the acute phase of infection. Our model and the related
results provide new insights into the HIV dynamics and may help develop strategies
to control HIV infections in drug abusers.
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1 Introduction

Human immunodeficiency virus (HIV) remains an ongoing public health challenge
across the globe. Worldwide, over 37 million people are currently living with the virus.
Approximately 1.8 million new infections and one million HIV-related deaths occur
annually (Avert 2018; Joint United Nations Programme on HIV and AIDS 2018). HIV
is aretrovirus that invades the human body and attacks the immune system responsible
for fighting against various infections in the body. Individuals infected with HIV can
eventually progress to acquired immunodeficiency syndrome (AIDS). At AIDS, the
immune system is severely weakened to fight off opportunistic infections, which may
lead to the patient’s death (U.S. Department of Health and Human Services 2018b).

HIV spreads through contact with certain body fluids from a person infected with
HIV. The most common modes of viral transmission are sexual intercourse, contam-
inated blood transfusion, and needle sharing among drug abusers (Levy 1993; U.S.
Department of Health and Human Services 2018a). Drug abusers constitute one of
the major portions of HIV infected population within the USA and other parts of the
world. In 2017, people who inject drugs accounted for approximately 10% of HIV
diagnoses in the USA (Centers for Disease Control and Prevention 2019), and a third
of 1.1 million US residents who are currently living with HIV use drugs or binge
on alcohol (National Institute on Drug Abuse 2015; U.S. Department of Health and
Human Services 2019). These statistics show that drugs of abuse are a significant
problem among HIV infected individuals. Conditioning of drugs of abuse has been
shown to exacerbate HIV infections, including a higher viral load, rapid disease pro-
gression, and higher HIV-associated neurocognitive disorders (HAND) (Kumar et al.
2004; Wang et al. 2012; Friedman et al. 2003). One of the effects that conditioning of
drugs of abuse has on CD4™ target cells is an upregulated expression of co-receptors
in these cells. HIV interacts with chemokine co-receptors of the target cell, such as
CCRS5 or CXCR4, to effectively bind to the target cell and eventually enter it. Increas-
ing the expression of these co-receptors due to drugs of abuse such as morphine leads
to a higher susceptibility of the CD4™ target cells (Guo et al. 2002; Li et al. 2003;
Suzuki et al. 2002).

Mathematical models have been widely used to provide insights into the dynamics
of infectious diseases, including viral dynamics (Perelson and Ribeiro 2013; Nowak
and May 2000; Bonhoeffer et al. 1997; Stafford et al. 2000; Vaidya et al. 2018).
Vaidya et al. (2016) modeled the effect of morphine on HIV dynamics by introducing
an additional target cell subpopulation of higher susceptibility due to upregulated
co-receptor expression in the presence of morphine. Their model can explain the
experimental observation that the presence of morphine can cause a higher viral set
point and a higher loss of CD41 T cells. However, in their model, it was assumed
that viral replication occurs instantaneously, ignoring the intracellular delay, the time
required for this replication process to complete. This intracellular delay represents
the actual time from the virus entry into a target cell to the time of virions being
released from the infected cells (Nelson et al. 2000). Since target cells dynamically
switch between two subpopulations during the intracellular delay, the viral dynamics
may be affected by the intracellular delay in the presence of morphine.
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In this study, we develop a novel viral dynamics model that includes, for the first
time, the effects of intracellular delay on HIV dynamics under the conditioning of
morphine. In the absence of morphine, it has already been shown that the intracellular
delay can alter the stability of equilibria and initiate otherwise stable populations to
fluctuate (Cai et al. 2009). We are interested in examining whether there is a similar
behavior in the presence of morphine as well. We analyze our delay differential equa-
tion model, derive the basic reproduction number, and perform numerical simulations
to evaluate how intracellular delay affects viral load, CD4 count, and subpopulation
switch in the presence of morphine.

2 Model

We extend a previous SIV dynamics model under morphine conditioning (Vaidya
et al. 2016) by including an intracellular delay. We focus on upregulated co-receptor
expression in the target cells (CD4™ T cells) due to morphine concentration. We do
not include the effect of morphine on the immune response since our main goal is
to examine the acute phase of HIV infection, where immune responses are primarily
absent (Mutua et al. 2019). As in the previous models (Li and Shu 2010; Nelson et al.
2000; Zhu and Zou 2009; Herz et al. 1996), we introduce the intracellular phase of
the virus life-cycle through a constant delay t, which represents the time lag between
the time the virus enters a target cell and the time the infected cell produces virions.
Because of this intracellular delay, the virus-producing cells (/) at time ¢ are those
target cells into which the virus successfully enters at time ¢+ — 7 and are still alive at
time ¢. Assuming a constant death rate s during the delay phase for an initially infected
cell but not yet producing virus, the survival probability of these cells from time r — t
to ¢ is given by e *7. As in Vaidya et al. (2016), we consider two subpopulations of
target cells with different susceptibility and allow the cells to switch between these
two subpopulations. As a result, the ratio between higher susceptible target cells (7})
and lower susceptible target cells (77) at time ¢t — T might differ from the ratio at time
t. The model is described by the following set of delay-differential equations:

dT(;t(t) =A+qTh@) —dTi(t) —rTi(t) — BV () TL(1),

dT(;’t(t) =rN() —dTh(@) — qTh(t) — BV (O Th(D),

% =BV —OTN(t —1)e " + V(i —O)Th(t —1)e*" = 81(1),
dz—y) =pl) —cV(), (1)

