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Implicit Contact Model
for Discrete Elastic Rods
in Knot Tying

Rod-rod contact is critical in simulating knots and tangles. To simulate contact, typically a
contact force is applied to enforce nonpenetration condition. This force is often applied
explicitly (Euler forward). At every time-step in a dynamic simulation, the equations of
motions are solved over and over again until the right amount of contact force successfully
imposes the nonpenetration condition. There are two drawbacks: (1) Explicit implementa-
tion brings numerical convergence issues. (2) Solving equations of motion iteratively to find
this right contact force slows down the simulation. In this article, we propose a simple, effi-
cient, and fully implicit contact model with high convergence properties. This model is
shown to be capable of taking large time-steps without forfeiting accuracy during knot
tying simulations when compared to previous methods. We introduce a new contact poten-
tial, based on a smoothed segment—segment distance function, that is an analytic function of
the four endpoints of the two contacting edges. Since this contact potential is differentiable,
we can incorporate its force (negative gradient of the energy) and Jacobian (negative
Hessian of the energy) into the elastic rod simulation. [DOI: 10.1115/1.4050238]
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1 Introduction

Discrete differential geometry-based simulations have shown
surprisingly successful performance in simulating slender struc-
tures, e.g., rods [1-4], viscous threads [2,5], ribbons [6], and
plates/shells [7-9]. Discrete elastic rod (DER) algorithm [2,4]—
originally developed in the computer graphics community to simu-
late hair, fur, and other filamentary structures in movies—has been
borrowed by the engineering community to solve a variety of prob-
lems involving deployment of rods [10—-12], propulsion of bacterial
flagella [13-15], elastic gridshells [16-18], and self-assembly of
carbon nanotubes [19]. One of the most interesting and challenging
problems in these tasks is the simulation of knots, which introduces
complex and intricate patterns of self-contact within an elastic rod.
The mechanics of knots [20-26] tied in elastic rods is an intricate
interplay of the elastic forces and friction. Therefore, when simulat-
ing knots, a fast, stable, and physically accurate contact model is
desired.

Contact handling methods can generally be divided into three cat-
egories: impulse methods [27], constraint-based methods [28], and
penalty methods [22,29]. DER, which implements a variation of
Kirchhoff’s rod model [30], has been used to handle contact
during knot tying using a contact method proposed by Spillmann
and Teschner [27]. This model resolves contact by computing the
contact forces that will exactly lead to the desired, collision-free
state. Although computationally efficient, unrealistic visual jittering
during knot tying occurs for sufficiently large time-steps due to its
explicit nature. Kaufman et al. [28] proposed a method capable of
simulating large assemblies of elastic rods by adaptively adjusting
its degree of nonlinearity. This method formulates frictional
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contact using discrete Signorini—Fischera conditions [31] and the
maximal dissipation principle [32]. By adaptively incorporating
sufficient nonlinearity into the collision response, more physically
realistic results are produced compared to impulse methods. More
recently, Li et al. [29] proposed an implicit time-stepping method
that utilizes smooth barrier functions to simulate contact between
deformable objects and induce deformations. Here, approximated
functions are introduced to smooth the contact energy and frictional
responses between two elements. Finally, Patil et al. [22] formu-
lated contact forces in knots by using strain potential, while friction
was formulated as a damping force. Although robust, many of these
state-of-the-art methods [28,29] are difficult to implement, compu-
tationally expensive, and can be often overkill for simulating knots.
This can be attributed to the fact that they are formulated in a way
that robustly handles difficult contact scenarios such as high velo-
city impacts, which are often absent in knot tying. To combat
this, we formulate an algorithm that is efficient, intuitive, easy to
implement, and is specially catered toward knot tying. We then
compare simulation results with the contact method proposed by
Spillmann and Teschner (SPT) [27] as it is most comparable in
implementation complexity and computation cost.

In this article, we introduce implicit contact model (IMC), a
contact handling method for DER simulations [1,2] where the
contact forces are handled implicitly. DER discretizes the elastic
rod into a number of “nodes.” Two consecutive nodes are connected
by an “edge” To deal with contact, we define a contact energy,
which will be used to derive the normal contact forces (responsible
for enforcing nonpenetration) and Coulombic frictional forces.
Instead of formulating this contact energy as a function of the dis-
tance between nodes, we formulate it as a function of the minimum
distance between two edges, which results in more visually and
physically realistic results. Figure 1 presents snapshots from our
simulations of the knot tying process, where the two free ends of
the “tails” of the knots are pulled. Throughout this article, we con-
sider open overhand knots [20]; such knots can be described by the
unknotting number #, related to the number of turns in the “braid”
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Fig.1 Knottying process using DER and IMC for knots of (a) n =1, (b) n=2, (c) n =3, and (d) n = 4. The dots in the leftmost frame
in (a) represent the crossing points of the braid. Unknotting number n is equal to 1x (number of crossing points - 1). The
end-to-end distance of a knot is e =L —x, where L is the total length of the rod and x is the distance between the two ends of
the knot. The knot starts off in the configuration denoted by the leftmost column and is gradually pulled tight from both ends
leading to the configuration shown in the rightmost column. Physical parameters are detailed in Sec. 3.2.

of the knot. Figures 1(a)-1(d) show knots withn =1, ..., 4. Interest-
ingly, when the knots with n =3 and n = 4 are sufficiently tight, they
undergo snap-through buckling and the “loop” of the knot suddenly
transitions from a near-circular shape to a distorted configuration.
The simulation can reliably capture this behavior.

This article is organized as follows. In Sec. 2, we discuss the
methodology of the proposed version of DER with IMC as the
contact model. Next, in Sec. 3, we undertake both theoretical
validation of the IMC contact model and compare it to a well-
established preexisting contact model in terms of pull force accu-
racy and runtime. Finally, conclusive remarks as well as potential
future research directions are discussed in Sec. 4.

