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Abstract. In the context of malware detection, ground-truth labels of files are of-
ten difficult or costly to obtain; as a consequence, malware detector effectiveness
metrics (e.g., false-positive and false-negative rates) are hard to measure. The un-
availability of ground-truth labels also hinder the training of machine learning
based malware detectors. These issues are often encountered by researchers and
practitioners and force them to use various heuristics without justification. There-
fore, seeking principled methods has become an important open problem. In this
paper, we present a principled method for tackling the problem.
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1 Introduction

Cybersecurity metrics is one of the most notoriously difficult open problems, despite
the numerous efforts that have been made by the research community (see, e.g., [18, 6,
8, 23, 4, 21, 17, 27, 5, 22, 2, 3, 14]). At a high level, security metrics research can be
divided into two categories: (i) defining metrics to measure what needs to be measured,
which is still largely open [18, 6]; (ii) designing procedures to measure what needs
to be measured, namely the measurement of well-defined security metrics. This paper
falls into the latter category (ii), by considering malware detection and the measure-
ment of ground-truth labels for files and malware detector effectiveness metrics, such
as false-positive and false-negative rates. This is an important problem because ground-
truth labels of files (e.g., malicious or benign) are often assumed to be given and then
leveraged for measuring malware detector effectiveness or training malware detectors.

Unfortunately, ground-truth labels are often difficult or costly to obtain. For a small
set of files, we may use human experts to provide labels. However, perfect labels can-
not be guaranteed because humans are error-prone and can make mistakes. For a large
set of files, it is unrealistic for human experts to label them. Given this, one may re-
sort to some third-party services. However, third-party service providers often leave
the problem to the end users. A typical scenario that is often encountered in the real
world is the following: Third-party service providers, such as VirusTotal, provide labels
of files given by a number of malware detectors, but these labels are in conflict with
each other (i.e., a file is labeled by some detectors as malicious, but benign by others)
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[12, 15, 16, 19, 1, 7, 28]. This phenomenon is widely exhibited in the cybersecurity
domain, including blacklists of malicious websites [10, 13, 24, 26, 25, 20].

Without support of principled solutions, the challenge has forced researchers and
practitioners to use various heuristics. Two popular heuristics are: Given a set of mal-
ware detectors, a file is treated as malicious as long as a certain threshold number vs.
fraction (e.g., majority) of them label it as malicious [15, 16, 19]. These heuristics are
troublesome because each malware detector has different capabilities in detecting mal-
ware. This calls for principled solutions and has motivated a few efforts.

Kantchelian et al. [12] use a Bayesian method to infer the ground-truth labels of
files and malware detector effectiveness metrics, by making four assumptions: (i) a de-
tector has an equal chance in mislabeling any benign file as malicious and an equal
chance in mislabeling any malicious file as benign, which may not hold because a de-
tector can be better at recognizing one kind of malware than another; (ii) detectors label
files in an independent fashion, which may not hold when they use some common tech-
niques; (iii) the percentage of malicious files is about 50%; (iv) detectors incur low
false-positives and high false-negatives. The preceding (iii) and (iv) are associated with
the prior distributions that are inherent to the Bayesian approach. Du et al. [7] use a
frequentist approach to design statistical estimators to measure malware detectors’ ef-
fectiveness metrics and the fraction of malicious files in a given set of files (but not the
ground-truth labels), while only making the preceding assumptions (i) and (ii).

Charlton et al. [1] propose a new approach to measuring detectors’ relative accuracy
in the absence of ground-truth labels. The relative accuracy is measured with an ordinal
scale [18], meaning that it only tells which detector is more accurate than which other
detector, but not how much more accurate (i.e., detectors’ absolute accuracy or effec-
tiveness metrics remains unaddressed, so do the ground-truth labels). While heuristic in
nature, this approach is attractive because it does not need any of the preceding assump-
tions (i)-(iv). This motivates us to explore how to turn the heuristic into a principled
method for inferring ground-truth labels and detector effectiveness metrics.

Our contributions. Our core contribution is to show that the relative accuracy ap-
proach [1] can be turned into a principled weighted majority voting method for in-
ferring ground-truth labels and detector effectiveness metrics. The key idea is to treat
an enhanced version of relative accuracy as a detector’s voting weight, where the en-
hancement comes from the introduction of a bellwether detector whose effectiveness is
known because it labels any file uniformly at random and independent of anything else.
In the case of binary classification, it labels each file as malicious (benign) with a 0.5
probability, independent of anything else; this means that the bellwether detector has
an expected true-positive rate, true-negative rate, and accuracy of 0.5 when the number
of files is large enough. Intuitively, the bellwether detector serves as a reference point
in the ordinal scale of relative accuracy because we know both its relative accuracy and
absolute accuracy (i.e., 0.5 for the latter). This reference point offers a better scaling of
relative accuracy than the counterpart in its absence. This improved scaling brings de-
tectors’ relative accuracy closer to their absolute accuracy, respectively. The weighted
majority voting method, which is actually an iterative process, leads to the inferred
ground-truth labels, which allows us to infer malware detector effectiveness metrics.
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In order to understand why the proposed method works, we give an algebraic inter-
pretation of relative accuracy (with or without employing the bellwether detector), by
making connections to the well-known Principal Component Analysis (PCA). We show
that the similarity matrix for describing the similarity between the labels given by mal-
ware detectors plays a role similar to that of the correlation matrix in PCA. A similarity
matrix can be decomposed to a set of eigenvectors and eigenvalues; the eigenvectors
represent the unit vectors describing an n-dimensional space with n being the number
of detectors, and the eigenvalues provide a measurement of magnitude, or importance,
associated with these vectors respectively. The larger the eigenvalue, the higher the im-
portance of the detectors corresponding to it; the detectors corresponding to the higher
ordered eigenvectors have higher relative accuracy and can be deemed as more trusted
and given larger weights. In other words, detectors corresponding to the higher ordered
eigenvectors and eigenvalues provide a more pivotal decision mathematically than the
lower ordered ones. Because of this algebraic interpretation, we deem the relative accu-
racy approach an algebraic one, which is in contrast to statistical approaches [12, 7].

