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a b s t r a c t 

We introduce a numerical framework to study the fluid-structure interaction between two helical fil- 

aments rotating under low Reynolds number condition, motivated by the propulsion of bacteria using 

helical flagella. Our numerical framework couples the elasticity of the thin filaments, nonlocal hydro- 

dynamic loading, and the contact between multiple elastic rods. Each of these three ingredients is re- 

spectively modeled by the Discrete Elastic Rods method (for a geometrically nonlinear description of soft 

filaments), Regularized Stokeslet Segments method (for the nonlocal drag force in a viscous fluid), and 

non-penetration condition between rod segments. Two helical rods rotating side by side attract each 

other and become closer because of their hydrodynamic interplay in a viscous environment. Depend- 

ing on the initial distance between the two and their rotational frequency, the two filaments can come 

in physical contact. Exploiting the efficiency and robustness of the simulator, we perform a systematic 

parameter sweep to quantify the bundling behavior. The findings may shed light on the physics of the 

bio-locomotion of microorganisms and inspire the design of novel biomimetic soft robots. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Bacteria often rely on the deformation of filamentary heli- 

al structures, called flagella, for locomotion [1,2] . The propul- 

ion arises from a complex fluid-structure interaction between the 

tructural flexibility of the flagellum and the viscous forces gener- 

ted by the flow. This fluid-structure interaction may lead to geo- 

etrically nonlinear deformations [3–5] , which in turn can be ex- 

loited for functionality, e.g. turning [6] , tumbling [7] , and poly- 

orphic transformations [8,9] . One of the particular biophysical 

mportance is a phenomenon called bundling [10–20] that may ap- 

ear during the swimming of microbes consisting of multiple flag- 

lla, e.g. Escherichia coli and Salmonella typhimurium [21] . Each flag- 

llum consists of a rotary motor embedded in the cell wall, a short 

exible hook that acts as a universal joint, and a helical filament. 

he trajectory of an individual swimming cell consists of runs in- 

errupted by tumbles. Since the radius of the flagellar filament is 

ell below optical wavelengths and the motor rotation is relatively 

apid, it is difficult to study the mechanics of the bundling pro- 

ess through systematic experiments [21] . Predictive simulation of 

undling is equally challenging due to the need to incorporate the 
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ong-range hydrodynamic interaction among multiple flagella, ge- 

metrically nonlinear deformation in the elastic rods – our model 

or flagella, and possible contact when two flagella come in close 

roximity. To mitigate the experimental challenges, scaled-up ana- 

og model experiments provide a promising path [21] . This paper 

ocuses on overcoming the computational hurdles to achieve fast 

nd robust simulation of this system. 

Since 20 0 0s, there has been a large number of investigations 

n flagellar propulsion – particularly from a single flagellum –

hrough experiments [6,22–24] , computation [3,25,26] , and the- 

ry [27–30] . Recent effort s have modeled this fluid-structure in- 

eraction problem as a combination of Kirchhoff elastic rod theory 

31] for the deformation of structure and Resistive Force Theory 

RFT) [32,33] for the description of viscous fluid. This framework 

stablished that the flagellum can undergo a buckling instability 

hen the rotational frequency of the flagellum exceeds a thresh- 

ld value [3] . However, subsequent experiments have shown that 

hereas RFT provides a satisfactory qualitative description of the 

henomena, an accurate quantitative analysis requires a nonlocal 

ydrodynamic force model that accounts for the interaction be- 

ween the flow induced by distant parts of the filament to match 

he no-slip boundary condition on the flagellum surface [33–37] . 

ore recently, the buckling instability of a helical elastic rod ro- 

ating in a viscous fluid was investigated [38] by a combination 

https://doi.org/10.1016/j.compfluid.2021.105038
http://www.ScienceDirect.com
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f Lighthill’s slender body theory (LSBT) [33] – a long-range hy- 

rodynamic force model – and Discrete Elastic Rods (DER) method 

a fast algorithm developed by the computer graphics commu- 

ity for the simulation of visually dramatic dynamics of hair, fur, 

nd other rod-like structures in the animation industry [39–41] . 

he simulation results were quantitatively compared against ex- 

eriments using scaled-up model flagella [38] . This combination of 

ER and LSBT was used to study the propulsion and instability in 

 rotating helical rod subjected to an axial flow [42] as well as 

he effect of a nearby rigid boundary on flagellar propulsion [43] . 

his framework was further improved to simulate the trajectory of 

ni-flagellar bacteria and bio-inspired soft robots; this study pos- 

ulated the critical role of flagellar buckling in changing the swim- 

ing direction [44,45] . Besides the drag-based resistive force the- 

ry [32,33,46,47] and regularized singularity method [25,48–51] , 

mmersed boundary method [52–57] is widely used to model bac- 

erial flagella interacting with a viscous fluid. 

In comparison with simulation of uni-flagellar systems, multi- 

le interacting flagella and their bundling clearly present a more 

ifficult set of challenges [14] . Previous experimental investiga- 

ions built macroscopic model systems consisting of flexible ro- 

ating helices in a viscous fluid to mimic the dimensionless pa- 

ameters of the natural bio-locomotion system, e.g. the ratio be- 

ween elastic force and viscous drag, normalized helical pitch and 

adius, and the Reynolds number [21,58] . In the soft robotics com- 

unity, researchers considered biomimetic soft robots with multi- 

agellar structure for its propulsive efficiency and directional con- 

rol [59] . Despite the critical role of bundling in the propulsion 

f several economically important bacteria – as evidenced by the 

forementioned experimental works, a predictive numerical model 

or systematical investigation of flagellar bundling is a challenging 

ork [19,20,60] , simply because of the difficulty in describing the 

eometrically nonlinear dynamics of multiple rods coupled with 

he hydrodynamic interaction and the non-penetration contact be- 

ween two approaching rod segments. 

Here, we introduce a numerical framework to study the dy- 

amics of two helical elastic rods rotating side-by-side at a con- 

tant angular velocity in low Reynolds environment, a system sim- 

lar to the one explored experimentally by [21] , to analogize the 

agellar propulsion in microorganisms [34] . Our numerical frame- 

ork combines (i) DER algorithm for the description of elastic fil- 

ments [39,40] , (ii) Regularized Stokeslet Segments (RSS) method 

or long-range hydrodynamic force model [51] , and (iii) a penalty 

orce-based contact model [61] . While prior works coupled LSBT 

ith DER, we choose to replace LSBT with RSS – nodel method 

ublished in 2018 – as the hydrodynamic model; the reason is 

wofold: (i) numerical issues appear when simulating the interac- 

ion among multiple rods using LSBT, because of the discontinuity 

etween the local and nonlocal hydrodynamic terms in the LSBT 

ormulation [33] . RSS, on the other hand, formulates a continuous 

ow field generated by a line segment with a regularization pa- 

ameter and no numerical issues appear when two rod segments 

ecome closer and contact with one another. (ii) The spatial dis- 

retization in LSBT-DER framework [38] is dictated by the ratio be- 

ween the arclength of the flagellum, L , and the cross-sectional ra- 

ius, r 0 . The distance between two adjacent nodes – the discretiza- 

ion length – on the rod is required to be approximately equal to 

 . 65 r 0 . RSS, however, allows us to choose a coarser discretization

ithout any specific requirement on discretization length. This re- 

ults in more than an order of magnitude speed-up in the compu- 

ation time for the model system studied in this paper. Inclusion 

f physically-based contact model in the numerical framework is 

 novel feature of this study. To achieve non-penetration condition 

etween two rod segments (a rod is divided into a number of seg- 

ents in DER), we first perform a continuous collision detection 

uring each time step of the simulation and iteratively include a 
2 
enalty force in the equations of motion to guarantee no intersec- 

ion between every pair of rod segments [61] . Similar contact for- 

ulations have been successfully applied in the computer graphics 

iterature for geometric constraint maintenance [62] , hair dynam- 

cs [63] , and deformable body collision response [64] . The relia- 

ility of this simulation tool for making quantitative predictions is 

xamined by a comparison between the previous experimentally 

alidated LSBT-based method and the current RSS-based method. 

e then employ this computational method to quantify the defor- 

ation in two rotating flagella leading to bundling. Fig. 1 presents 

napshots from our numerical simulation of a model setup for flag- 

llar bundling. Through systematic parameter-space exploration, 

e analyze the onset of bundling between two soft filaments as 

 function of the angular velocity and the initial distance between 

he two flagella. We next measure the propulsive efficiency in a 

agellum due to a nearby rotating flagellum. This is followed up 

y a sweep of geometric parameter space in biologically relevant 

egimes to quantify the dependence of bundling on the flagellar 

eometry. These observations can lead to better understanding of 

he presence of bundling and the resulting benefits to propulsion 

n microorganisms. 

