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ABSTRACT: This paper aims to identify structural motifs within a molecule that contribute the most toward a chemical being an
endocrine disruptor. We have developed a deep neural network-based toolkit toward this aim. The trained model can virtually assess
a synthetic chemical’s potential to be an endocrine disruptor using machine-readable molecular representation, simplified molecular
input line entry system (SMILES). Our proposed toolkit is a multilabel or multioutput classification model that combines both
convolution and long short-term memory (LSTM) architectures. The toolkit leverages the advantages of an active learning-based
framework that combines multiple sources of data. Class activation maps (CAMs) generated from the feature-extraction layers can
identify the structural alerts and the chemical environment that determines the specificity of the structural alerts.

B INTRODUCTION

Synthetic chemicals are leading to existing impacts and
potential risks to human health and the environment. Among
them, there is a notorious group of chemicals called the
endocrine-disrupting chemicals (EDC) that are known to
disrupt the hormonal regulation and endocrine system of
humans and animals." To identify the potential toxicity of
hazardous chemicals like EDC, structural alerts (SAs) have
been a widely accepted way in the fields of chemical toxicology
and regulatory decision support.” SAs are functional groups or
molecular substructures based on human expertize that reflect
the chemical basis of activity or properties. SAs are easy to
generate and explain, but an increasing number of studies have
shown that the accuracy in the toxicity assessment using
structural alerts is limited.” Many SAs can be found in both
toxic and nontoxic chemicals. In other words, SAs do not
always lead to toxicity—they have specificities that usually
depend on other groups in the molecule.” Hence, to achieve
toxicity estimation with higher accuracy, methods that can
determine the specificities of SAs are urgently needed.

Since 2008, collaboration programs for large-scale in vitro
toxicity screening of chemicals such as Tox21*™° and
ToxCast’~'? have been initiated, which provides a vast amount
of toxicity testing data (e.g, Tox21 10K chemicals'' ~"*).
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Meanwhile, the rising of big data and artificial intelligence have
brought attention to the application of machine learning
technologies to toxicity prediction in a data-driven fash-
1577 In 2016, DeepTox, a fully connected deep learning
model developed by Mayr et al,, demonstrated that toxicity-

ion.

related structures could be encoded in the hidden units of deep
learning,"® A few studies have used machine learning or deep
learning algorithms with different formats of molecular
representations (e.g.,, molecular descriptors, fingerprints, two-
dimensional (2D) graphical representations) to extract
chemical structure features that lead to toxicity.'”~>' A recent
study from Webel et al. suggested that using SMILES
representation as molecular encoding can help generalize the
applicability domain to the entire chemical space and avoid bit

collision, which is a limitation of ﬁngerprints.21
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Figure 1. Overall workflow of (Task I) predicting a potential endocrine disruptor and (Task II) identifying structural motifs in the chemicals. This
involves (b) a Deep Learning Model that comprises (c) feature extractions and (d) fully connected layers.

Simplified molecular input line entry system (SMILES) is a
single line notation of the molecular graph of the chemicals
using a finite set of ASCII characters.”” Compared to the
graphical representation or molecular descriptors, using
SMILES as the molecular representation for the input of
machine learning models can accurately represent the 2D
molecular structure with machine-readable strings and retain
all of the necessary structural information from the
molecule.”” ™ A few recent studies have used different neural
network models to read SMILES representation of com-
pounds, predict the structure—activity relationships or
structure—property relationships (SAR/SPR), and identify
the chemical motifs or atoms that can interpret the predicted
results.’*72® Meanwhile, %radient—weighted class activation
mapping (Grad-CAM),” ™" an explainable Al method, has
been applied to explain neural network classification tasks in
the fields of image reco%nition,sz’33 radiology,M_?’7 and
microstructure recognition.”® Grad-CAM is a visual tool
supported by mathematical formulations that quantifies the
statistical significance of all of the high-level features in an
image-type data and thereby provides both qualitative and
quantitative assessment of the working of a fitted model. A
deep learning model containing convolution filters is suited to
the Grad-CAM technique because of its ability to extract layer-
by-layer geometric features from such a machine-readable
molecular descriptor such as SMILES. A convolution neural
network (CNN) can be used to extract high-level features that
correspond to individual subgroups from the SMILES string.
Hence, Grad-CAM can be applied on SMILES to visually
represent critical chemical substructures that contribute toward
a specific classification task, and to the best of our knowledge,
Grad-CAM has not been implemented in explaining the
toxicity of chemicals as endocrine disruptors.