We validate the principled method (Algorithm 4) via synthetic data with known
ground-truth labels and detector effectiveness metrics. Experimental results show it can
accurately infer ground-truth labels and detector effectiveness metrics, especially so
when eliminating the “poor” detectors with bellwether relative accuracy smaller than
that of the bellwether detector. Then, we apply the method to analyze a real-world
dataset, for which neither ground-truth labels nor detector effectiveness is known. We
find that among other things, both the strategy of trading low false-positive for low
false-negative and its opposite are widely employed by real-world malware detectors.
Related Work. This paper falls into the field of security metrics research. For the state-
of-the-art security metrics research in a broader context, we refer to [18, 6, 8, 23, 4, 21,
17, 27, 5, 22, 2, 3, 14]. This paper deals with the measurement of well-defined metrics
in the particular context of malware detection, namely: Given a number of malware
detectors that have labeled a number of files, how can we infer the ground-truth labels
of the files (i.e., malicious vs. benign) and malware detector effectiveness metrics? To
tackle the problem, there are a number of heuristics [15, 16, 19, 28], but few principled
solutions [12, 7] which make a number of assumptions as mentioned above. This study
is inspired by the heuristic relative accuracy approach by [1], by making a solid step in
turning the heuristic into a principled weighted majority voting method.
Paper outline. Section 2 presents the problem. Section 3 revisits the notion of relative
accuracy. Section 4 describes the methods used to tackle the problem. Section 5 applies
the method to a real-world dataset. Section 6 concludes the paper with future directions.

2 Problem Statement

Suppose we are given a matrix V = (Vi j)1≤i≤n,1≤ j≤m, where m is the number of files, n
is the number of malware detectors denoted by D1, . . . ,Dn, and

Vi j =


1 if detector Di labels file j as malicious
0 if detector Di labels file j as benign
−1 if detector Di does not label file j at all (which can happen in practice).
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The problem is to infer (i) the ground-truth labels of the files (i.e., malicious vs. benign)
and (ii) the detectors’ effectiveness metrics in terms of the widely-used true-positive
rate (TPR), true-negative rate (TNR) and accuracy (ACC) [18]. Let TPi, TNi, FPi and
FNi respectively denote the number of true-positives, true-negatives, false-positives,
and false-negatives associated with detector Di. Recall that TPRi = TPi/(TPi +FNi),
TNRi = TNi/(TNi +FPi) and ACCi = (TPi +TNi)/(TPi +TNi +FPi +FNi) [18].

3 Relative Accuracy Revisited

A weaker variant of the preceding problem is to infer if Di is more accurate than D j.
This variant is weaker because a solution to this problem is not guaranteed to solve
the preceding problem. Nevertheless, this weaker problem leads to the notion of rela-
tive accuracy, or RA, on an ordinal scale, which is a discrete ordered set that permits
comparisons between two measurements [18]. Let RAi denote inferred relative accu-
racy of Di. It is empirically shown RAi > RAk means Di is more accurate than Dk and
RAi 6= ACCi [1].

3.1 Review of Previous Approach [1] to Computing Relative Accuracy

The known approach to computing relative accuracy is based on the following concepts
with respect to matrix V [1]. In order to deal with the fact that some files may not
be labelled by every detector, a count matrix, denoted by C = (Cik)1≤i,k≤n, is defined to
describe the number of files that are labelled by a pair of detectors Di and Dk as follows:

Cik =Cki =
m

∑
`=1

{
1 if Vi` 6=−1∧Vk` 6=−1,
0 if Vi` =−1∨Vk` =−1.

In order to measure the agreement between the labels given by a pair of detector, an
agreement matrix, denoted by A = (Aik)1≤i,k≤n, is defined to describe the number of
files that are given the same label by detectors Di and Dk as follows:

Aik = Aki =
m

∑
`=1

{
1 if Vi` =Vk`∧Vi` 6=−1∧Vk` 6=−1
0 if Vi` 6=Vk`∨Vi` =−1∨Vk` =−1.

In order to measure the similarity between two detectors, a similarity matrix, denoted
by S = (Sik)1≤i,k≤n where Sik = Aik/Cik, is defined to describe the degree of agreement
between detectors Di and Dk. Note that S is a real, symmetric matrix. These lead to:

Definition 1 (relative accuracy [1]). The relative accuracy of detector Di, denoted by
RAi where 1≤ i≤ n, is defined by a number in interval [0,1] such that RAi > RAk means
detector Di is more accurate than detector Dk.