2 Methodology

In this section, first, we very briefly discuss the DER model (for a
more in-depth introduction, please refer to Ref. [4]). Then, we for-
mulate the IMC contact model and its intuitive integration into the
existing DER algorithm. Finally, hyperparameters are explained in
terms of their effect on algorithmic performance.

2.1 Discrete Elastic Rods. Under the DER framework, the
centerline of a rod is discretized into N nodes, x; (1 <i<N) which
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corresponds to N —1 edges, e; (1 <i<N—1), where e;=X;,; —X;.
Each edge has an orthonormal adapted reference frame, {di s dé, t'},
and a material frame, {m}, m, t'} as shown in Fig. 2(a). The refer-
ence frame is updated through parallel transport in time [1,2], while
the material frame can be obtained from the scalar twist angle ' with
respect to the reference frame. Following this, for a given rod, the
Cartesian coordinates of each node as well as the twist angle for
each edge results in 4N — 1 total degrees-of-freedom (DOF), which
can be represented by the following vector q = [x;, 0y, Xz, 05, ...,
Xy_1, Onv_1, Xn]%; here, T denotes transposition operator. In this
representation, the location of the ith node, x;, corresponds to the
4i—3, 4i—2, and 4i — 1th entries of q. )

The total elastic energy of an elastic rod, E ©*%, is composed of
the stretching energy E*, bending energy E”, and twisting energy E’
as follows:

1
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I I
where E is the stretching energy associated with the edge e;, E? is
the bending energy at node x;, and E! is the twisting energy at node
x;. For a rod with Young’s modulus E, shear modulus G, area
moment of inertia /, polar moment of inertia J, and cross-sectional
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Fig.2 (a) Schematic diagram of a discrete rod and (b) two edges
(and four nodes) involved in a contact

area A, the energies are formulated as follows:

1 = X 2
E‘}=7EA<|XH—1 X1|_1> &l

2 lé;]
E?’=1EI(|;<»—;<(.’|)2L 2
) YL,
1 1
E'=_-GJi?—
=2,

where |€;| is the length of edge e; in undeformed state, ; is the cur-
vature vector at node x;, K? is the undeformed curvature for the same
node, 7; is the integrated twist at node x;, and dL; = (|e,_| + |€;])/2
is the Voronoi length in the undeformed state. Typically, the rod is
uniformly discretized and the length of each edge dL is the same
throughout the rod. All these energies are functions of the configu-
ration of the rod represented by q [4].

For each DOF g¢; (i.e., ith element of q), the elastic forces (for
nodal positions) and elastic moments (for twist angles) can be
written as follows:

Fint - _ ﬁ (EelastiC) (3)
' 0gi
where FI™ is the ith element of (4N — 1) sized elastic force vector,
le'
With this definition for the internal forces, the system of equa-
tions of motion is given as follows:

Mq — Fin[ + Fexl (4)

where F**'is the external force vector (e.g., contact forces, gravity),
M is the diagonal mass matrix, and q is the second derivative of the
DOFs with respect to time. In DER, backward Euler method is used
to solve the 4N — 1 equations of motion to update the DOF vector q.
For the march from time #; to #;, | =t; + dt, where dt is the time-step,
Eq. (4) can be rewritten as follows:

Mqi+) —aq@) . ;

u |:+T —q(t) | = F™ @) —F*@) =0 (5)
where (#;) are the DOFs at time-step #; and q(#;) are the velocities at
time-step #;. In the setup studied in this article, the three external
forces are (1) the contact force F,, (2) the friction force Fy,., and (3)
the viscous force F,; and therefore, we have Fe"‘zFC+Ff,+Fv.
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The formulation of these three forces will be discussed throughout
the remainder of this article.

The old DOFs and velocities (q(#;), (#;)) are known, and the task
at hand is to compute the new DOFs and velocities (q(#;+1), q(#i+1))-
As the Jacobian for Eq. (5) can be computed, the Newton—Raphson
method is then used to solve for q (#;,,) iteratively. Each element of
the Jacobian matrix J at row i and column j is expressed as follows:

=ﬂ B azEf:le;\slic
dr? Y Oq,aq,

where J., J5, and J,, are square matrices representing the gradient of
the three external forces—contact, friction, and viscous, respec-
tively—with respect to the DOFs. Once q(#;, ) is known, the new
velocity is simply q(ti+1) = (q(ti+1) — q(1)) /dt.

Normally, if the gradient of an external force, OF;*'/ 0Oqgj, cannot be
analytically evaluated, this term is omitted during Newton iterations
and that external force is considered “explicitly” (Euler forward).
This generally requires a smaller time-step size dt, leading to larger
computation time. Later, we will show that for IMC, the contact
and friction Jacobians are analytically obtainable. Implicit treatment
of contact and friction is a key contribution of this article.

2.2 Contact Model. Referring to Fig. 2(b), denote
Xi, Xit1, Xj, Xjy| € R* as the Cartesian nodal coordinates of the
ith and jth edges in a rod configuration. Next, denote an edge “com-
bination” as the following vector concatenation: X;; := (X;, X;41, X;
X;.1). We denote the set of all valid edge combinations as X’; two
consecutive edges are always in contact, and those combinations
are not included in this valid combination X.

From here, an arbitrary edge combination is denoted as simply x
and all edge combinations are assumed to be valid: x € X. The
contact energy E is then expressed as a differentiable analytical
expression, which takes the four nodes of the two contacting
edges as inputs, E(x):R'?> - R'. Under this formulation, we can
see that the proposed contact energy is only dependent on the
nodal coordinates of the discretized rod and not on the twist
angles of the edges, 6, as the contact forces are computed based
on the minimum distance, A, between two contacting edges.

