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We introduce a numerical framework to study the fluid-structure interaction between two helical fil-
aments rotating under low Reynolds number condition, motivated by the propulsion of bacteria using
helical flagella. Our numerical framework couples the elasticity of the thin filaments, nonlocal hydro-
dynamic loading, and the contact between multiple elastic rods. Each of these three ingredients is re-
spectively modeled by the Discrete Elastic Rods method (for a geometrically nonlinear description of soft

Keywords: filaments), Regularized Stokeslet Segments method (for the nonlocal drag force in a viscous fluid), and
Elastic rods non-penetration condition between rod segments. Two helical rods rotating side by side attract each
Fl.Uid‘S“UCFUfe interaction other and become closer because of their hydrodynamic interplay in a viscous environment. Depend-
\l;:fcclz)llilr?gﬂmd ing on the initial distance between the two and their rotational frequency, the two filaments can come

in physical contact. Exploiting the efficiency and robustness of the simulator, we perform a systematic
parameter sweep to quantify the bundling behavior. The findings may shed light on the physics of the

bio-locomotion of microorganisms and inspire the design of novel biomimetic soft robots.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Bacteria often rely on the deformation of filamentary heli-
cal structures, called flagella, for locomotion [1,2]. The propul-
sion arises from a complex fluid-structure interaction between the
structural flexibility of the flagellum and the viscous forces gener-
ated by the flow. This fluid-structure interaction may lead to geo-
metrically nonlinear deformations [3-5], which in turn can be ex-
ploited for functionality, e.g. turning [6], tumbling [7], and poly-
morphic transformations [8,9]. One of the particular biophysical
importance is a phenomenon called bundling [10-20] that may ap-
pear during the swimming of microbes consisting of multiple flag-
ella, e.g. Escherichia coli and Salmonella typhimurium [21]. Each flag-
ellum consists of a rotary motor embedded in the cell wall, a short
flexible hook that acts as a universal joint, and a helical filament.
The trajectory of an individual swimming cell consists of runs in-
terrupted by tumbles. Since the radius of the flagellar filament is
well below optical wavelengths and the motor rotation is relatively
rapid, it is difficult to study the mechanics of the bundling pro-
cess through systematic experiments [21]. Predictive simulation of
bundling is equally challenging due to the need to incorporate the

* Corresponding author.
E-mail address: khalidjm@seas.ucla.edu (M. Khalid Jawed).

https://doi.org/10.1016/j.compfluid.2021.105038
0045-7930/© 2021 Elsevier Ltd. All rights reserved.

long-range hydrodynamic interaction among multiple flagella, ge-
ometrically nonlinear deformation in the elastic rods - our model
for flagella, and possible contact when two flagella come in close
proximity. To mitigate the experimental challenges, scaled-up ana-
log model experiments provide a promising path [21]. This paper
focuses on overcoming the computational hurdles to achieve fast
and robust simulation of this system.

Since 2000s, there has been a large number of investigations
on flagellar propulsion - particularly from a single flagellum -
through experiments [6,22-24], computation [3,25,26], and the-
ory [27-30]. Recent efforts have modeled this fluid-structure in-
teraction problem as a combination of Kirchhoff elastic rod theory
[31] for the deformation of structure and Resistive Force Theory
(RFT) [32,33] for the description of viscous fluid. This framework
established that the flagellum can undergo a buckling instability
when the rotational frequency of the flagellum exceeds a thresh-
old value [3]. However, subsequent experiments have shown that
whereas RFT provides a satisfactory qualitative description of the
phenomena, an accurate quantitative analysis requires a nonlocal
hydrodynamic force model that accounts for the interaction be-
tween the flow induced by distant parts of the filament to match
the no-slip boundary condition on the flagellum surface [33-37].
More recently, the buckling instability of a helical elastic rod ro-
tating in a viscous fluid was investigated [38] by a combination
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of Lighthill’s slender body theory (LSBT) [33] - a long-range hy-
drodynamic force model - and Discrete Elastic Rods (DER) method
- a fast algorithm developed by the computer graphics commu-
nity for the simulation of visually dramatic dynamics of hair, fur,
and other rod-like structures in the animation industry [39-41].
The simulation results were quantitatively compared against ex-
periments using scaled-up model flagella [38]. This combination of
DER and LSBT was used to study the propulsion and instability in
a rotating helical rod subjected to an axial flow [42] as well as
the effect of a nearby rigid boundary on flagellar propulsion [43].
This framework was further improved to simulate the trajectory of
uni-flagellar bacteria and bio-inspired soft robots; this study pos-
tulated the critical role of flagellar buckling in changing the swim-
ming direction [44,45]. Besides the drag-based resistive force the-
ory [32,33,46,47| and regularized singularity method [25,48-51],
immersed boundary method [52-57] is widely used to model bac-
terial flagella interacting with a viscous fluid.

In comparison with simulation of uni-flagellar systems, multi-
ple interacting flagella and their bundling clearly present a more
difficult set of challenges [14]. Previous experimental investiga-
tions built macroscopic model systems consisting of flexible ro-
tating helices in a viscous fluid to mimic the dimensionless pa-
rameters of the natural bio-locomotion system, e.g. the ratio be-
tween elastic force and viscous drag, normalized helical pitch and
radius, and the Reynolds number [21,58]. In the soft robotics com-
munity, researchers considered biomimetic soft robots with multi-
flagellar structure for its propulsive efficiency and directional con-
trol [59]. Despite the critical role of bundling in the propulsion
of several economically important bacteria - as evidenced by the
aforementioned experimental works, a predictive numerical model
for systematical investigation of flagellar bundling is a challenging
work [19,20,60], simply because of the difficulty in describing the
geometrically nonlinear dynamics of multiple rods coupled with
the hydrodynamic interaction and the non-penetration contact be-
tween two approaching rod segments.