Our paper is organized as follows. In Section 2 , we present 

he basis of the numerical framework. Next, we explore the buck- 

ing instability of a single helical rod rotating in a viscous fluid 

n Section 3 for the comparison between two hydrodynamic force 

odels: LSBT and RSS. Then in Section 4 , we systematically quan- 

ify the flagellar bundling behavior between two rotating soft fil- 

ments, with a focus on biologically relevant regimes. Finally, we 

resent our conclusions and suggest potential avenues for future 

esearch in Section 5 . 

. Numerical model 

The numerical framework combines three components: (i) Dis- 

rete Elastic Rods (DER) method for the description of geometri- 

ally nonlinear deformation of soft filaments [39–41] ; (ii) Regular- 

zed Stokeslet Segments (RSS) method for the nonlocal hydrody- 

amic force generated by slender structures in a viscous fluid [51] , 

nd (iii) a contact model for the achievement of non-penetration 

ondition between two rod segments [61] . This section is orga- 

ized as follows. A description of DER is provided in Section 2.1 , 

nd its coupling with RSS is in Section 2.2 . Then in Section 2.3 , we

etail the procedure to include the contact model between two rod 

egments. Finally we discuss the overall time marching scheme of 

he simulation in Section 2.4 . 

.1. Discrete elastic rods method 

We use the DER method [39–41] to model the nonlinear dy- 

amics of thin rods. The rod centerline is discretized into N nodes: 

 0 , . . . , x N−1 , that correspond to N − 1 edge vectors: e 0 , . . . , e N−2 ,

uch that e i = x i +1 − x i and i = 0 , . . . , N − 2 . In DER method, we use

ubscripts to denote quantities associated with nodes, e.g. x i , and 

uperscripts when associated with edges, e.g. e i . Each edge, e i , has 

n orthonormal reference frame 
{
d i 
1 
, d i 

2 
, t i 

}
and a material frame 

m 
i 
1 
, m 

i 
2 
, t i 

}
; both of them share the tangent t i = e i / | e i | as one of

he directors. Referring to Fig. 2 , the reference frame is updated at 

ach time step through parallel transport in time, and the material 

rame can be obtained from a scalar twist angle θ i . Nodal positions 

nd twist angles constitute the 4 N − 1 sized degrees of freedom 

DOF) vector, q = 

[
x 0 , θ

0 , x 1 , . . . , x N−2 , θ
N−2 , x N−1 

]T 
, of the discrete 

od, where the superscript T denotes transposition. Based on this 

inematic representation, in the remainder of this section, we for- 

ulate the elastic strains, elastic energies, and elastic forces. 

The strains of a deformed Kirchhoff’s rod are comprised of three 

arts: stretching, bending, and twisting. Stretching strain associ- 
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Fig. 1. Snapshots of flagellar bundling sequence. Two identical flagella rotate side by side at an angular velocity of ω = 15 rpm ( ̄ω = 320 ) with initial distance �t = 

3 cm. Physical parameters of the flagella and the fluid are provided in Section 3 . (Upper) Front view and (Lower) side view of helical rods at t ∈ { 0 , 25 , 50 , 75 } s ( ̄t ∈ 
{ 0 , 0 . 125 , 0 . 250 , 0 . 375 } ). A video showing the bundling process is provided in Supplementary Material. 

Fig. 2. Schematic of a discrete rod. 
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ted with the i th edge, e i , is 

i = 

| e i | 
| ̄e i | − 1 . (1) 

ereafter, quantities with an overbar indicate evaluation in the un- 

eformed state, e.g. | ̄e i | is the undeformed length of the i th edge.

ending strain is captured by the curvature binormal which mea- 

ures the misalignment between two consecutive edges at a node 

 i , 

 κb ) i = 

2 e i −1 × e i 

| e i −1 || e i | + e i −1 · e i , (2) 

nd its norm is | ( κb ) i | = 2 tan ( φi / 2 ) . The material curvatures are

iven by the inner products between the curvature binormal and 

aterial frame vectors, 

(1) 
i 

= 

1 

2 

(
m 

i −1 
2 + m 

i 
2 

)
· (κb ) i , (3a) 

(2) 
i 

= −1 (
m 

i −1 
1 + m 

i 
1 

)
· (κb ) i . (3b) 
2 S

3 
The twisting strain at the i th node, in the discrete setting of 

ER, is measured using the discrete twist 

i = θ i − θ i −1 + m 
ref 
i , (4) 

here m 
ref 
i 

is the reference twist associated with the reference 

rame [39] . 

We treat an elastic rod as a mass-spring system, with a lumped 

ass (and angular mass) at each node (and edge) and associated 

iscrete stretching, bending, and twisting energies. For a rod with 

oung’s modulus E, shear modulus G , and isotropic circular cross 

ection, the elastic energies – stretching, bending, and twisting –

re given by Bergou et al. [39,40] 

 s = 

1 

2 

N−2 ∑ 

i =0 

EA (ε i ) 2 | ̄e i | (5a) 

 b = 

1 

2 

N−1 ∑ 

i =0 

EI 

�l i 

[
(κ(1) 

i 
− κ̄ (1) 

i 
) 2 + (κ(2) 

i 
− κ̄ (2) 

i 
) 2 

]
(5b) 

 t = 

1 

2 

N−1 ∑ 

i =0 

GJ 

�l i 
(τi ) 

2 , (5c) 

here A is the area of cross-section, I is the area moment of in- 

rtia, J is the polar moment of inertia, �l i = 

(| ̄e i | + | ̄e i +1 | )/ 2 is its 
oronoi length. 

At each degree of freedom q j , the internal elastic forces (asso- 

iated with nodal positions) and elastic moments (associated with 

he twist angles) are formulated by 

 
int 
j = − ∂ 

∂q j 
( E s + E b + E t ) , (6) 

here j is an integer between 0 to 4 N − 2 . This elastic force 

ill be balanced with external force (described in Section 2.2 and 

ection 2.3 ) and inertia to formulate the equations of motion in 

ection 2.4 . 
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Fig. 3. Notations associated with the flow u ( ̂ x ) at point ˆ x generated by a line seg- 

ment from x 0 to x 1 . Note r α = ̂  x − x α and v = x 0 − x 1 . 
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.2. Regularized stokeslet segments method 

We use RSS to model the viscous drag force experienced by a 

lender rod in motion within a viscous fluid. In this section, we 

resent the relation between the velocity at each node and the hy- 

rodynamic force applied on each node [51] . 

The primary Green’s function (or fundamental singular solu- 

ion) of Stokes flow is the Stokeslet, which describes the flow as- 

ociated with a singular point force [65] . For a particular choice of 

egularization [48] , the velocity u ( ̂ x ) at evaluation point ˆ x due to 

 regularized force f (x ) applied at x is the regularized Stokeslet 

 πμu ( ̂ x ) = ( 
1 

R 
+ 

ε2 

R 3 
) f (x ) + 

( f (x ) · r ) r 
R 3 

, (7)

here μ is the fluid viscosity, r = ˆ x − x , R 2 = | r | 2 + ε2 , and ε is the

egularized parameter. 

