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ABSTRACT

High-throughput technologies to collect field data have made obser-
vations possible at scale in several branches of life sciences. The
data collected can range from the molecular level (genotypes) to
physiological (phenotypic traits) and environmental observations
(e.g., weather, soil conditions). These vast swathes of data, collec-
tively referred to as phenomics data, represent a treasure trove of
key scientific knowledge on the dynamics of the underlying bio-
logical system. However, extracting information and insights from
these complex datasets remains a significant challenge owing to
their multidimensionality and lack of prior knowledge about their
complex structure. In this paper, we present Pheno-Mapper, an in-
teractive toolbox for the exploratory analysis and visualization of
large-scale phenomics data. Our approach uses the mapper frame-
work to perform a topological analysis of the data, and subsequently
render visual representations with built-in data analysis and machine
learning capabilities. We demonstrate the utility of this new tool on
real-world plant (e.g., maize) phenomics datasets. In comparison to
existing approaches, the main advantage of Pheno-Mapper is that it
provides rich, interactive capabilities in the exploratory analysis of
phenomics data, and it integrates visual analytics with data analy-
sis and machine learning in an easily extensible way. In particular,
Pheno-Mapper allows the interactive selection of subpopulations
guided by a topological summary of the data and applies data mining
and machine learning to these selected subpopulations for in-depth
exploration.

CCS CONCEPTS

* Human-centered computing — Visualization toolkits; ¢ Ap-
plied computing — Bioinformatics; « Mathematics of comput-
ing — Paths and connectivity problems; * Information systems —
Data mining.
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1 INTRODUCTION

High-throughput technologies have made field observations possible
at scale in numerous branches of life sciences. In medicine, easy and
increased access to imaging technologies and assay instruments have
made it possible to capture a patient’s biomedical trajectory in hospi-
tals as the patient responds to various drugs and therapies. Similarly,
in agricultural biotechnology, crop phenotyping technologies and
on-field sensors are being widely adopted to capture a whole array
of plant phenotypic traits (both morphological and physical) and
growth environments (weather and soil parameters). Consequently,
there has been an explosion of a new type of complex, multidimen-
sional data called phenomics data [6, 21], which is a combination
of phenotypic and environmental data and genotypic data collected
using sequencing technologies. Phenomics is the branch of modern
biology that deals with the analysis of phenomics data to elucidate
the science behind genotype (G) to environment (E) interactions
toward controlling phenotypic (P) performance, that is, the study of
the mapping G X E — P [6, 17, 21].

The use of phenomics has been exemplified in plant and agricul-
tural biotechnology. Consider a commodity crop such as corn grown
in various regions across the continental United States, Canada, and
Mexico. With hundreds of varieties (genotypes) grown over thou-
sands of geographical locations, the effects of growth environment
on different genotypes can be significant. More specifically, the
same genotype could show varying phenotypic trait performances
in different environments (plasticity) [11], or different genotypes
may respond to environmental stresses differently [4]. Under these
circumstances, conducting only genotype to phenotype association
studies is inadequate [19]. Formulation of hypotheses on phenotypic
control should involve the role of environment as well [20]. Con-
sequently, projects such as the Genomes-to-Field initiative [1, 12]
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have initiated a community-wide call to generate large-scale phe-
nomics data collections. These projects are collecting vast swathes
of phenomic data spanning hundreds of genotypes grown in diverse
geographical regions, and tracking multiple phenotypic traits and
their growth environments.

Analyzing these large-scale high-dimensional datasets can be
challenging. Firstly, these datasets are generated without any partic-
ular central driving hypothesis. In fact, the role of bioinformaticians
is to use data analysis to extract data-guided hypotheses. Secondly,
the more traditional Genome Wide Association Studies (GWAS)
[3] tools are not readily suited to handle environmental data. The
multitude of dimensions poses a more severe challenge to more tra-
ditional multivariate statistical methods. Whereas the recourse is to
use dimensionality reduction tools such as principal component anal-
ysis (PCA), these tools typically work well only to elucidate coarse
population-level correlations or dominant dimensions. However,
what is of interest to this community are the subpopulation-level
variabilities, e.g., certain environmental factors tend to better control
a specific trait in a certain subset of genotypes (subpopulations) than
in others. Furthermore, the lack of effective large-scale data visu-
alization tools poses additional challenges to the domain scientist
trying to explore the data.

