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Abstract— A wide range of microorganisms, e.g. bacteria,
propel themselves by rotation of soft helical tails, also known
as flagella. Due to the small size of these organisms, viscous
forces overwhelm inertial effects and the flow is at low Reynolds
number. In this fluid-structure problem, a competition between
elastic forces and hydrodynamic (viscous) forces leads to a net
propulsive force forward. A thorough understanding of this
highly coupled fluid-structure interaction problem can not only
help us better understand biological propulsion but also help
us design bio-inspired functional robots with applications in
oil spill cleanup, water quality monitoring, and infrastructure
inspection. Here, we introduce arguably the simplest soft robot
with a single binary control signal, which is capable of moving
along an arbitrary 2D trajectory near air-fluid interface and
at the interface between two fluids. The robot exploits the
variation in viscosity to move along the prescribed trajectory.
Our analysis of this newly introduced soft robot consists of three
main components. First, we fabricate this simple robot and use
it as an experimental testbed. Second, a discrete differential
geometry-based modeling framework is used for simulation of
the robot. Upon validation of the simulation tool, the third
part of this study employs the simulations to develop a control
scheme with a single binary input to make the robot follow any
prescribed path.

I. INTRODUCTION

Inspired by the inherent structural compliance of living
creatures, soft swimming robots are designed to be lifelike
and better emulate the movement of creatures in nature.
Such soft robots often exploit structural deformation for
functionality. Propulsion of bacteria by rotation of flexible
tail-like flagella [1] is a source of inspiration for soft robot
design. Flagella-propelled bacteria have been cited to be
the “most efficient machines in the universe” [2] as they
can swim at speeds up to tens of body lengths per second.
Interestingly, large deformation and buckling in flagella can
be used to control the swimming direction of bacteria [3]. In
this paper, we adopt this paradigm of using deformation for
functionality in soft structures.

The typical fluid flow around a swimming bacterium is of
low Reynolds number, around 10−4, where the viscous force
dominates the inertial counterpart owing to the small size of
bacterial cells. Scallop theorem [4] establishes that a motion
invariant under time reversal cannot achieve net propulsion
in this regime. Flagellar propulsion is a mechanism that
overcomes this barrier. A flagellar bacterium consists of a
cell body and one or more flagella; a rotary motor generates
relative rotation between the cell body and the flagella. This
rotation creates a net propulsive force forward. Typically,
bacterial flagella are helical and their propulsion has been
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extensively studied [5]. In these studies, the viscosity and
density of the fluid medium are usually assumed to be
constant. However, in practice, such ideal fluid medium is
not feasible. Near the boundary between fluid and air (or at
the interface between two immiscible fluids), viscosity and
density both vary spatially. We will show that this variation
in viscosity can be exploited to build a very simple robot
(composed of naturally straight flagella) that is capable
of following any prescribed trajectory near the boundary.
Fig. 1 shows snapshots of the robot moving along a triangular
trajectory. This simple low-cost robot with a single binary
control input can have applications in ocean oil spill cleanup,
water quality monitoring, and pipe inspection. Interestingly,
it has been reported that the motion of flagellated bacteria
near air-liquid interface is circular [6]. If the angular velocity
of the motor is constant in the robot introduced in this study,
its trajectory is also circular.

v
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t = 0st = 90st = 160s
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Fig. 1. Snapshots of the robot (top view) moving along a triangular
trajectory. Number of tails N = 4; tail length l = 11 cm; angular velocity
of tail and head is 80.33 and 63.33rpm, respectively. The sign of the angular
velocity is flipped at specific timepoints to achieve the triangular trajectory.
Trajectory design is discussed in Section IV.