Choosing a suitable classification model is motivated by the
type of data available and the research question. In a lot of
data-driven toxicology studies, the type of data is often
imbalanced, i.e. there is an unequal distribution of the
chemicals across both the active (toxic) and inactive
(nontoxic) class,®~*' or from multiple sources.”* Traditional
and advanced deep learning models also fail to generate a
discriminative function that can map the imbalanced data into
a separable space leading to inaccurate toxicity prediction.*’
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While learning from imbalanced data is still an open challenge,
numerous researchers have attempted to solve this problem
using different preprocessing techniques. Additionally, training
a classifier on multiple data sources is a challenge due to
heterogeneity in the data. Quantifying the statistical divergence
between data is an intractable problem due to high
dimensionality,44 and a classic approach is often to train
models on individual data sets.*” Thus, a predictive and
interpretable data-driven model needs suitable data-handling
methodologies that address the problems associated with the
class imbalance and multiple sources and work in sync with the
chosen molecular representation and the machine learning
model.

In our current study, an important concept, “critical
structural motif” (CSM), that is different from SAs or
“toxicophores/pharmacophores”,” ™" is introduced. Unlike
SAs or toxicophores, the CSMs from our chemical activation
maps consist of both the existing or potential SAs and the
chemical environment that determines the specificity of SAs.
We have used the technique of Grad-CAM to extract and
visualize these CSMs in our study that requires training an
accurate CNN-based deep learning model to predict the
activity (toxicity) of chemicals. Our proposed model is trained
on two different sources of chemical data represented by their
SMILES strings using the Active Learnin9g gparadigrn.48 We
have adopted techniques of undersampling™ > and rule-based
oversampling™® to tackle the imbalance in our training and
testing data. Our proposed model consists of convolution
layers to extract layer-by-layer features from low-level to high-
level chemical subgroups. The convolution layers are followed
by long short-term memory (LSTM) layers that learn the
interdependencies between the high-level features extracted by
the convolution layers.”*™>° The Grad-CAM quantifies the
relative importance of the high-level subgroups identified by
the last convolution layers along with the feedback from the
predicted class label to show the CSMs.

B METHODS

Overview. Our proposed deep learning model, as shown in
Figure 1, is capable of performing two tasks: (I) classifying the
binding and agonist estrogen receptor (ER) activity of a
chemical to active or inactive (Figure 1a) and (II) highlighting
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(b) Augmented Dataset

Figure 2. Data augmentation: The database of SMILES strings is augmented to give different orientations of the same chemical (b). This is
achieved by permuting the atoms in each chemical (a) to give us an augmented data set (b).

Table 1. Final Training and Testing Data Set after Random Undersampling, Train-Test Split, and Rule-Based Data

Augmentation
Tox21 (primary)
training agonist active unique chemicals: 331 1488
inactive 1748
binding active 1598
inactive 1638
testing agonist active unique chemicals: 143 675
inactive 744
binding active 739
inactive 680
total 46SS

literature (secondary)

2304
2188
2559
1933

924
1006
1016

914
6432

size: 3236 unique chemicals: 456 size: 4492

size: 1419 unique chemicals: 196 size: 1930

the subgroups that contribute to the chemical’s ER activity
classification. The proposed model (Figure 1b) consists of
(Figure 1c) feature-extraction layers and (Figure 1-d) fully
connected layers. The geometric features in a chemical
identified while performing the specific classification task are
used to generate the (Figure 1 Task II) activation maps that
illustrate the contributions of subgroups. The feedback from
the predicted label is also used along with the feature maps to
generate the activation maps. A step-by-step methodology has
been detailed in Figure S3 in the Supporting Information.

Data Sets. The original data sets for this study are the
training set and evaluation set of the US EPA’s Collaborative
Estrogen Receptor Activity Prediction Project (CERAPP)“*
There are two data sets that we have used in our current study.
In both data sets, each entry of chemical structures is grouped
into three binary (active/inactive) classes: binders, agonists,
and antagonists. The prlmary source of data, derived from
ToxCast and Tox21 programs, 7812 45 a collection of 18 in vitro
HTS assays on the different sites of mammalian ER
pathways.*>” The secondary source of data is the CERAPP’s
evaluation set collected from a variety of overlap in sources,
including additional US EPA’s HTS assays,”'""'**
estrogenic activity data from other online databases.
Rules are applied to solve the inconsistency of the results
from different sources, and more details are introduced in the
description of CERAPP."