Following this, to calculate A, we utilize an efficient and accurate
algorithm for computing the minimum distance between two finite
line segments in N dimensions proposed by Lumelsky [33]. Origi-
nally a piecewise function, the algorithm is then modified to become
a twice differentiable smooth approximation. By using this com-
pleted expression, we can then obtain the negative gradient of
the energy —VE(x;) as well as the negative Hessian —VZE(x;),
which are then used to evaluate F,. and J. in Egs. (5) and (6). The
gradient of E(x) produces contact forces that act in the direction
of the contact normal and whose magnitude varies with A, which
results in physically realistic forces when dealing with rod-rod
contact. Finally, as this method is essentially a penalty method, a
stiffness parameter k. is then used to scale F,. and J. appropriately.

By producing the contact forces in this way, dynamic friction can
be calculated according to Coulomb’s friction law. In the past, pre-
vious methods [27,34] have been unable to simulate Coulomb fric-
tion due to the inability of obtaining its Jacobian. As we have access
to the normal contact force Jacobian, we can calculate Coulombic
friction forces as well as the friction Jacobian. By having access
to the Jacobians of the normal and friction force, our contact
model reliably converges even in complex contact states. As the
cost of producing the Jacobian is relatively high and leads to
having to solve a nonbanded matrix, we introduce a hybrid
approach that ensures computational speed by only calculating
the Jacobian when necessary.

To model contact energy, we compute the minimum distance A
between two edges and feed this value into a smooth inverse
ReLU function whose origin is based on the contact distance 24
as shown below where & is the cross-sectional radius of the rod
and cey is a stiffness term that determines how sharp the curve is.
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_log (1 +exp(cex - (2h — A)))
- cey

E

@)

Intuitively, this function starts to gradually increase the contact
energy between two edges as A decreases while A>2h and then
sharply increases as A approaches 2A. Although the gradients in
the region A >2h are nonzero, the inclusion of these “cushioning”
forces greatly aid convergence and reduce any unwanted oscillating
behavior that can often occur in penalty methods. The effect of these
nonzero gradients are explained in detail in Secs. 3.3 and 4. Moving
on, the key component of the contact model involves obtaining a
differentiable analytical expression for A, which is difficult as com-
puting the minimum distance between two line segments is a highly
nonlinear and noncontinuous process. Next, we briefly describe
Lumelsky’s min-distance algorithm and a new modified smooth
approximation that will be used as A(x).

Lumelsky’s algorithm produces the minimum distance between
two line segments in R™ and contains three noncontinuous compo-
nents; we can eliminate one of them by simply taking the assump-
tion that no edge can be reduced to a point. In other words, each
edge must have a finite length greater than zero. With this condition
eliminated, we now briefly layout the simplified min-distance algo-
rithm for an arbitrary edge combination x;;. Note that here, we
simply go over the steps of the algorithm. For further intuition on
how exactly the algorithm is computing the min-distance, please
refer to the original paper [33]. For notation, - is scalar multiplica-
tion and e is the dot product.

To start off the min-distance algorithm, first, we add another
“edge” vector e; =X; — X; to the ones already previously formulated:
¢; and e;. With these vectors, we can then calculate the necessary
intermediary values as follows, where i and j subscripts are left
out for clarity:

Dy =¢ o0e¢
D;=¢je¢
NEE Y
Sr=eeg; ®)
R=¢;0¢;
A=D, D, — R

Next, denote F(x) as a fix bound function, where all values above 1
are 1 and all values below 0 are 0. Anything between is outputted
identically. This function is the piecewise function shown below
and is first of the two remaining noncontinuous components.

0 x<0
Fx)={x 0<x<l1 )
1 x>1

The rest of the algorithm is as follows, where ¢, u € [0, 1] are the
ratios that determine at which point along the length of each edge
the connecting min-distance vector lies as shown in Fig. 2(b).
With this in mind, the fix bound function F(x) is used to ensure
that these values do not go outside the appropriate range. As two
edges become increasingly closer to parallel, 4 approaches 0 and
becomes 0 when perfectly parallel. To prevent division by zero, a
piecewise function is used to describe the assignments of ¢.

t'_{(Sl-Dz—Sz-R)/i A#0

0 A=0
t:=F(r) (10)
u:=({-R-S5)/D;
ug . = F(u)

The last noncontinuous component is a conditional assignment
where if u;#u (i.e. u<0 or u>1), the ¢ value is reassigned as
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follows.

r: =(Mf 'R+Sl)/D1
t:=F() (1D

u:=us
Finally, A can be computed as follows:

Aj=lei-r—eu—e (12)

2.3 Contact Energy, Its Gradient, and Hessian. To obtain
the gradient and Hessian of the contact energy E(A(X)), A(X)
must be differentiable. In Sec. 2.2, we introduced an algorithm
that can compute A. Now, we modify the min-distance algorithm
into a differentiable analytical expression. As Eq. (8) is analytical,
the only necessary modifications lie in Eqs. (10) and (11). First,
the fixbound function F(x) can be modeled with the following
smooth approximation, which is denoted by H(x).

_log (1 +exp(k-x))—log(l +exp(k-(x— 1))
B k

Here, k is a hyperparameter, which determines how stiff the curves
are. A larger k value will result in a more accurate approximation
but will result in “stiff” first and second derivatives leading to
reduced convergence; thus, this value should be determined empir-
ically. Next is the conditional reassignment in Eq. (11). As the reas-
signment only depends on whether u# u, this is equivalent to the
reassignment only occurring when #<0 or u>1. To model this,
we can use a boxcar function denoted B(x), which consists of two
compounded logistic functions.

1 1
1+exp(—k-x)_ 1+exp(—k-(x—1))

H(x)

13)

B(x) = (14)
Both functions H(x) and B(x) are plotted in Fig. 3 for a value of k=
50, which is the value used to produce the simulation results. This &
value is a good tradeoff between accuracy and reliable convergence.