with initial conditions and history

Ti(t) = 7‘]0’ r e [_7:7 0]7
Th(t) = Tho, te€[-1,0],
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Fig. 1 Schematic diagram of the delay model of HIV infection under morphine conditioning. The model
contains two subpopulations of target cells: one with higher susceptibility, 7}, and another with lower
susceptibility, 77. Cells can switch between these populations with transition rates r from 7] to 7}, and q
from 7j, to Tj. Both target cell populations die at per capita rate d and become initially infected cells, I,
upon contact with the free virus, V, at rates ] and By, respectively. Initially, infected cells survive the
intracellular delay T with probability e 7, before they become productively infected cells, 7, and produce
new virions at a rate p virions per cell per day. Productively infected cells die at a rate § per day, and virus
gets cleared at rate ¢

0, forte[—rt,0),
Vo, fort =0,
I(t) =0, te[—1,0].

Vi) =

Here, for simplicity, we assume that target cells newly recruited at a constant rate
A are all in the lower susceptible subpopulation 7;. The per capita loss rate d is a
result of the difference between loss from cell death and gain due to cell division. The
transition rates from 7j to 7y, and Ty, to 7 are denoted by r and ¢, respectively. Lower
and higher susceptible target cells can become initially infected, I, upon contact with
the free virus, V, atrates B and By, respectively. These initially infected cells become
productively infected cells, 7, with survival probability e ~** and start producing new
virions at rate p virions per cell per day. Productively infected cells die at rate § per
day. The virus clearance rate is denoted by c. A schematic diagram of the model is
shown in Fig. 1.

As our model is in the form of delay-differential equations, we also have to consider
the history of virus and cell populations 7 time units before the initial infection to obtain
the solution of the model. For simplicity, we choose the history functions to be constant
such that 71(tr) = T;o and Ty (t) = Ty for t € [—t, 0]. As there are no infected cells
and no virus before the primary infection at = 0, we set these two history functions
equal to O for t < 0. At r = 0, the infection takes place, and we assume that the
infection begins with the free virus. Hence, we take V (0) = Vp and 1(0) = 0.

3 Data Fitting and Model Parameters

In this section, we estimate the model parameters by fitting the model solution to
experimental data.
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3.1 Data

The viral load data we used for the parameter estimation of our model was obtained
from a published study on 12 male rhesus macaques (Kumar et al. 2004; Vaidya
et al. 2016). Six of the monkeys were morphine-dependent, and the other six animals
were the control group. The morphine dependence was established and maintained
by injecting doses of morphine intramuscularly over 20 weeks. For the control group,
a saline injection was used. All animals were infected intravenously with SIV and
monitored for 12 weeks. During this time, the plasma viral load was measured at
weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 after the infection.

Due to the complexity of the delay differential equation system as well as the high
number of parameters to be estimated, the limited data were insufficient to properly
run the data fitting. Therefore, we generated additional data points using the model in
Vaidya et al. (2016), which successfully describes the experimental data from the STV
infected macaques. We considered the geometrical mean viral load data among animals
from the control group and calculated the standard deviation (sd) of the residuals in
the results obtained from the previous model. We then extracted 45 data points from
the model solution and added noise from random, normally distributed errors with
mean 0 and variance sd?. Using this generated data, we estimated the parameters of
our delay differential equation model. We repeated the process by generating 1000
different data sets.

3.2 Parameter Estimation

Each macaque was infected intravenously with a 2-ml-inoculum containing 10*
TCIDs5og of each of three chosen SIV viruses (SHIVgy_1p, SHIVgy_¢p, and
SIV17£—F,) (Kumar et al. 2004). The total of 3 x 10* TCIDs of viruses contains at
least 3 x 10° HIV RNA copies (Ma et al. 2009). A macaque, on average, weighs 1/10
of a human, which approximately gives 1.5 liters of extracellular water in a macaque.

Assuming that the infused RNA copies are dispersed into extracellular water, the ini-

tial viral load, V{, can be estimated as Vjy ~ 31%5125 ~ 200 viral RNA copies/ml. As

discussed in Vaidya et al. (2016), we take Tj,0 = 40,980 and Tjo = To — Tho as
the initial populations of target cells, where Ty = 10° cells/ml is the total number of
CD4™ T cells per ml in a macaque (Kumar et al. 2004; U.S. Department of Health
and Human Services 2017). Chen et al. (2007) estimated the SIV burst size in vivo in
rhesus macaques as approximately 5 x 10* virions per day per infected cell. With one
day average lifespan of productively infected cells (Markowitz et al. 2003) and only
5% of the total CD4 count as susceptible target cells for SIV infection in macaques
(Vaidya et al. 2010), this burst size provides the virus production rate p = 2500 vRNA
cell™! day_1 . Further, Ramratnam et al. (1999) estimated the virion clearance rate dur-
ing chronic infection in humans between 9.1 and 36.0 day~!, with an average of 23
day~!. We, therefore, take ¢ = 23 day~! as a minimal estimate and acknowledge that
this value might be larger in macaques (Zhang et al. 2002). As estimated in Stafford
et al. (2000), we take 100 days as the average life span of uninfected target cells,
i.e., d = 0.01 day~!. Since there is no conclusive estimate for the death rate of ini-
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Fig. 2 Fitting of the model to generated data and experimental observations. [Left] The model prediction
and one particular set of data, generated based on the model in Vaidya et al. (2016) with noise added.
[Middle] The 2.5"" percentile, the median, and the 97.5th percentile of the best-fit solutions corresponding
to the 1000 data sets. [Right] The viral load predicted by the model (solid line) with the estimated parameters
compared to the experimental data (cross)

tially infected target cells during the intracellular phase, we set s = d. The remaining
parameters (B, Bn, ¥, ¢, T, 6, A) are estimated by fitting the model to the data.