Our data analysis shows a high imbalance in the CERAPP’s
training set. While there are moderate imbalances in the class
of binder (14.1% active) and agonist (13.1% active), only 2.4%
are active antagonists (Figure S1). Hence, the class of
antagonists is not included in our study. Also, only the
chemicals having valid data in both binder and agonist

59 ()O
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classifications are selected, leaving the final data sets in our
study with 1,677 chemical structures from the training set
(Tox21) and 6206 from the evaluation set (Literature). The
overall preprocessing of the data set involves three steps:
undersampling, train-test splitting, and data augmentation. We
have balanced the data sets using undersampling”~>" that
otherw15e may wrongly interfere with the performance of the
classifier.”! We have used Random undersampling without
replacement® to randomly sample the active chemicals from
the original data set to match the number of inactive chemicals.
Thus, we will have more active data instances and fewer
inactive instances, which solve data imbalances. The method is
simple and easy to apply.

We have performed a random train-test split of ratio 7:3 on
the balanced data set. Each chemical is represented by its
Canonical SMILES s and is assigned two binary labels y = {y1,
y2}, y1, y2 € [0, 1], where O represents activity and 1
represents inactivity. For each canonical SMILES, a rule-based
data augmentation technique®® is adopted that randomly
changes the order of the atoms in the SMILES leading to
different molecular orientations of the same chemical (see
Figure 2). A rule-based SMILES enumeration™” is adopted for
two purposes. First, through SMILES enumeration, a molecule
is represented by different SMILES instead of a single
canonical SMILES, while using canonical SMILES may lead
to the latent chemical space representing the grammar rules of
canomcal SMILES rather than the underlying chemical
structure.”> Second, SMILES enumeration is a useful data
augmentation technique that generates more data to train our
machine learning model and help overcome data insufficiency.
After random undersampling, train-test split, and rule-based
data augmentation, the final data set contains 4655 data points
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Figure 3. Encoding and padding: Each enumerated SMILES is encoded using the bag-of-words model. The bag-of-words represents a pool of
characters that are used to represent the SMILES code for all of the chemicals in the data set. A non-negative integer is assigned to each character
such as {C: 23}, {#:1}. The SMILES is mapped to a string of integers using the bag-of-words. Furthermore, the encoded SMILES is padded with
zeros in the beginning, to convert it into a fixed-length vector of length 130 that acts as a feature vector for the Deep Learning model. The length is
chosen arbitrarily based on the longest SMILES code in the database. Thus, a SMILES of length 80 is padded with 50 zeros to convert it into a 130
length vector. Usually, a higher value of the maximum length is chosen, so as to incorporate chemicals with SMILES length longer than that present

in the database.
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Figure 4. Feed-forward architecture of our proposed classification model (Task I). The input to the neural network (see Figure 3) is used to predict
the toxicity of an unlabeled chemical as a potential endocrine disruptor. Detailed architecture is given in Table SI.

for Tox21 and 6432 data points for the literature data set. The
detailed counts including the number of unique chemicals in
each split set are given in Table 1. We have not used
stratification to generate random splits to avoid overlapping
since a chemical from the augmented data set can fall into
multiple subgroups. Our data processing scheme allows us to
work with a moderately large but balanced data set.

Each SMILES sequence s is a finite ordered list of symbols
generated from a library of a finite set of characters D, 0 <
n(D) < oo. Unlike traditional pattern classification, each
sequence s is not a real-valued sequence, and all of the
sequences are not of equal length. Each pair (s, [) is assumed to
be independently and identically distributed (iid). The
SMILES sequences are converted into fixed-length real-valued
vectors following the framework shown in Figure 3. A well-
known technique known as the bag-of-words®* is adopted to
encode the SMILES s into an integer-valued representation of
the same length.

The characters of the set D are numbered from 1 to 57. Even
though it is a random order, preserving this numbering order is
essential to interpret the following classification framework

2190

results. The character vector SMILES strings s are converted
into integer sequences x, using the index of the characters from
the set D using a one-to-one encoder mapping E, E: s — x,
whereby

s = {8, Sy w0 Sn,}r x, = {x, x5, . xnl}Dx/ =s Vi=1
to n; (1)

Additionally, each vector x, is padded with n — #; 0 s to convert
into a fixed-length vector as

x=1{0, 0, .., 0, x;, %, ..., X, } (2)
The index of D starts from 1. Thus, padding the encoded
SMILES with 0 does not make any difference in the analysis
but is done to apply the pattern recognition algorithm that
requires a fixed-length vector. The encoded and padded
SMILES and its toxicity label form the input—output pair (x,
y) for the classifier.