The last noncontinuous component of the algorithm lies in the
piecewise function in Eq. (10), which is actually left noncontinuous.
Although this introduces a piecewise function into the expression,
this does not hurt convergence for the following reasons. First, it
should be noted that 4 will almost never equal exactly 0 due to float-
ing point arithmetic. Therefore, the piecewise function is only
required to prevent simulation crashes during simulation starts
with perfectly parallel rod configurations. Furthermore, the
numeric stability of this algorithm is maintained as whenever 1
approaches zero, the numerator S;-D,—S,-R also approaches
zero by a similar magnitude, effectively avoiding numeric overflow
problems [33]. In terms of performance, we have found that the pro-
duced Hessian is an excellent indicator of gradient direction when
approaching or passing through parallel configurations when vali-
dating against finite difference for a wide variety of edge
configurations.

(@, . ) .
& O
s Q
0- T T 0- T T
0 1 0 1
T xr

Fig. 3 (a) Smooth approximated fixbound function H(x) which
models the piecewise function in Eq. (9). (b) Boxcar function
B(x) which allows for an analytical conditional reassignment.
Both functions are plotted with a stiffness parameter of k =50.
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With these two functions and the aforementioned prevention of
division by zero, we can then replace Eqgs. (10) and (11) with the
following expression:

S1-D2=8-R/A A#0

=40 A=0
n=H)
uy=(-R-5)/D> (15)
up = H(up)
ty=(1-Bw)) (2 R+S81)/D1+B(u) -t
A= ei- 13— ux — ey
E, = log (1 + exp (cey - 2h — Ay)))
cex

As shown earlier, the min-distance A is fed into Eq. (7), which then
leads to a fully differentiable analytical expression E(x). It should be
noted that an end-to-end differentiation of E(x) ends up with an
extremely large and complex equation when using symbolic differ-
entiation [35]. Therefore, to greatly simplify the expression and
improve computational efficiency, the gradient and Hessian for
several of the intermediary algorithmic values are taken and then
chain ruled together. Effectively, we can define E(x) by the follow-
ing equivalent functional:

E(x): =f(e;, €, €, D1, D2, S1, $2, R, ). (16)

Since the inputs for f( - ) are all functions of x, chain rule tells us that
we can obtain the gradient of the contact energy by the following:
of Oe; Of Oe +8_f @

VEw =T % T %
™=z ox T3 ox Toe; x

o b of oD, &f R

6D1 ox 6D2 ox OR 0x

o oS, of oS, of ot

L 2,9 == Y2 1
a5, ox T8s, ox o ox 17

Here, we see that for any arbitrary edge combination x, the pro-
duced force —VE(x) will be a vector of size 12 consisting of four
concatenated three-dimensional contact force vectors for every
node making up x. These 12 elements contribute to the 12 entries
of the (4N — 1)-sized F. vector located at the following positions:
4i—-3,4i-2,4i—1,4(+1)-3, 4G+ 1)-2, 4G+ 1)—-1, 4 -3,
4j-2,4—-1,4(G+1)-3,4(+1)—2, and4(j+1)—1. Once the
contact forces are computed for every contacting edge combination
during a time-step, the force values are added to F. and then incor-
porated into DER.

To obtain the Hessian, we simply take Eq. (17) and differentiate
once again to obtain —V2E(x). Once obtained, the Hessian is added
to the (4N —1x4N — 1)-sized Jacobian matrix J. in a similar
manner. The derivation of the Hessian can be done by using the
product rule and its derivation is left out for brevity. See Sec. 5
for source code implementing these expressions.

2.4 Adding Friction. Just as we obtained contact force vectors
of size R'?, we produce frictional forces in a similar manner where
given an edge combination X;;, we compute a friction force vector
F?r € R" according to Coulomb’s dynamic friction law. For each

edge combination, this 12-sized vector is added to the appropriate
entries of Fz. (Eq. (5)).
Coulomb’s friction law states the following:

(1) Frictional force is independent of velocity, and
(2) I¥4ll = py - F, during sliding,

where y, is the dynamic friction coefficient and F,, is the normal
force (more details later in this section). From the contact model, we
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were able to derive —VE(x), which is equivalently the normal
contact forces F,.. As mentioned earlier, the gradient of the contact
energy will always produce forces that are along the contact normal.
Therefore, we can obtain F, at the ith edge of the contact pair x;; by
simply summing up the contact forces on the ith and i + 1th nodes:
F,= ||Ff, + Fi“ [|. We can also use these contact forces to obtain the
contact norm n = (F, + F’C“)/F,,. The direction of friction is then
determined by the tangential relative velocity vl of edge i with
respect to edge j. This can be obtained using the nodal velocities
Vi, Viy1, Vj, and vy as shown.

vi=0.5"-(vi+ Vi)

€

1

v¢i=05- (Vj + Vj+])

Viel =V, =V} (18)
T

Viel = Vrel — (Vieron) - n

oT _ T T

Viel = vrel/”vrelll

Finally, we can then formulate the friction force on the ith edge
using Coulomb’s friction equation as shown below. Here, we add
a weight y€ [0, 1] to get rid of frictional forces between edges
with extremely small relative velocities as this can cause unwanted
behavior. To maintain differentiability, this weight is obtained using
a smooth Heaviside step function with the tangential relative velo-
city as input and the stiffness k set to 50. Here, ¢ determines the limit
for the step transition and was set to 0.15 for our experiments. Note
that this limit ¢ must take into consideration the scaling of the
model, which is explained in Sec. 2.5.

