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Abstract—The recent emergence of orthogonal time frequency
space (OTFS) modulation as a novel PHY-layer mechanism is
more suitable in high-mobility wireless communication scenar-
ios than traditional orthogonal frequency division multiplexing
(OFDM). Although multiple studies have analyzed OTFS per-
formance using theoretical and ideal baseband pulseshapes, a
challenging and open problem is the development of effective
receivers for practical OTFS systems that must rely on non-
ideal pulseshapes for transmission. This work focuses on the
design of practical receivers for OTFS. We consider a fractionally
spaced sampling (FSS) receiver in which the sampling rate is
an integer multiple of the symbol rate. For rectangular pulses
used in OTFS transmission, we derive a general channel input-
output relationship of OTFS in delay-Doppler domain without
the common reliance on impractical assumptions such as ideal
bi-orthogonal pulses and on-the-grid delay/Doppler shifts. We
propose two equalization algorithms: iterative combining message
passing (ICMP) and turbo message passing (TMP) for symbol
detection by exploiting delay-Doppler channel sparsity and the
channel diversity gain via FSS. We analyze the convergence
performance of TMP receiver and propose simplified message
passing (MP) receivers to further reduce complexity. Our FSS
receivers demonstrate stronger performance than traditional re-
ceivers and robustness to the imperfect channel state information
knowledge.

Index Terms—Fractionally spaced sampling, Message passing,
OTFS, Receiver design, Time-varying channels, Turbo equaliza-
tion.

I. INTRODUCTION

In widespread development of wireless networks, high-
mobility applications such as high-speed trains and au-
tonomous vehicles pose new challenges due to the well-
known obstacle of time-varying channels with high Doppler
spread. Even though orthogonal frequency division multiplex-
ing (OFDM) modulation has achieved high spectral efficiency
and throughput for slow fading frequency selective channels,
its performance degrades significantly against faster time-
varying channels because of the loss of orthogonality or
inter-carrier-interference (ICI) among OFDM subcarriers. One
solution is to shorten OFDM symbol duration so that the
channel appears quasi-stationary over each OFDM symbol [1],
but at the cost of lower spectral efficiency caused by the more
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significant cyclic prefix (CP). Another approach is to mitigate
ICI [2]–[4], which, however, is only effective for low or
medium Doppler shifts and may incur some performance loss.
In addition, [5] proposes a frequency-domain multiplexing
with frequency-domain cyclic prefix (FDM-FDCP) scheme,
which can efficiently tackle the Doppler spread but cannot
handle the multipath delay effect resulting in inter-symbol
interference (ISI).

Recently, orthogonal time frequency space (OTFS) has
emerged [6] as a promising PHY-layer modulation for high-
mobility scenarios. OTFS can exploit the degrees of freedom
in both the delay and Doppler dimensions of a mobile wireless
channel, resulting in superior performance compared with
OFDM. A number of studies on OTFS have been published for
multiple-input multiple-output (MIMO) system [7], multiple
access system [8], [9] and for radar [10], [11]. Works by [12]
and [13] [14] analyzed the diversity gain of OTFS system
in static multipath channels and doubly dispersive channels,
respectively. Furthermore, the authors of [15] analyzed the
peak-to-average power ratio (PAPR) of OTFS whereas the
authors of [16] studied the pulse shaping effect of OTFS.

Unlike OFDM, OTFS multiplexes information symbols in
the 2-dimensional (2D) delay-Doppler domain instead of the
time-frequency domain. Thus, a channel that rapidly varies in
time-frequency domain is transformed into a near stationary
channel in the delay-Doppler domain. This near stationary
channel simplifies not only the receiver design [13], [17],
[18] but also the process of channel estimation [18]–[20]
for OTFS systems in high-mobility scenarios. However, most
existing works [6]–[9], [13], [17], [18] only consider the
use of the ideal bi-orthogonal pulses that admit a simple
input-output channel relationship in the delay-Doppler domain
for efficient receiver design. Unfortunately, such ideal pulses
are not realizable in practice due to the Heisenberg uncer-
tainty principle [21]. Alternatively, an OFDM-based OTFS
system [22]–[25] may utilize the practical rectangular pulses.
However, this OFDM-based OTFS system will result in low
spectral efficiency by inserting a CP in every OFDM symbol
of each OTFS frame.

For better spectral efficiency, the works in [26] and [27]
considered the use of rectangular pulses by inserting only one
CP for the whole OTFS frame. To this end, low-complexity
receivers designed in [26] and [27] can effectively eliminate
self-interference and improve receiver performance. The as-
sumptions of [26] and [27] require that delay and/or Doppler
shifts land on the delay-Doppler sampling grid which is
determined a priori, however, are still impractical in real OTFS



2

deployment.
In this paper, we investigate more effective receiver algo-

rithms for OTFS modulation based on rectangular pulses with
a single CP for the entire OTFS frame as described in [26]
[27]. We note that existing receiver designs do not fully utilize
the spectral information by applying restriction to symbol
spaced sampling (SSS) for baseband signal processing. To
preserve sufficient statistic of the OTFS channel output, we
shall apply fractionally spaced sampling (FSS) by sampling
at a rate that is multiple integer of the symbol rate. Previous
results [28] have shown that FSS of signals with sufficient
bandwidth can generate a single-input multiple-output (SIMO)
channel model and exploit the underlying channel diversity
gain. Our work is motivated by the fact that OFDM systems
under FSS [29], [30] have already demonstrated superior
performance over their SSS counterparts.

