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Abstract. Cybersecurity Metrics and Quantification is a fundamental
but notoriously hard problem and is undoubtedly one of the pillars under-
lying the emerging Science of Cybersecurity. In this paper, we present an
novel approach to addressing this problem by unifying Security, Agility,
Resilience and Risk (SARR) metrics into a single framework. The SARR
approach and the resulting framework are unique because: (i) it is driven
by the assumptions that are made when modeling, designing, implement-
ing, operating, and defending systems, which are broadly defined to in-
clude infrastructures and enterprise networks; and (ii) it embraces the
uncertainty inherent to the cybersecurity domain. We will review the
status quo by looking into existing metrics and quantification research
through the SARR lens and discuss a range of open problems.
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1 Introduction

Effective cybersecurity design, operations, and management ought to rely on
quantitative metrics. This is because effective cybersecurity decision-making and
management demands cybersecurity quantification, which in turn requires us to
tackle the problem of metrics. For example, when a Chief Executive Officer
(CEO) decides whether to increase the enterprise’s cybersecurity investment,
the CEO would ask a simple question: What is the estimated return, ideally
measured in dollar amount, if we increase the cybersecurity budget (say) by
$5M this year? Unfortunately, the status quo is that we cannot answer this
question yet because cybersecurity metrics and quantification remains one of
the most difficult yet fundamental open problems [10, 38, 32], despite significant
efforts [35, 8, 21, 40, 6, 37, 33, 59, 7, 39, 3, 4, 30].

Our Contributions. In this paper, we propose a systematic approach to tack-
ling the problem, by unifying Security, Agility, Resilience, and Risks (SARR)
metrics into a single framework. The approach is assumption-driven and em-
braces the uncertainty inherent to the cybersecurity domain. Moreover, we eval-
uate existing cybersecurity metrics through the SARR lens and propose a range
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of open problems for future research. Our findings include: (i) it is essential to
explicitly and precisely articulate the assumptions made at the design and op-
eration phases of systems; (ii) it is important to understand and characterize
the relationships between cybersecurity assumptions, because they may not be
independent of each other; (iii) uncertainty is inherent to cybersecurity because
defenders cannot directly observe whether or not assumptions made at the de-
sign phase are violated in the operation phase; (iv) the current understanding
of cybersecurity agility and resilience metrics is superficial, even if defenders can
be certain about which assumptions are violated; (v) cybersecurity risk metrics
emerge from the uncertainty inherent to assumptions.

Related Work. From a conceptual point of view, the present study corresponds
to one pillar of the Cybersecurity Dynamics framework [53, 47, 48, 56], which
aims to quantify and analyze cybersecurity from a holistic perspective (in con-
trast to the building-blocks perspective). This approach stresses the importance
of considering the time dimension in cybersecurity, leading to time-dependent
metrics and analysis methods (e.g., [26, 51, 57, 58, 11, 18, 49, 50, 54, 60]). The
SARR framework is partly inspired by the STRAM framework [8], which system-
atizes security metrics, trust metrics, resilience metrics, and agility metrics. The
SARR framework goes far beyond the STRAM framework [8] because STRAM
does not present the underlying connections between the families of metrics. In
contrast, SARR uses assumptions and uncertainty to unify families of metrics,
and these two aspects play no roles in STRAM.

From a technical point of view, the present study focuses on characterizing
what need to be measured, rather than how to measure because we treat the
measurement of well-defined metrics as an orthogonal research problem. The
latter can be challenging as well. For example, when we infer the ground-truth
labels of files in the setting of malware detection, we often encounter the situation
that malware detectors give conflicting information (e.g., one detector says a file
is benign but another says the file is malicious) [31, 23, 13, 1, 2].

Paper Outline. Section 2 presents the SARR framework. Section 3 discusses
the status quo in cybersecurity metrics and quantification research. Section 4
explores future research directions. Section 5 concludes the present paper.