In this paper, we present a software tool called Pheno-Mapper
that is designed to overcome the above challenges associated with
phenomics data analysis. Pheno-Mapper is a domain-specific adap-
tation of a toolbox called the Mapper Interactive [22] and specif-
ically targets the analysis and visualization of multidimensional
phenomics data. More specifically, in comparison to existing ap-
proaches, the main advantage of Pheno-Mapper is two-fold. First,
it provides rich, interactive capabilities in the exploratory analysis
of phenomics data. In particular, users can select subpopulations of
the data guided by their graph-based, multiscale topological sum-
maries for in-depth analysis. Second, as a property inherent from
the design of Mapper Interactive, Pheno-Mapper integrates visual
analytics with data analysis and machine learning module in an
easily extensible way, thus supporting the exploration of selected
subpopulations of phenomics data with built-in and new analysis
and visualization modules. Finally, Pheno-Mapper is open source,
available at https://github.com/tdavislab/PhenoMapper.

2 RELATED WORK

We review the state-of-the-art computational tools for phenomics
data analysis and visualization, with a focus on topological tech-
niques.

Phenomics data analysis. Phenomics is a relatively nascent field.
Most of the current automated tools focus on phenotyping, i.e.,
phenotypic data gathering, which predominantly involves image
analysis to extract spatiotemporal features of interest on the field
[21]. Analysis of genotypic data in relation to their role in con-
trolling a phenotype is typically conducted through Genome Wide
Association Studies (GWAS) [3] tools, which aim to identify cor-
relations between the genomic variations (i.e., Single Nucleotide
Polymorphisms or SNPs) and phenotypic trait values. However,
environmental variability is not captured with these tools.

Topological data analysis for phenomics. Topological data analy-
sis, and more specifically the mapper framework proposed by Singh
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et al. [14, 16], offers a scalable approach to exploration of the multi-
dimensional phenomic datasets. The coordinate-free representations
supported by the mapper framework alongside other desirable fea-
tures such as its robustness to noise and its readiness to visualization
[14] make the framework suited for phenomics data analysis. In a
recent work, Kamruzzaman et al. [9] developed Hyppo-X, an open-
source implementation of the mapper framework. Given a large
phenomics data collection as a d-dimensional point cloud, Hyppo-
X first generates topological objects (1D-skeletons of simplicial
complexes, referred to as mapper graphs) of the data based on a
user-specified selection of filter functions (i.e., environmental dimen-
sions) and phenotypic variable(s) of interest. Furthermore, the tool
supports visualization of this mapper graph and extraction of several
structural features such as paths [7] and flares [8]. Domain scientists
use Hyppo-X to combine the visual representations and extracted
features to formulate specific hypotheses. The Hyppo-X tool has
demonstrated the utility of topological data analysis on both plant
phenomics data [9] and biomedical patient trajectories [15], but the
tool lacks interactivity and downstream machine learning (ML) ca-
pabilities — both important from the perspective of domain scientists
trying to navigate and explore the data for hypothesis discovery.
Table 1 presents a summary of the functional differences between
Hyppo-X [9] and Pheno-Mapper. The main differences are that (a)
Pheno-Mapper offers more interactive capabilities in exploring phe-
nomics data via its mapper graph representation, including easily
extensible GUI, and (b) it provides easily extensible data analysis
and ML capabilities including regression, feature selection, and di-
mensionality reduction. As a domain-specific adaptation of Mapper
Interactive [22], Pheno-Mapper inherits a number of properties in-
cluding extendability and interactivity. With these additional capabil-
ities, Pheno-Mapper is well suited for the analysis and visualization
of phenomics data, in particular, for exploring the subpopulations.

Features | HX] PM
Mapper graph computation and visualization

Mapper graph layout adjustment N [Y

Interactive parameter adjustment Y |Y

On-the-fly mapper graph computation Y |[Y

Interactive visualization

Node selection
Path selection
Subgraph (connected component/cluster) selection
Structural feature extraction (flares and special paths)
Easily extensible GUI

Data analysis and ML modules
Semi-automatic hypothesis formulation
Easily extensible analysis and ML modules
Regression
Feature selection
Dimensionality reduction

Controls and other features

Import and export selected subpopulations
Open source implementation
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Table 1: Comparing features of Hippo-X (HX) against
Pheno-Mapper. Blue means “yes” (Y), pink means ‘“no” (N).
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3 TECHNICAL BACKGROUND

Pheno-Mapper is created with the mapper framework at its core [16].
It visualizes the 1D skeleton of a mapper construction, called the
mapper graph, for a phenomics dataset given as a point cloud.