Here, we introduce a numerical framework to study the dy-
namics of two helical elastic rods rotating side-by-side at a con-
stant angular velocity in low Reynolds environment, a system sim-
ilar to the one explored experimentally by [21], to analogize the
flagellar propulsion in microorganisms [34]. Our numerical frame-
work combines (i) DER algorithm for the description of elastic fil-
aments [39,40], (ii) Regularized Stokeslet Segments (RSS) method
for long-range hydrodynamic force model [51], and (iii) a penalty
force-based contact model [61]. While prior works coupled LSBT
with DER, we choose to replace LSBT with RSS - nodel method
published in 2018 - as the hydrodynamic model; the reason is
twofold: (i) numerical issues appear when simulating the interac-
tion among multiple rods using LSBT, because of the discontinuity
between the local and nonlocal hydrodynamic terms in the LSBT
formulation [33]. RSS, on the other hand, formulates a continuous
flow field generated by a line segment with a regularization pa-
rameter and no numerical issues appear when two rod segments
become closer and contact with one another. (ii) The spatial dis-
cretization in LSBT-DER framework [38] is dictated by the ratio be-
tween the arclength of the flagellum, L, and the cross-sectional ra-
dius, ry. The distance between two adjacent nodes - the discretiza-
tion length - on the rod is required to be approximately equal to
1.65rg. RSS, however, allows us to choose a coarser discretization
without any specific requirement on discretization length. This re-
sults in more than an order of magnitude speed-up in the compu-
tation time for the model system studied in this paper. Inclusion
of physically-based contact model in the numerical framework is
a novel feature of this study. To achieve non-penetration condition
between two rod segments (a rod is divided into a number of seg-
ments in DER), we first perform a continuous collision detection
during each time step of the simulation and iteratively include a
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penalty force in the equations of motion to guarantee no intersec-
tion between every pair of rod segments [61]. Similar contact for-
mulations have been successfully applied in the computer graphics
literature for geometric constraint maintenance [62], hair dynam-
ics [63], and deformable body collision response [64]. The relia-
bility of this simulation tool for making quantitative predictions is
examined by a comparison between the previous experimentally
validated LSBT-based method and the current RSS-based method.
We then employ this computational method to quantify the defor-
mation in two rotating flagella leading to bundling. Fig. 1 presents
snapshots from our numerical simulation of a model setup for flag-
ellar bundling. Through systematic parameter-space exploration,
we analyze the onset of bundling between two soft filaments as
a function of the angular velocity and the initial distance between
the two flagella. We next measure the propulsive efficiency in a
flagellum due to a nearby rotating flagellum. This is followed up
by a sweep of geometric parameter space in biologically relevant
regimes to quantify the dependence of bundling on the flagellar
geometry. These observations can lead to better understanding of
the presence of bundling and the resulting benefits to propulsion
in microorganisms.

Our paper is organized as follows. In Section 2, we present
the basis of the numerical framework. Next, we explore the buck-
ling instability of a single helical rod rotating in a viscous fluid
in Section 3 for the comparison between two hydrodynamic force
models: LSBT and RSS. Then in Section 4, we systematically quan-
tify the flagellar bundling behavior between two rotating soft fil-
aments, with a focus on biologically relevant regimes. Finally, we
present our conclusions and suggest potential avenues for future
research in Section 5.

2. Numerical model

The numerical framework combines three components: (i) Dis-
crete Elastic Rods (DER) method for the description of geometri-
cally nonlinear deformation of soft filaments [39-41]; (ii) Regular-
ized Stokeslet Segments (RSS) method for the nonlocal hydrody-
namic force generated by slender structures in a viscous fluid [51],
and (iii) a contact model for the achievement of non-penetration
condition between two rod segments [61]. This section is orga-
nized as follows. A description of DER is provided in Section 2.1,
and its coupling with RSS is in Section 2.2. Then in Section 2.3, we
detail the procedure to include the contact model between two rod
segments. Finally we discuss the overall time marching scheme of
the simulation in Section 2.4.

2.1. Discrete elastic rods method

We use the DER method [39-41] to model the nonlinear dy-
namics of thin rods. The rod centerline is discretized into N nodes:
Xo, ..., XN_1, that correspond to N —1 edge vectors: e?, ..., eN-2,
such that e = x;,; —x;and i =0, ..., N — 2. In DER method, we use
subscripts to denote quantities associated with nodes, e.g. X;, and
superscripts when associated with edges, e.g. e. Each edge, e, has
an orthonormal reference frame {dg,d"Z,t"} and a material frame
{mi, mi, t'}; both of them share the tangent t' = e/|e/| as one of
the directors. Referring to Fig. 2, the reference frame is updated at
each time step through parallel transport in time, and the material
frame can be obtained from a scalar twist angle . Nodal positions
and twist angles constitute the 4N — 1 sized degrees of freedom
(DOF) vector, q = [Xo. Oo,xl,...,xN,z,HN*Z,xN,dT, of the discrete
rod, where the superscript T denotes transposition. Based on this
kinematic representation, in the remainder of this section, we for-
mulate the elastic strains, elastic energies, and elastic forces.

The strains of a deformed Kirchhoff's rod are comprised of three
parts: stretching, bending, and twisting. Stretching strain associ-
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Fig. 1. Snapshots of flagellar bundling sequence. Two identical flagella rotate side by side at an angular velocity of w = 15rpm (& = 320) with initial distance A; =
3cm. Physical parameters of the flagella and the fluid are provided in Section 3. (Upper) Front view and (Lower) side view of helical rods at t € {0, 25,50, 75}s (f €
{0,0.125, 0.250, 0.375}). A video showing the bundling process is provided in Supplementary Material.