Model. We have employed an Active Learner that
enables a classifier to perform inference by combining

information drawn from both the available data sets.

65—69
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Simultaneously, an active learner controls the amount and
quality of the data needed to extract to reach the desired
accuracy. Iteratively, the learner combines a base classifier with
a query strategy that extracts qualitative data from the
evaluation (literature) data set into the primary training data
set (Tox21) and thereby improves the accuracy of the
classifier.

We have developed a deep neural network, “VisualTox”, as
our base classifier for the Active Learner. Neural networks are
nonlinear stochastic approximation that uses an empirical but
differentiable function from an input to an output and is often
termed as a universal approximator.”’ Sequence-based neural
networks commonly follow two t)gpes_ of architecture. While
recurrent neural network or RNN>*7*° is used for sequence
prediction, further feature extractions are performed using a
combination of convolution neural network or CNN followed
by an RNN.”'~"* Our base model follows a selective symbolic
sequence classification model C(#): x — y combining both the
capabilities of a CNN and an RNN. It comprises a stack of
convolution layers followed by a long short-term memory
(LSTM) unit. Here, 6 represents the parameter of C. The
classification architecture of VisualTox is displayed in Figure 4.

The feature extractor of VisualTox comprises two major
components: convolution layers and pooling. In a sequence
type data such as a SMILES string, the property of the
chemical is not only related to a particular substructure but
also its neighboring substructures. A convolution layer
produces an output z(x) € R" ¥ map from the input x € R
", where the ith element of z is related to the x; atom and its
neighboring atoms as

K
z, = Z x4 W + bj
j=—K ()
where w = {w_g, Wi,1, -y Wig_1, W} is the convolution kernel
and b = {b—lo bK+11 very bK—l! bK}

both of sizes 2K + 1 and K is a positive integer. Each one-
dimensional (1D) convolution layer is followed by a rectified
linear unit (ReLU) activation unit to overcome the vanishing
gradient problem. The pooling layer that follows each
convolution layer extracts rotation and position invariant
features and further reduces the size of the output feature map
z(x). The output of the last convolution and pooling layers fed
into the LSTM layer, and the output 1D vector serves as an
input for successive fully connected layers.

VisualTox is a multioutput classification model that predicts
the toxicity of a chemical with respect to both the agonist and
binding class. While training the network, it assumes a
weighted loss function of the individual loss functions for the
two types of toxicities given as

L =05L, + 05L, (4)

where the individual losses for i € [1,2] are given as

L, —NL 20 log(p(3) + (1 = y)log(1 = p(3))3

train j

e/

1 + 7 ()

The weight 6 of the classifier C is estimated by solving the
following optimization problem
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0 = min L(x, y, 0
min L{x, ¥, 0) (©)

The Active Learner (Figure S), as mentioned earlier, improves
the accuracy of the VisualTox by combining the information

To look for more Data
for Training

\

Data for Training
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Annotator (A)

Training Dataset (X)
(Initially Tox21) Evaluation Dataset ({/)

(From Literature)

/

Check for samples in 7
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Queried data sent
for Labeling

Uncertainty
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Figure S. Active learning framework begins with the initial X data set
for training that is Tox21. The whole data set is used for training (C)
the Deep Learning model for a certain number of iterations iter, =
150. After iter; iterations, the evaluation data set U is looked into for
more training data and the uncertainty sampling technique q is used
to extract only those samples with k = 100 highest entropies. We use
the literature as our annotator (A) to extract the labels for new k data
points and add them to the training set X for further training of C.

from both the Tox21 and the literature data. It is a pool-based
active learner that comprises three major components (X, C,
q)- Cis a classifier C: x — [0, 1] trained on a set of chemicals x
€ X labeled for toxicity. The learning framework has a virtual
annotator (A) that labels a set of unlabeled chemicals. Here,
the annotator (A) is simply the literature that labels the
literature data set. The query strategy (q) looks for chemicals
in the unlabeled data set (U) or the literature data set that has
the highest entropy with respect to the fitted model C. The
samples with higher entropy reduce the variance of the
prediction of the learner and hence reduce overfitting as shown
in Section S4 of the Supporting Information. The labels of the
queried data are extracted from the literature. The set of newly
queried chemicals, along with the existing labeled database
(X), is the new training data set for the classifier (C). This
process continues until the query strategy reaches a specific
decision-making step (in terms of accuracy or maximum
iteration).