Next, consider an edge of length �l connecting the nodes x 0 
nd x 1 : a point on this edge is located at x α = x 0 − αv (with v =
 0 − x 1 and | v | = �l). As shown in Fig. 3 , we assume a linear force

ensity f α = f a + α(f b − f a ) along the cylinder segment, such that

he velocity at point ˆ x due to this linear force density is, 

 πμu ( ̂ x ) = �l 

∫ 1 
0 

[
( 
1 

R α
+ 

ε2 

R 3 α
) f α + 

(f α · r α) r α
R 3 α

]
dα, (8) 

here r α = ˆ x − x α and R 2 α = | r α| 2 + ε2 . With the assumption that

 α is a polynomial in α, the velocity in Eq. (8) can be written as

51] 

 8 πμ/ �l ) u ( ̂ x ) = f a (T 0 , −1 + ε2 T 0 , −3 ) + f b (T 1 , −1 + ε2 T 1 , −3 ) 

+ 

3 ∑ 

n =0 

f n T n, −3 , (9) 

here the coefficients f n are 

 0 = (f a · r 0 ) r 0 , (10a) 

 1 = (f a · v ) r 0 + (f a · r 0 ) v + (f b · r 0 ) r 0 , (10b) 

 2 = (f a · v ) v + (f b · r 0 ) v + (f b · v ) r 0 , (10c) 

 3 = (f b · v ) v . (10d) 

Then, the sequence of T k,l terms in Stokeslet Segments can be 

omputed by the direct integration of α [51] , 

 0 , −1 = 

1 

�l 
log [ �lR α + (r α · v ) ] 

∣∣∣1 
0 

(11a) 

 0 , −3 = − 1 

R α[ �lR α + (r α · v ) ] 
∣∣∣1 (11b) 

0 S

4 
 1 , −1 = 

R α

(�l) 2 

∣∣∣1 
0 

− (r 0 · v ) 
(�l) 2 

T 0 , −1 (11c) 

 1 , −3 = − 1 

R α(�l) 2 

∣∣∣1 
0 

− (r 0 · v ) 
(�l) 2 

T 0 , −3 (11d) 

 2 , −3 = − α

R α(�l) 2 

∣∣∣1 
0 

+ 

1 

(�l) 2 
T 0 , −1 − (r 0 · v ) 

(�l) 2 
T 1 , −3 (11e) 

 3 , −3 = − α2 

R α(�l) 2 

∣∣∣1 
0 

+ 

2 

(�l) 2 
T 1 , −1 − (r 0 · v ) 

(�l) 2 
T 2 , −3 (11f) 

For completeness, we first describe the case of a continuous rod 

ith arclength L (instead of a discrete rod composed of straight 

dges): consider a velocity at point ˆ x due to the force field along a 

urve with arclength parameter, s : 

 πμu ( ̂ x ) = 

∫ L 
0 

[
( 
1 

R 
+ 

ε2 

R 3 
) f + 

(f · r ) r 
R 3 

]
d s. (12) 

Moving on to the case of a discrete rod with N nodes and N −
 segments, we denote the length of i th segment as | e i | ≡ | v i | =
 x i − x i +1 | , and its force density (unit: force/length) as f i . Then the
iscretized version of Eq. (12) is 

 πμu ( ̂ x ) = 

N−2 ∑ 

i =0 

(
A 

i 
1 f i + A 

i 
2 f i +1 

)
, (13) 

here A 
i 
1 
and A 

i 
2 
are 3 × 3 matrices: 

 
i 
2 = | v i | 

[
(T i,i +1 

1 , −1 
+ ε2 T i,i +1 

1 , −3 
) + T i,i +1 

1 , −3 
(r i r 

T 
i ) + T i,i +1 

2 , −3 
(r i v 

T 
i + v i r 

T 
i ) 

+ T i,i +1 
3 , −3 

(v i v 
T 
i ) 

]
(14a) 

 
i 
1 = | v i | 

[
(T i,i +1 

0 , −1 
+ ε2 T i,i +1 

0 , −3 
) + T i,i +1 

0 , −3 
(r i r 

T 
i ) + T i,i +1 

1 , −3 
(r i v 

T 
i + v i r 

T 
i ) 

+ T i,i +1 
2 , −3 

(v i v 
T 
i ) 

]
− A 

i 
2 (14b) 

We use this formulation to build the following linear system 

hat describes the relation between the velocity along the discrete 

od and the force density applied on it: 

 = A F , (15) 

here U = [ ̇ x 0 , ˙ x 1 , . . . , ˙ x N−1 ] 
T 

is the velocity vector of the nodes 

with no-slip boundary condition, the velocity of one point on the 

od is equal to the velocity of viscous fluid at the same point) and 

 = [ f 0 , f 1 , . . . , f N−1 ] 
T 

is the vector containing the force density at 

ach node. The hydrodynamic force associated with i th node is the 

roduct of the force density f i and its Voronoi length �l i such that 

 
h 
i = f i �l i . (16) 

.3. Contact model 

In this subsection, we describe the contact model to enforce 

on-penetration condition between two approaching edges; this 

odel has been described in sufficient detail in [61] . We first col- 

ect all the collision pairs (two edges that intersect) [66] . In our 

imulation code, a simple brute force method was employed to de- 

ect collisions. However, if the number of nodes is too large, e.g., 

arge-scale elastic rod assemblies presented in Ref. [67] , the colli- 

ion detection method can be made efficient by bounding volume 

ierarchy (BVH) through axis-aligned bounding boxes (AABBs) [68] . 

eferring to Fig. 4 , the spatial coordinates of the i th rod segment, 

 i = ( x i , x i +1 ) , can be extracted from the generalized DOF vector q , 
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Fig. 4. Notations of contact between two line segments S i and S j . 
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uch that we can calculate the minimum Euclidean distance be- 

ween two rod segments S i and S j , 

min 
i, j = md (x i , x i +1 , x j , x j+1 ) . (17) 

hen the collision detection procedure collects a set of collision 

airs (S i , S j ) , with δmin 
i, j 

< 2 r 0 , where r 0 is the rod radius. The pen-

tration depth εi, j (should be always positive) of a collision pair 

S i , S j ) is defined as 

i, j = 2 r 0 − δmin 
i, j . (18) 

We are looking for the minimum displacements 

 �x i , �x i +1 , �x j , �x j+1 } such that the new coordinates de-

ne an interference free configuration [69] . Since all the nodes 

ave the same mass in our simulation, the required collision 

isplacement of [61] simplifies to 

x i = −1 

2 
n i j w i (19a) 

x i +1 = −1 

2 
n i j (1 − w i ) (19b) 

x j = 

1 

2 
n i j w j (19c) 

x j+1 = 

1 

2 
n i j (1 − w j ) , (19d) 

here n i j is the minimum distance vector between S i and S j (with 

 n i j | = δmin 
i, j 

), and w i (as well as w j ) is the barycentric coordinate

f the contact point on the line segment. For a prescribed collision- 

ased displacement at the i th node, the contact force is 

 
c 
i = 

1 

h 2 
�x i m i , (20) 

here h is the time step size of the time-marching scheme (see 

ext section) and m i is the lumped mass of the i th node. Similar

esults can be obtained for (i + 1) th, jth, and ( j + 1) th nodes. 

The contact handling mechanism imposes an upper limit on the 

ime step size of the algorithm in Section 2.4 . If the time step size

s too large, one edge may pass through another edge in a single 

ime step without any contact being detected. In the results pre- 

ented in this paper, the time step size is taken to be small enough

o avoid this situation. Another option is to employ continuous col- 

ision detection [70] and detect possible contacts occurring within 

 single time step. 
5 
.4. Numerical framework 

Now we turn to the overall numerical framework of flagellar 

undling simulation that involves updating the configuration of 

wo rods with time. At each time step t k , we know the DOF vec-

ors and their time derivative (velocity vectors). To march forward 

n time, we need to compute the hydrodynamic force experienced 

y elastic rods and then solve the equations of motion, accounting 

or the contact between two filaments, to get the DOFs and veloc- 

ties of next time step, t k +1 = t k + h ( h is the time step size). 

Besides the flow generated by its own hydrodynamic force, the 

rag force applied on one rod also contributes to a flow field af- 

ecting the other one, and vice versa. To account for the interplay 

etween the two, the linear system U = A F in Eq. (15) should be

xpanded from size of 3 N × 3 N to 6 N × 6 N, 

U 
(1) 

U 
(2) 

]
= 

[
A 

(11) A 
(12) 

A 
(21) A 

(22) 

][
F (1) 

F (2) 

]
, (21) 

here matrices A 
(12) and A 

(21) show the interaction between two 

ods in viscous fluid, F (1) , and F (2) are the 3 N-sized hydrodynamic 

orce density vectors for the two rods, and U 
(1) , and U 

(2) are the

elocity vectors of same size. We use LDLT decomposition to ob- 

ain the viscous drag forces from the linear system in Eq. (21) . 

DLT method decomposes a positive-definite matrix into the prod- 

ct of a lower triangular matrix and its conjugate transpose, i.e., 

 = LDL 
T , where L is a lower unit triangular (unitriangular) ma- 

rix and D is a diagonal matrix. This type of decomposition is use- 

ul for efficient numerical solutions. 