Algorithm 1 [1] computes detectors’ relative accuracy vector RA = (RA1, . . . ,RAn),
by taking similarity matrix S = (Sik)1≤i,k≤n as input. The algorithm halts when δ <
ε , where δ is the sum of the difference for all of the RAi’s between two consecutive
iterations and ε is a given threshold. In each iteration of the algorithm, the following
is conducted: multiply the current relative accuracy vector RA by S from the left-hand
side (Step 4); scale the result by the largest value in the resulting matrix (Step 5); update
RA for the next iteration (Steps 6-7).
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Algorithm 1 Known approach to computing relative accuracy [1]
Input: similarity matrix S = (Sik)1≤i,k≤n; tolerable error threshold ε

Output: relative accuracy vector RA = (RA1, . . . ,RAn)
T

1: δ ← 2ε {It suffice to initialize δ as any value that is greater than ε}
2: RA← [1, . . . ,1]T1×n {Initiate relative accuracy vector RA}
3: while δ > ε do
4: NextRA← S×RA {Multiply similarity matrix by current relative accuracy}
5: NextRA← NextRA/max(NextRA) {Normalize calculated relative accuracy with re-

spect to the largest element in matrix NextRA}
6: δ ← ∑1≤i≤n |RAi−NextRAi| {Calculate δ between the current and next RA}
7: RA← NextRA
8: end while
9: Return RA

3.2 New Approach to Computing Relative Accuracy and Deeper Analysis

Using synthetic data with known ground-truth information, Algorithm 1 is shown to
assure RAi > RAk when ACCi > ACCk [1]. However, it is a heuristic because no expla-
nation on why it works is given [1]. Our new approach starts with an observation. Let Nz
be the normalization scalar at the z-th iteration in Algorithm 1 and N∗ = N1× . . .×Nz.
By leveraging the associative property of scalar multiplication, we observe

RA = S . . .(S(S︸ ︷︷ ︸
z times

(1)/N1)/N2) . . ./Nz = S . . .(S(S︸ ︷︷ ︸
z times

(1)))/N∗ = Sz1/N∗. (1)

Since S is a real-valued symmetric matrix, it can undergo eigendecomposition, the
eigenvalues are real, and the eigenvectors can be selected real and orthonormal [11].
Let λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0 and e1,e2, . . . ,en be respectively the eigenvalues and eigen-
vectors of S [11]. The spectral decomposition of S is:

S = UDUT =
n

∑
i=1

λieieTi , (2)

where U = (e1, . . . ,en) is an orthonormal matrix such that UTU = UUT = I, I being
the identity matrix, and D = diag(λ1, . . . ,λn)[11]. Denote by Dz = diag(λ z

1 , . . . ,λ
z
n). By

combining (1) and (2), we have

N∗RA = Sz1 = (UDUT)z1 = UDzUT1 =

(
n

∑
i=1

λ
z
i eieTi

)
1 =

n

∑
i=1

λ
z
i ei(eTi 1). (3)

By replacing U×Dz×UT for Sz in Eq. (1), we rewrite Algorithm 1 as Algorithm 2.
Algorithm 2 has two advantages: (i) We can rigorously prove Algorithm 2, and

therefore Algorithm 1, converges; this is assured by Theorem 1. (ii) Algorithm 2 permits
an algebraic interpretation of relative accuracy. Details follow.

Theorem 1. Algorithm 2 always converges, meaning error δ ≤ ε eventually.
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Algorithm 2 New approach to computing relative accuracy using eigenvalues
Input: similarity matrix S = (Sik)1≤i,k≤n; tolerable error threshold ε

Output: relative accuracy vector RA = (RA1, . . . ,RAn)
T

1: δ ← 2ε {It suffices to initialize δ as any value that is greater than ε}
2: c← 1 {Set initial step}
3: (U,D)← (eigenvector(S),eigenvalue(S)) {Eigendecomposition}
4: CurrentRA← U×Dc×UT/max(U×Dc×UT) {Calculate initial RA and normalize}
5: while δ > ε do
6: NextRA← (U×Dc×UT)/max(U×Dc×UT) {Update RA and normalize}
7: δ ← ∑1≤i≤n |NextRAi−CurrentRAi| {Calculate δ between two consecutive RA’s.}
8: c← c+1 {Iterate step}
9: CurrentRA← NextRA {Assign new value}

10: end while
11: Return CurrentRA {RA← CurrentRA}

Proof. The z-th iteration of the loop leads to vector RAz ← U×Dz×UT/ max(U×
Dz×UT). By leveraging the aforementioned U×UT = U×U−1 = I, we obtain

RAz =
U×Dz×UT

max(U×Dz×UT)
=

U×D1×D2×·· ·×Dz×UT

max(U×D1×D2×·· ·×Dz×UT)

=
U×D1× (UT×U)×D2× (UT×U) . . .Dz×UT

max(U×D1× (UT×U)×D2× (UT×U) . . .Dz×UT
)

=
(U×D1×UT)× (U×D2×UT) . . .(U×Dz×UT)

max((U×D1×UT)× (U×D2×UT) . . .(U×Dz×UT)
)

=
(U×D×UT)1× (U×D×UT)2 . . .(U×D×UT)z

max((U×D×UT)1× (U×D×UT)2 . . .(U×D×UT)z)

=
(U×D×UT)z

max((U×D×UT)z)
=

(U×D×UT)z

(max(U×D×UT))z .