Active learning overcomes data insufficiency by controlling
the amount of data that the VisualTox has so far classified
unreliably. With each iteration interval, the learner draws
samples from the secondary data, and the classifier is shown to
improve accuracy for the same hyperparameters, such as the
architecture of the VisualTox, optimizer learning rate, and
optimality conditions. The theoretical foundation of the query
strategy and the detailed algorithm of the Active Learner are
given in the Supporting Information section.
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B RESULTS

Performance on the Classification. We have listed down
the different classification metrics in the Supporting
Information Section SS. We have taken the classification
accuracy or simply accuracy as the ratio of correct predictions
to the total number of testing samples, and balanced accuracy
(BA) that is the average of specificity and sensitivity, as our
choices of metrics to compare model performances. A higher
value of nearly 1 for both the metrics implies a good
classification for a balanced data set. However, for an
imbalanced data set, higher classification accuracy might not
imply higher BA. We begin our analysis by taking the
VisualTox architecture from Figure 4 and train the model
using the unbalanced Tox21 data set consisting of 1677
chemicals and test on the 6206 chemicals from the literature
data set. The training data set has 14.1% active binders and
13.1% active agonists, while the testing data set has 16.28%
binders and 5.25% agonists. Training on highly imbalanced
data by mini-batches enforces the learner to learn the over-
represented class. As a result, either the sensitivity or specificity
approaches the value of 1, but the other approaches the value
0. Our trained model produces accuracies and BAs of 0.8694
and 0.6369 for the Agonist class and 0.8587 and 0.6267 for the
Binding class against the Tox21 data set. Meanwhile, the
model produces accuracies and BAs of 0.9475 and 0.6779 for
the Agonist class and 0.8372 and 0.5735 for the Binding class
against the literature data set. While neural networks can be
modified to learn data imbalance by controlling the
representation of classes in the mini-batch and a weighted
error measure, we have attempted to improve the accuracy of
VisualTox by balancing and oversampling the data set as
described in our Data Sets section. Furthermore, since training
purely on Tox21 will show poor generalization error on the
literature data set, we wish to further improve the network by
performing Active Learning,

To obtain a more accurate and robust model, we have
trained the VisutalTox architecture described in Figure 4 on
different splits of the data set mentioned in Table 1. The
names and descriptions of the three variations of VisualTox
model based on different training and testing dataset are given
in Table 2. We have also listed the balanced accuracies for

Table 2. Descriptions of Model Names Based on the Choice
of Data Set Used for Training and Their Testing Accuracies
testing accuracy

model name

VisualTox_AL

description agonist

0.9073

binding
trained using active learning (see 0.8958
Figure 5) using 3236 Tox21

training chemicals as a primary

source of data and 4492 chem-

icals from literature training set

as a secondary source of data.

VisualTox_Tox21 training on the 3236 chemicals 0.7990 0.7932

from Tox21 training set only

VisualTox_Literature  training on the 4492 chemicals 0.8171 0.8014

from literature training set only

these different variations of our proposed model in Table 2. All
of the models are compared against a combined testing data set
of 1419 samples from the Tox21 testing set and 1930 samples
from the literature testing set. The BAs for different machine
learning models are listed in ref 42 and are listed in the
Supporting Information. All of the VisualTox models listed in
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Table 2 have been tested against the 1419 chemicals from the
Tox21 testing set and the 1930 chemicals from the literature
testing set, as mentioned in Table 1. It is shown that except for
VisualTox AL and VisualTox Literature, the rest of the
models perform well only on the Tox21 data set, while
VisualTox_Literature performs poorly on the Tox21 data set.
Also, the methods from ref 42 are trained on the complete
Tox21 data set; hence, the generalization error for Tox21 is
missing in these analyses. On the contrary, VisualTox AL is
trained on a combined training data set of both the Tox21 and
the literature. Hence, it performs equally well on both the
testing data sets. Active Learning achieves the comparable
performance of VisualTox on the different data sets with
significantly low generalization error.