Fig. 2. Schematic of a discrete rod.

ated with the ith edge, €, is
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Hereafter, quantities with an overbar indicate evaluation in the un-

deformed state, e.g. |e'| is the undeformed length of the ith edge.

Bending strain is captured by the curvature binormal which mea-

sures the misalignment between two consecutive edges at a node

Xi,

2ei-1 x el

kb)j= ———
(kb); |e1—1||e1| +ei-1.¢i

(2)
and its norm is |(kb);| = 2tan (¢;/2). The material curvatures are
given by the inner products between the curvature binormal and
material frame vectors,
1, . .
1 —
kM = §(m’2 '+ m)) - (kb);, (3a)

1, . .
k@ = —i(m’(‘ + m’l) - (kb);. (3b)

The twisting strain at the ith node, in the discrete setting of
DER, is measured using the discrete twist

T, = 91‘ _ 91‘—1 + mlyef’ (4)

where m{ef is the reference twist associated with the reference
frame [39].

We treat an elastic rod as a mass-spring system, with a lumped
mass (and angular mass) at each node (and edge) and associated
discrete stretching, bending, and twisting energies. For a rod with
Young's modulus E, shear modulus G, and isotropic circular cross
section, the elastic energies - stretching, bending, and twisting -
are given by Bergou et al. [39,40]

182 ‘ '
Eo= 3 Y EAG)?e] (5a)
i=0
ISR EL ey 0@ @y 5b
bzi E[(Kj 7K,' ) +(K,' 7’(,' )] ( )
i=0
18 G
E=1 ) o @) (50
i=0 ~

where A is the area of cross-section, I is the area moment of in-
ertia, J is the polar moment of inertia, Al; = (|&| + [&1])/2 is its
Voronoi length.

At each degree of freedom gj, the internal elastic forces (asso-
ciated with nodal positions) and elastic moments (associated with
the twist angles) are formulated by

. 9
ijtz—aiqj(Es-i-Eb-i-Et), (6)

where j is an integer between 0 to 4N — 2. This elastic force
will be balanced with external force (described in Section 2.2 and
Section 2.3) and inertia to formulate the equations of motion in
Section 2.4.
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Fig. 3. Notations associated with the flow u(X) at point X generated by a line seg-
ment from X, to X;. Note ry, =X — X, and v = X — X;.

2.2. Regularized stokeslet segments method

We use RSS to model the viscous drag force experienced by a
slender rod in motion within a viscous fluid. In this section, we
present the relation between the velocity at each node and the hy-
drodynamic force applied on each node [51].

The primary Green’s function (or fundamental singular solu-
tion) of Stokes flow is the Stokeslet, which describes the flow as-
sociated with a singular point force [65]. For a particular choice of
regularization [48], the velocity u(X) at evaluation point X due to
a regularized force f(x) applied at x is the regularized Stokeslet

(f(xlg r)r, )

where p is the fluid viscosity, r = X — X, R2 = |r|2 + €2, and € is the
regularized parameter.

Next, consider an edge of length Al connecting the nodes Xy
and x;: a point on this edge is located at Xy = Xg — v (with v=
Xg — X; and |v| = Al). As shown in Fig. 3, we assume a linear force
density f, = f; + «(f, — f;) along the cylinder segment, such that
the velocity at point X due to this linear force density is,

. o1 e (fy - o)1y
87 ju(X) = At/o [(Ra + g o+ T

. 1 €2
8w pu(X) = (E + ﬁ)f(X) +

(8)

where 1y, =X — X, and R2 = |ry|? + €2. With the assumption that
f, is a polynomial in «, the velocity in Eq. (8) can be written as
[51]

B pu/ADuR) = fo(To 1 + €2 To3) + £, (T 1 + €Ty _3)

3

+ anTn<_3, (9)
n=0

where the coefficients f,; are

fo = (fa - ro)ro, (10a)

fi = (fo - v)ro + (f5 - ro)v + (£, - 1o)r0, (10b)

f, = (- vIV+ (£ - ro)v + (£, - V)10, (10c)

f; = (f,-v)v. (10d)

Then, the sequence of Tj,; terms in Stokeslet Segments can be
computed by the direct integration of o [51],
1

Tyt = - 10g[AlRy + (K V)] (11a)
' Al 0
1 1 b
Ty 3=— ‘ 11
0737 TRL[AIRy + (rs - V)] o (11b)
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For completeness, we first describe the case of a continuous rod
with arclength L (instead of a discrete rod composed of straight
edges): consider a velocity at point X due to the force field along a
curve with arclength parameter, s:

. L1 €2 (f-o)r
87 uu(R) :/0 [(R + I S ds. (12)

Moving on to the case of a discrete rod with N nodes and N —
1 segments, we denote the length of ith segment as |ef| = |v;| =
|X; — X1/, and its force density (unit: force/length) as f;. Then the
discretized version of Eq. (12) is

N-2
STuu(X) = Z (Ailfl- + Aizfi+1), (13)
i=0

where A} and Al are 3 x 3 matrices:
Ay = |vi|[(TIH + €T + Ty (nr]) + T (v] + vir])

1,-1 =3
+T (v ] (14a)

Al = |vi|[(TEH + €T3 + Ty (nr]) + T (] +vir])
+L ()] - A) (14b)

We use this formulation to build the following linear system
that describes the relation between the velocity along the discrete
rod and the force density applied on it:

U = AF, (15)

where U = [xo,xl,...,xN_l]T is the velocity vector of the nodes
(with no-slip boundary condition, the velocity of one point on the
rod is equal to the velocity of viscous fluid at the same point) and
F=[fy.f1,..., fn_1 ]T is the vector containing the force density at
each node. The hydrodynamic force associated with ith node is the
product of the force density f; and its Voronoi length Al; such that