Let Y = U×D×UT, y be an arbitrary element of Y, and y∗ = max(Y) being the maxi-
mum element. Then, ∀y ∈ Y, y ∈ (0,1), max(Yx) = (max(Y))x, and y≤ y∗. Thus,

lim
z→+∞

yz

(y∗)z =

{
1 if y = max(Y)
0 if y < max(Y)

assures that the difference δ between two consecutive iterations monotonically de-
creases, namely δ ≤ ε eventually and the algorithm halts. ut

An Algebraic Interpretations of Relative Accuracy. Algorithm 2 permits an alge-
braic interpretation of relative accuracy. Consider a data matrix V = (Vi j)1≤i≤n,1≤ j≤m,
where the i-th row represents the i-th variable and each column is a vector of observed
values for the n variables. Let V̄i = ∑

m
j=1 Vi j/m and σ2

i = ∑
m
j=1(Vi j − V̄i)

2/(m− 1) be
respectively the sample mean and sample variance of the i-th row, or variable Vi. The
sample correlation between variables Vi and Vk is Rik = {(n− 1)σiσk}−1

∑
m
j=1(Vi j −
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V̄j)(Vk j− V̄j). In PCA [9], the sample correlation matrix is R = (Rik)1≤i,k≤n. Let γ1 ≥
γ2 ≥ . . . ,≥ γn ≥ 0 and f1, f2, . . . , fn with fi = ( fi1, . . . , fim)

T be respectively the eigenval-
ues and eigenvectors of the correlation matrix R. The spectral decomposition of R is
R = ∑

n
i=1 γififTi , where fi is the weight vector for the i-th principal component defined

as Zi = ∑
m
j=1 fi jVj, which is a linear combination of the original (column) variables

V1, . . . ,Vn. Due to the orthogonality between the fi’s, the principal components, namely
the Zi’s are uncorrelated with each other, meaning that their pairwise correlations are
all zeros. Recall that Vi = (Vi1, . . . ,Vim) represents an observation. Imagine that we plot
the n observations (i.e., V1, . . . ,Vn) in the n-dimensional space such that each dimension
representing one Vi for 1 ≤ i ≤ n. Then, the first principal component weight vector f1
represents the direction where these n observations exhibit the most variation (i.e., hav-
ing the widest spread); the second principal component weight vector f2 is orthogonal
to f1 and represents the direction of the most variation among all the directions that are
perpendicular to f1; the third principal component weight vector f3 is orthogonal to both
f1 and f2 and represents the direction of the most variation among all the directions that
are perpendicular to both f1 and f2.

The relative accuracy measure groups detectors according to the magnitudes of the
corresponding entries in the vector RA. Note that if λi > λ j, then as z increases the
gap between λ

z
i and λ

z
j will become increasingly larger. At some point, we will have

λ
z
i >> λ

z
j . These λ values are the elements of the diagonal matrix D from Equation

(3). Due to the uniqueness of eigenvalues, we observe strict ordering λ1 > λ2 > λ3 >
.. .≥ 0. The iterations in Algorithm 2 increase z, meaning that at some point we would
observe λ

z
1 >> λ

z
2 >> λ

z
2 >> .. .≥ 0. When Algorithm 2 converges, the highest value

entries in relative accuracy vector RA, according to Eq. (3), correspond to λ
z
1e1(eT1 1);

that is, the highest value entries in the eigenvector e1 determine the directions of e1 in
the n-dimensional space, with each dimension representing a detector. Similarly, the
second group of detectors identified by the relative accuracy would match up with the
highest entries in the second eigenvector e2 of the similarity matrix S. Just like that
an entry R jl of the correlation matrix R in PCA represents how similar two variables
Vj and Vl co-vary with each other, an entry Sik of similarity matrix S represents how
similar two detectors Di and Dk label files. Therefore, while the ordered eigenvectors
of R in PCA represent the ordered directions where the variables {V1, . . . ,Vn} have the
most covariance, the ordered eigenvectors of S represent the ordered directions where
detectors {D1, . . . ,Dn} make the most similar decisions. This means that the clustering
yielded by the relative magnitudes of entries in vector RA is indeed meaningful.
Remark. The preceding algebraic interpretation is sound when “good” detectors are
not overwhelmed by “poor” detectors, namely when the average ground-truth accuracy
(ACC) of each detector involved is greater than 50%. Otherwise, the algebraic meaning
behind the algorithm would be inverted, and we’d be calculating which detectors that
make the most similar, but incorrect, decisions. This inspires us to propose the idea of
leveraging a bellwether detector to recognize / filter the “poor” detectors. Details follow.