Due to the simplicity of the robot, it is amenable to
miniaturization. A variety of robots have been developed
in microscale for propulsion in marine environments. Mi-
croscale mobile robot fabrication, such as artificial bacterial
flagella [7], [8], is restricted by the key bottleneck: miniatur-
ization of power source and onboard actuation. The corre-
sponding control strategies are often dependent on external
magnetic field. While our prototype robot is centimeter-sized,
we use a viscous fluid medium (glycerin) to maintain low
Reynolds number. The findings are mostly presented in non-
dimensional form and do not depend on the size of the
system (as long as the Reynolds number is low). In the future,
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the simplicity of the proposed robot design can be exploited
to develop untethered autonomous micro-robots.

In this work, we develop an economical centimeter-scale,
simple-to-assemble, and self-contained robot comprised of a
cylindrical head and a rotating disk containing two or more
soft polymeric tails, actuated by the motor within the head.
The motor generates a relative rotation between the head
and the tails; therefore, the robot head and tails rotate in
opposite directions. The magnitude of the angular velocities
are determined by the torque balance of the system. The rota-
tion leads to hydrodynamic (viscous) forces on the soft tails
leading to elastic deformation; this deformation generates a
net propulsive force that is used by the robot to translate in
fluid. If the robot is in an infinite fluid bath, the direction
of motion is parallel to the axis of the cylindrical head.
However, in practice, such fluid bath with uniform viscosity
and density is not practical. We exploit this variation and
the robot (under constant angular velocity) moves along a
line that is slanted with the axis of the head. Depending on
the sign of the angular velocity, the robot moves clockwise
or anti-clockwise along a circle. By periodically switching
the sign of the angular velocity, the robot achieves a net
translation along a straight line. We show that the robot can
move along a straight line simply by switching the angular
velocity; a constant angular velocity lets the robot make
a turn. A simple control law is designed where the robot
approximates a prescribed trajectory by a piece-wise linear
function. To understand the physical principles, a simulation
tool is developed where the structure is modelled using the
Discrete Elastic Rods (DER) algorithm [9], [10] and the
fluid forces are implemented using Resistive Force Theory
(RFT) [11]. We show that elementary physics can be used
to explain the propulsion mechanism of this robot.

Our contributions are as follows. We introduce a simple
untethered soft robot that exploits variation in viscosity and
elastic deformation in its tails to follow a pre-planned tra-
jectory. A complete framework comprising of experiments,
simulations, and controls is described to study the flagellated
robot. The simulation tool is faster than real-time on a
contemporary computer and can be used to generate data
to formulate a control strategy. The physics behind the
locomotion is elaborated. The simplicity of the robot and
the small number of moving parts can eventually lead to
miniaturization of this robot.

The remainder of the paper is organized as follows. We
provide details on experiments and simulations in Section II.
In Section III, we list the relevant physical parameters that
affect the motion of the robot. Next, a simple control scheme
that needs a single binary input for the robot to pursue
the desired motion path is given in Section IV. Eventually,
Section V concludes the paper.

II. METHODS

A. Robot design and experimental setup

Glycerin with a density of 1.26 g/mL and viscosity µ0 =
1.49 Pa-s at 25◦C is selected as the fluid medium. The
density of our lightweight and compact robot is slightly less

5mm

5mm5mm

5mm

(a)

(b)

(c) (d)

(e)

Fig. 2. Compositive view of the experimental setup. (a) The robot with
n = 4 tails in glycerin (top view). The head is comprised of (b) a DC
geared motor, (c) a battery, (d) a 3D printed circular disc connecting the
tails to the rotating motor shaft, and (e) a microcontroller to control the
rotational speed of the motor.