To define the mapper graph, we first explain the nerve of a cover.
Let X C RY (for d > 1) denote a potentially multidimensional point
cloud. A cover of X is a set of open sets in RY, ¢ = {U;}_; such that
X C U;U;. The 1D nerve of U is a graph and is denoted as N (Uf).
Each node i in A (U) represents a cover element U;, and an edge
exists between two nodes i and j if U;NU; is nonempty for the
corresponding cover elements. Figure 1a gives an example in which
X is a 2D point cloud sampled from the silhouette of a kite. The
cover U of X consists of a collection of 10 rectangles on the plane.
The 1D nerve of U is the graph in Figure 1c.

Wi

al | ol Tyl
Vs
Vi \l
V5‘ |
Vs

Figure 1: A mapper graph of a point cloud sampled from the
silhouette of a kite. See text for more details.

In the original mapper construction introduced by Singh et al. [16],
obtaining a cover is guided by a set of scalar functions defined on X.
For simplicity, we define a mapper graph with a single scalar func-
tion f : X — R. We start with a finite cover of f(X) using intervals,
that is, a cover V = {V;}/_; of f(X) C R such that f(X) C UV,
see Figure 1b. We obtain a cover U/ of X by considering the clusters
induced by points in f~! (Vi) for each V; as a cover element. The
1D mapper graph of (X, f), denoted as M, is the 1D nerve of U,
M= N1 (U).

We use Figure 1 as an example where the point cloud X is
equipped with a height function f : X — R. A cover V ={Vy,---,Vs}
of f(X) is formed by six intervals. For each k (1 < k < 6), f~1(V})
induces a number of clusters that are subsets of X. Such clusters form
elements of a cover of X. For instance, as illustrated in Figure 1a,
f1 (V1) induces a single cluster of points that is enclosed by the
orange cover element Uy, and f~!(V5) induces two clusters of points
enclosed by the blue cover elements U, and Us. The mapper graph
in Figure 1c has an edge between nodes 1 and 2 since U; NU, # 0.
Note how the mapper graph captures the overall shape of the kite.

Given a point cloud X, several parameters are needed to compute
the mapper graph M, including a function f : X — R, referred
to as the filter function, the number of cover elements n and their
percentage of overlaps p, the metric dx on X, and the clustering
method. For example, in Figure 1, f is the height function, n = 6 and
p =30%, dx is the Euclidean distance, and the clustering method is
DBSCAN [5].
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In practice, the choice of the filter function f is nontrivial. Typi-
cally, a different choice of f gives rise to a different type of summary.
Common choices for dx include the Lp-norm, variants of geodesic
distances, and eccentricity [2, 16]. A common choice for the clus-
tering method is DBSCAN [5], which is a density-based clustering
algorithm. DBSCAN has two parameters: € is the neighborhood
size of a given point, and minPts is the minimum number of points
needed to consider a collection of points as a cluster.

The filter function f may be generalized to a multivariate function,
that is, f : X — R™ (for m > 2). In most practical scenarios, m =
2, and the resulting mapper graph is referred to as a 2D mapper
graph. The corresponding cover elements of R? become rectangles.
Pheno-Mapper supports the computation of both 1D and 2D mapper
graphs.

4 DESIGN AND IMPLEMENTATION

Pheno-Mapper is a domain-specific adaptation of Mapper Interac-
tive [22], which is an interactive, extendable, and scalable toolbox
for exploring generic, high-dimensional point clouds. We extend the
original toolbox of Mapper Interactive by adding new capabilities
that are desirable for studying phenomics datasets.

The user interface of Pheno-Mapper is shown in Figure 2. The
interface consists of three panels. The graph visualization panel (a)
visualizes a resulting mapper graph. The selection panel (b) enables
three ways to select groups of nodes (subpopulations), including
the selection of individual nodes, connected components (clusters),
and nodes connected along a path. The control panel (c) provides
various parameter controls for computing a mapper graph. Here,
(a) displays a mapper graph computed from the point cloud of the
silhouette of a kite (d) from Figure 1.
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@

Figure 2: The user interface of Pheno-Mapper.

Compared with Mapper Interactive, Pheno-Mapper has the fol-
lowing new features to support in-depth exploration of phenomics
data, with a specific focus on the analysis and visualization of sub-
populations.