After computing the hydrodynamic forces acting on the rod, we 

ndependently solve for the DOF and velocity vectors of each rod 

rom the equations of motion by a first order, implicit Euler inte- 

ration, 

 ≡ M �q ( t k +1 ) − h M ̇ q ( t k ) − h 2 
(
F int + F c + F h 

)
= 0 , (22a) 

 (t k +1 ) = q (t k ) + �q (t k +1 ) , (22b) 

˙  (t k +1 ) = 

1 

h 
�q (t k +1 ) , (22c) 

here the DOFs of the previous time step, q (t k ) , and the veloci-

ies, ˙ q (t k ) are known; the DOFs, q (t k +1 ) , and velocities, ˙ q (t k +1 ) , of

he next time step need to be solved for; F int is the internal elastic

orce of size (4 N − 1) computed from Eq. (6) ; F h is the hydrody-

amic force computed from Eq. (21) and Eq. (16) ; F c is the contact

orce in Eq. (20) ; and M is the diagonal mass matrix comprised of 

umped masses. The Jacobian associated with Eq. (22) is necessary 

or Newton’s iteration and can be expressed as 

 = M − h 2 
[
−∂ 2 ( E s + E b + E t ) 

∂q 2 

]
. (23) 

ere, the gradient of the hydrodynamic force and contact forces 

annot be analytically evaluated, i.e. external forces are treated ex- 

licitly. 

At the beginning of each time step, we initialize the external 

ontact force F c as zeros, and compute the hydrodynamic force by 

q. (21) and Eq. (16) , then solve the equations of motion in Eq. 

22) to update the DOFs. This DOF is used to detect any collision. 

f the non-penetration condition is broken, external contact forces 

re updated on the basis of Eqs. (19) and (20) and the equations 

f motion in Eq. (22) are solved again. This rewind and re-solve 

rocess continues until the non-penetration condition is achieved 

or every segment pair. The overall algorithm of flagellar bundling 

imulation can be found in Appendix A . 
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Fig. 5. (a) The helical rod in stress free configuration. (b) Configuration of rotating flagellum at (b1) stable phase (with ω̄ = 533 ) and (b2) buckling instability phase (with 

ω̄ = 1067 ). (c1) Normalized height l̄ as a function of normalized time for a single helical rod rotating at ω̄ ∈ { 533 , 1067 } . (c2) Normalized height l̄ as a function of normalized 

angular velocity ω̄ for the definition of critical buckling angular velocity ω̄ b . 
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. Flagellar buckling instability 

A helical filament rotating in a viscous fluid would undergo 

uckling instability when its angular velocity exceeds a thresh- 

ld value [38,43,45] . Here, we discuss the buckling behavior of 

 single rotating helix in a viscous medium, for comparison be- 

ween the DER-LSBT model, that shows reasonable agreement with 

acroscale experiment [38,43] , and the newly introduced DER- 

SS framework. We first provide specifics on the geometric and 

hysical parameters of the numerical study; these parameters cor- 

espond to macroscopic experiments [38,43] . However, we will 

resent our simulation results in non-dimensional form. We as- 

ume a right-handed helical rod, made out of a linear elastic mate- 

ial, with Young’s modulus E = 10 MPa and Poisson’s ratio ν = 0 . 5

incompressible). The rod density, ρ = 10 0 0 kg/m 
3 , is assumed to 

e equal to the fluid density so that no buoyant force is present. 

adius of circular cross section is r 0 = 1 mm, (and, therefore, sec- 

nd moment of inertia, I = π r 4 0 / 4 , and cross section area, A = π r 2 0 ).

he fluid viscosity is μ = 1 . 0 Pa · s. As shown schematically in

ig. 5 (a), in the stress free configuration, the first edge, e 0 , connect-

ng x 0 and x 1 , is parallel to the z-axis; the second edge connect- 

ng x 1 and x 2 is e 
1 = R ̂ z + R ̂ x ( ̂ x and ˆ z are unit vectors along the

 and z axes, respectively); all other nodes, [ x 3 , x 4 , . . . , x N−1 ] , fall 

n a helical shape. The helical configuration in the current numer- 

cal study (axis length l 0 = 0 . 2 m, helical pitch λ = 5 cm, and helical

adius R = 1 cm), similar to the previous explorations [38,43] , is in

he biologically relevant regime [34] . The rotating angular velocity 

s ω ∈ { 0 , 50 } rpm, such that the Reynolds number in our numer-

cal study is ρωRr 0 /μ ≤ 4 × 10 −2 , i.e. always in the Stokes limit 

43,45] . We then discuss the boundary conditions. The helical fila- 

ent immersed in an unbounded fluid is clamped at one extrem- 

ty, with first two nodes ( x 0 and x 1 ) fixed. The first twisting an-
6 
le, θ0 , is rotated anticlockwise (viewed from above with a pre- 

cribed angular velocity, ω). Apart from these fixed DOFs, all other 

odes and edges are free and evolve based on the balance between 

lastic and fluid forces. In this representative setup, the number of 

odes along the discrete rod is N = 65 , corresponding to a Voronoi 

ength of �l i = 5 mm. The regularization parameter ε in RSS the- 

ry is related to the rod radius r 0 , and can be determined based

n the drag force experienced by a finite cylinder moving in vis- 

ous fluid perpendicularly to its axis. The regularization parameter, 

, varies slightly with the length of each edge. In our simulations, 

e choose ε = 1 . 02 r 0 based on the value of �l i /r 0 [51] . The time

tep size in this simulation is h = 1 ms. Details of the convergence

tudy on space and time discretization can be found in Appendix B . 

e also briefly review the LSBT, and compare the numerical re- 

ults performed by DER-LSBT method and DER-RSS framework in 

ppendix C . 

In Fig. 5 (b1-b2), we present two representative deformed 

hapes of the rod rotating at two different normalized angular ve- 

ocities, ω̄ ∈ { 533 , 1067 } , at t̄ = 0 . 5 . Notice that, due to the slender

eometry of the system, bending is the prominent mode of the de- 

ormation of a rod, such that the angular velocity and the time are 

ormalized by Jawed and Reis [43] , 

¯  = ωμl 4 0 / (EI) , (24a) 

 ̄= t(EI) /μl 4 0 . (24b) 

When the helical rod rotates at a lower angular velocity, e.g. 

¯  = 533 , the whole structure retains its helical shape and stretches 

 little due to the hydrodynamic force from viscous fluid, seeing 

ig. 5 (b1); however, when the helical rod spins at a higher fre- 

uency, e.g. ω̄ = 1067 , the structure undergoes buckling instabil- 



W. Huang and M. Khalid Jawed Computers and Fluids 228 (2021) 105038 

Fig. 6. (a1)-(a3) Hydrodynamic force applied on soft filaments at different time step, t ∈ { 25 , 50 , 75 } s. (b1)-(b3) Flow field around two helical rods at different time step, 

t ∈ { 25 , 50 , 75 } s. The physical parameters and boundary setup are identical to Fig. 1 . 
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ty and, in Fig. 5 (b2), deforms into a highly nonlinear configuration 

38,43,45] . We consider the end to end length, l, to quantify the 

eformation of a helical rod. In Fig. 5 (c1), we plot the normalized 

eight of helical rod, l̄ = l/l 0 , as a function of time for two differ-

nt normalized angular velocity ω̄ ∈ { 533 , 1067 } . The final steady- 
tate configurations can be achieved after t̄ = 0 . 3 for both these 

wo cases. 

Based on the previous investigations of our own [38,43,45] , 

here exists a critical buckling angular velocity above which the 

nal configuration is distorted, similar to the one shown in 

ig. 5 (b2). We perform a parameter sweep along angular velocity 

o find the critical buckling angular velocity, ω̄ b , of a single helical 

od rotating in a low Reynolds fluid. Fig. 5 (c2) shows the normal- 

zed end to end length, l̄ , at time t̄ = 1 . 0 , as a function of normal-

zed angular velocity, ω̄ . As expected, the soft filament remains in 

table regime and stretch as a linear function of ω̄ at low enough 

ngular velocity; When ω̄ is larger than a critical value, the rod 

ill undergo buckling instability and deform into a curved shape. 

he maximum normalized angular velocity that retains the heli- 

al shape of the structure is defined as the critical buckling an- 

ular velocity, ω̄ b . For the specific geometry chosen in this study, 

he normalized critical angular velocity is ω̄ b ≈ 675 . The critical 

uckling angular velocity captured by LSBT is similar to the one 

eported by RSS, with relative error less than 5% , which demon- 

trates the correctness and accuracy of the coupling framework be- 

ween DER and RSS, seeing Appendix C . The experimental valida- 

ion of the presented DER-RSS is in Appendix D . 