We solved model (1) using the delay differential equation solver “dde23” (The
MathWorks Inc. 2019a) in MATLAB. The parameters were estimated by minimiz-
ing the residual sum of squares between the model solution and the generated viral
load data with the MATLAB optimization function “fmincon” (The MathWorks Inc.
2019b). By generating 1,000 sets of data and fitting the model to each of them,
we computed 95% confidence intervals for the estimated parameters. The estimated
parameters, their parameter descriptions, and confidence intervals are summarized in
Table 1. In Fig. 2, we present the fitting of the model to generated data, showing that
the curve fits the generated data well. The small confidence interval of the estimated
parameter assures reasonable parameter estimates. Furthermore, we compared the
model solution for the estimated parameters with the experimental data and observed
a good agreement between them (Fig. 2).

4 Model Analysis

To investigate the dynamics of system (1), we first consider suitable phase space and
a feasible region. For t > 0, we consider X = C([—t, 0], R), the Banach space of
continuous functions from [—7, 0] into R, with norm ||®|| = sup_, -, | P(¢)| for
® e X. The nonnegative cone of X is defined as X+ = C([—7, 0], R+3. -

4.1 Positivity and Boundedness of Solutions

We first establish the positivity and boundedness of solutions of (1) in the following
theorem.

Theorem 1 With the initial conditions W (0) chosen from XT x XT x Ry x Xt with
W (0) > 0, all solutions of system (1) are positive and ultimately bounded.

Proof We implement the method of contradiction to prove the positivity of the solu-
tions. If possible, suppose that 71(¢) > 0 for all + > 0 is not true, and let 71 > 0
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Table 1 Initial values and parameters. The values along with their 95% confidence intervals obtained from
the data fitting

Sym.

Description

Value
[Confidence Interval]

Sources

Initial values

Tio

Tho

)

Vo

Parameter

p

B

Bn

Low susceptible
CD4™ target cells

High susceptible
CD47 target cells

Infected  CD4™T

target cells
Viral RNA copies

Virus  production
rate

Virus  clearance
rate

Uninfected target
cell death rate

Initially infected
target cell death
rate’

Productively
infected target
cell death rate

Constant produc-
tion rate of 7j cells

Transition rate
from 7j to T,

Transition rate
from T}, to T

Infection rate of 7j
cells

Infection rate of T,
cells

Intracellular delay

959,020 ml~!
40,980 m1~!
0ml™!

200 ml~!

2500 vRNA cell ! day~!

23 day !
0.01 day~!

0.01 day~!
0.795 day !
[0.408, 1.984]

3689.99 ml~!day~!

[3659.58, 3690.26]
0.205 day !

[0.104, 0.319]
0.239 day~!

[0.085, 0.996]
1.03x 10~ yRNA/day

[1.00x107 11, 1.46x 10711
1.04x10~7 vRNA/day

[4.48x1078,5.63x1077]
0.231 days
[0.031, 0.704]

Vaidya et al. (2016)
Vaidya et al. (2016)
Assumption, Stafford et al.

(2000), Vaidya et al. (2016)

Derived, Kumar et al. (2004),
Ma et al. (2009)

Derived, Chen et al. (2007),
Markowitz et al. (2003),
Vaidya et al. (2010)

Ramratnam et al. (1999)

Stafford et al. (2000)

Assumption

Data fitting

Data fitting

Data fitting

Data fitting

Data fitting

Data fitting

Data fitting

During intracellular phase of viral replication
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be the first time point such that 7i(#;1) = 0. Then, form the first equation of system

(1), we obtain %? = A + qTi(#1). We claim that T}, (#;1) cannot be negative. If
=11

Th(t;1) < 0, we can find the first time point 7,1 € [0, #;1) such that T, (¢;1) = 0. Then,

the second equation of system (1) provides %) = rTi(ty1). Since ty1 < 11,
1=ip1

d Th

Ti(tn1) > 0, which provides T > 0. This implies that 7(f) < 0 for ¢

t=tp]
in (ty1 — €p1, th1), where €y is sufficiently small. This contradicts 7,(#) > O for

t € [0, t,1). This follows that Ty (1) > 0, which provides %?

> 0. This implies
=11
that 71(¢) < O for ¢ in ()1 — €1, 171), where €1 is sufficiently small. This contra-

dicts 7i(¢) > O for ¢t € [0, ;7). Therefore, Ti(¢) > 0 for t > 0. This also implies that

Ty(t) > Ofort > 0. Otherwise, the first time point ;> with T}, (f32) = 0 along with the

second equation of system (1) provides % = rTi(ty2) > 0. This again implies

t=tp2
that 74, (¢) < O for ¢ in (¢#32 — €p2, th2), Where €7 is sufficiently small, contradicting

Tw(t) > O for t € [0, t;2). Hence we conclude that 77(¢) > 0, T (¢) > O fort > 0.
Similarly, we apply the method of contradiction to show the solutions /(¢) and V (¢)

of system (1) are positive for > 0. If V(¢) > 0 for all # > 0 is not true, we can find

the first time point 7,1 > 0 such that V (¢,1) = 0. Then, the fourth equation of system

(1) provides %¥ = pl(ty1). Also, from the third equation of system (1), we get
1=ty1

Iyl
(1)) = e [1(0) + /0 BTi(n—1) + puTa(n — D} V(n — T)e_”‘HS"dU}

> 0.