F' = f;AlL (16)
2.3. Contact model

In this subsection, we describe the contact model to enforce
non-penetration condition between two approaching edges; this
model has been described in sufficient detail in [61]. We first col-
lect all the collision pairs (two edges that intersect) [66]. In our
simulation code, a simple brute force method was employed to de-
tect collisions. However, if the number of nodes is too large, e.g.,
large-scale elastic rod assemblies presented in Ref. [67], the colli-
sion detection method can be made efficient by bounding volume
hierarchy (BVH) through axis-aligned bounding boxes (AABBs) [68].
Referring to Fig. 4, the spatial coordinates of the ith rod segment,
Si = (X;, Xj41), can be extracted from the generalized DOF vector q,
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Fig. 4. Notations of contact between two line segments S; and S;.

such that we can calculate the minimum Euclidean distance be-
tween two rod segments S; and S,

85““ = md(X;, X1 1, X}, Xj11)- (17)
Then the collision detection procedure collects a set of collision
pairs (S;, S;), with 8{5.““ < 2rg, where g is the rod radius. The pen-
etration depth ¢; ; (should be always positive) of a collision pair
i, Sj) is defined as

€ j =2T0—85~11n. (18)

We are looking for the minimum displacements
{AX;, AX,q, AXj, AXj 1} such that the new coordinates de-
fine an interference free configuration [69]. Since all the nodes
have the same mass in our simulation, the required collision
displacement of [61] simplifies to

AX,‘ = —%nijwi (19&)
1
AXjy1 = _inij(l - w;) (19b)
1
AXj = En,‘jo (]QC)
1
AX]'_H = jn,‘j(l —Wj), (lgd)

where n;; is the minimum distance vector between S; and S; (with
In;j| = 85.““), and w; (as well as w;) is the barycentric coordinate
of the contact point on the line segment. For a prescribed collision-
based displacement at the ith node, the contact force is

F— L axm (20)

) ilTli,

where h is the time step size of the time-marching scheme (see
next section) and m; is the lumped mass of the ith node. Similar
results can be obtained for (i + 1)th, jth, and (j + 1)th nodes.

The contact handling mechanism imposes an upper limit on the
time step size of the algorithm in Section 2.4. If the time step size
is too large, one edge may pass through another edge in a single
time step without any contact being detected. In the results pre-
sented in this paper, the time step size is taken to be small enough
to avoid this situation. Another option is to employ continuous col-
lision detection [70] and detect possible contacts occurring within
a single time step.
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2.4. Numerical framework

Now we turn to the overall numerical framework of flagellar
bundling simulation that involves updating the configuration of
two rods with time. At each time step t;, we know the DOF vec-
tors and their time derivative (velocity vectors). To march forward
in time, we need to compute the hydrodynamic force experienced
by elastic rods and then solve the equations of motion, accounting
for the contact between two filaments, to get the DOFs and veloc-
ities of next time step, ;.1 = t; + h (h is the time step size).

Besides the flow generated by its own hydrodynamic force, the
drag force applied on one rod also contributes to a flow field af-
fecting the other one, and vice versa. To account for the interplay
between the two, the linear system U = AF in Eq. (15) should be
expanded from size of 3N x 3N to 6N x 6N,

(8] AD A [ED

[Um} = [Am) A<22>} [Fa)]’ 1)
where matrices A(12) and A" show the interaction between two
rods in viscous fluid, F, and F@ are the 3N-sized hydrodynamic
force density vectors for the two rods, and U, and U@ are the
velocity vectors of same size. We use LDLT decomposition to ob-
tain the viscous drag forces from the linear system in Eq. (21).
LDLT method decomposes a positive-definite matrix into the prod-
uct of a lower triangular matrix and its conjugate transpose, i.e.,
A =LDLT, where L is a lower unit triangular (unitriangular) ma-
trix and D is a diagonal matrix. This type of decomposition is use-
ful for efficient numerical solutions.

After computing the hydrodynamic forces acting on the rod, we
independently solve for the DOF and velocity vectors of each rod

from the equations of motion by a first order, implicit Euler inte-
gration,

E = MAQ(tiy1) — hMq(t) — h*(F™ + F° + F") = 0, (22a)
q(te1) = q(t) + Aq(teyq), (22b)
. 1

q(tys1) = EAq(tkH ). (22¢)

where the DOFs of the previous time step, q(t;), and the veloci-
ties, q(t;) are known; the DOFs, q(t, ), and velocities, q(t;, 1), of
the next time step need to be solved for; Fi"t is the internal elastic
force of size (4N — 1) computed from Eq. (6); F" is the hydrody-
namic force computed from Eq. (21) and Eq. (16); F¢ is the contact
force in Eq. (20); and M is the diagonal mass matrix comprised of
lumped masses. The Jacobian associated with Eq. (22) is necessary
for Newton'’s iteration and can be expressed as

02(Es +Eb+Et)]

~ (23)

J=M- hz[
Here, the gradient of the hydrodynamic force and contact forces
cannot be analytically evaluated, i.e. external forces are treated ex-
plicitly.

At the beginning of each time step, we initialize the external
contact force F¢ as zeros, and compute the hydrodynamic force by
Eq. (21) and Eq. (16), then solve the equations of motion in Eq.
(22) to update the DOFs. This DOF is used to detect any collision.
If the non-penetration condition is broken, external contact forces
are updated on the basis of Eqgs. (19) and (20) and the equations
of motion in Eq. (22) are solved again. This rewind and re-solve
process continues until the non-penetration condition is achieved
for every segment pair. The overall algorithm of flagellar bundling
simulation can be found in Appendix A.
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Fig. 5. (a) The helical rod in stress free configuration. (b) Configuration of rotating flagellum at (b1) stable phase (with @ = 533) and (b2) buckling instability phase (with
@ = 1067). (c1) Normalized height [ as a function of normalized time for a single helical rod rotating at @ e {533, 1067}. (c2) Normalized height I as a function of normalized

angular velocity @ for the definition of critical buckling angular velocity @,.