1
T l+exp(—k- (v —0) (19)

v
Ff=—p -y ¥y F,

After obtaining the friction force on the ith edge Fif",, we can do the

same for the jth edge as well to obtain F}‘r The computed frictional
forces are then equally distributed to each node and then concate-
nated four times to form the final friction vector F ?'r e R

0.5-F¥*

0.5 F .

. _
F/ =(0.5F e,

8 0.5-F) (20)

Once these friction force vectors are computed for every contact-
ing edge combination during a time-step, we can then compute the
friction force Jacobian matrix J?r as well. These are then added to
Fy. and Jj in exactly the same way as the contact energy gradient
and Hessian as described in Sec. 2.3.

It should be noted that several simplifications were made for the
friction model. First, the relative velocities were computed using
the midpoint of the edges rather than the contact points. Likewise,
the friction forces were evenly distributed rather than being dependent
on the contact points. This was done as it greatly simplifies the friction
force Jacobian, leads toimproved convergence, and does nothave any
noticeable effects so long as the rod is sufficiently discretized.

Furthermore, we treat friction semi-explicitly by using the known
velocities from the previous time-step. This allows the friction
direction to remain constant during Newton iterations, which
improves convergence considerably. Although a fully implicit
scheme is possible, computing the necessary contact Hessian on
every iteration is costly and the overall speed of the algorithm
greatly benefits from this formulation.

In terms of limitations, this method clearly does not enforce static
friction and so should only be used for continuous sliding scenarios
such as knot tying. Furthermore, friction occurring due to the rod
twist @ is not modeled. When an edge undergoes enough twist
and is in contact with a receiving edge, friction forces occur slightly
off the centerline of this receiving edge. As our model assumes that
all friction occurs precisely on the centerline and formulates all
contact only using X, such friction—twist coupling is neglected.

MAY 2021, Vol. 88 / 051010-5

120z Jequieides |0 uo Jesn Aieiqr] V10N AqJpd-0L0LS0 S 88 Wel/0698599/010150/5/88/4pd-a1oe/solueyoswpaijdde;/bio0-swse uonosjjoojenbipawse//:dpy wol papeojumoq



Finally, the produced friction forces can possibly overtake the pull
forces when the pull speed is very low leading to unrealistic sliding
in the opposite direction. This must be remedied by pulling at a suf-
ficiently high speed.

Algorithm 1 Implicit contact method.

Parameter: k., 6, w, S

Input: x, v, n; // from DER
Output: F, J., Fp, J5,
1 Function: IMC(x, v, n):
2 scale x and v by S
3 if » == 0 then // run only on first iter
4 C,md < collisionDetection(x, d)
5 k. < updateConStiffness(k., md)
6 end
7 if n < @ then // compute only forces
8 F. < genContact(C)
9 Fs < genFriction(C,v,F,)
10 J. « zero square matrix
11 Jr < zero square matrix
12 end
13 else /I compute Jacobian for convergence
14 F.,J. < genContact(C)
15 Fj4,Jp < genFriction(C, v, F., J.)
16 end

17 F—k.-(F.+Fp)

18 Jo < ke Je

19 J_fr < kc . Jfr

20 a <+ newtonDamper(n)
21 return F., J., Fj, J5, a

Algorithm 2 Discrete elastic rods.

Input: q(1), 4(1))

Output: q(t:41), q(tir1)

Require: boundary conditions — free
Function: DER(q(%;), 4(;))

1

2 Guess: qV < q(;)

3 n<0, €< o

4 while € > tolerance do

5 F™ « genForces(:) FPE

6 J" « genJacobian(:) ; S )

0q:0q;

7 Fo, I, Fp I a < IMCx™, q(), n); # Alg 1

8 Fyer < left side of Eq. (5)

9 Jaer < left side of Eq. (6)
10 Fiee < Foer(free);  // Downsize to only include free DOFs
11 Jiee < Jaer(free, free)
12 Aqﬁ—ee « Ffrcc/Jfrcc; I/ Solve Jfrcchfree = Ffrcc
13 q"V(free) « q(free) — a - AQge
14 € — |Fpeel: / update error
15 ne—n+1
16 end
17 q(tip1) < x¥
18 q(tir1) < (q(ti41) — q(5))/ At
19 return q(#;41), q(t;+1)

2.5 Full Algorithm. In addition to the force and Jacobian gen-
eration, there are several additional steps to the IMC algorithm that
are explained in this section as well as several hyperparameters that
must be properly tuned for optimal performance and convergence
which are listed as follows:

(1) &, the collision limit,

(2) k., the contact stiffness,

(3) cey, the contact energy stiffness, and

(4) w, the number of iterations before the hybrid algorithm com-
putes the Jacobian.
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First, the nodal coordinates are scaled by a scaling factor S = 1/A,
so that the adjusted rod radius equals a unit value of 1. To ensure
that the distance at which two edges experience a force is very
close to the rod surface, the following energy function is used.

= log (1 +exp(cex - (2 — A/h)))
- cey,

@n

Following this, the collision limit ¢ is the threshold value used to
determine when two edges are “in contact.” This value is fed into
a collision detection algorithm, which returns all edge combinations
falling into this threshold, which is denoted by the following set:

C={xjeX|A;/h<2+5} (22)

The minimum distance from this set is denoted by
md = mingee A(Xx), which will be used later to adjust the contact
stiffness k. accordingly.

The collision limit 6 must be chosen carefully as a higher 6 value
results in additional computation due to more qualifying edge com-
binations, whereas a § value that is too low will produce nonsmooth
gradients that hamper convergence.

A good way to determine a proper ¢ value is to observe the
plotted contact energy function from Eq. (21) for a chosen ce
value. By observing the contact energy curve, the point at which
the generated gradients are ~ 0 can be found when the slope of
the curve is nearly flattened out. Choosing a § value that encom-
passes this region ensures that the generated gradients are suffi-
ciently smooth. An example of this process can be found in Fig. 4.