This implies that 4

> (, and with the same argument as above we get V (¢) > 0
t=ty]
for t > 0. Furthermore, we obtain

t
1) =e™ [1(0) + /O BT — D)+ ATa(n — D} Vn— T)e”J“S”dﬂ}

> 0.

This completes the proof of the positivity of the solutions of system (1).
To prove the boundedness, we first assume 7" = 7] + T, and then from the first
two equations of (1), we get

dT (1)
dr

=+ —dT () = [BT(0) + A Ta(OIV () =X —dT(1).

This implies limsup,_, ., 7' () < %, and consequently limsup,_, o, 7Ti(f) < % and
limsup,_, o, Th(t) < %. Then, from the first three equations of (1), we obtain

% [Ti(®) + Ta () + I(t + T)] =2 — d[Ti(t) + Tn ()] = 81 (1 + 7)
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+[BTi() + P Ta(OIV () (" = 1)
<A —dminlTi(1) + Th (1) + 11 + 7)1,

where dyin = min{d, §}. Here, we can take dpi, = d as the life-span of infected
cell (~ 1 day) is extremely shorter than the life-span of uninfected cell (~100 days),
ie.,d << 6. Thus, limsup,_, . [T1(¢) + Tu(t) + I(t + 7)] < ?—1 Then, from the last
equation of (1), we obtain

WO _ 1) —ev) < p2 — v
a P cri=py e

which implies limsup,_, , V(1) < Z—;\. Therefore, Ti(t), Tu(t), I1(¢), and V (¢) are
ultimately bounded in X x Xt x R, x X, a

Using above conditions, we observe that the dynamics of system (1) can be analyzed
in the following bounded feasible region

’

QU >

Q:{(Tl,Th,I,V)EX+XX+XR+XX+:||T1+Th||§

T+ T+ 111 < 2, v < 2
1 h =7 =2l
Moreover, the region €2 is positively invariant with respect to model (1).

We now compute and analyze the basic reproduction number Ry. We also study the
equilibria of the model and their stability.

4.2 Infection Free Equilibrium and Basic Reproduction Number

The basic reproduction number, Ry, is the average number of secondary infected
cells resulted from one infected cell in its lifetime. We derive Rp by computing the
dominate eigenvalue of the next-generation operator (Diekmann et al. 1990; Van den
Driessche and Watmough 2002; Heffernan et al. 2005; Nakata and Omori 2015) while
we acknowledge that there may be other methods. In the absence of HIV infection,
i.e., =V =0, model (1) reduces to

dgt(’) =)+ qTa(0) — dTi(1) — rTi(1),
chkllt(t) =rTi(t) —dTa(t) — qTa(0).

By setting the equations above equal to 0, we obtain the unique infection free equilib-
rium E0 = (TO, Tho, 0, 0), where

0 )\.(d"‘q) 0 AT

P T dd+q+n " T ddtqrn
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In model (1) we have two infected compartments / and V. We define y; = I, y, =V,

Fit)y =pVe—0)Tit—1)e "
+ BV(E—1)Th(t—1)e "7, Vi) =81(),
For(t) =0, WVa(t) = —pl(t) +cV(1).

We now introduce two matrices

F= [? (EO)} - <g darn A * 0+ ﬁhr]e”>
Vi
N IR

These expressions give

Fy-! — (W%[ﬂl(d +q) + parle™" m[ﬂl(ﬁl +q) + ﬁhr]e_”>
0 0

and Ry corresponds to the spectral radius of FV~!:

ADp

Ro=p(FV') = st s

[Bi(d + q) + Burle™ ",

Rewriting this formula leads to a more heuristic approach previously implemented (Li
and Shu 2010) to derive the basic reproduction number for delay differential equation
model of within-host viral dynamics:

R — rMd+q) p /316‘”+ Ar p Pne’"
T dd+q+n 8 ¢ dd+q+r) § ¢
p P 70 P Pne"
=70. £ L2
s c + s c

Note, an infected target cell produces § virions over its entire lifetime 1 a Each of these
virions can infect Tl0 and T]? susceptible target cells at a rate of ﬂ L or £b , respectively,

over its life span % Out of these initially infected cells only a fractlon e~ 5T survives

the delay period t to become infectious and start producing virus. Therefore, the
total number of secondary productively infected cells from one initial infected cell is

TIO : % : @ + T0 p ’3‘“‘ = , which is equal to R derived above.

4.3 Stability Analysis of the Infection Free Equilibrium

We will prove the local stability of E? in the following theorem.
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Theorem 2 The infection-free equilibrium E° is locally asymptotically stable if Ry <
1 and unstable if Ry > 1.