than that of glycerin and it remains submerged near the air-
fluid boundary. The robot in Fig. 2 is comprised of a head,
multiple elastic tails, and a 3D-printed plate attached to the
motor shaft to hold these tails. The robot head is a cylinder
with a radius of 1.6cm and height of 6cm, which contains
inside (b) one DC geared motor (uxcell) with 3V nominal
voltage, 0.35W nominal power and 0.55A stall current (c)
one 3.7V 200mAh rechargeable 502025 LiPo batteries, and
(e) a 5V, 16MHz adafruit pro trinket. The motor is embedded
inside the head with its shaft protruding out, and its rotation
direction and speed are controlled by changing the PWM
value in the program running in the trinket. The radius of
the cylindrical head is R = 1.6cm. Some copper wires are
attached to the outer surface of the robot head to make it
balanced horizontally. During all experiments, the robot’s
tails are fully submerged in glycerin while 30% of the
head is exposed to the air. In order to count the rotation
speed of robot’s head and tails clearly and conveniently,
we stick a colored marker on one side of the robot’s head
and one of its tails. A digital camera (Nikon D3400) is
used to record the robot’s movement from the bird’s eye
view with its lens facing right down. The tails are made
from Vinyl Polysiloxane using well established molding and
casting techniques [12]. The Young’s modulus is E = 1.2
MPa [12] and cross-sectional radius is r0 = 3.2 mm. Since
the material is near incompressible (Poisson ratio ν ≈ 0.5),
the shear modulus is G = E/3. In order to generate enough
of experimental data for parameter fitting in simulations, we
vary the number of tails, N = 2, 3, 4, 5, and the length of
tails, l = 5, 7, 9, 11, 13, 15 cm, with a DC geared motor
mentioned above actuating the tails with a rated angular
velocity of 150 rpm. Note that the actual angular velocity
of the motor varies depending on the number of tails and is
not necessarily 150 rpm, which ensures a Reynolds number
<10−1.

B. Experiment trials

Images are extracted from the recorded experimental
videos for data processing. Fig. 3(a) shows the trajectories
of the tip of the robot head and the tip of a tail for a constant
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Fig. 3. (a) Circular movement of the robot in glycerin. (b) Trajectories of the robot head (solid and dashed circles) when the robot starts from the same
place but with different signs of the angular velocity of the motor.

value of angular velocity of the motor (ω = 143.66 rpm).
The rotation directions of the robot head and tails around the
long axis (i.e. axis of the cylindrical head) are opposite, as the
system is untethered and torque-balanced. If the magnitude
of the angular velocities of the head and the tail are ωh and
ωt, respectively, and the angular velocity of the motor is
ω, then |ωh|+ |ωt| = |ω|. The torque on the robot’s head is
balanced by the torque on the tails. As illustrated in Fig. 3(a),
we also find that the whole robot circles around the vertical
axis that is perpendicular to the air-fluid interface (y-axis in
Fig. 5(a)) when its motor rotates unidirectionally, clockwise
or counterclockwise. The open circle are the trajectory of the
tip of robot tails; these points are fitted to the solid circle with
the cross sign as the center. Similarly, the dashed circle is
the circle fit to the trajectory of the tip of the robot head
with the cross sign as the center.

Next, when we flip the sign of the angular velocity of
the motor from the same initial orientation, the robot turns
to circle around the vertical axis in the opposite direction.
Specifically, as shown in Fig. 3(b), the solid and dashed
circles are the trajectories of the robot head when the whole
robot circles clockwise and counterclockwise (about the
vertical y-axis), respectively. In both the cases, the initial
orientation is along the dash-dot line. These two circles have
the same radius but do not coincide with each other. To
understand this, note that the angle, θ, between the long axis
of the robot (dashed line in Fig. 3(b)) and the tangential
direction of the circular trajectory is not 90◦. As a result,
if the tip of the robot’s head starts to rotate from point A
and rotates counterclockwise along curve AB first and then
rotates along curve BC after flipping the rotation direction
of the motor, the robot will move forward and generate
a translational movement. The net translation is the line
segment AC. In summary, periodically switching the angular
velocity ω of the robot between positive and negative values
(keeping the same magnitude) results in a net straight-line
trajectory. If the angular velocity of the robot about y-axis
is ωyr, the robot will make a turn by an angle α if the
motor’s angular velocity is maintained at ω for a period of
α/ωyr. Note that ωyr is a function of various geometric,

material, and fluid parameters (See Section III). This is
where a comprehensive simulation tool and a physics-based
understanding, to be discussed in the next section, can guide
us to develop a control law.