2 The SARR Framework

2.1 Terminology

Abstractions and Views. Cyberspace is a complex system which mandates
the use of multiple (levels of) abstractions to understand them. We use the
term network broadly to include the entire cyberspace, an infrastructure, an
enterprise network, or a cyber-physical-human network of interest. Networks
can be decomposed horizontally or vertically, leading to two views:

– In the horizontal view, a network can be decomposed into many networked
devices, which are combinations of hardware and software with computing
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and networking capabilities. Devices include computers (e.g., servers, sensors
and IoT devices), network devices (e.g., routers and switches), and cyber-
security devices which run (e.g.) intrusion detection systems and firewalls.
The horizontal view is often used by cyber defense operators.

– In the vertical view, a network can be decomposed into layers of compo-
nents, which are hardware or software sub-systems, possibly provided by
different vendors. Examples of components include operating systems (e.g.,
Microsoft Windows vs. Linux), applications, and security functions (e.g., in-
trusion detection systems, malware detectors, and firewalls). We may treat
data as components as well. Each component may be further divided into
layers. For example, the TCP/IP stack can be seen as the communication
component, which can be divided into layers of communication protocols.
Each component may incorporate or integrate multiple building-blocks, such
as the machine learning techniques employed by malware detectors. This dis-
tinction is important because building-block techniques are often carefully
analyzed, components are often proprietary and analyzed only superficially,
but networks are analyzed even less thoroughly, perhaps because they are
very complex.

Design vs. Operation. In principle, the lifecycle of a network, device, com-
ponent, or building-block can be divided into a design phase and an operation
phase. The design phase deals with its modeling, design, analysis, implementa-
tion, and testing; for ease of reference, we refer to the entities that conduct these
activities as designers. The operation phase deals with its installation, configu-
ration, operation, maintenance, and defense in the real world; similarly, we refer
to the entities that conduct these activities as operators. The design vs. opera-
tion distinction is important because there can be huge gaps between these two
phases, which will be elaborated later.

Cybersecurity vs. Security Properties and Metrics. We use the term se-
curity properties to describe the standard notions of confidentiality, integrity,
availability, non-repudiation, authentication, etc. We use the term cybersecu-
rity properties to describe security, agility, resilience, risk and possibly other
properties. This means that cybersecurity properties are much broader than se-
curity properties. Cybersecurity quantification indicates precise characterization
of these cybersecurity properties. For this purpose, we need cybersecurity met-
rics. A metric is a function that maps from a set of objects (e.g., networks,
devices, components or building-blocks) to a set of values with a scale (e.g.,
{0, 1} or [0, 1]), reflecting security or cybersecurity properties of the objects [35].

2.2 SARR Overview

Figure 1 highlights the framework, which is driven by the assumptions that are
made at the design and operation phases of a network, device, component or
building-block. For a given set of assumptions, there are three kinds of scenarios
according to a spectrum of (un)certainty in regards to the assumptions.
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Violated?

Assumptions 
(threat model, trust, etc)

Risk metrics (security, agility, 
resilience with uncertainty)

maybe

yesno Security metrics (continuous or [0,1])
Agility metrics
Resilience

Security metrics 
(discrete or {0,1})

Fig. 1. The SARR framework is driven by assumptions and embraces uncertainty.

1. It is certain that the assumptions are not violated. This often corresponds to
the analyses that are conducted at the design phase, where designers consider
a range of security properties (e.g., confidentiality, integrity, availability, au-
thentication, and non-repudiation) with respect to a certain system model
and a certain threat model. Essentially, these security properties are often
defined over a binary scale, denoted by {0, 1}, indicating whether a property
holds or not under the system model and the threat model.

2. It is certain that some or all assumptions are violated. This often corre-
sponds to the operation phase, where security properties may be partially or
entirely compromised. Therefore, security properties may be defined over a
continuous scale, such as [0, 1] (e.g., the fraction of compromised computers
in a network). In this case, detection of violations would trigger the defender
to take countermeasures to “bounce back” from the violations, leading to
the notion of agility and resilience metrics, which will be elaborated later.

3. It is uncertain whether assumptions are violated or not (i.e., assumptions
may be violated). This naturally leads to risk metrics by associating uncer-
tainties to security, agility and resilience metrics.

In the rest of the section we will elaborate these matters.

2.3 Assumptions

In order to tame cybersecurity, assumptions may be made, explicitly or implic-
itly, during the design and operation phases of a network, device, component or
building-block. They are fundamental to cybersecurity properties.