3.3 Enhancing Algorithm 2 with a Bellwether Reference Detector

Intuitively, the normalization in Algorithm 2 (Step 6) assures that the most accurate
detector would have the highest relative accuracy 1, meaning that each detector has a



8 J. Charlton et al.

relative accuracy falling into [0,1]. We observe that if we know the absolute effective-
ness of a reference detector, we can make a better use of the relative accuracy because
we can see the distance between the reference detector’s relative accuracy to its absolute
accuracy. This motivates us to introduce a bellwether detector, so called in reference to
herd animals, where the bellwether member of the flock acts as an indicator and predic-
tor into the behavior of the other members. For our purposes, the bellwether detector is a
new artificial detector with known absolute effectiveness which can be derived from the
fact that it uniformly labels files at random, independent of anything else. In the case of
binary classification, the bellwether detector labels each file as malicious (benign) with
a 0.5 probability, independent of anything else. This means that the bellwether detector
has an expected TPR= TNR= ACC= 0.5 when the number of files is large enough.

Recall that Y=U×D×UT and the relative accuracy in the z-th iteration is Yz/(y∗)z

where y∗ = max(Y) is the maximum element in Y (Theorem 1). It is evident that RAi
is proportional to both its initial value and y∗, making it a geometric series if the iter-
ations were infinite. This means that it’s possible to scale RA without iterations while
maintaining the geometric relationship between the entries, by leveraging a single entry
of known value (i.e., ACCbellwether = 0.5), which is the role of the bellwether detector.
The preceding discussion leads to Algorithm 3, which produces an improved relative
accuracy, denoted by bellwether accuracy or BAi, for detector i.

Algorithm 3 Computing relative accuracy using eigenvalues and a bellwether detector
Input: similarity matrix S = (Sik)1≤i,k≤n+1 with Dn+1 being the bellwether detector;
Output: bellwether accuracy vector BAn+1 = (BA1, . . . ,BAn,0.5)T

1: (U,D)← (eigenvector(S),eigenvalue(S)) {Eigendecomposition}
2: BA← U×D×UT/max(U×D×UT) {Calculate BA}
3: BA← BA−BAn+1 {Making bellwether-based adjustment}
4: BA← BA/(2×|max(BA)|)+0.5 {Normalizing (−0.5,0.5) and transforming to (0,1)}
5: Return BA

In Algorithm 3, we use the eigenvectors and eigenvalues to calculate an initial rela-
tive accuracy vector with the bellwether detector (Step 2). The relative accuracy of the
bellwether detector, where BAbellwether = BAn+1, is subtracted from each entry of BA
(Step 3). This has the effect of transforming the values of BA so that BAbellwether lies on
point 0. The entries of BA are normalized to the range (−0.5,0.5) and then transformed
to (0,1), which sets BAbellwether = 0.5 and distributes the rest of the values according
to their geometric relationship. Due to the distribution of this geometric series and the
fixed location of the bellwether detector in the array, the results are the same for the
first, second, or z-th iteration. This eliminates the need for iterations.

Another potential property of Algorithm 3 is: It may be universally true that |BAi−
ACCi| ≤ |RAi−ACCi|, meaning that BAi is a better approximation of ACCi than RAi
does. Although we cannot prove this rigorously at the time of writing, we do find empiri-
cal evidence using synthetic data with known ground-truth information in Experiments
1-10, as shown in Figure 1.
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4 Inferring Ground-Truth Labels and Effectiveness Metrics

Method. Consider V = (Vi j)1≤i≤η ,1≤ j≤m and BA = (BA1, . . . ,BAη) as input, where
η is the number of detectors that will participate in the process of inferring ground-
truth labels and detector effectiveness metrics. In the recommended use case, we only
use detectors with a bellwether relative accuracy higher than that of the bellwether
detector’s, namely BAi > BAbellwether = 0.5 for any 1 ≤ i ≤ η ; in this case we have
1 ≤ η ≤ n. It is possible for η = n+ 1, with Dn+1 being the bellwether detector; that
is, all of the detectors (including the bellwether detector) participate in the process of
inference. In practice it would not be a good idea to include BAbellwether as part of the
input because of its random nature (i.e., it is a known source of noise and adds no useful
information). Even if included, it should not be involved in any useful computation
(e.g., voting, if applicable). Other variants are possible, for example using detectors
with bellwether relative accuracy significantly higher than BAbellwether = 0.5.

Given the input mentioned above, now we design a novel method, Algorithm 4,
to infer the ground-truth labels, denoted by (malign1, . . . ,malignm), and detector effec-
tiveness metrics TPR′i, TNR

′
i and ACC′i for 1 ≤ i ≤ η . At the core of the algorithm is

weighted majority voting, where weights are iteratively derived from BA. Specifically,
the initial BA is used to weigh individual detector’s votes, providing a detector of a
higher BAi with a larger vote weight. The weighted voting leads to malicious or be-
nign labels of files. The updated labels are used to update effectiveness metrics TPR′,
TNR′ and ACC′, which in turn are used to update the detectors’ weights. The algorithm
halts when the inferred ACC between two consecutive iterations is below a threshold
ε . Its computational complexity depends on the number of iterations, for which are are
unable to give an explicit estimation at this point; in each iteration, the computational
complexity is O(mη). In our experiments presented later, we will empirically measure
the actual computational complexity.