We propose to use FSS receiver architecture for OTFS
system to achieve high diversity gain under high-mobility
time-varying channels in our study. We consider the practical
rectangular pulses and efficiently apply only one CP for each
OTFS frame. In addition, we drop the impractical assumption
that delay or Doppler shifts are on the grid and design two
efficient receivers to mitigate ISI in OTFS modulation. Our
contributions in this paper are as follows:

1) By utilizing the simple and practical rectangular pulses
at the transmitter and receiver, we derive a general
channel input-output relationship for OTFS in the delay-
Doppler domain without relying on the assumptions
such as ideal bi-orthogonal pulses which may not even
exist, or on-the-grid delay/Doppler shifts. For such prac-
tical cases, ISI and extraneous phase shifts become
inevitable at the receiver. We develop novel effective re-
ceiver algorithms to overcome these practical challenges.

2) We design an OTFS receiver structure based on FSS
and develop two efficient receivers of moderate com-
plexity for symbol detection. Specifically, we propose
an iterative combining message passing (ICMP) receiver
and turbo message passing (TMP) receiver to exploit the
delay-Doppler channel sparsity and the channel diversity
gain via FSS.

3) We analyze the performance and convergence of the
proposed TMP receiver by using extrinsic information
transfer (EXIT) chart. More importantly, we propose a
simplified message passing (MP) algorithm to further
reduce the complexity by truncating weak connection
edges in a factor graph without significant performance
loss.

4) Our proposed FSS receivers for OTFS can achieve
stronger performance than the existing solutions. Both
ICMP and TMP receivers exhibit robustness to uncer-
tainty in channel state information (CSI).

We organize the remainder of this paper as follows: Section
II introduces the fundamentals of OTFS. Section III charac-
terizes the channel input-output relationship of OTFS in the
delay-Doppler domain for non-ideal baseband pulseshaping.
In Section IV, we first describe the proposed OTFS receiver
structure based on FSS and propose two efficient receivers

for OTFS symbol detection. We further analyze the perfor-
mance of the proposed TMP receiver. Section V proposes
a simplified MP algorithm to achieve good complexity and
performance trade-off. Section VI provides simulation results
of the proposed receivers under the use of practical baseband
pulseshapes. Finally, Section VII concludes our work. Some
detailed proofs appear in the Appendix of the paper.

II. FUNDAMENTALS OF OTFS

This section briefly outlines basic OTFS concepts and
system model. We present the mathematical description of
conventional OTFS formulation.

A. Basic Concepts of OTFS

The discrete time-frequency signal plane consists of time
and frequency axes with respective sampling interval of T
(seconds) and ∆f=1/T (Hz), i.e.,

Λ = {(nT,m∆f), n = 0, · · · , N − 1;m = 0, · · · ,M − 1} ,
N ∈ Z, M ∈ Z.

Signals placed on time-frequency grids denoted by X[n,m],
n = 0, · · · , N − 1,m = 0, · · · ,M − 1 are transmitted over
one OTFS frame with time duration Tf = NT and occupies
a bandwidth B = M∆f .

The corresponding delay-Doppler plane consists of the
message-bearing grids

Γ =

{(
k

NT
,

`

M∆f

)
, k = 0, · · · , N − 1; ` = 0, · · · ,M − 1

}
,

where 1/M∆f and 1/NT represent the quantization steps of
the delay and Doppler frequency, respectively. The choices for
T and ∆f are determined by the channel characteristics, i.e.,
T is not smaller than the maximal delay spread, and ∆f is
not smaller than the largest Doppler shift.

At baseband, we can select transmit and receive pulses
gtx(t) and grx(t), respectively. Let Agrx,gtx(t, f) denotes the
cross-ambiguity function between gtx(t) and grx(t), i.e.,

Agrx,gtx(t, f)
∆
=

∫
g∗rx(t′ − t)gtx(t′)e−j2πf(t′−t)dt′. (1)

In order to fully eliminate the cross-symbol interference at
the receiver, gtx(t) and grx(t) should satisfy the following
bi-orthogonal condition,

Agrx,gtx(t, f)|t=nT,f=m∆f

=

∫
e−j2πm∆f(t−nT )g∗rx(t− nT )gtx(t)dt = δ[m]δ[n]. (2)

B. OTFS System Model

The baseband diagram of OTFS system is given in Fig. 1.
Specifically, OTFS modulation starts with a cascade of a pair
of 2D transforms at the transmitter. The modulator first maps
the information symbols x[k, `] in the delay-Doppler domain
to X[n,m] in time-frequency plane by using the inverse
symplectic finite Fourier transform (ISFFT). Consider the NM
data symbols {x[k, `], k = 0, · · · , N − 1; ` = 0, · · · ,M − 1}
from a modulation alphabet A = {a1, a2, · · · , aQ} (e.g., QAM
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Hn,m[n′,m′] =

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)Agrx,gtx ((n− n′)T − pTs, (m−m′)∆f − νi)

× ejπ(M−1)∆f(pTs−(n−n′)T )ej2πm
′∆f((n−n′)T−pTs)ej2πνi(nT−pTs). (11)

Proof. See Appendix A.

We can also characterize the relationship between channel
output y[k, `] and input x[k, `] in the following theorem.

Theorem 2. The input-output relationship of OTFS in delay-
Doppler domain is given by

y[k, `] =
1

NM

N−1∑
k′=0

M−1∑
`′=0

hk,`[k
′, `′]x[k′, `′] + υ[k, `], (12)

where υ[k, `] = 1√
NM

N−1∑
n=0

M−1∑
m=0

V [n,m]e−j2π(nkN −
m`
M ) and

hk,`[k
′, `′] =

N−1∑
n=0

M−1∑
m=0

N−1∑
n′=0

M−1∑
m′=0

Hn,m[n′,m′]e−j2π(nkN −
m`
M )

× ej2π
(
n′k′
N −

m′`′
M

)
. (13)

Proof. See Appendix B.