Assumptions Associated with the Design Phase. At this phase, assump-
tions can be made with respect to system models, vulnerabilities, attacks (i.e.,
threat models) and defenses. For example, designers often use system models
to describe the interactions between the participating entities, the environment
and the interaction with it (if appropriate), the communication channels be-
tween the participating entities (e.g., authenticated private channel), and the
trust that is embedded into the model (e.g., a participating entity is semi-honest



SARR: A Cybersecurity Metrics and Quantification Framework 5

or honest). Designers use threat models with simplifying assumptions when spec-
ifying security properties, proposing systems architectures, selecting protocols
and mechanisms, analyzing whether a property is attained or not under those
assumptions. Programmers and testers detect / eliminate bugs and vulnerabili-
ties in the course of developing software, while making various (possibly implicit)
assumptions (e.g., competency of a bug/vulnerability detection tool).

Assumptions Associated with the Operation Phase. During this phase,
various kinds of (possibly implicit) assumptions are often made (e.g., compe-
tency of configurations or defense tools). One example of assumptions that are
often made at the design phase and then inherited at the operation phase is the
attacker’s capability. For example, Byzantine Fault-Tolerance (BFT) protocols,
which can be seen as a building-block, work correctly when no more than one-
third of the replicas are compromised [29]. However, there is no guarantee in the
real world that the attacker cannot go beyond the one-third threshold, effectively
compromising the assurance offered by these powerful building-blocks. This can
be further attributed to the limited capabilities of cyber defense tools, such as
intrusion detection systems and malware detectors.

2.4 Metrics When Assumptions Are Certainly Not Violated

Under the premise that assumptions are complete and are not violated, cyber-
security metrics may degenerate to security metrics in the sense that agility,
resilience and risk may become irrelevant. Moreover, it may be sufficient to use
binary metrics, namely {0, 1}, to quantify security properties. This serves as a
starting point towards tackling cybersecurity metrics because it would be rare
to ascertain in the real world that assumptions are certainly not violated and
that the articulated assumptions are sufficient.

Metrics Associated with the Design Phase. At the design phase, we need
to define metrics to precisely describe the desired security properties. Textbook
knowledge would teach us that the desired properties include confidentiality, in-
tegrity, availability, authentication, non-repudiation, etc. However, they may not
be sufficient. We advocate accurate and rigorous definitions (or specifications)
of metrics, ideally as accurate and rigorous as the definitions given in modern
cryptography [16]. This is important because when accurate and rigorous defi-
nitions are not given, it is not possible to conduct rigorous analysis to establish
desired properties. This means that each security property must be precisely
defined with respect to a system model and a threat model. For example, when
we specify an availability property, we should specify it as a property of a service
(e.g., the service offered at port #80) vs. data (e.g., a file in a computer) in the
presence of some attack.

Metrics Associated with the Operation Phase. We need to define met-
rics to precisely describe the required security properties of a network, device,
component, or building-block at the operation phase. For example, availability
metrics at the operation phase may include service response time and service
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throughput. Metrics associated with the operation phase are less understood
than their counterparts associated with the design phase.

2.5 Metrics When Assumptions Are Certainly Violated

When assumptions are violated, some or all of the security properties are com-
promised. In order to describe how defenders respond to such violations of as-
sumptions or compromises of security properties, agility and resilience properties
emerge. Intuitively, agility quantitatively characterizes how fast a defender re-
sponds to cybersecurity situation changes [30, 8], and resilience quantitatively
characterizes whether and how the defender can make the network, device, com-
ponent or building-block “bounce back” from the violation of assumptions (i.e.,
correcting the violations) and the compromise of security properties (i.e., mak-
ing them hold again). The state-of-the-art is that the notions of agility-by-design
and resilience-by-design are less investigated and understood than security-by-
design. Agility and resilience are inherently associated with the operation phase
because (i) assumptions are the starting point of a design process and (ii) as-
sumptions are violated in real-world operations but not at the design phase.
When assumptions are violated, we propose quantifying security, agility, and
resilience properties.