C. Numerical Simulation
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Fig. 4. (a) Discrete representation of the soft robot. (b) Three nodes, two
edges, and the associated reference and material frames.

We develop a numerical simulation based on the Discrete
Elastic Rods (DER) method; a tutorial exposition to DER
can be found in Ref. [10]. In DER, the robot is discretized
into n nodes, as shown in Fig. 4(a). There are three nodes
(x0,x1, and x2) on the head and equal number of nodes on
each tail (for illustration purposes, only one leg is shown
in Fig. 4(a)). It is necessary to have three nodes on the
head to model actuation using a natural twist that varies
with time (more on this later in this section). Two adjacent
nodes, xk and xk+1, are connected by an edge, ek =
xk+1 − xk. Each edge is associated with an orthonormal
reference frame, {tk,dk1 ,dk2}, and an orthonormal material
frame, {tk,mk

1 ,m
k
2}. Both of these frames are adapted, i.e.

the first director tk is the unit vector along the edge ek. The
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Fig. 5. (a) Schematic showing drag dF on the cylindrical head when the head is rotating along its long axis (z-axis). (b) Normalized viscosity as a
function of normalized vertical coordinate y

R
.

simulation moves forward with time taking small steps of ∆t.
During the simulation loop, the reference frame is updated
through parallel transport in time. We omit the details of
time parallel transport; Ref. [10] includes a pedagogical
introduction to this method. Since the material frame shares
a common director tk with the reference frame, only a scalar
angle θk (see Fig.4(b)) is necessary to describe the material
frame. The degrees of freedom (DOF) vector of the robot
is then q =

[
x0,x1, . . . ,xn−1, θ

0, θ1, . . . , θm−1
]
, where n

is the number of nodes and m is the number of edges. The
total number of DOF is ndof = 3n+m.

The core of the simulation is a solver (integrator) of
following equations of motion.

miq̈i = F ei + Fhi , (1)

where mi is the lumped mass at the i-th DOF, qi is the
i-th element of the DOF vector, F ei is the i-th element
of the ndof-sized elastic force vector Fe, and Fhi is the
i-th element of the ndof-sized external (hydrodynamic)
force vector Fh. Hereafter, dot ˙( ) represents derivative with
respect to time.

First, we describe the elastic forces. The elastic energy is
composed of three modes: stretching, bending, and twisting.
Each component is given by

Esk =
1

2
EA

(
xk+1 − xk

ēk
− 1

)2

|ēk|

Ebk =
1

2
EI(|κk − κ0k|)2

1

lk

Etk =
1

2
GJ(|τk − τ0k |)2

1

lk

(2)

where EA = Eπr20 , EI = πEr40/4, GJ = πGr40/2, |ēk|
is the length of edge ek in the undeformed state, κk is the
curvature vector at node xk (related to the turning angle φk
in Fig. 4(b)) while κ0k is the undeformed curvature for the
same node, τk is the integrated twist (related to θk+1 − θk
in Fig. 4(b)) while τ0k represents the natural twist at node
xk, and lk = (|ēk−1| + |ēk|)/2 is the Voronoi length of
the node in undeformed state. The total elastic energy is
Ee =

∑
k E

s
k +

∑
k E

b
k +

∑
Etk. The elastic force vector is

simply Fe = − ∂
∂qE

e.
It is important to note that the elastic stiffness parameters

are not the same throughout the rod. These parameters for
the soft tails are described in the previous section. However,
as the head and disc are rigid (OJC portion in Fig. 4(a)),
we set the values of EA,EI,GJ on this segment to be very
large so that no deformation takes place.