Designing Experiment with Synthetic Data to Validate the Method. In order to gen-
erate synthetic data with known ground-truth labels and detector effectiveness, we con-
sider TPR and TNR, which are often interpreted as probabilities in practice. We gener-
ate three synthetic datasets, denoted by D1, D2 and D3. Each dataset contains one mil-
lion example files, but different ratios of malicious vs. benign entries: (i) D1 contains
300,000 malicious files and 700,000 benign files; (ii) D2 contains 500,000 malicious
files and 500,000 benign files; and (iii) D3 contains 700,000 malicious files and 300,000
benign files. This is to show that the algorithms are equally applicable to various ratios.
Note that no actual files are generated because we only need their ground-truth labels
and their labels given by the detectors. For a detector, we generate its label on a file
according to the detector’s TPR and TNR, as follows. If the ground-truth label of the
file is malicious (i.e., malign), then the detector labels it as 1 (malicious) with probabil-
ity TPR and 0 (benign) with probability 1−TPR; if the ground truth label of the file
is benign, then the detector labels it as 0 with probability TNR and labels it as 1 with
probability 1−TNR. Given the labels, the accuracy ACC of a detector can be computed
as described in Section 2. We apply Algorithm 3 to the synthetic datasets D1-D3 as
well as the detectors’ labels on these files to derive the detectors’ relative accuracy (i.e.,
relative accuracy with the bellwether detector BA), and then apply Algorithm 4 with the
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Algorithm 4 Inferring ground-truth labels and effectiveness metrics
Input: Detector labelling results V = (Vi j)1≤i≤η ,1≤ j≤m; bellwether-incurred accuracy vector
BA = (BA1, . . . ,BAη )

T; tolerable error threshold ε

Output: Inferred ground-truth labels (Malign1, . . . ,Malignm) and detectors’ effectiveness metrics
TPR′ = (TPR′1, . . . ,TPR

′
η )

T, TNR′ = (TNR′1, . . . ,TNR
′
η )

T, ACC′ = (ACC′1, . . . ,ACC
′
η )

T;
1: δ ← 2ε {It suffices to initialize δ as any value that is greater than ε}
2: ACC′← BA {Initiate accuracy vector as BA}
3: while δ > ε do
4: TN,TP,FN,FP← (0, . . . ,0)T1×η

{Initialize TNi = TPi = FNi = FPi = 0 for 1≤ i≤ η}
5: for j := 1 to m do
6: MalignWeight← 0; BenignWeight← 0; {Initialize weights as 0}
7: for i := 1 to η do
8: if Vi j = 1 then
9: MalignWeight←MalignWeight+ACC′i {Count detector i’s vote for malicious}

10: else
11: BenignWeight← BenignWeight+ACC′i {Count detector i’s vote for benign}
12: end if
13: end for
14: if MalignWeight> MalignWeight+BenignWeight

2 then
15: Malign j← 1 {If majority of weighted votes are malicious, label file j as malicious}
16: else
17: Malign j← 0
18: end if
19: for i := 1 to η do
20: if Malign j = 0 then
21: if Vi j = 1 then
22: FPi← FPi +1 {file j is a false-positive by detector i}
23: else if Vi j = 0 then
24: TNi← TNi +1 {file j is a true-negative by detector i}
25: end if
26: else
27: if Vi j = 1 then
28: TPi← TPi +1 {file j is a true-positive by detector i}
29: else if Vi j = 0 then
30: FNi← FNi +1 {file j is a false-negative by detector i}
31: end if
32: end if
33: end for
34: end for
35: δ ← ∑

η

i=1|ACC
′
i−

TNi+TPi
TNi+TPi+FNi+FPi

| {Changes in ACC between this and last iterations}
36: for i := 1 to η do
37: ACC′i←

TNi+TPi
TNi+TPi+FNi+FPi

, TPR′i←
TPi

TPi+FNi
, TNR′i←

TNi
TNi+FPi

38: end for
39: Malign ← (Malign1, . . . ,Malignm); ACC′ ← (ACC′1, . . . ,ACC

′
η )

T; TPR′ ←
(TPR′1, . . . ,TPR

′
η )

T; TNR′← (TNR′1, . . . ,TNR
′
η )

T

40: end while
41: Return inferred ground-truth labels Malign and TPR′, TNR′ and ACC′
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BA to derive their inferred TPR′, TNR′ and ACC′. Finally, we compare these inferred
metrics to their ground-truth counterparts TPR, TNR and ACC to validate the method.

We conduct 10 experiments, denoted by Experiments 1-10. For purposes of robust-
ness, the experiments consider detectors with varying ACC’s. The 10 experiments are:
(1) 50 detectors with varying ground-truth ACC: 10 detectors with ACC ∈ [0.85,0.95],
10 with ACC ∈ [0.75,0.85], 10 with ACC ∈ [0.7,0.8], and 20 with ACC ∈ [0.65,0.75].
(2) 50 detectors: 10 detectors with ACC ∈ [0.9,1]; 10 with ACC ∈ [0.85,0.95]; 10 with
ACC ∈ [0.8,0.9]; 20 with ACC ∈ [0.75,0.85]. (3) 50 detectors with ACC ∈ [0.9,1].
(4) 90 detectors: 50 with ACC ∈ [0.9,1], 10 with ACC ∈ [0.85,0.95], 10 with ACC ∈
[0.8,0.9], 10 with ACC∈ [0.75,0.85], and 10 with ACC∈ [0.35,0.45]. (5) 50 detectors:
10 detectors with ACC ∈ [0.9,1], 10 with ACC ∈ [0.85,0.95], 10 with ACC ∈ [0.8,0.9],
10 with ACC∈ [0.75,0.85], and 10 with ACC∈ [0.35,0.45]. (6) 50 detectors: 40 detec-
tors with ACC ∈ [0.9,1] and 10 with ACC ∈ [0.35,0.45]. (7) 50 detectors: 30 detectors
with ACC ∈ [0.9,1] and 20 with ACC ∈ [0.35,0.45]. (8) 50 detectors with 25 detectors
with ACC ∈ [0.9,1] and 25 detectors with ACC ∈ [0.35,0.45]. (9) 50 detectors with 20
detectors with ACC ∈ [0.9,1] and 30 detectors with ACC ∈ [0.35,0.45]. (10) 50 detec-
tors with 10 detectors with ACC ∈ [0.9,1] and 40 detectors with ACC ∈ [0.35,0.45].
Experimental Results. The computational complexity of Algorithm 4 is O(ηm) for
each iteration when δ > ε , where η << m. Unfortunately, we cannot estimate how
many iterations it will take before reaching δ < ε at the time of writing.