3. Flagellar buckling instability

A helical filament rotating in a viscous fluid would undergo
buckling instability when its angular velocity exceeds a thresh-
old value [38,43,45|. Here, we discuss the buckling behavior of
a single rotating helix in a viscous medium, for comparison be-
tween the DER-LSBT model, that shows reasonable agreement with
macroscale experiment [38,43], and the newly introduced DER-
RSS framework. We first provide specifics on the geometric and
physical parameters of the numerical study; these parameters cor-
respond to macroscopic experiments [38,43]|. However, we will
present our simulation results in non-dimensional form. We as-
sume a right-handed helical rod, made out of a linear elastic mate-
rial, with Young’s modulus E = 10MPa and Poisson’s ratio v = 0.5
(incompressible). The rod density, p = 1000kg/m3, is assumed to
be equal to the fluid density so that no buoyant force is present.
Radius of circular cross section is ryp = 1mm, (and, therefore, sec-
ond moment of inertia, I = 71§ /4, and cross section area, A = 7r3).
The fluid viscosity is u =1.0Pa - s. As shown schematically in
Fig. 5(a), in the stress free configuration, the first edge, €%, connect-
ing Xy and X, is parallel to the z-axis; the second edge connect-
ing x; and X, is e! = RZ+RX (% and 2 are unit vectors along the
x and z axes, respectively); all other nodes, [X3,Xy,...,Xy_1], fall
on a helical shape. The helical configuration in the current numer-
ical study (axis length Iy = 0.2m, helical pitch A = 5cm, and helical
radius R = 1cm), similar to the previous explorations [38,43], is in
the biologically relevant regime [34]. The rotating angular velocity
is w e {0, 50}rpm, such that the Reynolds number in our numer-
ical study is pwRro/p <4 x 1072, i.e. always in the Stokes limit
[43,45]. We then discuss the boundary conditions. The helical fila-
ment immersed in an unbounded fluid is clamped at one extrem-
ity, with first two nodes (Xo and Xx;) fixed. The first twisting an-

gle, 09, is rotated anticlockwise (viewed from above with a pre-
scribed angular velocity, w). Apart from these fixed DOFs, all other
nodes and edges are free and evolve based on the balance between
elastic and fluid forces. In this representative setup, the number of
nodes along the discrete rod is N = 65, corresponding to a Voronoi
length of Al; = 5mm. The regularization parameter € in RSS the-
ory is related to the rod radius rg, and can be determined based
on the drag force experienced by a finite cylinder moving in vis-
cous fluid perpendicularly to its axis. The regularization parameter,
€, varies slightly with the length of each edge. In our simulations,
we choose € = 1.02ry based on the value of Al;/rg [51]. The time
step size in this simulation is h = 1ms. Details of the convergence
study on space and time discretization can be found in Appendix B.
We also briefly review the LSBT, and compare the numerical re-
sults performed by DER-LSBT method and DER-RSS framework in
Appendix C.

In Fig. 5(b1-b2), we present two representative deformed
shapes of the rod rotating at two different normalized angular ve-
locities, @ e {533, 1067}, at £ = 0.5. Notice that, due to the slender
geometry of the system, bending is the prominent mode of the de-
formation of a rod, such that the angular velocity and the time are
normalized by Jawed and Reis [43],

@ = wplg/(ED), (24a)

t=t(ED/ulg. (24b)

When the helical rod rotates at a lower angular velocity, e.g.
@ = 533, the whole structure retains its helical shape and stretches
a little due to the hydrodynamic force from viscous fluid, seeing
Fig. 5(b1); however, when the helical rod spins at a higher fre-
quency, e.g. @ = 1067, the structure undergoes buckling instabil-
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Fig. 6. (al1)-(a3) Hydrodynamic force applied on soft filaments at different time step, t € {25, 50, 75}s. (b1)-(b3) Flow field around two helical rods at different time step,

t € {25, 50, 75}s. The physical parameters and boundary setup are identical to Fig. 1.

ity and, in Fig. 5(b2), deforms into a highly nonlinear configuration
[38,43,45]. We consider the end to end length, [, to quantify the
deformation of a helical rod. In Fig. 5(c1), we plot the normalized
height of helical rod, [ = I/, as a function of time for two differ-
ent normalized angular velocity @ € {533, 1067}. The final steady-
state configurations can be achieved after ¢ = 0.3 for both these
two cases.

Based on the previous investigations of our own [38,43,45],
there exists a critical buckling angular velocity above which the
final configuration is distorted, similar to the one shown in
Fig. 5(b2). We perform a parameter sweep along angular velocity
to find the critical buckling angular velocity, @), of a single helical
rod rotating in a low Reynolds fluid. Fig. 5(c2) shows the normal-
ized end to end length, [, at time f = 1.0, as a function of normal-
ized angular velocity, @. As expected, the soft filament remains in
stable regime and stretch as a linear function of @ at low enough
angular velocity; When @ is larger than a critical value, the rod
will undergo buckling instability and deform into a curved shape.
The maximum normalized angular velocity that retains the heli-
cal shape of the structure is defined as the critical buckling an-
gular velocity, w;,. For the specific geometry chosen in this study,
the normalized critical angular velocity is @, ~ 675. The critical
buckling angular velocity captured by LSBT is similar to the one
reported by RSS, with relative error less than 5%, which demon-
strates the correctness and accuracy of the coupling framework be-
tween DER and RSS, seeing Appendix C. The experimental valida-
tion of the presented DER-RSS is in Appendix D.