For quantifying security properties, examples of metrics are described as
follows. (i) To what extent may an assumption have been violated? This may re-
quire quantifying the extent to which a network, device, component, or building-
block is compromised. This is important for example when using BFT protocols
to tolerate attacks, where the fraction of devices that are compromised (e.g.,
35% vs. 50%) would make a difference in the defender’s response to the attacks.
(ii) To what extent is a security property compromised? This is important be-
cause a security property may not be all-or-nothing, meaning that a violation of
assumptions may only cause a degradation of a security property. For example,
when a network (or device) is compromised, the attacker may only be able to
steal some, but not all, of the data sorted on the network (or device), causing a
partial loss of the confidentiality property.

For quantifying agility, example metrics are described as follows. (i) How agile
is the defender in detecting the violation of an assumption? One assumption can
be that an employed intrusion prevention system can effectively detect a certain
class of attacks. Another assumption can be that the attacker does not identify
any 0-day vulnerability or use any new attack vector that cannot be recognized
by defense tools. (ii) How fast do the desired security properties degrade because
of the violation of assumptions? (iii) How quickly does the defender react to
the violation of assumptions or successful attacks? (iv) How quickly does the
defender bring the network to the required level of security properties?

For quantifying resilience, example metrics are described as follows. (i) What
is the maximum degree of violation in terms of the assumptions or security
properties that would make it possible for the defender to recover the network (or
device or component) and its services without shutting down and re-booting it
from scratch? In order to quantify these, we would need to quantify the maximum
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degree of violation with respect to the assumptions that can be tolerated. (ii)
Does a security property degrades gradually or abruptly when assumptions are
violated? (iii) How does the degradation pattern, such as gradual vs. abrupt,
depend on the degree of violations of the assumptions?

2.6 Metrics When Assumptions May Be Violated

The preceding two scenarios correspond to the two ends of the spectrum of
(un)certainty about the assumptions being violated or not. In the real world,
it is rare that the defender would be certain about whether an assumption is
violated or not. As a consequence, it is rare for the defender to be certain about
whether a security property is compromised or not. Since uncertainty is inherent
to the cybersecurity domain, we have to embrace the uncertainty, meaning that
cybersecurity metrics must be defined while bearing in mind the uncertainty
factor. We use the term risk to accommodate the security, agility and resilience
metrics that can cope with uncertainty. Some examples of risk metrics are de-
scribed as follows. (i) What is the degree of certainty that a security property
is compromised? In order to quantify this, the defender would need to quantify
the degree of certainty that an assumption is violated. (ii) What is the degree
of certainty when a defense tool flags an event as an attack (e.g., an incom-
ing network connection is an attack or a file is malicious) or anomaly? This
may be measured as the conditional probability (or trustworthiness), for exam-
ple, Pr(the event is indeed an attack|a detector says an event is an attack). (iii)
What is the degree of certainty that some software contains a zero-day vulnera-
bility that is known to the attacker but not the defender? (iv) What is the degree
of certainty about a threat model (e.g., attacker indeed cannot wage attacks that
are not permitted by the threat model)?

Observation 1 Uncertainty is inherent to cybersecurity, meaning that we must
define cybersecurity metrics to help defenders quantify cybersecurity risks and
make decisions in their cyber defense operations.

3 Status Quo

In this section, we use the SARR framework as a lens to look into the cyberse-
curity metrics that have been proposed in the literature. For this purpose, we
leverage survey papers [35, 8, 37] as a source of metrics, while considering more
recent literature published after those survey papers (e.g., [30, 13]).

3.1 Assumptions

Assumptions are often articulated more clearly in building-block studies (e.g.,
cryptography) than the other settings of cybersecurity (e.g., what a chosen-
ciphertext attacker can do exactly). However, there are still gaps that are yet to
be bridged. First, assumptions may be stated implicitly. For example, cryptogra-
phy assumes that cryptographic keys are kept secret, either entirely or at least for
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most information of cryptographic keys (i.e., a partial exposure of cryptographic
key may be tolerated). However, cryptographic keys in the real world can be
compromised in their entirety (see, e.g., [20, 14]). As a consequence, the security
property of digital signatures, known as unforgeability, under the assumption
that the private signing keys are kept secret is compromised. This highlights
the importance of coping with the presence of compromised cryptographic keys
which have not been revoked yet [52, 12, 41]. Still, the trustworthiness of digital
signatures has yet to be quantified given the uncertainty that the private signing
keys or services may have been compromised without being detected.