Proof For convenience, we let W (t) be the transpose of vector (7i(¢), Th(¢), 1(¢), V (2)).
Linearizing the model system (1) at E°, we obtain

d
57(’) =AY W) +BY U —1), )
with
w5 X9 0252 0
AO — 2x2 (2)X2 , Bg 4= 2x2 20><2) ,
N 0232 Y3, ) 02x2 Z3,,
where

o_(—d-r ¢ o_ (0-pT o_ (-0
W_( r —d-—gq)’ X = 0—pnT?)" = p —c)’
20 _ (0 (BT + BnTy))e ™
0 0 '

Denoting eigenvalues by ¢, the characteristic equation for (2) is

AQ) = det[¢lsxa — A — e "B =0
=det[¢lhys — WO - det[¢loyr — YO — 67201 = 0,

where I represents identity matrix. Since d, ¢, » > 0, it holds that

trace(WO) =—Qd+r—+gq) <0,
det(WO) =(—d-r)(—d—q)—rqg=dd+q+r)>0.

Therefore, both eigenvalues of W are negative. Hence the stability of E” is determined
by the roots of equation

det[¢Ihys — Y0 — e $7Z% =0,
which reduces to
24 (c+8)¢ +¢5(1 — Roe t7) = 0. (3)

If Rg < 1, then ¢ = 0 is not a root of (3) because ¢§(1 — Rg) > 0. When t = 0, (3)
becomes

24 (c+8)¢ +¢5(1 — Rp) =0. )
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In this case, Ry < 1 implies ¢6(1 — Rp) > 0 under which all roots of (4) have negative
real parts.

Note that all roots of (3) depend continuously on 7 (Busenberg and Cooke 1993).
We denote ¢ = x (1) + iw (), (w > 0). As mentioned above x (0) < 0. Also, as in
some previous studies (Beretta and Kuang 2002; Zhu and Zou 2009), we can assure
that Re({) < +oo for any root of (3). Therefore, as the delay t increases, the roots
of (3) can only enter the right half in complex plane by crossing the imaginary axis.
Here, { = iw with @ > 0 is a purely imaginary root of (3) if and only if

—? +iw(c+8) +c8(1 — Roe ") = 0.
Separating the real and imaginary parts, we get

—w? + ¢é = c6Rpcos wr,
w(c+8) = —cSRpsinwr. (@)

Squaring and adding these two equations, we obtain
ot + (¢ + 8)0* + 28%(1 — R} = 0. (6)

If Ry < 1, then ¢28%(1 — R3) > 0, and also ¢? + 82 > 0. This implies that (6) has no
nonnegative real root. Therefore, there is no root ¢ = iw with w > 0 for (3), implying
that the roots of (3) cannot cross the purely imaginary axis. Hence, all roots of (3)
have negative real parts provided Ry < 1.

On the other hand, if Ry > 1, then ¢28%(1 — Ré) < 0. In this case, (6) has a positive
root wq such that

1
i = 3 {—(c2 +8%) + \/(02 +82)2 + 4¢282(R2 — 1)} .
From (5), we have

1 ) 2
T; = — arctan M +—nj, j=0,1,2,..
wo wy — ¢ o

Also, differentiation of (3) and algebraic simplification allow us to show

d
= —Re(7) > 0.

T=Tg dt

i()
thT

=10

By continuity, x () becomes positive when t > t( and the infection free equilibrium,
EY, becomes unstable. This completes the proof. O
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4.4 Infected Equilibrium

Using symbolic computation in MATLAB, we found two other possible equilibria
E* = (T*, Th*, I'*,V*yand E** = (Tl**, Th**, I'**, V**) in addition to the infection-
free equilibrium, E 0.

e = A—+S Buip — cdse’” o _e_”A——\/E
2B81p(Pnd — pid) ~ p(Pnd — pid) 2BnBi8p
= A—+/S Birp — cde’™ Vet AT NE
2Bhp(Bnd — Bid)  p(Bnd — Bid) 2Bnpics’
and
e AT NS Buip — cdse’T [ st AT NG
: 2Bip(Bud — Bid)  p(Bnd — pid) 2BnBi8p
e o AT VS Birp — cde’™ pre st AT VK
" 2Bhp(Bnd — fid)  p(Brd — Bid) 2npics’
where

A= PBpcdde’™ — BuPirp + Picdde’™ + Bicdqe’™ + Pncdre’”,

S= BBIAZp? — 26T B2BicdSip + 2¢T BEBicSapr + €T BRctd?s?
+2e>7 §62d82r —i—ez”ﬁgczézrz—i-Ze”,Bhﬂlzcdé)»p—i—Ze”ﬁh,Blchqu
—26%7 By BicPd? 8> — 26> Bppictds g —2e>T BupictdSir + 2% BuBic? 8 gqr
+ eZsrﬁIZCZdZSZ + 282st’312C2d82q + 62”,3126‘252q2.

4.5 Ry in Threshold Dynamics: Impact of Intracellular Delay and Morphine

An equilibrium is biologically existent if all of its populations are positive. Figure 3
(left) displays the viral load steady states V* and V** with respect to Ry. We clearly
see that V** is negative on the whole range of Ry, and therefore, the equilibrium E**
is never biologically existent. V* is positive for Ry > 1 and the same is true for I*
(data not shown), and since 7;* and T} are strictly positive for all Ry, the infected
equilibrium E* is existent for Ry > 1. We also summarize the numerically obtained
stability through the bifurcation diagram in Fig. 3 (right). As revealed by our numerical
experiment, the stability of the equilibria and hence the dynamics of the model are
completely determined by the basic reproduction number Ry.