The detailed accuracy values of VisualTox on the testing
data set from Tox21 is presented in Table 3. VisualTox shows
high values of classification accuracy, ROC-AUC, and PR-AUC
for both the classes. A detailed description of the metrics used
for quantifying the performance is given in the Supporting
Information.

We have performed 10 random train-test splits on our data
set before performing the data augmentation. Higher random
trials help remove any selection bias that may arise due to
choosing a fixed split set. We have calculated the mean (y) and
the standard deviation (o) for the classification accuracies for
VisalTox_ AL on the testing data sets mentioned in Table 1 of
the main text. The y+30 limits are reported in Table 4.

Performance on the Visual Explanation. The stochastic
approximation model C is a replica of an actual physical
process. Thus, we need to explore the physical meaning of the
estimated parameters or weight 6 of the stochastic model. The
fitted CNN breaks down the chemical into a collection of
substructures that are statistically important toward determin-
ing the toxicity of the chemical. A clear understanding of how
the intermediate layers are functioning leads us to more
conclusive evidence than just performing the classification.
Recent designs of interpretation techniques have allowed us to
explore the deep nonlinear methods. One such approach is the
use of feature maps’® that involve visualizing all of the
convolution filters and how the heatmap of a chemical behaves
when it passes through the convolution and dense layers
during the feed-forward propagation. Feature maps are
excellent tools in identifying layer-by-layer unfolding of latent
chemical space and chemical patterns. It shows the subregions
of the SMILES string that get activated during the feed-forward
propagation of the CNN model (see Figure 6b). It brings out
the structural subgroups that contribute toward the classi-
fication of the chemical as active or inactive. However, feature
maps alone cannot capture the variation in the information
captured by CNN. Additionally, the activation of each filter
may differ, and each activated filter’s contribution is not also
well captured.

We have used the gradient-weighted class activation
mapping (Grad-CAM)”>” to extract the discriminating image
regions and generate the molecular motifs that contribute
toward the toxicity label predicted by the VisualTox (see
Figure 6c). The chemical activation map is a weighted
aggregate of all of the subgroups that have been identified by
the feature-extraction layers of a CNN (see Figures S4, SS, and
S6 for details). Grad-CAM is a modification of the class
activation maps (CAM),”® whereby it produces a weighted
global average of the K feature maps A¥ € R, u < n from the
last convolution layer. Grad-CAMs are computed for the
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Table 3. Performance of VisualTox_ AL on Tox21 and Literature Testing Data Set

precision recall

Tox21 agonist active 091 0.92
inactive 0.92 0.92

binding active 0.91 0.94

inactive 0.93 0.90

literature agonist active 0.90 0.93
inactive 0.93 091

binding active 0.93 0.89

inactive 0.88 0.93

b

Fl-score support” accuracy ROC-AUC PR-AUC
0.92 675 0.9203 0.9751 0.9785
0.92 744
0.93 739 0.9225 0.9744 0.9748
0.92 680
0.92 926 0.9187 0.9710 0.9691
0.92 1004
091 1016 0.9062 0.9651 0.9560
0.90 914

“Support refers to the number of occurrences of the class in a data set. bAccuracy is defined as the ratio of correct predictions to the total number

of testing samples. It is different from balanced accuracy (BA).

Table 4. Mean (¢) and Standard Deviation ¢ Calculated for 10 Trials on the Testing Data Set”

agonist class

binding class

Tox21
U+ 30 0.899S + 0.0372

“The p + 30 limits are reported.

literature

0.9450 + 0.0946

Tox21
0.9040 + 0.0327

literature

0.9418 + 0.1099
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Figure 6. Chemical activation map is a weighted aggregate of all of the important geometric substructures of an organic molecule that are captured
by a CNN while classifying it as an active compound. These substructures are captured as feature maps, which the CNN produces while performing

its feed-forward propagation.

toxicity class ¢ using the output score y* that is predicted by the
VisualTox. We consider the gradient of the output score y°
with respect to each feature map A*. Thus, mathematically, the
expression for Grad-CAM §° for class ¢ is given as

w

)

i

oy°

K
c k
§° = ReLU ; w A" | w, = o’
The scores §° € R" obtained for a particular input image x € R
" are linearly interpolated to R” using an open-source tool
OpenCV.””