In the next section, we will consider a practical commu-
nication system, where the rectangular pulses are adopted by
both the transmitter and receiver.

III. OTFS MODEL BASED ON SSS FOR RECTANGULAR
PULSES

Recall that many existing works on OTFS [6]–[14], [16]–
[19], [26], [27] relied on certain impractical assumptions such
as ideal bi-orthogonal pulses and on-the-grid delay and/or
Doppler shifts. In this section, we first prove that OTFS with
rectangular pulses at both transmitter and receiver, the bi-
orthogonal condition in (2), can be satisfied. However, for
time-varying channels, the ideal bi-orthogonal condition in
(15) does not hold. We then derive a general input-output
relationship of OTFS system in delay-Doppler domain for
SSS.

Let ū(t) denote the unit step function. Without loss of
generality, we consider rectangular pulses rect(t) = T−1/2 ·
[ū(t) − ū(t − T )]. Given rectangular transmitter and receiver
OTFS pulses gtx(t) = grx(t) = rect(t), we have the following
result:

Proposition 1. The rectangular pulses used by both the trans-
mitter and receiver can satisfy the bi-orthogonal condition in
(2), i.e.,∫

e−j2πm∆f(t−nT )g∗rx(t− nT )gtx(t)dt = δ[m]δ[n]. (14)

Proof. For n 6= 0, we clearly have∫
e−j2πm∆f(t−nT )g∗rx(t− nT )gtx(t)dt = 0 due to the

finite time duration T of the rectangular pulses rect(t). For
n = 0, we have∫

e−j2πm∆f(t−nT )g∗rx(t− nT )gtx(t)dt

=
1

T

∫ T

0

e−j2πm∆ftdt = δ[m].

The proof is complete by combining both cases.

However, when incorporating time-varying channel (5),
rectangular pulses cannot guarantee the following ideal bi-
orthogonal condition

Agrx,gtx(t, f) =δ[m]δ[n]q(−(P−1)Ts,0)(t)q(−νmax,νmax)(f),

t = (nT − (P − 1)Ts, nT ) ,

f = (−νmax +m∆f, νmax +m∆f), (15)

where q(a,b)(x) = 1 for x ∈ (a, b) and 0 otherwise. This
ideal bi-orthogonal condition in (15) ensures that the ISI
is eliminated at the receiver in a practical communication
system. However, an ideal pulses which satisfy the above
ideal bi-orthogonal condition cannot be realized in practice
due to Heisenberg uncertainty principle [21]. Thus, the ISI is
inevitable at receiver input such that receiver equalization is
necessary for satisfactory reception performance.

Considering the rectangular pulses and the CP effect, we
can rewrite Hn,m[n′,m′] from (11) to (16), as shown at
the top of the next page, where the cross-ambiguity func-
tion Agrx,gtx ([n− n′]NT − pTs, (m−m′)∆f − νi) is non-
zero for p = 0, · · · , P − 1 and |νi| < νmax only when
[n− n′]N ≤ 1, i.e., n′ = n and n′ = [n− 1]N . Hence, the
time-frequency relationship in (10) reduces to

Y [n,m]

= Hn,m[n,m]X[n,m] +

M−1∑
m′=0,m′ 6=m

Hn,m[n,m′]X[n,m′]

+

M−1∑
m′=0

Hn,m [[n− 1]N ,m
′]X [[n− 1]N ,m

′] + V [n,m],

(17)

in which the first term contains the desired signal, the sec-
ond and third terms represent ICI and ISI, respectively. The
following theorem summarizes the findings:

Theorem 3. The OTFS input-output relationship in delay-
Doppler domain with rectangular pulses is given by

y[k, `] =

P−1∑
p=0

L∑
i=1

N−1∑
q=0

hiPrc(pTs − τi)γ(k, `, p, q, kνi , βνi)

× x [[k − kνi + q]N , [`− p]M ] + υ[k, `], (18)
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Hn,m[n′,m′] =

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)Agrx,gtx ([n− n′]NT − pTs, (m−m
′)∆f − νi)

× ejπ(M−1)∆f(pTs−[n−n′]
N
T)ej2πm

′∆f([n−n′]
N
T−pTs)ej2πνi(nT−pTs), (16)

where

γ(k, `, p, q, kνi , βνi)

=

{
1
N ξ(`, p, kνi , βνi)θ(q, βνi), p ≤ ` < M,
1
N ξ(`, p, kνi , βνi)θ(q, βνi)φ(k, q, kνi), 0 ≤ ` < p,

(19a)

ξ(`, p, kνi , βνi) = ejπ
M−1
M pe

j2π( `−pM )
(
kνi

+βνi
N

)
, (19b)

θ(q, βνi) =
e−j2π(−q−βνi ) − 1

e−j
2π
N (−q−βνi ) − 1

, (19c)

φ(k, q, kνi) = e−jπ(M−1)e−j2π
[k−kνi+q]N

N . (19d)

Proof. See Appendix C.

Note that the magnitude of θ(q, βνi) in (19c) peaks at q =
0 and decreases rapidly as |q| grows. Hence, we can only
consider a small number 2Ei + 1 (Ei ≥ 0) of significant
values θ(q, βνi) in (19c), i.e., −Ei ≤ q ≤ Ei. By using this
approximation, we can conveniently rewrite the received signal
y[k, `] in (18):

y[k, `] ≈
P−1∑
p=0

L∑
i=1

Ei∑
q=−Ei

hiPrc(pTs − τi)γ(k, `, p, q, kνi , βνi)

× x [[k − kνi + q]N , [`− p]M ] + υ[k, `]. (20)

In addition, the relationship of (18) can be simplified as
follows if Doppler shifts are exactly on the grid such that
βνi= 0, ∀i without fractional Doppler shift:

Proposition 2. For Doppler shifts exactly on the grid, the
relationship of (18) reduces to

y[k, `] =

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)γ(k, `, p, kνi)

× x [[k − kνi ]N , [`− p]M ] + υ[k, `], (21)

where

γ(k, `, p, kνi)

=

{
ξ(`, p, kνi , 0), p ≤ ` < M,

ξ(`, p, kνi , 0)e−jπ(M−1)e−j2π
[k−kνi ]N

N , 0 ≤ ` < p.
(22)

Proof. The proof follows directly by noting from (19c) that

θ(q, 0) =

N−1∑
n=0

ej
2π
N nq =

{
N, [q]N = 0,

0, otherwise.
= Nδ [[q]N ] .