Using our parameter estimates, we obtain Ry = 2.35. As Ry > 1, the infection
spreads, consistent with the data. We now study how Ry is affected by the intracellular
delay t. As we are particularly interested in the effect of the intracellular delay in the
presence of morphine, we analyze the relation between the basic reproduction number
R and the delay t as well as the relation between R and the morphine-related param-
eters r and ¢ in greater detail. Figure 4 shows the effects of 7, r, and g on Ry while
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Fig.3 [Left] Existence of the infected equilibrium E*. Existence of the infected equilibrium E*. The viral
load steady states of the equilibria E* and E** are shown with respect to the basic reproduction number,
Ry. If a population is negative, which is shown by a dashed line, it is not biologically existent. [Right]
Numerically obtained transcritical bifurcation diagram of steady-state viral load. The steady-state viral
load is given by the infection-free equilibrium, E 0. and the infected equilibrium, E*. Numerically tested
stability of each equilibrium is also indicated with a solid line representing a stable equilibrium and a dashed
line representing an unstable equilibrium

Fig. 4 Dependence of Ry on 7, r and g. The effect of changing one particular parameter t, r or g, while
keeping all others fixed, on the basic reproduction number Ry is shown. The dashed line indicates Ry = 1

keeping all other parameters fixed. The expression of Ry shows that the basic repro-
duction number is a decreasing function of the delay t. Therefore, ignoring the delay
might overestimate the basic reproduction number. Increasing the delay t eventually
leads to Ry < 1, at which the infection is avoided. For our estimated parameters, this
happens at a delay of approximately 86 days (Fig. 4). We note that the delay of 86 days
is unrealistic to achieve in general. Nevertheless, the required delay can come down
to realistic ranges and might become important in determining whether the infection
occurs when we consider treatment, particularly pre-/post-exposure prophylaxis.

Furthermore, we observe that Ry is significantly affected by changes in » and q.
We notice that the presence of morphine, which results in higher  and lower ¢ values,
increases Ry causing further obstacles to control the disease with ART (Fig. 4). We
also computed the threshold delay 7* corresponding to Ry = 1 for different values
of the morphine-related parameters, r and g. We observe that for low values of r and
high values of g, i.e., for small amount of morphine presence, small (realistic) values
of 7 can play a role in determining whether infection occurs (Rgp > 1) or dies out
(Ro < 1) (Fig. 5).
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Fig. 5 Dependence of threshold t* corresponding to Ry = 1 on r and ¢. For parameter combinations of
7 and r or ¢ above the curves, Ry < 1 and the HIV infection dies out, while for parameter combinations
below the curves, Ry > 1 and the infection spreads. The estimated value, drawn as circles, signifies the
threshold delay t* corresponding to Ry = 1 based on our current parameter estimates

5 Simulation Results

In this section, we conduct simulations of the developed model to study the effects of
morphine concentration and the intracellular delay on the viral load, the CD4 count,
and the proportion of target cells with high susceptibility. The effect of morphine can
be studied by altering the transition rates r and g between the two subpopulations of
target cells in our model. A higher morphine concentration leads to an increase in r
and to a decrease in ¢g. The dependency of r and ¢ on the morphine concentration is
described by an Emax model of the form (Ting 2006)

r(M) =rc+ (rm —re)n-(M),
q(M) = qc + (gm — qc)ng (M),

where

Mi‘l
M+ M’
ng(M) =1—n,(M).

nr(M) =

Here, M represents the concentration of morphine in the blood plasma. Olkkola et al.
(1988) measured the kinetics and dynamics of morphine in children and observed
peak plasma concentrations of morphine between 135 and 330 microgram per liter.
Therefore, we will vary the concentration of morphine, M, between 0O (i.e., no mor-
phine) and 300 pg/L. r. and g, reflect the transition rates in the absence of morphine,
which are taken as the values listed in Table 1. r,,, = 0.5 and ¢, = 4.42 % 10~7 are
the values of r and g under a high amount of morphine conditioning, as estimated in
Vaidya et al. (2016). M}, represents the morphine concentration at which ¢ (M) and
r(M) reach the average (midpoint) of their maximum and minimum values. Since
there is no information about this value, we assume My = 100 pg/L for our base
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case computation. The Hill coefficient is taken as n = 8, estimated based on in vitro
co-receptor expression data.

5.1 Viral Load

Our model predicts that a higher delay, as well as higher morphine concentration, leads
to more oscillation in the curve before it reaches a set point, and it takes longer to reach
the steady state (Fig. 6). All solutions converge toward the steady state, consistent with
the above results (Sect. 4) of the infected equilibrium being asymptotically stable for
this parameter set, which gives Ry > 1. The peak of the viral load curve is shifted
to the right with increasing t, i.e., the peak time of the viral load is delayed due to
intracellular delay (Fig. 6¢). For example, assuming no intracellular delay, the viral
load peak occurs approximately 7 days after the infection. In contrast, an intracellular
delay of 2 days causes the viral load peak to occur at 32 days post-infection. The viral
peak occurs earlier for an increased morphine concentration. However, the impact of
morphine on the viral peak time is less intense than the impact of the intracellular
delay (Fig. 6¢). For example, in the absence of morphine, the viral load peak occurs
at 11 days post-infection, whereas it occurs at 7 days with a morphine concentration
of 300 pg/L.