Alternative mapper graph layouts. The default layout of a mapper
graph is a force-directed layout [10]. Force-directed layouts are a
class of graph drawing algorithms that assign forces among the
edges and nodes of a graph and minimize the energy associated with
these forces to achieve an aesthetically pleasing graph visualization.
To study plant phenomics data with Pheno-Mapper, we provide
an alternative layout option, which aligns the nodes of the graph
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along with a filter function that increases in the x-axis direction. For
a 2D mapper graph, users are able to select one of the two filter
functions for aligning the nodes. An example of this layout is shown
in Figure 3. Under this layout, nodes can be adjusted vertically to
produce a more readable mapper graph w.r.t. the changes of a chosen
filter function. In the setting of multidimensional plant phenomics
datasets (see section 5 and section 6), variables/dimensions such
as time or days after planting (DAP) are important factors that
characterize the growth of a plant; thus such an alternative mapper
graph layout is particularly useful to emphasize the organizational
principle of the population w.r.t. such variables.

o (©) @
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Figure 3: An alternative layout of the mapper graph in Figure 2
by aligning the nodes horizontally along a filter function.

We provide a number of new modules for in-depth analysis of
mapper graphs, using feature selection, scatter plots, and nonlinear
dimensionality reduction (t-SNE).

Feature selection. Since phenomics datasets usually contain infor-
mation related to categorical variables such as genotypes, we provide
a feature selection module, which can be used to determine important
features for classification tasks related to various genotypes. Feature
selection is performed using a linear support vector classification
model (e.g., SVM), and the selected features can then be included to
construct mapper graphs and to help separate nodes into different
subpopulations based on the targeting genotypes for downstream
analysis and visualization.

Scatter plots. We provide a scatter plot module to highlight corre-
lations between a pair of dimensions, where points can be colored
with any numerical or categorical dimension. Using scatter plots,
for instance, users are able to identify the relation between two
environmental variables and determine whether to include these
variables within a mapper graph construction process. Furthermore,
scatter plots can also be used to further investigate and confirm cer-
tain hypothesis generated by the mapper graph or another analysis
module.

Dimensionality reduction. The t-SNE module is used as a supple-
ment to the existing PCA module. Using either linear (e.g., PCA)
or nonlinear (e.g., t-SNE) dimensionality reduction with selected
subpopulations from a mapper graph, users will have a better under-
standing of the nature of the data.

Export and import selected subpopulations. With Pheno-Mapper,
users can export either the entire point cloud associated with a map-
per graph (the entire population) or selected subgraphs of a map-
per graph (subpopulations) for analysis. The exported population
or subpopulations are saved into a JSON file, which contains the
information of nodes, node relations (edges), and node cluster mem-
berships. Such information can be used for further analysis, such as
comparisons between different subpopulations.

Zhou, et al.

Implementation details. Pheno-Mapper — as an extension of Map-
per Interactive [22] — is implemented using the standard HTML,
CSS, Javascript stack with D3.js, and JQuery libraries. It is equipped
with a Python backend using a Flask-based server. The mapper graph
computation is an accelerated version of KeplerMapper [18] imple-
mentation. The ML modules (linear regression, feature selection,
etc.) interface with Python libraries scikit-learn and statsmodels;
such a design makes Pheno-Mapper easily extendible to include
other ML modules available from scikit-learn with only a few lines
of code.

S USE CASE: KS/NE DATASET

With Pheno-Mapper, users can summarize and interactively inter-
pret phenomics datasets under the mapper framework. In this and
the next section, we showcase the analysis and visualization capabil-
ities of Pheno-Mapper using two real-world plant (e.g., maize) phe-
nomics datasets first studied by Kamruzzaman et al. [9]. A portion of
the findings in these use cases can be obtained from existing frame-
works (e.g., Hyppo-X [9]), but the main advantage of Pheno-Mapper
is that (a) it provides interactive explorations of phenomics data, and
(b) it integrates visual analytics with machine learning in an eas-
ily extensible way. Pheno-Mapper not only provides insights into
variabilities across different subpopulations of the maize datasets
across multiple scales, but also supports in-depth analysis of such
subpopulations with machine learning techniques such as feature
selection and regression.

The first maize dataset, referred to as the KS/NE dataset [9],
contains the growth information of two maize genotypes (type A and
type B) that were cultivated in Kansas (KS) and Nebraska (NE) in
the United States. It consists of 400 rows (data points) describing the
phenotypic and environmental measurements for a number of maize
plants. It describes daily measurements of maize plants across the
first 100 days of the growing season for each of the four (location,
genotype) combinations: (KS, A), (KS, B), (NE, A), and (NE, B).
The columns consist of the genotype of each plant (A or B), a
time measurement recording the days after planting (DAP), the
growth rate of each plant, and 10 environmental variables such as
humidity, temperature, rainfall, solar radiation, soil moisture,
and soil temperature.