(23)
Here we defined [q]N as the remainder of q dividing N .
Accordingly, the result in (21) follows from (18).

From Theorem 3, we observe that the ISI and extra phase
shifts at the receiver can affect the symbol detection when
OTFS uses the practical rectangular pulses in Heisenberg and
Wigner transforms. Even the simplified model for on-the-
grid Doppler shifts in Proposition 2, the ISI is still present.
Therefore, simple and effective receiver must be designed to
recover the signal in such practical and non-ideal OTFS setups.

IV. RECEIVER DESIGN FOR OTFS WITH FSS

Recalling from the literature such as [28], [31] that the use
of RRC filter at the transmitter and the matched receive filter
would widen the bandwidth beyond the minimum required
bandwidth of 1/2Ts. Thus, symbol spaced sampling (SSS),
typically, would not preserve sufficient statistic for signal
recovery since it falls below Nyquist sampling rate and could
also lead to performance sensitivity at the sampling instants
[28], [31].

To develop more effective and robust receiver algorithms,
we attempted to design a fractionally spaced sampling (FSS)
receiver for OTFS with rectangular pulses and RRC filters,
which is expected to be able to generate weakly-correlated
noises, admit sufficient statistic [28], [31] and further improve
the equalization performance. Note that our proposed receivers
can be generalized to the non-rectangular pulses in a straight-
forward manner following the steps from Appendices A, B
and C.

A. Receiver Structure

When sampling at a rate that is an integer multiple G of
the symbol rate, FSS receiver is equivalent to a SIMO linear
system in which G multiple parallel channels have correlated
noise [28]. The SIMO channel responses depend on the time-
varying channel as well as transmit and receive filters. For the
receive filter output to be sampled at rate G/Ts, we first write
its polyphase representation after the removal of the CP as

rg[u] =

P−1∑
p=0

L∑
i=1

hie
j2πνi(uTs−pTs)Prc[g]s(uTs − pTs)

+Ng[u], u = 0, · · · , NM − 1, g = 0, · · · , G− 1, (24)

where the g-th channel output sequence is rg[u]
4
= r(uTs +

gTs/G) with additive noise Ng[u]
4
= N(uTs + gTs/G), and

Prc[g]
∆
= Prc(pTs + gTs/G− τi) for simplicity. The resulting

SIMO receiver structure diagram for OTFS system is given in
Fig. 2.

To utilize the multiple receptions for diversity combining,
we proceed with our FSS-OTFS system model. By performing
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Algorithm 1 ICMP Receiver
Input: y, H, ωc(aj) = 1/Q, c = 1, · · ·NM , j = 1, · · ·Q
and niter.
Initialization: p

(0)
c,d = ωc, c = 1, · · ·NM , d ∈ J (c), η(0) =

0 and iteration count κ = 1.
repeat
1) Each observation node y[d] computes the mean µ(κ)

d,c

and variance (σ
(κ)
d,c )

2
in (30) and (31), then passes

them to the connected variable nodes x[c], c ∈ I(d);
2) Each variable node x[c] generates p

(κ)
c,d in (32) and

passes them to the connected observation nodes
y[d], d ∈ J (c);

3) Compute the convergence indicator η(κ) and symbol
probabilities p

(κ)
c in (33);

4) Update decision symbol probabilities p̄c = p
(κ)
c if

η(κ) > η(κ−1);
5) κ := κ+ 1;
until η(κ) = 1 or κ = niter.
Output: The decisions of the transmitted symbols in (35).

from other connected variable nodes. The received signal y[d]
can be written as

y[d] = H[d, c]x[c] +
∑

e∈I(d),e6=c

H[d, e]x[e] + z[d]

︸ ︷︷ ︸
ζ

(κ)
d,c

, (29)

where sum of interference and noise ζ
(κ)
d,c is approximately

modeled as CN
(
µ

(κ)
d,c , (σ

(κ)
d,c )

2)
according to Central Limit

Theorem [32], with

µ
(κ)
d,c =

∑
e∈I(d),e6=c

Q∑
j=1

p
(κ−1)
e,d (aj)ajH[d, e], (30)

(σ
(κ)
d,c )2 =

∑
e∈I(d),e6=c

 Q∑
j=1

p
(κ−1)
e,d (aj)|aj |2|H[d, e]|2

−

∣∣∣∣∣∣
Q∑
j=1

p
(κ−1)
e,d (aj)ajH[d, e]

∣∣∣∣∣∣
2
+ σ2

N . (31)

In (31), σ2
N = σ2

n

∫
µ P2

rrc(µ)dµ is the variance of the colored
Gaussian noise after the receive filter and σ2

n is the variance of
the AWGN n at the receiver input. The mean µ(κ)

d,c and variance

(σ
(κ)
d,c )

2
are used as messages passed from observation nodes

to variable nodes.
From variable node x[c] to observation nodes y[d], d ∈

J (c): At each variable node, the extrinsic information for each
connected observation node is generated from prior messages

collected from other observation nodes. A posteriori log-
likelihood ratio (LLR) is given by