Second, assumptions may be inadequate or incomplete. One example of inad-
equacy is the evolution from considering chosen-plaintext attacks to considering
chosen-ciphertext attacks. One example of incompleteness is that earlier threat
models simply did not consider the presence of side-channel attacks, which are
however realistic. This is not surprising because cyber attacks evolve with time,
meaning that threat models also evolve with time [53, 47, 48].

The preceding examples highlight the gaps between the validity of assump-
tions made at the design phase and the validity of these assumption in the real
world. These gaps highlight the importance of explicitly and precisely articu-
lating assumptions because violation of assumptions cause new properties and
metrics to emerge (e.g., emergence of agility and resilience metrics). Moreover,
the inevitable uncertainty causes the emergence of risk metrics.

Observation 2 In order to tame cybersecurity, it is essential to explicitly and
precisely articulate the assumptions that are made at the design phase and the
operation phase. This is far from being achieved and is a big challenge.

3.2 Security Metrics

In [35], four classes of security metrics are defined: those for quantifying vulnera-
bilities (including user/human, interface-induced, and software vulnerabilities),
those for quantifying attack capabilities (including zero-day, targeted, botnet
attacks, malware, and evasion attacks), those for quantifying the effectiveness
of defenses (including preventive, reactive, proactive defense capabilities), and
those for quantifying situations (e.g., the percentage of compromised comput-
ers at a point in time). It is concluded in [35], and re-affirmed in [55], that the
problem “what should be measured” is largely open.

Observation 3 Our understanding of what should be measured in cybersecurity
is superficial.

3.3 Agility Metrics

In a broader context, the existing metrics that can be adapted to measure agility
are classified into the following categories [8]: those for quantifying timeliness
(including detection time, overall agility quickness) and those for quantifying
usability (including ease of use, usefulness, defense cost).
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In the narrower context of attack-defense interactions, a novel family of agility
metrics are proposed in [30] to quantify the co-evolution (or escalation) of cy-
ber attacks and defenses. Unlike the classification used in [8], the agility metrics
defined in [30] accommodate two dimensions of the attack-defense co-evolution,
namely timeliness and effectiveness. Timeliness metrics describe how quickly an
attacker is in terms of evolving its attacks in response to the defender’s use of
new strategy and/or techniques (and comparable metrics from the defender’s
perspective). These metrics include: generation-time, which is the time it takes
an attacker (or defender) to evolve its strategies or techniques from one gener-
ation to another generation as observed by the defender (or attacker), where a
generation may be a new version of a tool (e.g., a new version of malware de-
tector); and triggering-time, which is the time it takes an attacker (or defender)
to evolve into the next generation of strategy or techniques. Effectiveness met-
rics quantify how effective a new generation of attacks (or defenses) are, includ-
ing: evolutionary-effectiveness, which describes the effectiveness of the attacker’s
(defender’s) strategy or techniques with respect to defender’s (or attacker’s);
relative-generational-impact, which is the effectiveness gain of the current gen-
eration of attack (or defense) over the past generation of attack (of defense).

Observation 4 Our understanding of agility metrics are even more superficial
than our understanding of security metrics.

3.4 Resilience Metrics

By adapting the existing metrics that are defined in other contexts, resilience
metrics may be classified into the following families [8]: those for quantifying
fault-tolerance metrics (including mean-time-to-failure, percolation threshold,
diversity), those for quantifying adaptability (including degree of local decision,
degree of intelligent decision, degree of automation), and those for quantifying re-
coverability (including mean-time-to-full-recovery, mean-time-between-failures,
mean-time-to-repair, and intrusion response cost). There are no systematic stud-
ies on resilience metrics.

Observation 5 Our understanding of resilience metrics are even more superfi-
cial than our understanding of security metrics.