. Flagellar bundling 

We now turn to the main contribution of the current study and 

nclude the effect of the interaction between two rotating helical 

ods in a viscous fluid. Previous coupling numerical framework be- 
7 
ween DER and LSBT can also capture the buckling instability of a 

ingle helical rod rotating in viscous fluid (details in Appendix C ) 

38,43,45] , but meets numerical issue when applied to study the 

undling behavior of multiple flagella. LSBT divides the hydrody- 

amic force generated by soft filaments into two parts – local 

dipoles) and nonlocal terms (Stokeslets). As two rod segments at- 

ract each other and become closer, one rod may enter the “local”

egime of the other rod. This often results in ill-conditioned prob- 

ems in Eq. (C.3) . This issue, on the other hand, can be solved by

SS method, for its continuous evaluation of Stokeslet generated 

y cylinder segment. 

Figure 1 shows a sequence of snapshots of two helices (axis 

ength l 0 = 0 . 2 m, normalized helical pitch λ/l 0 = 0 . 25 , and normal-

zed helical radius R/l 0 = 0 . 05 ) rotating side by side with same fre-

uency, ω̄ = 320 (both anticlockwise when viewed from above), at 

 normalized initial distance �t /R = 3 . The induced flows of heli- 

al rods cause large deflections, and then a bundle form appears. 

he helices wrap around each other in a right-handed sense; the 

ow field generated by each helix tilts the other helix, causing the 

elices to roll around each other and form a right-handed wrap- 

ing. We use the end to end distance between the two rods along 

he x -axis, denoted as �b (see Fig. 1 (a1)), as a shape parameter 

o quantify the bundling behavior between two rotating filaments. 

his parameter, �b , becomes negative when two rods wrap around 

ach other. The hydrodynamic force as well as the flow generated 

y helical rods at different time steps, t ∈ { 25 , 50 , 75 } s are in Fig. 6 .
otice that the hydrodynamic force is computed from the velocity 

f helical rods, referring to Eq. (21) ; then the flow field at a given

oint, ˆ x , can be easily derived based on Eq. (9) [71] . 

We first examine the effect of angular velocity on the end to 

nd distance. Fig. 7 (a1)-(a3) shows the trajectory of the ends of 

he rods – the last node in DER simulation – on the x − y plane 

t three different normalized angular velocities ω̄ ∈ { 43 , 107 , 427 } ,
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Fig. 7. Projected trajectory of helical end point on normalized x − y plane, with different parameter combinations: (a) normalized top distance �t /R = 4 fixed, varying angular 

velocity ω̄ ∈ { 43 , 107 , 427 } ; (b) normalized angular velocity ω̄ = 427 fixed, varying initial top distance �t /R ∈ { 4 , 6 , 8 } . Normalized bottom distance �b /R as a function of 

normalized time by varying (c1) angular velocity ω̄ and (c2) initial top distance �t /R . (c3) Phase diagram of the critical crossing angular velocity in the (�t /R, ̄ω ) parameter 

space. 
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ith the normalized top distance fixed at �t /R = 4 . Here, the x

xis (as well as y axis) is normalized by the helical axis length l 0 ,

¯ = x/l 0 . Similar setup from macroscopic model experiments can 

e found in [21] . We observe that the two flagella come closer 

hrough a U-shaped trajectory of the last node. Eventually, the two 

nds settle to a steady circular path. Fig. 7 (c1) plots the normal- 

zed end to end distance, �b /R , as a function of time, in all these

hree cases. While the top distance, �t , – the distance between 

he first nodes on two rods – remains fixed with time due to the 

oundary conditions imposed in the simulation, the end to end 

istance varies significantly due to the deformation from hydro- 

ynamic forces. Note that �t = �b at time t̄ = 0 . For small angular 

elocity, two rods will become closer in their final stable shapes 

ith 0 < �b /R < �t /R , shown in Fig. 7 (a1). However, when rotat-

ng at a higher angular velocity, two helical rods can go beyond 

ach other, such that a crossed configuration with �b /R < 0 < �t /R 

an be achieved, when looking on the x − z plane. An example con- 

guration is presented in Fig. 1 (a3). 

We next explore the role of the initial top distance, �t , on the 

undling behavior of two flagella. In Fig. 7 (b1)-(b3), we plot the 

rajectory of the last nodes of the rods at three different values 

f top distance, �t /R ∈ { 4 , 6 , 8 } , while keeping the normalized an-

ular velocity fixed at ω̄ = 427 . Fig. 7 (c2) shows the end to end

istance as a function of scaled time in these three cases. When 

he top distance is small ( �t /R = 4 and �t /R = 6 ), the crossed

hape is achieved within t̄ = 2 . However, in the long distance case 
8 
 �t /R = 8 ), the end to end distance eventually reaches a value 

qual to approximately half of the top distance and always remains 

ositive ( �b /R > 0 ). 

To combine all the information together, in Fig. 7 (c3), we per- 

orm a two dimensional parameter sweep, by varying both angular 

elocity, ω̄ ∈ [ 0 . 0 , 550 . 0 ] , and initial distance, �t /R ∈ [ 3 . 0 , 8 . 0 ] , and 

how the final shape. A circular symbol presents a crossed config- 

ration ( �b ≤ 0 ), whereas a triangle stands for �b > 0 . The critical 

ormalized angular velocity beyond which this crossed configura- 

ion is achieved is defined as ω̄ c , and, in Fig. 7 (c3), is indicated by a

olid line. This threshold parameter, ω̄ c , first increases as the initial 

istance �t increases. When the initial distance exceeds �t /R ≈ 7 , 

he crossing behavior cannot be achieved even when the angular 

elocity goes beyond the critical buckling angular velocity, ω̄ b , dis- 

ussed in the previous section. 

Then, we focus on the propulsive force of two helical flagella 

otating side by side. The first two nodes are fixed in place and the 

eaction forces corresponding to this boundary condition (equal to 

he sum of elastic and external forces on the node in question) 

an be computed from the simulation. The propulsive force defined 

ere is the sum of the reaction forces applied on the fixed nodes 

f the two helical filamentary system projected along the z-axis, 

 p = 

[
(F cons 0 ) (1) + (F cons 1 ) (1) + (F cons 0 ) (2) + (F cons 1 ) (2) 

]
· n z , 

(25) 
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Fig. 8. (a) Normalized propulsive force F̄ p as a function of normalized angular velocity ω̄ , by varying normalized top distance, �t /R ∈ { 4 , 6 , 8 , ∞} , from simulation (symbols) 

and linear fit (solid lines). (b) Relative propulsion, ˜ F p , as a function of normalized top distance, �t /R , with a fixed normalized angular velocity ω̄ = 213 . 

Fig. 9. Normalized critical crossing angular ω̄ c versus (a1) normalized helical pitch λ/l 0 (with R/l 0 = 0 . 05 and �t /R = 4 fixed) and (a2) normalized helical radius R/l 0 (with 

λ/l 0 = 0 . 25 and �t /R = 4 fixed). 
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here n z = [ 0 , 0 , 1 ] 
T is the unit vector along the z-axis, F cons 

i 
is 

he constrained force applied on the i th node, and the superscript 

epresents the rod number. Next, we formulate a non-dimensional 

ropulsive force, 

 ̄p = F p l 
2 
0 / (EI) , (26) 

y normalizing F p with the characteristic bending force, EI/l 2 0 [43] . 

n Fig. 8 (a), we plot the normalized propulsive force, F̄ p , as a func-

ion of normalized angular velocity, ω̄ , at different values of nor- 

alized top distance, �t /R ∈ { 4 , 6 , 8 , ∞} . The propulsive force ap-
roximately linearly goes up with the increase of the angular ve- 

ocity in the pre-buckling phase. The propulsive force is maximum 

hen two helices are rotating at infinite distance, i.e. there is no 

ydrodynamic interaction between the two. As the top distance 

ecreases, the propulsive force monotonically decreases. Compared 

ith the case of �t = ∞ , the propulsive force at �t /R = 4 , 6 , and

 decreased 40 . 0% , 31 . 7% , and 20 . 2% , respectively. Moreover, in

ig. 8 (b), we evaluate the relative propulsive efficiency as a func- 

ion of normalized top distance, �t /R , with a fixed normalized an- 

ular velocity, ω̄ = 213 . Here, the sum propulsion of two rotating 

elical system is scaled by the propulsive force of a single rotat- 

ng filament, ˜ F p = F p /F 
single 
p ; notice that ˜ F p = 2 at �t = ∞ , i.e. the

ropulsive force is double when there is no hydrodynamic inter- 

ction between two flagella. We clearly see that the propulsive 

orce increases by more than 60% from �t /R = 3 to �t /R = 50 , and

hows almost no variation beyond �t /R > 100 . Regardless of the 

op distance, the propulsive force with hydrodynamic interaction 

s always lower than the force without this interaction. 
9 
This far, we kept the geometry of the flagella at the repre- 

entative value. Now, we employ our numerical simulation to ex- 

lore the effect of the geometric parameters on the critical cross- 

ng angular velocity, ω c , in biologically relevant regime [34] . Specif- 

cally, we varied the helical pitch, λ/l 0 , and helical radius, R/l 0 , 

o understand the hydrodynamic performances of helices in dif- 

erent shapes. In Fig. 9 (a), we vary the normalized helical pitch, 

/l 0 ∈ [0 . 15 , 0 . 45] , at fixed values of radius ( R/l 0 = 0 . 05 ) and top

istance ( �t /R = 4 ), and plot the normalized critical crossing an- 

ular velocity, ω̄ c , as a function of the normalized helical pitch. 