α(κ)
c (aj) = log

ωc(aj)
∏

e∈J (c)

Pr(y[e] |x[c] = aj ,H )

ωc(aQ)
∏

e∈J (c)

Pr(y[e] |x[c] = aQ,H )

= log

ωc(aj)
∏

e∈J (c),e6=d
Pr(y[e] |x[c] = aj ,H )

ωc(aQ)
∏

e∈J (c),e6=d
Pr(y[e] |x[c] = aQ,H )︸ ︷︷ ︸

α
(κ)
c,d(aj)

+ log
Pr(y[d] |x[c] = aj ,H )

Pr(y[d] |x[c] = aQ,H )︸ ︷︷ ︸
Λ

(κ)
c,d(aj)

,

where Λ
(κ)
c,d (aj) = log

ε
(κ)
d,c(aj)

ε
(κ)
d,c(aQ)

, the extrinsic LLR

α
(κ)
c,d (aj) = log

ωc(aj)
ωc(aQ) +

∑
e∈J (c),e6=d

log
ε(κ)
e,c (aj)

ε
(κ)
e,c (aQ)

and

ε
(κ)
e,c (aj) = exp

(
−|y[e]−µ(κ)

e,c−He,caj|2
(σ

(κ)
e,c )

2

)
. The message passed

from a variable node x[c] to observation nodes y[d], d ∈ J (c)
is the probability mass function of the alphabet

p
(κ)
c,d (aj) = ∆ · P̃ (κ)

c,d (aj)+(1−∆) ·p(κ−1)
c,d (aj), aj ∈ A, (32)

where P̃
(κ)
c,d (aj) =

[
Q∑
k=1

exp
(
α

(κ)
c,d (ak)

)]−1

exp
(
α

(κ)
c,d (aj)

)
and ∆ ∈ (0, 1] is a message damping factor used to improve
performance by controlling convergence speed [7], [26], [33].

Convergence indicator: The convergence indicator η(κ) can
be computed as

η(κ) =
1

NM

NM∑
c=1

I

(
max
aj∈A

p(κ)
c (aj) ≥ 1− %

)
(33)

for some small % > 0 and where p
(κ)
c (aj) =[

Q∑
k=1

exp
(
α

(κ)
c (ak)

)]−1

exp
(
α

(κ)
c (aj)

)
. I(·) denotes the in-

dicator function.
Update criteria: If η(κ) > η(κ−1), then we update the

probabilities of transmitted symbols as

p̄c = p(κ)
c , c = 1, . . . , NM. (34)

Note that we only update the probabilities if the current
iteration is better than the previous one.

Stopping criteria: The MP algorithm stops if either η(κ) =
1 or the maximum number of iterations niter is reached.

Once the stopping criteria is satisfied, we make the decisions
of the transmitted symbols as

x̂[c] = arg max
aj∈A

p̄c(aj), c = 1, . . . , NM. (35)

Even though ICMP receiver can exploit the SIMO channel
diversity gain, the performance may degenerate when the
corresponding jointly factor graph of the parallel correlated
channels is densely connected to form short cycles [34].
Unfortunately, OTFS often exhibits a high density graph due
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After passing samples of Li through the MP equalizer, the
output of extrinsic MI Ie is obtained by applying the same
expression in (37) with the distribution of Le. This can be
achieved by first estimating the conditional distribution of
f
L

(S)
e

(l(S)
∣∣x(S) ) using the histogram method [36], [37] before

computing Ie = I
(I)
e + I

(Q)
e numerically based on (37). The

EXIT chart is depicted by repeating the procedure above for
several values of σ

L
(S)
i

to yield pairs of (Ii, Ie).
Fig. 4 shows an example of the proposed TMP receiver’s

EXIT charts for QPSK at different signal-to-noise ratio (SNR)
levels. Here we select a typical urban channel model [38] and
generate the Doppler shift for each delay by using the Jakes
formulation [8], [17], [26] with maximum Doppler frequency
shift νmax = 1111 Hz. We observe that the MI Ie increases
with Ii, which means that the output Le becomes more reliable
as the input Li becomes better. We also show the trajectories
of iterative process of the TMP receiver in Fig. 4. Note that
the system trajectories closely follow the transfer curves of
the two MP equalizers and eventually reach the corresponding
convergence point (where the transfer curves inter-set) for
different SNRs. The convergence point becomes more reliable
as SNR grows, even approaching the ideal mutual information

of 2 bits per QPSK symbol.
The slight discrepancy between trajectories and transfer

curves can be attributed to the Gaussian model approximation
of the conditional distribution f

L
(S)
i

(l(S)
∣∣x(S) ). In addition, we

can estimate the number of required iterations for the proposed
TMP receiver to converge by counting the number of staircase
steps that follow the trajectory curves of Fig. 4. As we can see,
three iterations are typically sufficient to achieve the desired
performance. This analysis is also verified in Fig. 5, where the
performance improvement becomes negligible beyond three
iterations.

V. REDUCED COMPLEXITY RECEIVERS

From the algorithm discussion, the complexity of the
proposed receivers can be attributed to the MP algorithm.
Clearly, for each main loop iteration of the MP algorithm, the
number of complex multiplications (CMs) required in steps
(30), (31) and (32) are 2MNGDQ, MNGD(4Q + 1) and
5MNGDQ, respectively. Therefore, the overall computational
complexity required respectively for ICMP and TMP receivers
are niterMNGD(11Q+ 1) and ntniterMNGD(11Q+ 1).