4. Flagellar bundling

We now turn to the main contribution of the current study and
include the effect of the interaction between two rotating helical
rods in a viscous fluid. Previous coupling numerical framework be-

tween DER and LSBT can also capture the buckling instability of a
single helical rod rotating in viscous fluid (details in Appendix C)
[38,43,45], but meets numerical issue when applied to study the
bundling behavior of multiple flagella. LSBT divides the hydrody-
namic force generated by soft filaments into two parts - local
(dipoles) and nonlocal terms (Stokeslets). As two rod segments at-
tract each other and become closer, one rod may enter the “local”
regime of the other rod. This often results in ill-conditioned prob-
lems in Eq. (C.3). This issue, on the other hand, can be solved by
RSS method, for its continuous evaluation of Stokeslet generated
by cylinder segment.

Figure 1 shows a sequence of snapshots of two helices (axis
length Iy = 0.2m, normalized helical pitch A/l = 0.25, and normal-
ized helical radius R/ly = 0.05) rotating side by side with same fre-
quency, @ = 320 (both anticlockwise when viewed from above), at
a normalized initial distance A;/R = 3. The induced flows of heli-
cal rods cause large deflections, and then a bundle form appears.
The helices wrap around each other in a right-handed sense; the
flow field generated by each helix tilts the other helix, causing the
helices to roll around each other and form a right-handed wrap-
ping. We use the end to end distance between the two rods along
the x-axis, denoted as A (see Fig. 1(al)), as a shape parameter
to quantify the bundling behavior between two rotating filaments.
This parameter, Aj, becomes negative when two rods wrap around
each other. The hydrodynamic force as well as the flow generated
by helical rods at different time steps, t € {25, 50, 75}s are in Fig. 6.
Notice that the hydrodynamic force is computed from the velocity
of helical rods, referring to Eq. (21); then the flow field at a given
point, X, can be easily derived based on Eq. (9) [71].

We first examine the effect of angular velocity on the end to
end distance. Fig. 7(al)-(a3) shows the trajectory of the ends of
the rods - the last node in DER simulation - on the x —y plane
at three different normalized angular velocities @ € {43, 107, 427},
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space.

with the normalized top distance fixed at A;/R = 4. Here, the x
axis (as well as y axis) is normalized by the helical axis length [y,
X = x/lyg. Similar setup from macroscopic model experiments can
be found in [21]. We observe that the two flagella come closer
through a U-shaped trajectory of the last node. Eventually, the two
ends settle to a steady circular path. Fig. 7(c1) plots the normal-
ized end to end distance, Ap/R, as a function of time, in all these
three cases. While the top distance, A;, - the distance between
the first nodes on two rods - remains fixed with time due to the
boundary conditions imposed in the simulation, the end to end
distance varies significantly due to the deformation from hydro-
dynamic forces. Note that A; = A, at time ¢ = 0. For small angular
velocity, two rods will become closer in their final stable shapes
with 0 < Ap/R < A¢/R, shown in Fig. 7(al). However, when rotat-
ing at a higher angular velocity, two helical rods can go beyond
each other, such that a crossed configuration with Ap/R <0 < A¢/R
can be achieved, when looking on the x — z plane. An example con-
figuration is presented in Fig. 1(a3).

We next explore the role of the initial top distance, A¢, on the
bundling behavior of two flagella. In Fig. 7(b1)-(b3), we plot the
trajectory of the last nodes of the rods at three different values
of top distance, A;/R € {4, 6, 8}, while keeping the normalized an-
gular velocity fixed at @ = 427. Fig. 7(c2) shows the end to end
distance as a function of scaled time in these three cases. When
the top distance is small (A;/R=4 and A;/R=6), the crossed
shape is achieved within = 2. However, in the long distance case

(At/R=8), the end to end distance eventually reaches a value
equal to approximately half of the top distance and always remains
positive (A,/R > 0).

To combine all the information together, in Fig. 7(c3), we per-
form a two dimensional parameter sweep, by varying both angular
velocity, @ € [0.0,550.0], and initial distance, A¢/R € [3.0, 8.0], and
show the final shape. A circular symbol presents a crossed config-
uration (Ap < 0), whereas a triangle stands for Ay, > 0. The critical
normalized angular velocity beyond which this crossed configura-
tion is achieved is defined as @, and, in Fig. 7(c3), is indicated by a
solid line. This threshold parameter, @, first increases as the initial
distance A; increases. When the initial distance exceeds A;/R~ 7,
the crossing behavior cannot be achieved even when the angular
velocity goes beyond the critical buckling angular velocity, @y, dis-
cussed in the previous section.

Then, we focus on the propulsive force of two helical flagella
rotating side by side. The first two nodes are fixed in place and the
reaction forces corresponding to this boundary condition (equal to
the sum of elastic and external forces on the node in question)
can be computed from the simulation. The propulsive force defined
here is the sum of the reaction forces applied on the fixed nodes
of the two helical filamentary system projected along the z-axis,

F, = [(Fgons)u) i (Flcons)u) I (FOCOHS)(Z) I (Ffons)(z)]‘nz,
(25)
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Fig. 8. (a) Normalized propulsive force F,, as a function of normalized angular velocity @, by varying normalized top distance, A;/R € {4, 6, 8, oo}, from simulation (symbols)
and linear fit (solid lines). (b) Relative propulsion, £y, as a function of normalized top distance, A¢/R, with a fixed normalized angular velocity @ = 213.
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where n; =[0,0,1]" is the unit vector along the z-axis, FCODS s
the constrained force applied on the ith node, and the superscript
represents the rod number. Next, we formulate a non-dimensional
propulsive force,