3.5 Risk Metrics

Risk is often investigated in the setting of hazards and is often defined as a
product of threat (which is a probability estimated by domain expert or other
means), vulnerability (which is another probability estimated by domain expert
or another means), and consequence (which is the damage caused by the threat
when it happens) [22]. This means that risk is quantified as the expected or mean
loss. However, this approach is not competent for managing the risk incurred by
terrorist attacks [9] because it cannot deal with, among other things, the depen-
dence between many events (e.g., cascading failures). This immediately implies
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that this approach is not competent for cybersecurity risk management because
there are many kinds of dependencies and interdependencies which make cyber-
security risks exhibit emergent properties [34, 17, 36, 46]. In order to deal with
these problems, Cybersecurity Dynamics offers a promising approach, especially
its predictive power in forecasting the evolution of dynamical situational aware-
ness attained by first-principle analyses (e.g., [19, 27, 61, 11, 18, 26, 28, 45, 42,
49, 51, 50, 54, 60]) and data-driven analyses (e.g., [24, 15, 25, 44, 5, 43, 57, 58]).

4 Future Research Directions

In order to ultimately tackle the Cybersecurity Metrics and Quantification prob-
lem, we highlight some open problems that must be adequately addressed.

Taming Cybersecurity Assumptions. It would be ideal that (i) assumptions
are always explicitly and precisely stated, (ii) assumptions are independent of
each other, and (iii) assumptions made at the design phase are always valid
at the operation phase. However, these are hard to achieve. Alternatively, we
should characterize the relationships between related assumptions. For exam-
ple, an authenticated private communication channel assumes the following: (i)
authenticity of the communication parties, (ii) confidentiality of the commu-
nication contents, and (iii) integrity of the communication contents. These as-
sumptions further rely on other, often implicitly made, assumptions. Specifically,
the preceding assumptions (i)-(iii) would have to be based on the assumption
that the communication parties are not compromised when cryptographic mech-
anisms are used to realize these assumptions; otherwise, assumptions (i)-(iii) are
violated. Therefore, when the threat model assumes that the attacker cannot
compromise any of the communication parties, the security guarantee rigorously
proven in the abstract model may become irrelevant in the real world.

Bridging Design vs. Operation Gaps. There are several gaps between de-
signers’ views and defenders’ views, especially in terms of their levels of ab-
stractions. In particular, designers often deal with build-blocks and components,
but defenders often deal with networks and devices. There are big gaps be-
tween these views. First, designers often make assumptions with the mindset
that these assumptions will not be violated in the real world. As a consequence,
the resulting cybersecurity properties are not only bound to the completeness
and accuracy of the assumptions, but also bound to the premise that the as-
sumptions are not violated in practice. Therefore, there is a big gap between the
certainty of assumptions considered by designers and the uncertainty of assump-
tions being violated or not as perceived by defenders. Second, the network-level
and device-level implications of the assumptions that are made when designing
building-blocks and components are often unaddressed. This further amplifies
the uncertainty encountered by defenders in the real world.

The preceding discussion would explain why security properties are often
analyzed in academic research literature but not agility or resilience properties.
Moreover, the preceding discussion would also explain why designers often focus
on achieving preventive defense with no successful attacks. However, defenders
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often deal with successful attacks, which break security properties by violating
the assumptions made by designers. This explains why real-world cyber defend-
ers need to leverage preventive defenses, reactive defenses, adaptive defenses,
proactive defenses, and active defenses collectively in order to achieve effective
defenses [47, 48]. This also explains why the motivating question mentioned in
the Introduction cannot be answered yet, namely that the current cybersecurity
metrics and quantification knowledge is not sufficient to answer the defender’s
question in regards to the return on cybersecurity investment.