ote that the parameter, ω̄ c , strongly depends on the pitch of the 

agella. On the other side, we vary helical radius in the range 

/l 0 ∈ [0 . 0375 , 0 . 1125] , at fixed values of λ/l 0 = 0 . 25 and �t /R = 4 ,

nd, in Fig. 9 (b), explore the variation of ω̄ c with the nondimen- 

ional helical radius, R/l 0 . We again observe that the helical ra- 

ius significantly changes the bundling behavior. As the radius in- 

reases, the angular velocity required for the crossed configuration 

ecreases. Altogether, these results emphasize the prominent role 

f geometry of the helical filaments on their hydrodynamic inter- 

ctions between each other with a focus on biologically relevant 

egime [34,72] . Our investigation opens up questions on how mi- 

roorganisms utilize bundling of their flagellar during their motion 

n low Reynolds environment. 

. Conclusion 

We have introduced a computational framework to study the 

eometrically nonlinear interaction between two neighboring elas- 
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ic flagella rotating in a viscous fluid. For this purpose, our numer- 

cal approach combined DER, RSS, and a contact model. We first 

tudied the mechanical response of a single helical rod undergo- 

ng rotation in a low Reynolds environment, and compared the re- 

ults against the experimentally validated fluid-structure interac- 

ion model, LSBT. The relative ≤ 5% error between the critical buck- 

ing angular velocity computed from LSBT and the one obtained by 

SS indicates the accuracy of the numerical method coupling DER 

nd RSS. Empowered by this simulation tool, we next investigated 

he dynamics between two rotating soft filaments side-by-side in 

 viscous fluid. Two rotating helical rods attract each other and be- 

ome closer because of the coupling flow field generated by each 

ther; and the crossing behavior is related to their initial distance 

nd rotating frequency. The propulsive force, on the other hand, 

hows a decreasing tendency as two flagella are brought closer to 

ne another. In order to realize the importance of the helical ge- 

metry in the propulsion of natural bacterial flagella, the simula- 

ion tool was then employed to sweep through parameter space 

long two geometric parameters (helix pitch and radius), for quan- 

ification of the bundling behavior and the critical rotating velocity 

or crossing. Our findings are scale invariant and can be applied to 

acterial propulsion at micron-scale as long as the dimensionless 

roups (e.g. Reynolds number, normalized angular velocity, nor- 

alized helical pitch, and so on) are maintained. The results on 

he effect of angular velocity and geometry on the bundling be- 

avior and propulsive force are, therefore, potentially relevant to 

agellated bacteria. 

The significant effect of flagellum geometry, flexibility, and the 

nteraction in viscous fluid poses a nontrivial design space for 

oth nature and engineering. This might have potential applica- 

ion in controlling the swimming speed and direction in multi- 

agellated microorganisms. Our findings may also provide guide- 

ines for the design of laboratory experiments on bacterial propul- 

ion and biomimetic soft robots. Since we avoid the numerical dis- 

ontinuity in previous long-range hydrodynamic force model, LSBT, 

ur framework can be directly applied for the simulations of bac- 

erial system with more than one flagellum. The sparse space dis- 

retization of RSS shows a better computational efficiency than 

SBT, and this fast numerical framework can be treated as a data 

enerator by sweeping the essential geometric and physical param- 

ters, for a better understanding of biophysics in natural environ- 

ent, and can also be potentially used for the optimized design 

nd online control of multi-flagellated soft robots. We hope that 

ur numerical investigations can motivate a fundamental under- 

tanding of the biophysics of microorganisms, as well as support 

odeling, design, and control of functional soft robots. 
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ppendix A. Flagellar bundling simulation process 

In Algorithm 1 , we provide a pseudo code of flagellar bundling 

imulation. 

ppendix B. Convergence Study 

In this Appendix, we present a convergence study with both 

ime and space discretization for the coupling framework between 

ER and RSS. In Fig. B.10 (a), we show the relationship between 

he normalized height, l̄ , and the normalized angular velocity ω̄ , 

t different values of number of vertices, N ∈ { 43 , 65 , 81 } , with

 fixed time step size, h = 1 ms. In the simulations presented in 

ig. B.10 (a), we kept the regularization parameter fixed at ε = 

 . 02 r 0 . According to RSS theory, this parameter ε may vary be-

ween 1 . 01 r 0 to 1 . 04 r 0 as N is changed. However, the effect of 3%

ariation in ε has negligible effect on the simulation results. 

We use a similar plot in Fig. B.10 (b) to show the convergence 

ith time discretization for this numerical framework, at N = 65 . 

he simulation results remain the same when the time step size, 

 , is varied from 1 e −3 to 1 e −4 . 

ppendix C. Comparison between LSBT and RSS 

We briefly review the Lighthill Slender Body Theory (LSBT) and 

ompare with Regularized Stokeslets Segments (RSS) method in 

his section. 

LSBT assumes a series of Stokeslets and dipoles along the cen- 

erline of rod, and build a relationship between the velocity field 

ontributed by flagellum with the hydrodynamic force applied on 

t. The continuous formulation of LSBT is [38,43,45] 

 (s ) = 

f ⊥ (s ) 
4 πμ

+ 

∫ 
| r (s ′ ,s ) | >δ

f (s ′ ) · J (r ) ds ′ , (C.1)

here s is the arclength parameter of the rod, f ⊥ (s ) = 

 (s ) [ I − t (s ) � t (s ) ] is the component of f (s ) in the plane perpen-

icular to the tangent t (s ) , r (s ′ , s ) is the position vector from s ′ to
 , δ = r 0 

√ 

e / 2 ( r 0 is the rod radius and e is the Napier’s constant),

nd J (r ) = 
1 

8 πμ ( I | r | + 
rr T 

| r | 3 ) is the Oseen tensor. 
We then use a discrete version of Eq. (C.1) to relate the velocity 

 (q ) at node q with the force f (p) on node p, [38,43,45] 

 (q ) = 

f ⊥ (q ) 
4 πμ�

+ 

N−1 ∑ 

p=0 ,p� = q 

1 

8 πμ| r | 
[

I + 

rr T 

| r | 2 
]
f (p) , (C.2) 

here � = 2 δ is the edge length in the discrete rod. This rela- 

ionship between forces and velocities is similar to Regularized 

tokeslets Segments theory, and can be written as a linear system 

f size 3 N, 

 = A F . (C.3) 

ote that for the specific helix discussed in this paper (axis length 

 0 = 0 . 2 m, helical pitch λ = 5 cm, helical radius R = 1 cm, arclength

 = 0 . 32 m, and rod radius r 0 = 1 mm), edge length should be � =
 . 65 mm, resulting into N = 195 nodes. 

In Fig. C.11 (a), we plot the normalized height, l̄ , as a function of 

ormalized rotating velocity ω̄ , with two different fluid-structure 

nteraction models: LSBT and RSS. The critical angular velocity ob- 

ained by LSBT is ω̄ 
LSBT 
b 

≈ 660 , and the one achieved by RSS is 

¯  RSS 
b 

≈ 675 , with relative error less than 5% . 