For each experiment and each detector Di, there are four sets of values: the ground-
truth effectiveness metrics TPRi, TNRi, and ACCi, where TPRi and TNRi are the input
for generating synthetic data for detector Di and ACCi is derived from them as men-
tioned above; the relative accuracy RAi (Algorithm 1); the bellwether relative accuracy
BAi (Algorithm 3); and the inferred effectiveness metrics TPR′i, TNR

′
i, and ACC′i (Al-

gorithm 4). Owing to space limit, we only present the experimental results on ACC′i,
while noting that the results on TPR′i and TNR′i exhibit similar characteristics. More-
over, we only present the experimental results with D1, because the results with D2 and
D3 are almost the same as that of D1.

Figure 1 plots the experimental results with dataset D1. We make the following ob-
servations. First, we observe RAi 6= ACCi and BAi 6= ACCi, which is expected and
highlights the necessity of Algorithm 4. Nevertheless, we observe that |ACCi−BAi| ≤
|ACCi−RAi| holds for every i in the experiments, meaning that bellwether relative ac-
curacy improves upon the relative accuracy. Second, we observe the inferred ACC′i ≈
ACCi in most cases. In Experiments 1-9, we observe maxi(|ACCi−ACC′i|) = 2×10−6;
in Experiment 10, we observe a higher error, with maxi(|ACCi−ACC′i|) ≈ 0.04 and
average error 0.012 (among all detectors), due to the fact that there are only 10 good
detectors with ACC ∈ [0.9,1] but 40 poor detectors with ACC ∈ [0.35,0.45]. This con-
firms the usefulness of Algorithm 4. Third, we select detectors with BAi > 0.5 and
pass them to Algorithm 4 (which corresponds to the recommended use case men-
tioned above), also in Experiments 1-10. We contrast this result with what is plotted
in Figure 1, which uses all of the detectors (rather than a selection of them). Owing
to space limit, we only report that Experiments 1-3 do not differ in these two set-
tings because no detectors have BAi ≤ 0.5; ACC′i in Experiments 4-9 are improved
and match ACCi exactly; ACC′i in Experiment 10 is most improved, with the largest
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Fig. 1. Results of Experiments 1-10 with synthetic dataset D1: ground-truth ACCi (which is,
when invisible, hidden behind the inferred ACC′i curve), relative accuracy (RAi, which is, when
invisible, hidden behind the inferred ACC′i curve), bellwether relative accuracy (BAi, which is,
when invisible, hidden behind the inferred ACC′i curve), and inferred accuracy ACC′i (y-axis) of
detector i (x-axis), in the descending order of ACC.

error being maxi(|ACC′i−ACCi|) ≈ 0.04. In each of the 10 experiments, we highlight
that at most 2 (out of 1 million) files are mislabelled, leading to negligible TNR′i and
TPR′i. This highlights the usefulness of using the bellwether detector to filter out detec-
tors with BAi ≤ 0.5. Fourth, the order-preserving property that ACCi > ACC j implies
ACC′i > ACC′j is preserved when detectors with BAi ≤ 0.5 are eliminated but not be-
fore they are eliminated. This further highlights the importance of filtering out detectors
with BAi ≤ 0.5.

In order to show that Algorithm 4 outperforms the heuristic of unweighted majority
voting, we also conduct Experiments 1-10 with the latter. By contrasting the results,
we observe that unweighted majority voting, while performing moderately well in Ex-
periments 1-7 with a maximum number of mislabeled files being 17, performs poorly
in Experiments 8-10 where poor detectors begin to outnumber good detectors, with
4,350, 17,450, and 441,500 files mislabeled, respectively. This reiterates the advantage
of the recommended use case of the principled Algorithm 4 (i.e., filtering out detectors
with BAi ≤ 0.5) over the heuristic of unweighted majority voting.

Insight 1 Algorithm 4 is a principled method for inferring ground-truth labels and
detector effectiveness, especially when eliminating the detectors whose BAi ≤ 0.5. It
also substantially outperforms the unweighted majority voting heuristic.