5.1 Reproducing Known Results

To first reproduce the experimental result of Kamruzzaman et al. [9],
we use the growth rate to form our point cloud and DAP as the
filter function to construct a 1D mapper graph.

The resulting mapper graphs are shown in Figure 4. In Figure 4a,
the node color represents the average DAP of points contained within
the node. In Figure 4b, the node color represents the average growth
rate of points contained within the node. In Figure 4c, the pie chart
on each node represents the variations among (location, phenotype)
combinations for plants contained in the node. The node size repre-
sents the number of points contained in each node.

To highlight the time axis, we use an alternative mapper graph
layout of Figure 4 by aligning a chosen dimension (DAP) along the
x-axis, as shown in Figure 5.

We observe from Figure 5b that for the first few days (nodes 1
to 11), all plants have similar growth rates. Starting from node 12
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Figure 4: Mapper graphs of the KS/NE dataset: (a) nodes are
colored by DAP; (b) nodes are colored by growth rate; (c) nodes
are visualized with pie charts according to four (location, phe-
notype) categories. For DBSCAN, we chose € = 0.6, minPts = 2.
For mapper graphs, we set n = 30, p = 25%.
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Figure 5: Mapper graphs of the KS/NE dataset aligned along
the horizontal time axis quantified by DAP: (a) nodes are col-
ored by DAP; (b) nodes are colored by growth rate; (c) nodes
are visualized with pie charts according to four (location, phe-
notype) categories.

(~40 days), type B plants grown in KS, i.e., the orange (KS; B)
category in Figure 5c, bifurcate from the main branch, and their
growth rates start to accelerate faster than other plants (Figure 5b).
Starting from node 13 (~43 days), type A plants grown in KS, i.e.,
the blue (KS, A) category, also bifurcate from the main branch with
a faster growth rate than those grown in NE. The plants grown
in NE from both genotypes A and B have a similar growth rate
until node 32 (~62 days) before bifurcating further into subpop-
ulations. These results demonstrate that Pheno-Mapper helps the
users quickly identify interesting subpopulations of plants that have
different growth behaviors, and how such behaviors vary according
to their phenotypes.
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5.2 Conducting New in-Depth Analysis

The main advantage of Pheno-Mapper over existing tools such as
Hyppo-X is that Pheno-Mapper integrates the visual selection of
subpopulations with various data analysis and ML modules for in-
depth analysis. In addition, Pheno-Mapper can be easily extended
to include additional analysis modules with a few lines of code.
By using Pheno-Mapper for the KS/NE dataset, we will perform
in-depth analysis of the entire population as well as selected subpop-
ulations using feature selection and regression. In particular, we will
use the KS/NS dataset to highlight Pheno-Mapper’s analysis and
visualization capabilities.

Linear regression of the entire population. From the mapper graphs
in Figure 5, we can see that plants from the same genotype might
have different phenotypes (e.g., growth rate) when they were grown
in different locations. Since each data point contains dimensions
describing the environmental information, we employ the linear
regression module in Pheno-Mapper to further explore how the
environmental factors affect the growth rate.

The linear regression result is shown in Figure 6a. The R-squared
value (0.119, red box) is low, meaning that the proportion of variabil-
ity explained by this model is low, and getting precise predictions
from the model is difficult. However, under the significant level (p-
value) of 0.05, the variables solar radiation, humidity, and rainfall
are significantly correlated with growth rate (blue boxes), which
means the relation between these environmental variables and the
growth rate is still statistically significant. This result indicates that
the phenotypic behaviors of the plants are likely affected by these
environmental factors.

Linear Regression Feature Selection

Dependent Variable types

Independent Variable

Solar.Rac . All Columns Selected Columns
Humidity Solar.Rad

Humidity %] ® Rainfall Humidity

GDD Rainfall

Rainfall e
Run Linear Regression Run Feature Selection
Regression Result Mean Accuracy 0.492
coef std err p-value Selected Features
Temperature 0.020 0.011 0.067 Soiar.Rad
Solar.Rad 0.143 0.028 0.000 Humidity
Humidity 0.014 0.006 0.012
Rainfall 44.733 14.960 0.003

constant -5.050 0.967 0.000

Figure 6: KS/NE dataset: (a) linear regression of environmental
variables against the growth rate; (b) feature selection.