Regarding computational efficiency, note that the size of each 

dge is fixed at � in LSBT. If the rod too slender (i.e. ratio be- 

ween the total arclength and cross-sectional radius is large), we 

ould require too many vertices and, consequently, a longer com- 

utational time. On the other hand, RSS allows more aggressive 

iscretization (i.e. lower number of nodes). In Fig. C.11 (b), we show 
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Fig. B.10. Convergence study for (a) space discretization and (b) time discretization. 
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he computational time, normalized by the wall-clock time, as 

 function of time step size, h , for both RSS ( N = 65 ) and LSBT

 N = 195 ) method. The simulations ran on a single thread of AMD

yzen 1950X CPU @ 3.4 GHz. Even though the node number of 

SBT is only three times larger than RSS, the computational time 

f LSBT is almost 30 times slower than the time performed by RSS. 

his is rooted in the computational time of solving the dense lin- 

ar system in Eq. (15) and Eq. (C.3) . On the other side, the com-

utational time for Fig. 1 is approximately 8 times larger than the 

all-clock time when the time step size is set to be h = 1 ms. 

ppendix D. Validation of DER-RSS method 

In this section, we compare the DER-RSS framework against 

revious experimental data. The experimental data is available in 

ig. 4 (b) and (c) of Ref. [38] . The physical parameters used in the

umerical approach are: Young’s modulus E = 1 . 255 MPa, fluid vis- 

osity is μ = 1 . 6 Pa · s, rod radius r 0 = 1 . 58 mm, helical axis length

 0 = 20 . 00 cm, helical pitch λ = 5 . 00 cm, helical radius R = 1 . 59 cm,

hich are identical to the experimental setup in Ref. [38] . In 

ig. D.12 (a) and (b), we plot the dependence of critical buckling 

ngular velocity, ω̄ b , on helical pitch and helical radius. Excellent 

greements between the DER-RSS algorithm and experimental data 

ndicate the correctness and accuracy of present numerical frame- 

ork. 
ig. C.11. (a) Normalized height l̄ as a function of normalized angular velocity ω̄ for LS

unction of time step size h for LSBT and RSS. 
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ppendix E. Video 

We provide a video corresponding to Fig. 1 of the main 

anuscript as supplementary material. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.compfluid.2021. 

05038 . 
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Algorithm 1 Flagellar bundling simulation. 

Input: k ← 0 , t k ← 0 . 0 s, N, r 0 , l ∈ { 1 , 2 } , q (l) (t k ) , ˙ q (l) (t k ) , ω, h , T , 

tol 

while t k ≤ T do 

t k +1 = t k + h 

for l = 1 to l = 2 do (
θ0 

)(l) ← 

(
θ0 

)(l) + hω

(F c ) (l) ← 0 

end for 

Calculate A 
(11) , A 

(12) , A 
(21) , and A 

(22) from Eq. (14) 

Calculate (F h ) (1) and (F h ) (2) from Eqs. (21) and (16) 

solved ← 0 

while solved == 0 do 

for l = 1 to l = 2 do 

n ← 0 

Guess q (l) n (t k +1 ) = q (l) (t k ) + h ̇ q (l) (t k ) 

error ← 10 × tol 

while error > tol do 

Compute E (l) n in Eq. (22) and J (l) n in Eq. (23) 

q (l) 
n +1 

(t k +1 ) = q (l) n (t k +1 ) − J 
(l) 
n \ E (l) n 

n ← n + 1 

tol = | E (l) n | 
end while 

end for 

solved ← 1 

for i = 0 to i = N − 2 do 

for j = 0 to j = N − 2 do 

Compute δmin 
i, j 

from Eq. (19) 

if δmin 
i, j 

< 2 r 0 then 

Compute (F c 
i 
) (1) , (F c 

i +1 
) (1) , (F c 

j 
) (2) , and (F c 

j+1 
) (2) 

from Eq. (20) 

solved ← 0 

end if 

end for 

end for 

end while 

k ← k + 1 

end while 

 

 

 

 

 

 

[  

[  

[  

[  

[  

[

[  

[

[  

[

[

[  

[

[  

[

[

[

[  

[  

[  
[11] Cisneros LH , Kessler JO , Ortiz R , Cortez R , Bees MA . Unexpected bipolar flag-

ellar arrangements and long-range flows driven by bacteria near solid bound- 
aries. Phys Rev Lett 2008;101(16):168102 . 

[12] Brown MT , Steel BC , Silvestrin C , Wilkinson DA , Delalez NJ , Lumb CN ,
et al. Flagellar hook flexibility is essential for bundle formation in swimming 

escherichia coli cells. J Bacteriol 2012;194(13):3495–501 . 
12 
[13] Hyon Y , Powers TR , Stocker R , Fu HC , et al. The wiggling trajectories of bacte-
ria. J Fluid Mech 2012;705:58–76 . 

[14] Reigh SY , Winkler RG , Gompper G . Synchronization and bundling of anchored 

bacterial flagella. Soft Matter 2012;8(16):4363–72 . 
[15] Maniyeri R , Kang S . Numerical study on bacterial flagellar bundling and tum- 

bling in a viscous fluid using an immersed boundary method. Appl Math 
Model 2014;38(14):3567–90 . 

[16] Hintsche M , Waljor V , Großmann R , Kühn MJ , Thormann KM , Peruani F , et al. A
polar bundle of flagella can drive bacterial swimming by pushing, pulling, or 

coiling around the cell body. Sci Rep 2017;7(1):16771 . 

[17] Nguyen FT , Graham MD . Impacts of multiflagellarity on stability and speed of 
bacterial locomotion. Phys Rev E 2018;98(4):042419 . 

[18] Constantino MA , Jabbarzadeh M , Fu HC , Shen Z , Fox JG , Haesebrouck F ,
et al. Bipolar lophotrichous Helicobacter suis combine extended and wrapped 

flagella bundles to exhibit multiple modes of motility. Sci Rep 2018;8(1):14415 . 
[19] Man Y , Page W , Poole RJ , Lauga E . Bundling of elastic filaments induced by

hydrodynamic interactions. Phys Rev Fluids 2017;2(12):123101 . 

20] Lee W , Kim Y , Griffith BE , Lim S . Bacterial flagellar bundling and unbundling
via polymorphic transformations. Phys Rev E 2018;98(5):052405 . 

21] Kim M , Bird JC , Parys AJV , Breuer KS , Powers TR . A macroscopic scale model
of bacterial flagellar bundling. Proc Natl Acad Sci 20 03;10 0(26):15481–5 . 

22] Turner L , Ryu WS , Berg HC . Real-time imaging of fluorescent flagellar fila-
ments. J Bacteriol 20 0 0;182(10):2793–801 . 

23] Kudo S , Imai N , Nishitoba M , Sugiyama S , Magariyama Y . Asymmetric swim-

ming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Mi- 
crobiol Lett 2005;242(2):221–5 . 

24] Fujii M , Shibata S , Aizawa SI . Polar, peritrichous, and lateral flagella belong to
three distinguishable flagellar families. J Mol Biol 2008;379(2):273–83 . 

25] Cortez R . The method of regularized stokeslets. SIAM J Sci Comput 
2001;23(4):1204–25 . 

26] Kim M , Powers TR . Deformation of a helical filament by flow and electric or
magnetic fields. Phys Rev E 2005;71(2):021914 . 

27] Ramia M , Tullock D , Phan-Thien N . The role of hydrodynamic interaction in 

the locomotion of microorganisms. Biophys J 1993;65(2):755–78 . 
28] Berke AP , Turner L , Berg HC , Lauga E . Hydrodynamic attraction of swimming

microorganisms by surfaces. Phys Rev Lett 2008;101(3):038102 . 
29] Spagnolie SE , Lauga E . Hydrodynamics of self-propulsion near a bound- 

ary: predictions and accuracy of far-field approximations. J Fluid Mech 
2012;700:105–47 . 

30] Lopez D , Lauga E . Dynamics of swimming bacteria at complex interfaces. Phys 

Fluids 2014;26(7):400–12 . 
[31] Kirchhoff G . Uber das gleichgewicht und die bewegung eines unendlich dun- 

nen elastischen stabes. J reine angew Math 1859;56:285–313 . 
32] Gray J , Hancock G . The propulsion of sea-urchin spermatozoa. J Exp Biol

1955;32(4):802–14 . 
33] Lighthill J . Flagellar hydrodynamics. SIAM Rev 1976;18(2):161–230 . 

34] Rodenborn B , Chen CH , Swinney HL , Liu B , Zhang H . Propulsion of microorgan-

isms by a helical flagellum. Proc Natl Acad Sci 2013;110(5):E338–47 . 
35] Hancock G . The self-propulsion of microscopic organisms through liquids. Proc 

R Soc London Ser A 1953;217(1128):96–121 . 
36] Higdon JJ . The hydrodynamics of flagellar propulsion: helical waves. J Fluid 

Mech 1979;94(2):331–51 . 
37] Johnson RE . An improved slender-body theory for stokes flow. J Fluid Mech 

1980;99(2):411–31 . 