Identifying and Defining Cybersecurity Metrics That Must Be Mea-
sured. As mentioned above, the current understanding of what should be quan-
tified is superficial [35, 55]. It is important to define a comprehensive, ideally
complete, suite of metrics under each of the security, agility, resilience, and risk
pillars. Since the literature study is often geared towards designers’ views, ex-
isting metrics are often defined for some purposes but rarely for the purposes of
cyber defense operations. Since academic research is often geared towards that
assumptions are not to be violated, there is a very limited body of knowledge
that can help defenders achieve quantitative cyber defense decision-making and
cybersecurity risk management. In order to bridge these gaps, one candidate
approach is to leverage cybersecurity datasets to define cybersecurity metrics
at multiple levels of abstraction: data vs. knowledge vs. application [48]. Using
Medical Science as an analogy, data-level metrics may be defined to quantify
building-block or “cell” level properties; “cell” level metrics may be leveraged
to define sub-system or “tissue” level properties; “tissue” level metrics may be
further leveraged to define “organ” level metrics; “organ” level metrics may be
further leveraged to define “human body” level metrics. It should be mentioned
that a higher level metric would not be any simple aggregation of some lever
level metrics, because cybersecurity is largely about emergent properties [46, 55],
meaning that the phenomenon observed at a higher level of abstraction is the
outcome of interactions between its composing parts.

Seeking Foundations to Distinguish Good from Poor Metrics [35]. It
would not be hard to define cybersecurity metrics, but it is certainly hard to
define “good” cybersecurity metrics. This is because it is hard to define criteria
or seek foundations to evaluate the competency or usefulness of cybersecurity
metrics. In order to tackle this problem, we may need to conduct many case
studies and define metrics at multiple levels of abstractions [55] before we can
draw general insights along this direction. It would be ideal to conduct such case
studies on some killer applications; two candidate killer applications are cyber
defense command-and-control and quantitative cyber risk management [48].

Fostering a Cybersecurity Metrics Research Community. In order to
tackle such a fundamental problem like cybersecurity metrics and quantifica-
tion, it must take a community effort. This can be justified by how the basic
medical science research has supported clinical healthcare practices. For exam-
ple, the basic medical science research creates knowledge to help understand
how the various kinds of metrics (e.g., blood pressure) would reflect a human
being’s health condition (e.g., presence or absence of certain diseases), and this



kind of knowledge is applied to guide the practice of medical diagnosis and
treatment. Analogously, cybersecurity metrics research would need to identify,
invent, and define metrics (e.g., “cybersecurity blood pressure”) that reflect the
cybersecurity situations and can be applied to diagnose the “health conditions”
of networks or devices.

In order to accelerate the fostering of a research community, we can start
with some “grass roots” actions. For example, when one publishes a paper, the
author may strive to clearly articulate the assumptions that are needed by the
new result. Moreover, the author may strive to define metrics that are impor-
tant to quantify the progress made by the new result [35]. Furthermore, when
we teach cybersecurity courses, we should strive to make students know that
much research needs to be done in order to tackle the fundamental problems
of cybersecurity metrics and quantification. For this purpose, we would need to
develop new curriculum materials.

Developing a Science of Cybersecurity Measurement. Well defined cy-
bersecurity metrics need to be measured in the real world, which would demand
the support of principled (rather than heuristic) methods. This problem may
seem trivial at a first glance, which may be true for some metrics in some set-
tings. However, the accurate measurement of cybersecurity metrics could be
very challenging, which may be analogous to the measurement of light speed
or gravitational constant in Physics. To see this, let us consider a simple and
well-defined metric: What is the fraction (or percentage) of the devices in a net-
work that are compromised at a given point in time t? The measurement of this
metric is challenging in practice when the network is large. The reason is that
automated or semi-automated tools (e.g., intrusion detection systems and/or
anti-malware tools) that can be leveraged for measurement purposes are not
necessarily trustworthy because of their false-positives and false-negatives.

5 Conclusion

We have presented a framework to unify security metrics, agility metrics, re-
silience metrics, and risk metrics. The framework is driven by the assumptions
that are made at the design and operations phases, while embracing the uncer-
tainty about whether these assumptions are violated or not in the real world.
We identified a number of gaps that have not been discussed in the literature
but must be bridged in order to tackle the problem of Cybersecurity Metrics and
Quantification and ultimately tame cybersecurity. In particular, we must bridge
the assumption gap and the uncertainty gap, which are inherent to the discrepan-
cies between designers’ views at lower levels of abstractions (i.e., building-blocks
and components) and operators’ views at high levels of abstractions (i.e., net-
works and devices). We presented a number of future research directions. In
addition, it is interesting to investigate how to extend the SARR framework to
accommodate other kinds of metrics, such as dependability.
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