In order to mimic actuation by the motor rotating at an
angular velocity ω(t), we set the natural twist of the second
node (τ01 ) to be

τ01 (t) = ω(t). (3)

Next, we describe the formulation of the hydrodynamic
force (i.e. viscous drag) vector Fh.

Hydrodynamic force on robot head: The cylindrical
head with radius R is translating with a velocity ẋ1 and
rotating about its axis with an angular velocity of ωh ≡ θ̇0.
The hydrodynamic drag on a cylinder (external force on x1

in DER) can be decomposed into two parts:

F = Fv(ẋ1) + Fω(ωh), (4)

where Fv(ẋ1) and Fω(ωh) are the drag forces due to
translation and rotation, respectively. The former quantity is
a function of the translational velocity, ẋ1, of the head while
the latter is a function of the angular velocity, ωh.

Drag due to the translation on a sphere is given by Stokes’
law as

Fv = −6πµ0Rẋ1, (5)

where R is the radius of the spherical object and ẋ1 is the
velocity of the object relative to the fluid. Since the robot
head is cylindrical and there is no closed form expression
for drag on a cylinder, we use a numerical coefficient Ct (to
be evaluated through data fitting) to express the drag as

Fv = −Ct6πµ0R ẋ1. (6)

For the robot studied in this paper, the viscosity varies along
the vertical direction. Fig. 5(a) shows a schematic of the
head and x − y − z is the body fixed frame. The vertical
direction y is perpendicular to the air-fluid interface. This
interface where the viscosity changes rapidly from µ0 (fluid)
to 0 (air) is at y ∼ R. The fitting parameter Ct in Eq. 6 also
depends on the functional relationship between viscosity µ
and vertical position y.

Critical to the propulsion of this soft robot is the drag

475

Authorized licensed use limited to: UCLA Library. Downloaded on September 01,2021 at 04:14:57 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250 300
0

20

40

60

80

100

120(a) (b)

Norm. angular velocity of motor, Norm. angular velocity of motor, 

N
o
rm

. 
a
n
g
u
la

r 
v
el

o
ci

ty

N
o
rm

. 
a
n
g
u
la

r 
v
el

o
ci

ty

Exp Sim Exp Sim
ω̄h , N=3
ω̄h , N=4
ω̄yr , N=3
ω̄yr , N=4

ω̄h , N=2
ω̄h , N=5
ω̄yr , N=2
ω̄yr , N=5

Fig. 6. (a) Experimental and simulation data on ω̄h and ω̄yr as functions of the normalized angular velocity of the motor, ω̄, at two different values of
the number of tails (N = 3 and 4). This data are used to estimate Ct, Cr, Cyr . (b) Same data from experiments and simulations but with N = 2 and 5.
In simulations, the estimated values of Ct, Cr, Cyr from (a) were used.

force Fω originating from this variation in viscosity. The
viscosity µ is a function of the y-coordinate, i.e. µ = µ̂(y).
The specific functional form of µ does not matter as we will
be using fitting parameters. We pick the following expression
for viscosity,

µ = µ0
1

1 + exp
(
k
(
y−h
R

)) , (7)

where h is the location (close to the inter-medium boundary)
where glycerin starts to mix with air and k is the “sharpness”
of the transition from µ = µ0 to µ = 0. In Fig. 5, we used
h = 0.7R and k = 20. Note that Eq. 7 is an analytical
approximation to the Heaviside function.

Referring to Fig. 5, a small area element dA = Rdθdz on
the surface of the cylinder rotating at an angular velocity of
ωh (along the z-axis) is picked. The magnitude of the force
on this infinitesimal element is

dF ∼ µωh Rdθdz, (8)

with its direction along negative êθ, which is the unit vector
along the tangential direction. The force along the x axis is

dFx ∼ dF sin θ = µωh sin θ Rdθdz, (9)

and the force along the y axis is

dFy ∼ −dF cos θ = −µωh cos θ Rdθdz. (10)

The horizontal component (x axis) of the total force on
the cylinder with length L is obtained by integrating dFx;