Structural alert, also known as “toxicophore”, is a
substructure of a chemical that accounts for the chemical’s
toxicity. The traditional way to identify structural motifs is to
extract common functional groups from a large set of
compounds by human expertize. One of the shortages of
traditional structural alerts is the high possibility of false-
positive, which means many compounds containing structural
alerts are inactive (not having the specific toxicity). The false-
positive rate of the structural alerts for endocrine disrupters
can range from 0 to 100%.”® On the other hand, the activation
maps from VisualTox highlight the subgroups that contribute
the most to the active or inactive classification. Simultaneously,
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they deemphasize the subgroups that are insignificant toward
the classification. Hence, by comparing the activation maps of
both the active and inactive compounds that contain the same
or similar structural alerts, we will be able to understand how
the “chemical environment” subgroups contribute to the
compound’s classification in addition to the structural alerts
and how they influence the effectiveness of structural alerts.
We have generated Chemical activation maps for both the
ER active and the ER inactive compounds from the Tox21
training set. Example chemical activation maps for the
compounds from the categories identified as EDC' (e.g,
alkylphenols, bisphenols, phthalates, and organochlorines) are
shown in Figure 7. VisualTox classifies the compounds on the
left column as active and the ones on the right as inactive
regarding their ER agonist activity. The chemical activation
maps can provide important information on two sides apart
from accurate active/inactive classification. First, the CSMs—
the motifs with higher contribution to the classification, shown
in colors from orange to red for active compounds or from
blue to dark blue for the inactive compounds as the
contribution go higher; second, the non-CSMs—the motifs
that contribute little to the classification results, usually in
yellow for the actives and green for the inactive compounds. By
observing the CSMs in Figure 7, we can find the classic

https://doi.org/10.1021/acs.jcim.0c01409
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Figure 7. Examples of the activation maps of common endocrine disruptors from the CERAPP training set.

structural alerts (SAs), which are generalized by human
expertize, can be part of the CSMs, while the CSMs can
determine the specificity of SAs. For example, 4-nonylphenol
and 4-propylphenol have their phenol groups and some alkyl
groups shown in orange and red, which suggests an alkylated
phenol group is a CSM when classified as an active chemical.
On the contrary, the two inactive alkylphenol derivatives on
the right have their ether groups shown in blue, suggesting that
a phenol with hydroxyl hydrogen substituted is a CSM for
inactive classification. The unsubstituted phenolic hydroxyl
group is essential for estrogen receptors to distinguish between
testosterone and estradiol/estrone, which has been confirmed
by the X-ray structures of the complex of the estrogen receptor
a ligand-binding domain with estradiol (ER-LBD-E, com-
plex).”” We compare the CSMs for the active and inactive
compounds for alkylphenols and bisphenols and their
derivatives. We can conclude that phenol, as a classic SA,*
can be a hint for ER active compounds when the phenol
hydroxyl hydrogen is not substituted, the phenyl ring is
alkylated, and the hydroxyl group is not in-between two aryl
bromides. Meanwhile, the CSMs can suggest new SAs with
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their specificity determined. From the CSMs identified from
the phthalate esters (Figure 7), the phthalic acid ester can be a
SA for estrogen disruptors. The specificity of the phthalic acid
ester as a SA possibly depends on the length and linearity of its
alkyl group: the active phthalates have one of their carboxylic
and short branched alkyl groups as CSMs, while the CSMs for
the inactive phthalates contain long-chain alkyls groups. We
can conclude that the CSMs identified by VisualTox provide a
new approach to understanding the molecular origin of
chemical toxicity by highlighting the existing or suggested
SAs as well as the chemical environments that determine the
specificity of SAs.

B CONCLUSIONS

Overall, we have developed a structural alert visualization
toolkit using Grad-CAM that solves an underlying machine
learning problem of multioutput classification. We have also
shown how we can use a contradicting data set and
strategically extract only a sufficient amount of data to reach
the desired accuracy. The fitted statistical model combines
feature-extraction and sequence prediction neural network
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architectures for a chemical descriptor that is made of elements
from a finite set of characters. We have translated the patterns
extracted from the subset of SMILES characters to meaningful
chemical subgroups. The RDKit’s inbuilt visualizer aids in
drawing the chemical activation maps.

The chemical activation maps identify the critical structural
motifs (CSMs) containing existing structural alerts (SAs) or
suggest new SAs. Simultaneously they specify the conditions
for the SAs to take effect, which can serve as a new approach to
understanding the molecular origin of chemical toxicity.
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