5 Applying the Method to Real-World Dataset

Now we apply the method to a real-world dataset collected from VirusTotal, with n= 62
detectors and m = 10,738,585 files. Each file is labeled as malicious (1) or benign (0),
but not every file is labeled by every detector. The dataset is succinctly represented by
matrix V = (Vi j)n×m, which leads to similarity matrix S, and the bellwether relative
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accuracy vector BA according to Algorithm 3. We conduct two experiments with Al-
gorithm 4: the first experiment corresponds to the recommended use case of only using
detectors with BAi > 0.5; the second experiment uses all of the 62 detectors together
with the bellwether detector which is always given voting weight 0 (i.e., η = 63), while
aiming to draw more insights. We observe that in the aforementioned experiments, with
an input of m = 10,738,585 files and η ≤ 63 detectors, Algorithm 4 took on the order
of tens of minutes to complete each iteration, with a maximum number of 8 iterations.

In the first experiment, we observe 56 (out of the 62) detectors have BAi > 0.5.
Algorithm 4 outputs 7,408,449 files as malicious and the TPR′i, TNR

′
i and ACC′i’s for

the 56 detectors. We observe 22 (out of the 56) detectors have TNR′i > TPR′i (i.e.,
they prefer low false-positives to low false-negatives) and the other 34 have TNR′i <
TPR′i (i.e., these detectors prefer the opposite). This suggests that a majority of the
good detectors prefer low false-negatives to low false-positives; this is consistent with
a finding reported in [7]. Treating the inferred labels as ground-truth (as validated in
Section 4), we can test the heuristic unweighted majority voting, which has to use all
of the detectors because it cannot distinguish which detectors are more accurate than
others. We find that the unweighted majority voting method only labels 6,021,073 (out
of the 7,408,449 malicious) files as malicious, meaning high false-negatives.

0 10 20 30 40 50 60 70

0

0.5

1

TPR′i TNR′i ACC′i BAi BAbellwether

Fig. 2. Plots of bellwether relative accuracy BAi, and inferred TPR′i, TNR
′
i and ACC′i (the y-axis)

for detectors 1≤ i≤ 62 (the x-axis), with BAbellwether = 0.5 being the reference line.

For the second experiment, Figure 2 plots the bellwether relative accuracy BAi and
the inferred ACC′i, TPR

′
i and TNR′i for detectors 1 ≤ i ≤ 62, in descending order re-

spective of ACC′i, with BAbellwether = 0.5 as the reference line; note that TPR′bellwether =
0.506, TNR′bellwether = 0.504, ACC′bellwether = 0.505 are not plotted. We make the fol-
lowing observations. First, four detectors i ∈ {59,60,61,62} have BAi ≈ 0, TPR′i ≈ 0,
TNR′i ≈ 0, and ACC′i ≈ 0, meaning they are not reliable. Looking into the data we
find that they only labeled 52, 51, 37, 1 files, respectively. Second, detectors D5
and D37 have BA5 = 0.256 but ACC′5 = 0.92 and BA37 = 0.515 but ACC′37 = 0.83.
This does not contradict with anything discussed above, because it can be explained by
the fact that D5 labels about 33% of the files and D37 labels about 69%. Scaling BA5
and BA37 proportional to the number of files they label would rectify this phenomenon
and place the values where expected in BA, namely BA5 = 0.256/0.33 = 0.775 and
BA37 = 0.515/0.69 = 0.746. Nevertheless, this does highlight that BAi > BAk does not
necessarily imply ACC′i > ACC′k when Di and Dk label significantly different sets of



files, which is inherent to the definition of similarity because Cik applies to the union of
the two sets of files that are labeled by Di and Dk, whereas Aik applies to the intersec-
tion of the two sets. In the full version of the paper we will investigate whether requiring
that all detectors label the same set of files would make our method even more robust.
Third, treating as the ground-truth the outcome in the first experiment (with detectors of
BAi > 0.5), the TPR′i, TNR

′
i and ACC′i’s of the detectors that are common to these two

experiments are largely consistent, indicating that individual detector metrics are con-
sistent during the recovery process. Fourth, 22 detectors have TNR′i > TPR′i (i.e., they
prefer low false-positives to low false-negatives) and the remainder show the opposite.
This is consistent with what is observed in the first experiment mentioned above.

Insight 2 The principled weighted majority voting method is significant more accurate
than the unweighted majority voting heuristic. Most detectors prefer low false-negatives
to low false-positives.

6 Conclusion

We have presented a principled weighted majority voting method for inferring ground-
truth labels of files and malware detector effectiveness metrics, taking as input the (con-
flicting) labels given by a set of malware detectors on a set of files. The proposed method
is supported by an algebraic interpretation of the notion of relative accuracy introduced
in [1]. Another key idea is to introduce the notion of bellwether detector for serving as
a reference to eliminate the detectors that perform worse than random labeling of files.
We empirically validate the method by using synthetic data with known ground-truth
information. We apply the method to a real-world dataset collected from VirusTotal.

The present paper makes a solid step towards characterizing the proposed method,
but there are some outstanding open problems: Can “BAi > BA j implying ACCi >
ACC j” be rigorously proven? Can the error bounds on |ACCi−ACC′i| be rigorously
characterized? Can the idea of eliminating detectors with BAi ≤ 0.5 be rigorously jus-
tified? If any of the above is not universally true, what is the necessary and sufficient
condition under which it is true?
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