Fx ∼
∫ L

z=0

∫ 2π

θ=0

µωh sin θ Rdθdz,

(11)
=⇒ Fx = −1.403µ0ωhRL. (12)

Since we do not know the exact form of µ = µ̂(y), a fitting
parameter Cyr is used and Eq. 12 can be reformulated as

Fx = −Cyrωhµ0RL. (13)

The vertical component (y axis) of the total force is

Fy ∼ −
∫ L

z=0

∫ 2π

θ=0

µωh cos θ Rdθdz = 0, (14)

i.e. there is no vertical hydrodynamic force.
In summary, the hydrodynamic drag on the head (applied

on the center of mass of the head) due to rotation (ωh) is

Fω(ωh) = −Cyrωhµ0RLêx. (15)

The hydrodynamic moment on the head (applied on the
first edge θ0 in DER) is

Fω = −Cr8πωhµ0R
3, (16)

where Cr is a numerical prefactor (fitting parameter in our
study). Note that if the head was spherical, we would have
Fω = −8πωhµ0R

3.
Hydrodynamic force on tails: The hydrodynamic force

on the nodes belonging to the soft tails is formulated using
RFT [11], [13]. The force on node xk (moving with velocity
ẋk) is

FRFT = −µ‖ (t · ẋk)tlk − µ⊥[ẋk − (t · ẋk)t]lk, (17)

where t is the tangent vector on node xk, lk is the Voronoi
length (described earlier), and µ‖ = 2πµ0/[log(l/r0) − 1

2 ]
and µ⊥ = 4πµ0/[log(l/r0)+ 1

2 ] are the RFT drag coefficients
along the tangential and perpendicular directions.

The expressions of the forces in Eqs. 4, 16, and 17 are
used to populate the external force vector Fh of size ndof.

Parameter fitting: As mentioned in Section II-B, the
tail length at each tail number varies from 5 − 15 cm in
experiments and we have 6 data-points for a specific tail
number. Now that the hydrodynamic forces on the robot
have been analyzed, there are three numerical prefactors (Ct,
Cr, and Cyr) that need to be obtained from data fitting.
Our fitting strategy is to take the experimental data for
N = 3 and N = 4 tails and find the set of parameters
(Ct, Cr, and Cyr) that result in the best match between
experiments and simulations. To evaluate the fitness of a
given set of parameters, we use the following metrics: (i)
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Fig. 7. (a) Prescribed circular trajectory (dashed line) and real path (solid line) viewed from top. (b) Prescribed rectangular path (dashed line) and the
real path of the robot (solid line). In (a) and (b), position has been normalized by tail length, l. Corresponding control signals (angular velocity) with time
for (a) circular and (b) square trajectories.

angular velocity of the head, ωh and (ii) angular velocity of
the robot around the vertical axis, ωyr. In the experiments,
we used the same motor with a full PWM value signal sent
by the microcontroller. As we vary the length of the tails, the
actual angular velocity of the motor, ω, changes. Fig. 6(a)
presents ωh and ωyr as functions of ω. All other parameters
(except l) are kept fixed.

The best fitting parameter set that realizes the smallest
error, 14.8%, between experimental and simulation results
in Fig. 6(a) is Ct = 4.0 ± 0.33, Cr = 2.06 ± 0.156, Cyr =
6.0± 0.5. After the application of this fitting parameter set,
the predicted simulation results for 2 and 5 tails turn out
to match well with experiments with a 10% error as shown
in Fig. 6(b). This agreement indicates that the physics of
this robot has been captured using the hydrodynamic model
presented earlier in this section.