We note that the proposed receiver complexity depends
critically on the number of non-zero channel ISI terms (i.e., D)
which represent channel sparsity. However, D can sometimes
remain relatively large, e.g. over 150 in our experiments be-
cause of many off-grid delays and Doppler shifts. Thus, to fur-
ther reduce receiver complexity, we propose a simplified MP
algorithm by trimming of some graph edges from participating
in message passing and update. Although such approximation
may lead to some performance loss, edge trimming can also
reduce the number of short cycles in the corresponding factor
graph, which may in fact improve the performance.

The basic idea is to apply Gaussian approximation to part of
the channel interferers (i.e., part of the connections), such that
the factor graph can be simplified by trimming these edges.
Specifically, for each observation node y[d], we would sort the
corresponding D channel coefficients based on their sizes. We
choose R largest terms and the corresponding edges to remain
in the graph while removing the rest.

Through this process, the received signal y[d] in (29) can
be rewritten as

y[d] =
∑

e∈Φ(d)

H[d, e]x[e] +
∑

e∈Φ̄(d)

H[d, e]x[e] + z[d]

︸ ︷︷ ︸
z′[d]

, (40)

where Φ(d) represents the set of indices with R largest terms
in I(d) and Φ̄(d) denotes the set containing the indices for
the remaining (D−R) terms. We use z′[d] to denote the new
noise term to be approximated as a Gaussian random variable
with mean and variance:

µz′ [d] =
∑

e∈Φ̄(d)

Q∑
j=1

ωe(aj)ajH[d, e], (41)
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(σz′ [d])2 =
∑

e∈Φ̄(d)

 Q∑
j=1

ωe(aj)|aj |2|H[d, e]|2

−

∣∣∣∣∣∣
Q∑
j=1

ωe(aj)ajH[d, e]

∣∣∣∣∣∣
2
+ σ2

N . (42)

Therefore, the messages µ(κ)
d,c and (σ

(κ)
d,c )

2
passed from obser-

vation node y[d] to variable nodes x[c], c ∈ Φ(d) in the κ-th
iteration can be expressed as

µ
(κ)
d,c =

∑
e∈Φ(d),e6=c

Q∑
j=1

p
(κ−1)
e,d (aj)ajH[d, e] + µz′ [d], (43)

(σ
(κ)
d,c )2 =

∑
e∈Φ(d),e6=c

 Q∑
j=1

p
(κ−1)
e,d (aj)|aj |2|H[d, e]|2

−

∣∣∣∣∣∣
Q∑
j=1

p
(κ−1)
e,d (aj)ajH[d, e]

∣∣∣∣∣∣
2
+ (σz′ [d])2. (44)

Similarly, the message passed from variable node x[c] to
observation nodes y[d], d ∈ Ψ(c) in the κ-th iteration can still
be given in (32) with only modification of α(κ)

c,d (aj) as

α
(κ)
c,d (aj) = log

ωc(aj)

ωc(aQ)
+

∑
e∈Ψ(c),e6=d

log
ε

(κ)
e,c (aj)

ε
(κ)
e,c (aQ)

, (45)

where Ψ(c) includes the indices of all the observation nodes
that are connected to the variable node x[c] in the simplified
factor graph.

As we can see, all the edges participate in message updates
in the original MP algorithm whereas the proposed algorithm
of simplified MP only retains a subset of edges. Consequently,
the overall complexity is reduced to niterMNGR(11Q + 1)
and ntniterMNGR(11Q+1) for simplified ICMP (S-ICMP)
receiver and simplified TMP (S-TMP) receiver, respectively.

VI. SIMULATION RESULTS

In this section, we test the performance of our proposed
FSS receivers for OTFS systems in high-mobility time-varying
channels. For simplicity, we consider that the carrier frequency
is 4 GHz with typical subcarrier spacing ∆f = 15 kHz. Unless
otherwise stated, Gray-mapped QPSK is the modulation and
the RRC rolloff factor in transmitter and receiver is set to 0.4.
In addition, we consider N = 32 time slots and M = 128
subcarriers in the time-frequency domain. The speed of the
mobile user is set to λ = 300 km/h, leading to a maximum
Doppler frequency shift νmax = 1111 Hz. We adopt a typical
urban channel model [38] with exponentially decaying power
delay profile p(τ) = e−τ (τ is in µs) and generate the Doppler
shift for each delay by using the Jakes formulation [8], [17],
[26], i.e., νi = νmax cos(ρi), where ρi is uniformly distributed
over [−π, π].

We first assume that the CSI is known at the receiver.
We then investigate the effect of imperfect CSI on OTFS
performance. Without loss of generality, we choose ∆ = 0.7,
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Fig. 6. BER performance of OTFS for different numbers of E.

% = 0.1 and niter = 20 for Algorithm 1 and set G = 2,
nt = 3. All simulation results are from averaging results over
500 realizations.

We first study the effects of approximation Ei on OTFS
performance. For simplicity, we consider the same Ei for all
paths, i.e., Ei = E,∀i. Fig. 6 illustrates the BER performance
of OTFS system versus different numbers of E for different
receivers under various levels of SNR (signal quality). We can
see significant performance improvement when E increases
from 0 to 6 at the expense of higher complexity. We also
notice a performance saturation thereafter for both receivers,
indicating that, because of many small ISI channel taps for
off-grid delays and Doppler shifts, very large choices of E
do not noticeably improve receiver performance. In the rest of
our experiments, we shall use E = 6 unless otherwise noted.

Fig. 7 compares the BER performance of OTFS system for
different receiver designs. To highlight the superiority of the
proposed FSS architecture, we also provide the benchmark
performance of traditional SSS receiver by limiting on-the-
grid delay/Doppler shifts in Fig. 7. The results reveal that
every receiver benefits from higher SNR. However, our pro-
posed FSS receivers outperform SSS receivers significantly
owing to the utilization of channel diversity gain through
fractionally spaced sampling. We also note that the modest
BER performance difference between on-the-grid and off-grid
delay/Doppler shifts. This strongly support the robustness and
the practicality of our proposed receivers given their ability to
tackle any values of delay and Doppler shift.