We further observe that the peak value slightly decreases with increasing intracel-
lular delay and increases with the concentration of morphine (Fig. 6d). We notice that
the viral load peak value changes are not significant, since the maximum of change
is below a half log-scale in each case. In the experimental data (Kumar et al. 2004),
there was no significant difference in the viral load peak values regarding the morphine
concentration; hence, our model is consistent with this observation in the experimental
data.

Regarding the steady-state viral load, there are negligible effects of t and only
small effects of a change in the morphine concentration (Fig. 6e). As presented in
the surface plot and the contour plot (Fig. 6e), morphine has a higher effect on the
steady-state viral load than the intracellular delay. The steady-state viral load slightly
increases with increasing morphine concentration, consistent with experimental data
(Kumar et al. 2004). In the absence of morphine, the steady-state level of viral load is
5.4 log;(, while with a morphine concentration of 300 pg/L, it reaches 5.6 log;.

5.2 CD4 Count

The CD4 count, which is given by % cells per microliter, is often used to measure
the HIV patient’s immune status. We observe a higher loss for a higher concentration
of morphine (to 30 cells per uL at a morphine concentration of 300 wg/L vs. to 140
cells per uL in the absence of morphine, Fig. 7). In addition, with an intracellular delay,
the sharp drop in the beginning is also delayed in the model solution, with a slower
steady decrease during the lag time. As we found, in the absence of the intracellular
delay, the model predicts that the CD4 count drops to 150 cells per nL, whereas it
drops to 115 cells per L for an intracellular delay of 2 days.
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Fig.6 Viral dynamics predicted by the model for (a) different intracellular delays and (b) different morphine
concentrations. (c¢) Viral load peak for different intracellular delay and morphine concentration. (d) Time to
viral load peak for different intracellular delay and morphine concentration. (e) Viral load steady state for
different intracellular delay and morphine concentration. The parameters used are the same as in Table 1
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Fig.7 Model prediction of [Left] the CD4 count dynamics for different intracellular delays, [Middle] CD4
count dynamics for different morphine concentrations, and [Right] the steady-state of CD4 count for the
different intracellular delays and morphine concentrations. All the parameters used are the same as in Table 1

The steady-state CD4 count is not affected significantly by the delay (Fig. 7),
while the effect of the morphine concentration on the steady-state CD4 count is quite
significant. For a high morphine concentration, the model predicts a significantly lower
steady-state CD4 count (80 cells per L for M = 300 pg/L) than in the absence of
morphine (170 cells per nL), consistent with experimental data (Kumar et al. 2004).
Hence, a higher morphine concentration leads to a significantly higher total loss in the
CD4 count (92% loss for M = 300 ng/L vs 83% loss for M = 0).

@ Springer



81 Page 18 0of 23 N. K. Vaidya, M. Peter

5.3 Proportion of Higher Susceptible Target Cells

We now study how the percentage of higher susceptible target cells, i.e., (% X
100%), are affected by the intracellular delay and morphine concentration. We obtained
an early drop in the percentage of higher susceptible target cells (Fig. 8a, b). After this
early loss, the Tj-percentage quickly recovers and converges toward its steady state
for all parameter sets. The initial drop in the percentage of Ty, cells is delayed due to
an intracellular delay.

In the early phase of infection, the Tj-proportion is significantly affected by the
intracellular delay, particularly for a high morphine concentration, as shown by the
model predicted T-percentage at weeks 1, 2, 3, and 4 (Fig. 8c—f). For example, at one-
week post-infection, we observe that the 7j-percentage increases from about 20% to
40% with increasing delay for small morphine concentrations. In contrast, we observe
an increase from 10% to 90% with increasing delay for high morphine concentrations.
In general, the intracellular delay has pronounced effects on the 7j-percentage in the
early phase of HIV infection.

We note that the percentage of higher susceptible target cells, in the long run, is
not affected much by the delay (Fig. 8a). However, the morphine concentration sig-
nificantly affects the steady state Tj,-percentage (Fig. 8b). For example, in the absence
of morphine (M = 0), the steady-state level of Ty-percentage is 43%, whereas, for a
morphine concentration of 300 wg/L, the Ty,-percentage reaches 91%.

6 Discussion and Conclusion

Drugs of abuse are known to exacerbate HIV infections, but the exact effects on HIV
viral dynamics are not well understood yet, particularly in the context of intracellular
delay. In this study, we developed, for the first time, an HIV viral dynamics model
that includes the effects of intracellular delay under the conditioning of morphine
(a drug of abuse). The intracellular delay, defined as the time in the viral life cycle
between the stage of virus entry into the target cell and the stage at which the infected
cell produces new viruses, in the presence of morphine is the novel feature of our
model. As predicted by the analysis of our model, the intracellular delay significantly
affects different aspects of viral dynamics, particularly during early infection. Thus,
our study underscores the need for intracellular delay in modeling to accurately predict
the effects of morphine on HIV dynamics.

By fitting our model to experimental data from SIV infected macaques, we estimated
T = 0.231 days, equivalent to an intracellular delay of approximately 6 hours. The
delay estimated by our model is consistent with previous studies (Rong et al. 2007,
Kirschner and Webb 1996), in which a value of 0.25 days was used as the maximum age
of a cell at which reverse transcription occurs. This value was also used by Alshorman
etal. (2017) as an intracellular delay. Furthermore, Mittler et al. (1998) and Dixit et al.
(2004) estimated the range of the intracellular delay to be between 0.2 and 1.8 days and
between 0.6 and 1.2 days, respectively. Notably, the estimates for the transition rates
between subpopulations of target cells are in a similar time scale as the intracellular
delay (r = 0.205 day~! and ¢ = 0.239 day~'). This indicates that many target cells

@ Springer



Modeling Intracellular Delay in Within-Host HIV Dynamics...