F, = R,12/(ED). (26)
by normalizing F, with the characteristic bending force, EI/ICZ, [43].
In Fig. 8(a), we plot the normalized propulsive force, Fp, as a func-
tion of normalized angular velocity, @, at different values of nor-
malized top distance, A¢/R € {4, 6, 8, co}. The propulsive force ap-
proximately linearly goes up with the increase of the angular ve-
locity in the pre-buckling phase. The propulsive force is maximum
when two helices are rotating at infinite distance, i.e. there is no
hydrodynamic interaction between the two. As the top distance
decreases, the propulsive force monotonically decreases. Compared
with the case of A; = oo, the propulsive force at A;/R=4,6, and
8 decreased 40.0%, 31.7%, and 20.2%, respectively. Moreover, in
Fig. 8(b), we evaluate the relative propulsive efficiency as a func-
tion of normalized top distance, A;/R, with a fixed normalized an-
gular velocity, @ = 213. Here, the sum propulsion of two rotating
helical system is scaled by the propulsive force of a single rotat-
ing filament, F, = F,/F;"™®; notice that F, =2 at A; = oo, ie. the
propulsive force is double when there is no hydrodynamic inter-
action between two flagella. We clearly see that the propulsive
force increases by more than 60% from A;/R =3 to A;/R =50, and
shows almost no variation beyond A;/R > 100. Regardless of the
top distance, the propulsive force with hydrodynamic interaction
is always lower than the force without this interaction.

This far, we kept the geometry of the flagella at the repre-
sentative value. Now, we employ our numerical simulation to ex-
plore the effect of the geometric parameters on the critical cross-
ing angular velocity, wc, in biologically relevant regime [34]. Specif-
ically, we varied the helical pitch, A/ly, and helical radius, R/,
to understand the hydrodynamic performances of helices in dif-
ferent shapes. In Fig. 9(a), we vary the normalized helical pitch,
A/ly € 10.15,0.45], at fixed values of radius (R/lp = 0.05) and top
distance (A¢/R = 4), and plot the normalized critical crossing an-
gular velocity, @¢, as a function of the normalized helical pitch.
Note that the parameter, @, strongly depends on the pitch of the
flagella. On the other side, we vary helical radius in the range
R/lp € [0.0375, 0.1125], at fixed values of A/l = 0.25 and A;/R =4,
and, in Fig. 9(b), explore the variation of @, with the nondimen-
sional helical radius, R/l;. We again observe that the helical ra-
dius significantly changes the bundling behavior. As the radius in-
creases, the angular velocity required for the crossed configuration
decreases. Altogether, these results emphasize the prominent role
of geometry of the helical filaments on their hydrodynamic inter-
actions between each other with a focus on biologically relevant
regime [34,72]. Our investigation opens up questions on how mi-
croorganisms utilize bundling of their flagellar during their motion
in low Reynolds environment.

5. Conclusion

We have introduced a computational framework to study the
geometrically nonlinear interaction between two neighboring elas-
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tic flagella rotating in a viscous fluid. For this purpose, our numer-
ical approach combined DER, RSS, and a contact model. We first
studied the mechanical response of a single helical rod undergo-
ing rotation in a low Reynolds environment, and compared the re-
sults against the experimentally validated fluid-structure interac-
tion model, LSBT. The relative < 5% error between the critical buck-
ling angular velocity computed from LSBT and the one obtained by
RSS indicates the accuracy of the numerical method coupling DER
and RSS. Empowered by this simulation tool, we next investigated
the dynamics between two rotating soft filaments side-by-side in
a viscous fluid. Two rotating helical rods attract each other and be-
come closer because of the coupling flow field generated by each
other; and the crossing behavior is related to their initial distance
and rotating frequency. The propulsive force, on the other hand,
shows a decreasing tendency as two flagella are brought closer to
one another. In order to realize the importance of the helical ge-
ometry in the propulsion of natural bacterial flagella, the simula-
tion tool was then employed to sweep through parameter space
along two geometric parameters (helix pitch and radius), for quan-
tification of the bundling behavior and the critical rotating velocity
for crossing. Our findings are scale invariant and can be applied to
bacterial propulsion at micron-scale as long as the dimensionless
groups (e.g. Reynolds number, normalized angular velocity, nor-
malized helical pitch, and so on) are maintained. The results on
the effect of angular velocity and geometry on the bundling be-
havior and propulsive force are, therefore, potentially relevant to
flagellated bacteria.

The significant effect of flagellum geometry, flexibility, and the
interaction in viscous fluid poses a nontrivial design space for
both nature and engineering. This might have potential applica-
tion in controlling the swimming speed and direction in multi-
flagellated microorganisms. Our findings may also provide guide-
lines for the design of laboratory experiments on bacterial propul-
sion and biomimetic soft robots. Since we avoid the numerical dis-
continuity in previous long-range hydrodynamic force model, LSBT,
our framework can be directly applied for the simulations of bac-
terial system with more than one flagellum. The sparse space dis-
cretization of RSS shows a better computational efficiency than
LSBT, and this fast numerical framework can be treated as a data
generator by sweeping the essential geometric and physical param-
eters, for a better understanding of biophysics in natural environ-
ment, and can also be potentially used for the optimized design
and online control of multi-flagellated soft robots. We hope that
our numerical investigations can motivate a fundamental under-
standing of the biophysics of microorganisms, as well as support
modeling, design, and control of functional soft robots.
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Appendix A. Flagellar bundling simulation process

In Algorithm 1, we provide a pseudo code of flagellar bundling
simulation.