In general, our proposed TMP receiver achieves superior
performance to ICMP receiver through turbo iterations. This
performance advantage stems from the fact that ICMP receiver
suffers from a large number of short cycles in the channel
factor graph and is more prone to convergence to local
optimum.

Fig. 8 shows the BER performance of OTFS system under
various user mobile velocities (i.e., various maximum Doppler
shifts). The results show that the performance improves grad-
ually as the user velocity increases from 5 km/h to 500 km/h
and saturates beyond 500 km/h. This result would have been
surprising to traditional modulation schemes and equalizers
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that require quasi-static channels. In OTFS, however, the
modulation in the delay-Doppler domain in fact can benefit
from larger Doppler shift as a larger number of multiple paths
becomes more distinct. Our OTFS receiver can resolve a larger
number of paths in the Doppler dimension with the help of
higher user velocity. As a result, better diversity gain becomes
possible.

We again notice that the proposed TMP receiver outper-
forms ICMP receiver for different velocities, which further
exhibits the advantage of TMP receiver over the ICMP receiver
for high mobility users.

Fig. 9 shows the BER performance of OTFS transmission
with different system parameters. We can observe that the
performance of ICMP and TMP receivers degrades as M and
N decrease due to the lower resolution of delay-Doppler grid.
This leads to the diversity loss since the receiver resolves a
smaller number of paths in the channel. We also notice that
our FSS receiver can exhibit a certain level of gains even for
the high order of modulation (e.g., 16QAM). These analyses
strongly support the consistency of our proposed receivers
across different system parameters.

For low complexity, Fig. 10 shows the BER performance
of OTFS system with the proposed simplified MP receivers.
The results clearly show that as R increases, the performance
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of S-ICMP receiver and S-TMP receiver would approach the
performance of ICMP receiver and TMP receiver, respectively.
It is worth noting that even with R = 50, we already
achieve a complexity reduction by the factor of around 3
since D is around 150 in our simulation. We further note
that the performance loss for the simplified receivers are
rather insignificant even if we select smaller R. Therefore,
our proposed simplified MP receivers can provide the desirable
trade-off between complexity and performance.

Finally, we test the effect of CSI uncertainty on the BER
performance of OTFS system in Fig. 11. In practice, the
receiver can only acquire CSI based on pilots and training
which consume power and spectrum resources. It is therefore
common that receivers must function under CSI uncertainty.
We characterize the CSI error by adopting the following model
[39]:

hi = ĥi + ∆hi, ‖∆hi‖ ≤ εhi ,
τi = τ̂i + ∆τi, ‖∆τi‖ ≤ ετi ,
νi = ν̂i + ∆νi, ‖∆νi‖ ≤ ενi ,

where ĥi, τ̂i and ν̂i are the estimated versions of hi, τi and
νi. ∆hi, ∆τi and ∆νi represent the corresponding channel
estimation errors, whose norms are bounded with the given
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radius εhi , ετi and ενi , respectively. For simplicity, we assume
that εhi = ε

∥∥∥ĥi∥∥∥, ετi = ε ‖τ̂i‖ and ενi = ε ‖ν̂i‖ ,∀i. From
Fig. 11, we can observe mild performance loss for modest
levels of channel uncertainty ε. Without sudden and large drop
of receiver performance as channel uncertainty grows, our
proposed new receiver architecture is robust and can handle
typical CSI errors.

VII. CONCLUSION

In this paper, we investigated the design of practical OTFS
receivers to address several practical considerations. First,
when the practical non-ideal rectangular pulses are used in
OTFS transmissions, we derived the OTFS input-output signal
relationship in the delay-Doppler domain. Utilizing a compact
vectorized form, we illustrated a simple sparse representation
of the channel model. We further recognized that the use of
rectangular OTFS pulses require bandlimiting pulse shaping
filter at the transmitter and matched filter at the receiver. Using
the traditional RRC pulseshaping, we developed a fractionally
spaced sampling (FSS) framework for receiver design and
proposed two effective receivers for symbol detection in the
delay-Doppler domain. Our FSS receivers can exploit channel
diversity gain and our EXIT chart analysis demonstrate their
rapid convergence. Furthermore, we proposed simplified MP
method to further reduce the complexity for both the proposed
receivers. Our results demonstrated stronger performance over
conventional receivers and robustness against channel uncer-
tainty and modeling errors.

APPENDIX A

Define V (t, f) =
∫
g∗rx(t′ − t)N(t′)e−j2πf(t′−t)dt′. Com-

bining (4), (6) and (7), we can rewrite Y (t, f) as in (46) and
(47), as shown at the top of the next page.

After sampling, we have

Y [n,m] =

N−1∑
n′=0

M−1∑
m′=0

Hn,m[n′,m′]X[n′,m′] + V [n,m],

(48)

where V [n,m] =
∫
g∗rx(t′ −

nT )N(t′)e−j2π(m−M−1
2 )∆f(t′−nT )dt′ and Hn,m[n′,m′]

is given in (49), as shown at the top of the next page.
Changing variable t′′ = t′ − pTs − n′T , we complete the
proof by rewriting (49) as in (50) and (51), as shown at the
top of the next page.