III. PARAMETER SPACE

In this section, we list the relevant physical parameters
that affect the motion of the robot. Note that there is an
intrinsic time-scale [14] in this problem µl4/EI . We use this
time-scale to normalize various quantities (overbar represents
normalization), e.g. ω̄ = ωµl4/EI is normalized angular
velocity of the motor and t̄ = tEI/[µl4] is normalized time.
The set of physical parameters that describe the system is
{Ct, Cr, Cyr, l/R, L/R, l/r0, ω̄, N}; these are the inputs to
our simulation tool. The angular velocity is a function of
time. The simulation outputs the trajectory of the robot with

time. In the next section, we will address the inverse problem
where ω̄ has to be computed, given a prescribed trajectory.

The output of the simulation (i.e. trajectory of the robot)
when ω̄ is constant with time can be encapsulated with two
parameters: ω̄yr and Ryr/l, where Ryr is the radius of the
circle in Fig. 3(b). If the sign of the angular velocity is flipped
every T seconds, the output can be captured by θ (Fig. 3(b))
and effective speed v (distance traveled along a straight line
per unit time).

A future direction of research is to exploit the efficiency
of the simulator to train a neural network that models the
input - output relationship of this problem. That neural net-
work then can serve as a look-up table (without performing
any simulation) to formulate the control signal, given the
prescribed trajectory.

IV. CONTROL FOR PATH PLANNING

In this section, we present two examples of the inverse
problem where the trajectory (circle and square) is prescribed
and the angular velocity of the motor has to be computed. All
the physical parameters are the same as those in Section II:
{Ct, Cr, Cyr, l/R, l/r0} = 3.0, 2.8, 2.0, 6.875, 34.375. The
intrinsic time-scale is µ0l

4/(EI) = 2.207 seconds. Number
of tails is N = 2.

In the first example in Fig. 7(a), the robot starts from
point A and needs to follow a circular path (the radius
of this circle is not equal to Ryr). Here, we introduce
one of the simplest possible control schemes (Fig. 7(c))
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where the angular velocity of the motor is either ωH or ωL
(ωH = −ωL). We rather arbitrarily choose ωH = 10 (and
ωL = −10). The remaining task is to compute the timepoints
(t1, t2, . . . in Fig. 7(c)) at which the angular velocity has to
be switched. To make the robot swim along a circle, the
motor first rotates counterclockwise for normalized duration
t1, causing the robot to traverse a clockwise arc of angle θ.
Then, the motor rotates clockwise for a marginally shorter
duration t2−t1, causing the robot to move through a slightly
smaller arc of angle θ−∆θ. This input, alternating between
a short counterclockwise rotation and a longer clockwise
rotation, is repeated to form a zig-zag circular path in Fig.
7 (c).

In the second example in Fig. 7(b), the robot has to follow
a rectangular trajectory. It is obvious that the robot will
follow a straight line if ω̄ switches between ωH and ωL
every T seconds. In Fig. 7(d), this is the case when the
robot has to follow a straight line (0 ≤ t̄ ≤ tC , tD ≤ t̄ ≤ tE ,
tF ≤ t̄ ≤ tG, tH ≤ t̄ ≤ tI ). Once the robot arrives at one
corner of the rectangular path, C as displayed in Fig. 7(b),
the motor keeps rotating in one direction (time from tC to
tD) until the robot finishes turning 90◦ and it reaches point
D. The same protocol of turning is applied at points E,G,
and I .

V. CONCLUSIONS AND FUTURE WORK

In summary, we built a framework comprised of a simple
untethered soft robot, a numerical simulator, and a simple
control scheme that enables the robot to follow any pre-
scribed trajectory. Our low-cost, easy-to-assemble, unteth-
ered soft flagellated robot offers a convenient and practical
platform for users to study hydrodynamics near the air-liquid
interface in viscous fluid. The robot is able to follow any
prescribed 2D trajectory through a simple control method
with a single binary input. In addition to the low cost, this
simplicity points to possible miniaturization of the robot. As
the size of the robot gets smaller, viscous effects start to
dominate and the flow approaches low Reynolds number.
The propulsion mechanism of the proposed robot relies on
low Reynolds assumption and provides a blueprint for micro-
robots.
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