The stiffness of the contact forces is determined by the contact
energy stiffness value ce;. As this value becomes higher, the
region above the contact surface at which two edges experience a
force decreases. This leads to stiff contact, which is more physically
accurate as realistically the contact energy should be zero whenever
A >2h and shoot to oo as soon as A =2h. Conversely, a ce; value
that is too large will result in convergence issues, while a ce;
value that is too low will have excessive oscillations between the
contact bodies. A value that was found to be a good compromise
between physical accuracy and convergence was ce; = 50.

The next hyperparameter that must be specified is the contact
stiffness k.. Not to be confused with the approximation stiffness k
in Egs. (13) and (14), the contact stiffness k.. is a scalar value that

0.20
— E(A/h)
—-= E'(22)
— 6=02
--- E'(25)

— 0=05

]

e

=

o>
L

0.10 1

0.05 A

Contact energy, E [J

0.00 A

1.6 1.8 2.0 2.2 2.4 2.6 2.8
Scaled min-distance, A/h

Fig. 4 Contact energy curve of Eq. (21) for ce,=10. Scaling
by S=1/h results in the curve being centered at a collision
length of 2hy=2.0. As denoted by the vertical solid line, the
curve starts to flatten out to zero at A/h =2.5, which indicates
that generated gradients are =~ 0. Therefore, a collision limit 6 =
0.5 would be suitable. Conversely, 6 =0.2 as denoted by the ver-
tical solid line would result in the Newton solver potentially
failing to converge due to nonsmooth force generation.
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is used to scale the contact force and Jacobian. This value is adap-
tively readjusted every time-step to ensure that excessive hovering
or penetration is minimized, and so, only the initial value must be
specified, which can be found empirically. This initial k. should
be reasonably close to the value that would result in md=2h. In
our experiments, we employed a simple algorithm that decreased
or increased k. by a fraction of a percent depending on whether
md was < 2h — €1 or > 2h + €, where €] and ¢, are limits indicating
an acceptable contact range. This algorithm updates k. only when
md is deviating from the region defined by [2h — ¢}, 2h+¢€,] and
is otherwise left constant to prevent overshooting.

As mentioned earlier, this algorithm applies a hybrid approach in
which the Jacobian of the contact and friction forces are only com-
puted once the number of iterations passes a limit . This is done
because often convergence can be quickly obtained even without
the contact Jacobian, and with the absence of the contact Jacobian,
the overall Jacobian matrix remains a banded matrix, which can be
solved significantly faster. Although the Jacobian results in a
decrease in iteration count, the consequent increase in computa-
tional time outweighs this benefit as IMC is able to reliably con-
verge rapidly without it for a majority of time-steps. With this in
mind, the Jacobian is crucial for completing volatile contact states
with high velocities and impacts that could otherwise end the simu-
lation prematurely. Therefore, this hybrid approach maximizes
computational speed while ensuring that the simulation can consis-
tently reach the next time-step during especially difficult contact
scenarios such as inversion and the initialization phase where the
rod rapidly reverts to its lowest energy state. The limit @ should
be chosen empirically, so that the Jacobian is only generated
when necessary. In our experiments, we used an @ of 20.

Finally, although not a hyperparameter, a damping coefficient a is
used to reduce the step size of the Newton solver as the number of
iterations increase for a particular time-step. For this, a simple decay-
ing algorithm is used which reduces a by a factor of 2 every other iter-
ation. Overall, aside from the collision detection algorithm (which is
only performed on the first iteration of every time-step), the time
complexity of IMC with and without Jacobian generation is O(n)
and O(n?), respectively, where n is the number of collisions detected.
The full contact algorithm and its implementation in DER can be seen
in Algorithms 1 and 2, respectively. In Algorithm 2, the term “free”
are the indices that correspond to the free degrees-of-freedom of the
elastic rod. The remaining degrees-of-freedom are “fixed” and
depends on the user defined boundary conditions.

3 Results

In this section, we first validate the correctness of our contact
model against theory. Afterward, to observe the benefits of using
IMC, we compare simulation results with the contact model (SPT)
proposed by Spillmann and Teschner [27] for knots of unknotting
numbers n € [1, 4], which are shown in Fig. 1. For both methods,
the contact model is used to simulate knot tying until a mutual termi-
nation state, which is shown in the rightmost column of Fig. 1.
Finally, we compare the computational efficiency and convergence
properties between the two methods. All simulations for IMC used
a contact energy stiffness ce, =50 and a collision limit §=0.15,
which was obtained using the method mentioned in Fig. 4.

3.1 Damping for Stability. Since IMC is inherently a penalty
method, the inclusion of damping forces greatly aid the stability of
the contact model. A simple viscous damping force is applied to the
elastic rod by applying a force F, on a node as denoted in Eq. (23),

where n(Pa - s) is a viscosity coefficient and dL is the node’s
Voronoi length.
t; —q(
F,=—n- (q( +l)d[ q( )) dL (23)
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The Jacobian of this damping force is represented as follows:

n-dL
y=——"—I 24
J 7 (24)
where [ is the square identity matrix of size (4N — 1). This damping
force was also added to SPT for fair comparison. For all simula-
tions, a viscosity value of #=0.01 Pa - s was used unless otherwise
specified.

3.2 Theoretical Validation. Coulomb’s friction law states
that friction is independent of velocity. To show that our model
abides by this, we plot the pull forces F' in Newton (N) when tigh-
tening a knot with unknotting number n = 2 with friction coefficient
i =0.10 for pull speeds u of 3, 6, and 9 mm/s (pulled from both
ends). A 1m long rod with cross-sectional radius #=1.6mm,
density p=1180kg/m®, and Young’s Modulus E=1.8¢5Pa is
used and is discretized into 301 nodes. We plot a regularized pull
force Fh %/EI against /h/R, where EI = zEh*/4 is the flexural
modulus and R is the radius of the knot loop. The radius R can be
computed using the knot circumference from Fig. 1 as R =e/(2x).
As Fig. 5(a) shows, the magnitude of the n =2 pull forces is approx-
imately the same for all pull speeds. Dynamic friction force in
Coulomb’s model is independent of velocity, and therefore, this
observation supports the physical correctness of the generated fric-
tion forces.