38] Jawed MK , Khouri NK , Da F , Grinspun E , Reis PM . Propulsion and insta-
bility of a flexible helical rod rotating in a viscous fluid. Phys Rev Lett 

2015;115(16):168101 . 
39] Bergou M , Wardetzky M , Robinson S , Audoly B , Grinspun E . Discrete elastic

rods. ACM Trans Graphics (TOG) 2008;27(3):63 . 
40] Bergou M , Audoly B , Vouga E , Wardetzky M , Grinspun E . Discrete viscous

threads. In: ACM transactions on graphics (TOG), vol. 29. ACM; 2010. p. 116 . 

http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0011
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0012
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0014
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0014
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0014
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0014
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0015
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0015
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0015
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0016
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0017
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0017
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0017
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0018
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0021
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0022
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0022
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0022
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0022
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0023
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0024
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0024
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0024
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0024
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0025
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0025
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0026
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0026
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0026
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0027
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0027
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0027
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0027
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0028
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0028
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0028
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0028
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0028
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0029
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0029
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0029
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0030
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0030
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0030
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0031
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0031
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0032
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0032
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0032
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0033
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0033
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0034
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0035
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0035
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0036
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0036
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0037
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0037
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0038
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0039
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0040


W. Huang and M. Khalid Jawed Computers and Fluids 228 (2021) 105038 

 

[  

[  

[

[

[

[  

[  

[  

[

[

[  

[  

[  

[

[

[  

[

[

[  

[  

[

[

[

[  

[  

[  

[

[

[41] Jawed MK , Novelia A , O’Reilly OM . A primer on the kinematics of discrete elas-
tic rods. Springer; 2018 . 

42] Jawed MK , Reis PM . Deformation of a soft helical filament in an axial flow at
low Reynolds number. Soft Matter 2016;12(6):1898–905 . 

43] Jawed M , Reis PM . Dynamics of a flexible helical filament rotating in a viscous
fluid near a rigid boundary. Phys Rev Fluids 2017;2(3):034101 . 

44] Forghani M., Huang W., Jawed M.K.. Control of uniflagellar soft robots at low 

Reynolds number using buckling instability. 2018 arXiv preprint arXiv:1810. 

03113 . 

45] Huang W , Jawed M . Numerical exploration on buckling instability for direc- 
tional control in flagellar propulsion. Soft Matter 2020 . 

46] Yamamoto S , Matsuoka T . Dynamic simulation of fiber suspensions in shear 
flow. J Chem Phys 1995;102(5):2254–60 . 

[47] Moreau C , Giraldi L , Gadêlha H . The asymptotic coarse-graining for- 
mulation of slender-rods, bio-filaments and flagella. J R Soc Interface 

2018;15(144):20180235 . 

48] Cortez R , Fauci L , Medovikov A . The method of regularized Stokeslets in three
dimensions: analysis, validation, and application to helical swimming. Phys 

Fluids 2005;17(3):031504 . 
49] Smith D , Gaffney E , Blake J . Discrete cilia modelling with singularity distribu-

tions: application to the embryonic node and the airway surface liquid. Bull 
Math Biol 2007;69(5):1477–510 . 

50] Olson SD , Lim S , Cortez R . Modeling the dynamics of an elastic rod with in-

trinsic curvature and twist using a regularized stokes formulation. J Comput 
Phys 2013;238:169–87 . 

[51] Cortez R . Regularized Stokeslet segments. J Comput Phys 2018;375:783–96 . 
52] Peskin CS . The immersed boundary method. Acta Numer 2002;11:479–517 . 

53] Fauci LJ , Peskin CS . A computational model of aquatic animal locomotion. J 
Comput Phys 1988;77(1):85–108 . 

54] Stockie JM , Green SI . Simulating the motion of flexible pulp fibres using the

immersed boundary method. J Comput Phys 1998;147(1):147–65 . 
55] Lim S , Ferent A , Wang XS , Peskin CS . Dynamics of a closed rod with twist and

bend in fluid. SIAM J Sci Comput 2008;31(1):273–302 . 
56] Lim S . Dynamics of an open elastic rod with intrinsic curvature and twist in a

viscous fluid. Phys Fluids 2010;22(2):024104 . 
57] Wiens JK , Stockie JM . Simulating flexible fiber suspensions using a scalable im- 

mersed boundary algorithm. Comput Methods Appl Mech Eng 2015;290:1–18 . 
13 
58] Macnab RM . Bacterial flagella rotating in bundles: a study in helical geometry. 
Proc Natl Acad Sci 1977;74(1):221–5 . 

59] Renda F , Giorgio-Serchi F , Boyer F , Laschi C , Dias J , Seneviratne L . A multi-
-soft-body dynamic model for underwater soft robots. In: Robotics research. 

Springer; 2018. p. 143–60 . 
60] Kanehl P , Ishikawa T . Fluid mechanics of swimming bacteria with multiple 

flagella. Phys Rev E 2014;89(4):042704 . 
61] Spillmann J , Teschner M . An adaptive contact model for the robust simulation 

of knots. In: Computer graphics forum, vol. 27. Wiley Online Library; 2008. 

p. 497–506 . 
62] Choe B , Choi MG , Ko HS . Simulating complex hair with robust collision han-

dling. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium 

on computer animation. ACM; 2005. p. 153–60 . 

63] Gissler M , Becker M , Teschner M . Local constraint methods for deformable ob-
jects. In: VRIPHYS; 2006. p. 25–32 . 

64] Spillmann J., Becker M., Teschner M.. Non-iterative computation of contact 

forces for deformable objects. 2007. 
65] Blake J , Chwang A . Fundamental singularities of viscous flow. J Eng Math 

1974;8(1):23–9 . 
66] Ericson C . Real-time collision detection. CRC Press; 2004 . 

67] Kaufman DM , Tamstorf R , Smith B , Aubry J-M , Grinspun E . Adaptive nonlin-
earity for collisions in complex rod assemblies. ACM Trans Graphics (TOG) 

2014;33(4):1–12 . 

68] Cai P , Indhumathi C , Cai Y , Zheng J , Gong Y , Lim TS , Wong P . Collision de-
tection using axis aligned bounding boxes. In: Simulations, serious games and 

their applications. Springer; 2014. p. 1–14 . 
69] Redon S , Kheddar A , Coquillart S . Gauss’ least constraints principle and rigid

body simulations. In: Proceedings 2002 IEEE international conference on 
robotics and automation (Cat. No. 02CH37292), vol. 1. IEEE; 2002. p. 517–22 . 

70] Brochu T , Edwards E , Bridson R . Efficient geometrically exact continuous colli- 

sion detection. ACM Trans Graphics (TOG) 2012;31(4):1–7 . 
[71] Masoud H , Stone HA . The reciprocal theorem in fluid dynamics and transport 

phenomena. J Fluid Mech 2019;879 . 
72] Silverman M , Simon MI . Bacterial flagella. Annu Rev Microbiol 

1977;31(1):397–419 . 

http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0041
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0041
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0041
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0041
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0042
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0042
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0042
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0043
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0043
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0043
http://arxiv.org/abs/1810.03113
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0045
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0045
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0045
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0046
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0046
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0046
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0047
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0047
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0047
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0047
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0048
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0048
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0048
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0048
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0049
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0049
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0049
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0049
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0050
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0050
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0050
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0050
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0051
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0051
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0052
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0052
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0053
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0053
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0053
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0054
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0054
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0054
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0055
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0055
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0055
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0055
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0055
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0056
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0056
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0057
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0057
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0057
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0058
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0058
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0059
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0060
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0060
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0060
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0061
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0061
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0061
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0062
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0062
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0062
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0062
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0063
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0063
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0063
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0063
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0065
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0065
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0065
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0066
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0066
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0067
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0068
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0069
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0069
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0069
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0069
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0070
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0070
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0070
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0070
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0071
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0071
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0071
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0072
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0072
http://refhub.elsevier.com/S0045-7930(21)00202-4/sbref0072

	Numerical simulation of bundling of helical elastic rods in a viscous fluid
	1 Introduction
	2 Numerical model
	2.1 Discrete elastic rods method
	2.2 Regularized stokeslet segments method
	2.3 Contact model
	2.4 Numerical framework

	3 Flagellar buckling instability
	4 Flagellar bundling
	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Flagellar bundling simulation process
	Appendix B Convergence Study
	Appendix C Comparison between LSBT and RSS
	Appendix D Validation of DER-RSS method
	Appendix E Video
	Supplementary material
	References