Page190f23 81

100%

©
S
X

60%

40%

— =

T, population percentage

20% w1 =0.5
— = D
0%
0 50 100 150 200

Days post infection

(a)

2 90
80

wn
715 70

o)
e 60
- 50

e

40

&
5 05 30
20

0 100 200 300
Morphine concentration in ug/L

(c)

2 90
80
w
715 70
o)
o 60
RS
oo 50
? 40
3 05 30
A
20

0 100 200 300
Morphine concentration in ug/L

(e)

—\] =0

)

&0 100%

T a0

g 80%

—

(%)

2 60%

=]

-2

2 40%

= —M =300
g 20% ==M = 100
o

)

0%
0

50 100 150 200
Days post infection

(b)

Delay 7 in days

0 100 200 300
Morphine concentration in pg/L

(@)

Delay 7 in days

0 100 200 300
Morphine concentration in pg/L

Fig.8 Tj-percentage dynamics for different intracellular delay and morphine concentration. 7}, -percentage
dynamics predicted by the model for (a) three selected values of delay () and (b) three selected values of
morphine concentration (M). Contour plot of 7} -percentage for various intracellular delay and morphine
concentration at (¢) week 1, (d) week 2, (e) week 3, and (f) week 4 after the initial infection. The parameters

used are the same as in Table 1

@ Springer



81  Page 20 of 23 N. K. Vaidya, M. Peter

might switch between the subpopulations during this intracellular delay, resulting in
different amounts of de novo infections, as seen in their dynamics (Fig. 8).

Using our model, we derived the basic reproduction number, Ry, and showed that
the stability of the equilibria and hence the dynamics of the model are completely
determined by Ry. Specifically, our investigations on the model reveal that if Ry < 1,
the infection-free equilibrium is asymptotically stable (i.e., the infection is avoided),
and if Ry > 1, the infection spreads. We found that an increase in intracellular delay
decreases Ry.

For increasing intracellular delay, there is slower growth in the viral load and a
significantly longer time (25 days) to the viral load peak. A high concentration of
morphine makes the viral peak reach earlier (19 days). In line with the increased
longer time for the viral peak to occur with increasing 7, the immediate loss in the
CD4 count and the early drop in the percentage of higher susceptible target cells also
take a longer time for increasing intracellular delay. This effect is pronounced on the
proportion of higher susceptible target cells. The peak value of the viral load, on the
other hand, is not significantly affected by the intracellular delay or the morphine
concentration.

In general, a higher intracellular delay or a higher concentration of morphine leads
to more oscillation in the solution curves. Nevertheless, the nonzero steady states
were eventually reached for all parameter sets, consistent with the results showing the
asymptotical stability of E*. The level of steady state was not significantly affected by
changes in the intracellular delay. However, we could observe that a higher morphine
concentration leads to a noticeable higher viral set point and a significantly higher total
loss in the CD4 count (83% loss of the initial CD4 count in the absence of morphine
vs. 92% loss in the presence of a high morphine concentration). These results are
consistent with results in earlier studies (Vaidya et al. 2016; Mutua 2018). Furthermore,
the Tj,-percentage was significantly higher at the steady state with increasing morphine
concentration, whereas the intracellular delay has almost no effect on the steady state
Th-percentage.

We acknowledge several limitations of our study. Because of the limited data set,
we generated artificial data based on previous models and used them to estimate model
parameters. A larger data set would allow us to gain more confidence in the estimated
parameter values. As there are no reliable estimates for the death rate of target cells
during the intracellular phase, s, we set it to be equal to the death rate of susceptible
target cells, i.e., s = d, assuming that the cell remains healthy even after the viral entry
until it starts producing new virions. Presumably, the actual value of s might be higher
than the death rate of healthy cells due to ongoing viral replication inside these cells.
If the death rate is higher during the intracellular delay, the effects of the delay would
be even higher than we obtained in this study. Because of highly complex expressions
obtained in the model analysis, mainly due to the presence of two types of uninfected
cells, we were able to test the stability of infected equilibrium using only numerical
techniques with wide parameter spaces.

Since our objective in this study is to provide a first basic model that includes the
effects of intracellular delay under morphine conditioning, we made some simplifica-
tions in the model. We only considered the effect of morphine on altering co-receptor
expression and ignored immune responses, as this is reasonable for early viral dynam-
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ics in the first few months post-infection, during which immune responses are largely
absent. However, for the long-term analysis of viral dynamics, antibodies should be
included in the model as done by Mutua et al. (2019). We also did not include latently
infected cells in the model. Moreover, further study could be to include effects of
treatment in the model. Note that the effects of treatment can also be modeled using
another type of delay, known as the pharmacological delay, which describes the time
between ingestion of the drug and its appearance within the cells.

In summary, by analyzing our new HIV dynamics delay model, which includes
intracellular delay in the presence of morphine, we found that the intracellular delay
can be of significant importance in the initiation of the virus and during the acute phase
of infection. Our study highlights the intracellular delay in viral dynamics modeling
for the accurate prediction of the effects of morphine on HIV dynamics.
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