APPENDIX B

Combining (3), (9) and (10), we have

1√
NM

N−1∑
n=0

M−1∑
m=0

[
N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]Hn,m[n′,m′]

]
× e−j2π(nkN −

m`
M ) (52)

=
1

NM

N−1∑
n=0

M−1∑
m=0

{
N−1∑
n′=0

M−1∑
m′=0

[
N−1∑
k′=0

M−1∑
`′=0

x[k′, `′]

× e
j2π

(
n′k′
N −

m′`′
M

)]
Hn,m[n′,m′]

}
e−j2π(nkN −

m`
M ) (53)

=
1

NM

N−1∑
k′=0

M−1∑
`′=0

hk,`[k
′, `′]x[k′, `′], (54)

by defining hk,`[k
′, `′] =

N−1∑
n=0

M−1∑
m=0

N−1∑
n′=0

M−1∑
m′=0

Hn,m[n′,m′]e−j2π(nkN −
m`
M )e

j2π
(
n′k′
N −

m′`′
M

)
.

Hence, we can write y[k, `] =

1
NM

N−1∑
k′=0

M−1∑
`′=0

hk,`[k
′, `′]x[k′, `′] + υ[k, `], which completes

the proof.

APPENDIX C

Combining (12), (13) and (16), we derive the OTFS input-
output relationship in delay-Doppler domain separately for
n′ = n and n′ = [n− 1]N .

We first define Gc(νi), Gs(νi), Fc(νi) and Fs(νi) as in (55),
(56) and (57), as shown in the next page, respectively. We also
denote

γc(`, p, q, kνi , βνi) =
1

N
ξ(`, p, kνi , βνi)θ(q, βνi), (58)

γs(k, `, p, q, kνi , βνi) =
1

N
ξ(`, p, kνi , βνi)θ(q, βνi)φ(k, q, kνi),

(59)

where ξ(`, p, kνi , βνi), θ(q, βνi) and φ(k, q, kνi) are defined
in (19b), (19c) and (19d), respectively.

When n′ = n, we have

yc[k, `] =
1

NM

N−1∑
k′=0

M−1∑
`′=0

hck,`[k
′, `′]x[k′, `′], (60)

where hck,`[k
′, `′] is given in (61). By substituting (16) in

(61), hck,`[k
′, `′] can be written as in (62), which can be

further written as in (63) by replacing the cross-ambiguity
function Agrx,gtx (−pTs, (m−m′)∆f − νi) in (62) with its
sampled version. Finally, we obtain hck,`[k

′, `′] in (64) by
separating the terms related to n, m, m′ and c, respectively.
As a result, we obtain the value of yc[k, `] as in (65). This
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Y (t, f) =

∫
g∗rx(t′ − t)

[
P−1∑
p=0

L∑
i=1

hie
j2πνi(t′−pTs)Prc(pTs − τi)s(t′ − pTs)

]
e−j2πf(t′−t)dt′ + V (t, f) (46)

=

N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)
[∫

g∗rx(t′ − t)gtx(t′ − pTs − n′T )ej2πνi(t
′−pTs)

×ej2π(m′−M−1
2 )∆f(t′−pTs−n′T )e−j2πf(t′−t)dt′

]
+ V (t, f). (47)

Hn,m[n′,m′] =

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)
[∫

g∗rx(t′ − nT )gtx(t′ − pTs − n′T )ej2πνi(t
′−pTs)

×ej2π(m′−M−1
2 )∆f(t′−pTs−n′T )e−j2π(m−M−1

2 )∆f(t′−nT )dt′
]

(49)

=

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)
[∫

g∗rx(t′′ − (n− n′)T + pTs)gtx(t′′)ej2πνi(t
′′+n′T)

×ej2π(m′−M−1
2 )∆ft′′e−j2π(m−M−1

2 )∆f(t′′−(n−n′)T+pTs)dt′′
]

(50)

=

P−1∑
p=0

L∑
i=1

hiPrc(pTs − τi)Agrx,gtx ((n− n′)T − pTs, (m−m′)∆f − νi)

× ejπ(M−1)∆f(pTs−(n−n′)T )ej2πm
′∆f((n−n′)T−pTs)ej2πνi(nT−pTs). (51)

Gc(νi) = Gs(νi) =

N−1∑
n=0

e
−j2πn

(
k−k′
N −νiT

)
=
e−j2π(k−k′−kνi−βνi ) − 1

e−j
2π
N (k−k′−kνi−βνi ) − 1

. (55)

Fc(νi) =
1

M

M−1−p∑
c=0

ej2πνi(
c

M∆f +pTs)
M−1∑
m=0

e−j2πm( c
M +∆fpTs− `

M )
M−1∑
m′=0

e
j2πm′

(
c
M−

`′
M

)

= M

M−1−p∑
c=0

ej2π
kνi

+βνi
NM (c+p)δ ([c+ p− `]M ) δ ([c− `′]M ). (56)

Fs(νi) =
1

M

M−1∑
s=M−p

ej2πνi(
s

M∆f +pTs−T)
M−1∑
m=0

e−j2πm( s
M +∆fpTs−∆fT− `

M )
M−1∑
m′=0

e
j2πm′

(
s
M−

`′
M

)

= M

M−1∑
s=M−p

ej2π
kνi

+βνi
NM (s+p−M)δ ([s+ p− `]M ) δ ([s− `′]M ). (57)

can be further written as in (66) from the change of variable
k′=[k − kνi + q]N .

In a similar fashion, for n′ = [n− 1]N , we have

ys[k, `] =
1

NM

N−1∑
k′=0

M−1∑
`′=0

e−j2π
k′
N hsk,`[k

′, `′]x[k′, `′], (67)

where the value of hsk,`[k
′, `′] can be obtained from (68) to

(70), as shown in the next page.
Thus, ys[k, `] can be obtained as in (71) and further sim-

plified as in (72), as shown in the next page.
Finally, by combining (66) and (72), the input-output rela-

tionship of OTFS in delay-Doppler domain can be obtained
as in (18), which completes the proof.
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