Next, the pull forces for a trefoil knot (n=1) are compared with
the predictive model by Audoly et al. [23]. This model states the
following theoretical equivalence, where ¢ is a numerical constant
(6=0.492 for trefoil knots) and € = v/h/R. The + term is the fric-
tional component from tightening (+) and loosening (—).

Fn? €
Eziiﬂkﬂéj (25)

Using the same rod properties as mentioned earlier, a trefoil knot is
tightened and then loosened at 3 mm/s using IMC. Here, we reduce
7 to 0.0005 as loosening can be sensitive to small forces. As shown
in Fig. 5(a), the recorded pull forces roughly follow the curves of
the predictive model albeit with some displacements when tighten-
ing increases sufficiently. This can be attributed to imperfections
in the predictive model as Eq. (25) is an elegant lightweight
solution that does not perfectly model friction when the knot
becomes sufficiently tight, i.e., «/h/R becomes large. Still, aside
from the displacement, the pull forces follow the rate of increase/
decrease of the predictive model well, which is a good indicator
of correctness.

Furthermore, in Fig. 5(a), during the loosening, the trefoil
knot can be seen being locked by friction at a point
€0 =+/h/Ry ~ 0.1285. From the right-hand side of Eq. (25), we
can rearrange the terms to obtain the following equivalence.

1
,Lt=2—€0 = 1.02\/h/R0 (26)
O

When plugging in our obtained €, value, we obtain pgeory = 0.1306,
which is reasonably close to the friction coefficient used in simula-
tion, y;=0.10.

Finally, we show that the pull forces monotonically increase with
M in Fig. 5(b). Here, we consider the n=4 case. When recording
the pull forces for u; of 0.1, 0.2, and 0.3, we can see that the rate
of increase is held constant, while the magnitudes monotonically
increase. Furthermore, we can see that as friction increases, the
inversion point occurs sooner, which indicates that the point of
inversion is highly dependent on ;.

3.3 Pull Force Accuracy. Simulations of knot pulling are per-
formed for both IMC and SPT using a pull speed u =6 mm/s, time-
step dt=0.5 ms, friction coefficient y; = 0.10, and the same rod prop-
erties from Sec. 3.2. With these settings, knot tying was simulated for
each method with the experienced pull forces being recorded at each
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n=1, IMC
n=1, theoretical

1 €
=5 ]
10 E — n=2,u=9 mm/s

— n=2,u=6mm/s

—— m=2,u=3 mm/s

T T T T T
0.14 0.16 0.18 0.20 0.22
h/R

Fn?/EI
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— =02
=03
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End-to-end shortening [mm)]

Fig.5 Model validation and comparison with theory. (a) In the above half is the pull force comparison for n = 2 with different pull
speeds u and friction = 0.10. As shown, the pull forces are identical in magnitude indicating that friction is independent of velo-
city. In the bottom half is the n =1 simulation data comparison with Audoly’s predictive model shown in Eq. (25). Starting with an
open trefoil knot, the knot is tightened and then loosened with x, = 0.10, which is indicated by (+ ) and (—), respectively. A moving
average of 200 steps is used for the n =1 pull forces to minimize visually large variations caused by the lower end of the log scale.
(b) Pull force comparison for n =4 and different u, values. There is a clear monotonically increasing relationship between pull
forces and uy. In addition, inversion (indicated by the sudden drop in pull force) occurs earlier for higher yu, values as expected.
A pull speed of 6,9, and 12 mm/s was used for u, = 0.1, 0.2, and 0.3, respectively. This was necessary as higher friction coefficients
induced the limitation mentioned in Sec. 2.4 for higher pull speeds.

time-step. Figure 6(a) plots these pull forces with respect to the
end-to-end shortening. Here, we see that for both IMC and SPT, as
the end-to-end shortening decreases (knot is pulled tight), the pull
forces increase identically as expected. They also increase in magni-
tude as the unknotting number n goes up, and for n=3 and n=4,
inversion occurs, which is indicated by the sudden drop in pull
force. This is shown visually in Fig. 6(b) for n =4.

The largest difference between the methods can be seen in the
considerable amount of force jittering by SPT, which occurs due
to the time-step being too large. This leads to visually unrealistic
results, where the knot continuously “trembles” while being tied.
Conversely, IMC produces much smoother pull forces, which
directly translate to visually smooth simulations for the same time-
step size. One caveat that should be noted is that SPT ensures exact
nonpenetration during contact, whereas IMC allows small penetra-
tions and hovering to occur, which is physically unrealistic. Still,

through the adaptive contact stiffness and the inclusion of
damping, IMC contains any hovering to stay within 20 ym above
the contact surface, while penetrations rarely exceed 5 ym (for com-
parison, cross-sectional radius is 4 = 1.6 mm). Thus, this minor error
is largely indiscernible both visually and physically.

Overall, the enforcement of nonpenetration at every time-step
limits the maximal time-step that SPT can take without experienc-
ing significant force jittering, whereas IMC produces smooth
results in exchange for contact varying within a small region.