Appendix B. Convergence Study

In this Appendix, we present a convergence study with both
time and space discretization for the coupling framework between
DER and RSS. In Fig. B.10(a), we show the relationship between
the normalized height, I, and the normalized angular velocity @,
at different values of number of vertices, N € {43, 65,81}, with
a fixed time step size, h = 1ms. In the simulations presented in
Fig. B.10(a), we kept the regularization parameter fixed at € =
1.02ry. According to RSS theory, this parameter ¢ may vary be-
tween 1.01ry to 1.04ry as N is changed. However, the effect of 3%
variation in € has negligible effect on the simulation results.

We use a similar plot in Fig. B.10(b) to show the convergence
with time discretization for this numerical framework, at N = 65.
The simulation results remain the same when the time step size,
h, is varied from 1e=3 to 1e~4.

Appendix C. Comparison between LSBT and RSS

We briefly review the Lighthill Slender Body Theory (LSBT) and
compare with Regularized Stokeslets Segments (RSS) method in
this section.

LSBT assumes a series of Stokeslets and dipoles along the cen-
terline of rod, and build a relationship between the velocity field
contributed by flagellum with the hydrodynamic force applied on
it. The continuous formulation of LSBT is [38,43,45]

O / £(s') - I(r)ds’.
|r(s’,s)|>6

u(s) = 47

(C1)

where s is the arclength parameter of the rod, f,(s)=
f(s)[I—t(s) ® t(s)] is the component of f(s) in the plane perpen-
dicular to the tangent t(s), r(s’, s) is the position vector from s’ to
s, 8 =rg+/e/2 (rg is the rod radius and e is the Napier's constant),
and J(r) = ﬁ(% + %) is the Oseen tensor.

We then use a discrete version of Eq. (C.1) to relate the velocity
u(q) at node q with the force f(p) on node p, [38,43,45]

fi@ v 1 rr’
+ — | I+ — |f(p),
AT A p=02,p;¢q 8 u|r| r|2 (p)

where A =26 is the edge length in the discrete rod. This rela-
tionship between forces and velocities is similar to Regularized
Stokeslets Segments theory, and can be written as a linear system
of size 3N,

U = AF.

u(q) = (C2)

(C3)

Note that for the specific helix discussed in this paper (axis length
lp = 0.2m, helical pitch A = 5cm, helical radius R = 1cm, arclength
L =0.32m, and rod radius ry = 1Tmm), edge length should be A =
1.65mm, resulting into N = 195 nodes.

In Fig. C.11(a), we plot the normalized height, [, as a function of
normalized rotating velocity @, with two different fluid-structure
interaction models: LSBT and RSS. The critical angular velocity ob-
tained by LSBT is @}°®T ~ 660, and the one achieved by RSS is
@RS ~ 675, with relative error less than 5%.

Regarding computational efficiency, note that the size of each
edge is fixed at A in LSBT. If the rod too slender (i.e. ratio be-
tween the total arclength and cross-sectional radius is large), we
would require too many vertices and, consequently, a longer com-
putational time. On the other hand, RSS allows more aggressive
discretization (i.e. lower number of nodes). In Fig. C.11(b), we show
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Fig. B.10. Convergence study for (a) space discretization and (b) time discretization.

the computational time, normalized by the wall-clock time, as
a function of time step size, h, for both RSS (N =65) and LSBT
(N = 195) method. The simulations ran on a single thread of AMD
Ryzen 1950X CPU @ 3.4 GHz. Even though the node number of
LSBT is only three times larger than RSS, the computational time
of LSBT is almost 30 times slower than the time performed by RSS.
This is rooted in the computational time of solving the dense lin-
ear system in Eq. (15) and Eq. (C.3). On the other side, the com-
putational time for Fig. 1 is approximately 8 times larger than the
wall-clock time when the time step size is set to be h = 1ms.

Appendix D. Validation of DER-RSS method

In this section, we compare the DER-RSS framework against
previous experimental data. The experimental data is available in
Fig. 4(b) and (c) of Ref. [38]. The physical parameters used in the
numerical approach are: Young’s modulus E = 1.255MPa, fluid vis-
cosity is u = 1.6Pa - s, rod radius rg = 1.58mm, helical axis length
lp = 20.00cm, helical pitch A = 5.00cm, helical radius R = 1.59cm,
which are identical to the experimental setup in Ref. [38]. In
Fig. D.12(a) and (b), we plot the dependence of critical buckling
angular velocity, @, on helical pitch and helical radius. Excellent
agreements between the DER-RSS algorithm and experimental data
indicate the correctness and accuracy of present numerical frame-
work.
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400 600 800
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200

Appendix E. Video

We provide a video corresponding to Fig. 1 of the main
manuscript as supplementary material.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.compfluid.2021.
105038.
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Algorithm 1 Flagellar bundling simulation.
Input: k < 0, t, < 0.0s, N, ro, [ € {12}, qV (1), ¥ (&), o, h, T,
tol
while ¢, <T do

forl:ll tol=2§lo
(90)() - (90)()
FHYD —0
end for
Calculate A A2 ACD " and A22) from Eq. (14)
Calculate (F")( and (F")®@ from Eqs. (21) and (16)
solved < 0
while solved == 0 do
fori=1tol=2do
n<2o0
Guess q (t.1) = 9@ (t) + ha® (t)
error <— 10 x tol
while error > tol do
Compute E,(,’) in Eq. (22) and .]],(,’) in Eq. (23)
al), (tes1) = 4P (t1) — IO\EY
n<n+1
tol = |E{|
end while
end for
solved « 1
fori=0toi=N-2do
for j=0to j=N-2do
Compute 8{?}“ from Eq. (19)
if 8{“}“ < 2ry then
Compute (F)®, (F;, ), (F)@, and (FS )
from Eq. (20)
solved < 0
end if
end for
end for
end while
k<—k+1
end while
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