3.4 Runtime. Next, we discuss runtime comparisons and
convergence characteristics. Here, we show that in addition to
IMC producing smoother results than SPT at sufficiently large
time-steps, IMC is also computationally competitive. Both models
use the same DER implementation, which is written in c++. One

(a)

107 1

FR*/EI

10—3 =

— SPT
— IMC

(b1) (b2)

(b3)

100 200 300 400 500 600 700

End-to-end shortening [mm]

Fig.6 Simulation results comparison: (a) pull force comparison for unknotting numbers 1 through 4 using SPT [27] and IMC with
u=6mm/s, dt=0.5ms, and z,=0.10 and (b) inversion occurring for n =4 and the corresponding drop in pull forces shown by the

border box in (a).
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Table1 IMC versus SPT [27] runtime data, u, = 0.10, di =0.5ms,
pull speed =6 mm/s

Model n AIPT ATPI (ms) Iters Time (s)
MC 1 2.23 2.24 245,824 551
2 2.67 2.20 245,830 542
3 3.04 2.18 261,707 570
4 3.24 2.12 239,987 509
SPT 1 8.25 2.30 907,541 2085
2 9.28 2.26 853,935 1931
3 10.25 2.26 881,907 1990
4 10.94 2.21 810,160 1790

Note: AIPT, average iterations per time-step; ATPI, average time per
iteration; Iters, the total number of Newton’s iterations that were necessary
to complete the simulation. The time is the total computational time to
completion.

discrepancy is that while SPT is directly implemented into DER in
c++, IMC is written entirely in pYTHON for ease of prototyping. To
minimize any performance differences arising from using different
languages, we employed an LLVM-based pyTHON JIT compiler [36]
for certain computational intensive portions of the code such as the
chain ruling procedure from Eq. (17). The computational time for
each iteration for both contact methods is recorded using the
ctime library. This timing was done so that any computational
time arising from IO usage recording the data and rendering the
rod graphically were excluded. One thing to note is that the
timings for IMC include all of the shared memory overhead
between the c4+4 and pyTHON programs. Therefore, a significant per-
formance increase for IMC can be expected when fully imple-
mented in c++ and compiled without this overhead. Finally, both
methods used identical Newton tolerances for all simulations, and
all simulations were run on a single thread on an Intel Core
i7-9700K 3.60GHz CPU.

In Table 1, the runtime, total number of iterations, average itera-
tions per time-step (AIPT), and average time per iteration (ATPI)
are reported. For all knots, we can immediately see that IMC con-
verges with a noticeably smaller amount of iterations than SPT.
While the ATPI between both methods are about equal, the simula-
tions for IMC finish approximately 4 x faster than SPT for all
knots. For both methods, AIPT increases as the knot complexity
n increases as expected.

One observation was that the number of iterations to complete a
time-step increased for IMC as the knot loop became extremely
small and/or tightly inverted. Dynamically reducing the time-step
solves this issue, but this was left out so that all reported results
were for a constant time-step. For the same time-step size, SPT
can more reliably converge when the knot loop becomes very
small albeit with the large force jittering still present. Therefore, it
may be worth investigating performance differences between the
two methods when SPT uses a time-step size that is small enough
to compete with the smoothness of IMC, while IMC starts at a
larger time-step and dynamically reduces as convergence
becomes an issue.

Still, even for a constant time-step size of 0.5 ms, IMC is seen to
be more computationally efficient when pulling the knots close to
taut and for the majority of the knot tying procedure, takes far
less iterations to converge. This difference should only increase
with IMC being implemented directly into DER in c++.

4 Concluding Remarks

In this article, we introduced a novel contact model for DER
simulations in which the contact forces are handled implicitly
using a smooth penalty force formulation. This model was shown
to be able to model dynamic friction and simulate knot tying

Journal of Applied Mechanics

accurately. We showcased comparisons with previous methods
[27] and concluded that our method was capable of producing
more visually smooth realistic results, while also producing physi-
cally accurate data. Furthermore, our method was stable, computa-
tionally competitive, and took minimal iterations to converge.

Although this method has shown promising results for knot tying
simulations, it is not without its drawbacks. First, IMC is largely
unsuitable for contact scenarios that frequently involve sudden
excessively large velocities and impacts as these will result in
excessive penetration and possible overshoot of the contacting
body without appropriate damping. Where IMC shines is scenarios
with constant sliding contact such as knot tying where contact
forces may or may not gradually rise.

In addition, to be absolutely physically realistic, contact forces
should equal zero when A >2h, whereas the usage of Eq. (7) pro-
duces a force F,. # 0 when A >2h. It has been shown that employing
a smooth approximation such as this can greatly improve conver-
gence in penalty methods [25], which is one of the goals for this algo-
rithm. As the contact forces approach zero as ce, becomes
sufficiently large while A > 24, this is not a significant problem as dis-
cussed in Sec. 3.3. Still, the fact that F,. is not exactly zero is some-
thing to consider. Finally, the large amount of hyperparameters
leaves something to be desired as tuning may be necessary when
switching between rod properties, which can be time consuming.

Some possible future research directions involve modifications
that further improve the realism of the contact model. One of
these pertains to the stiffness parameter k.. A simplification that
was employed is the usage of a global stiffness parameter. More
realistic contact can be simulated using local stiffness parameters
as shown previously in Ref. [25] in exchange for more computation.
This addition may also fix the problem where friction forces over-
take the pull force of the knot if the pull speed is too low as men-
tioned in Sec. 2.4.

Another research direction is to extend IMC to noncircular cross
sections. Currently, IMC is only capable of handling circular cross
sections due to computing the minimum distance between edges
using purely the centerlines. Extending IMC to noncircular cross
sections while maintaining differentiability is nontrivial but will
be necessary to simulate more complexly shaped rods. Furthermore,
handling more complex knots will require IMC to take into consid-
eration cross section deformation as IMC currently assumes that the
cross-sectional shape remains constant.

Finally, another challenging problem that remains is the proper
modeling of static friction. Although dynamic friction is adequately
modeled, ultimately, subtle frictional threshold events such as the
transition from sticking to sliding and vice-versa are necessary to
simulate realistic contact outside the realm of constant sliding.

5 Source Code

The source code for IMC as well as the initial knot configurations
for all conducted simulation tests can be found at https:/github.
com/QuantuMope/imc-der.
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