Feature selection. To further explore how the environmental vari-
ables can help better separate different (location, genotype) com-
binations in the resulting mapper graph, we consider two ways to
incorporate the environmental information to the mapper frame-
work. The first way is to add one environmental variable as a filter
function and construct 2D mapper graphs. The second way is to
encode the environmental variables as additional dimensions within
a multidimensional point cloud for analysis.

To determine which environmental variables to considered as fil-
ter functions, we have added a new feature selection module within
Pheno-Mapper to select the best variables based on the linear sup-
port vector classification model (e.g., SVM). The feature selection
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result is shown in Figure 6b. The selected environmental variables
are humidity and solar radiation (green boxes).
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Figure 7: The 2D mapper graph of KS/NE data. (a) Nodes are
colored by growth rate; (b) nodes are colored by humidity; (c)
nodes are visualized with pie charts according to four (location,
phenotype) categories. For DBSCAN, we chose € = 0.6, minPts =
2. For mapper graph, we set f| = DAP, n; =30, p; =25%, f, =
Humidity, np =5, p» = 50%.

2D mapper graphs with humidity and DAP. We first add humid-
ity as a second filter function in addition to DAP and construct a 2D
mapper graph. The result is shown in Figure 7. The 2D mapper graph
retains a similar structure to the 1D mapper graph, but the plants are
split earlier (w.r.t. to the DAP — the x-axis) based on their planting
locations. As shown in Figure 7c, at the beginning of planting, a
subpopulation of plants from KS (in the red box) bifurcates from
other plants, and also a subpopulation of plants from NE (in the
blue box) bifurcates as well. The result implies that the humidity
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variable provides additional information that helps split plants from
different locations. In Figure 7b, the nodes are colored with the aver-
age humidity values, which confirms that, in general, the average
humidity values in KS are higher than those values in NE.

Analyzing subpopulations with the same genotype. To better un-
derstand how humidity affects the growth rate of plants, we are
interested in analyzing and comparing subpopulations of nodes from
the same genotype but different locations. Figure 8 demonstrates the
2D mapper graph constructed with plants from genotype B only at lo-
cations KS and NE using export/import function of Pheno-Mapper.
In Figure 8c, we see that using DAP and humidity as filter functions
clearly separate the two categories: (KS, B) and (NE, B).

Figure 8: The 2D mapper graph of KS/NE data using only the
plants from genotype B: (a) nodes are colored by growth rate;
(b) nodes are colored by humidity; (c) nodes are shown with pie
chars associated with the two categories (KS, B) and (KE, B).
For DBSCAN, ¢ = 0.6, minPts = 2. For mapper graph, f| = DAP,
ny =30, py =46%, f>» = Humidity, np =5, py = 46%.

We now perform linear regression on selected subpopulations,
which are highlighted as green nodes in Figure 9a-b, respectively.
Green nodes in Figure 9a form a subpopulation with plants from KS
only, whereas those in Figure 9b are from NE only.

In the regression model (Figure 10a) for the KS subpopulation
(Figure 9a), solar radiation is significantly correlated with growth
rate under the significant-level of 0.05, whereas humidity is at the
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Figure 9: KS/NS dataset: green nodes in (a)-(b) correspond to
the selected subpopulation for regression analysis.

margin of statistical significance with a p-value < 0.07 (blue boxes
in Figure 10a). On the other hand, for the NE subpopulation (Fig-
ure 9b), only solar radiation is shown to be significantly correlated
with the growth rate with a p-value < 0.05 (blue box in Figure 10b).
We obtained different regression models from these two selected
subpopulations, meaning that the environmental variables have dif-
ferent influences on plants from the same genotype but grown in
different locations.

@ ®

Figure 10: Linear regression results of the selected KS and NE
subpopulations from Figure 9a-b, respectively.

Encoding environmental variables as additional dimensions. Fi-
nally, we include the environmental variables, solar radiation and
humidity, together with growth rate, to form a 3D point cloud for
the mapper framework. We construct a 1D mapper graph using DAP
as the filter function. The resulting mapper graph is shown in Fig-
ure 11. The plants are now separated perfectly by location starting
from the beginning of planting. However, compared to the mapper
graph of Figure 5, this mapper graph does not adequately distinguish
the two genotypes (A vs B).

The above observation indeed aligns with our analysis of this 3D
point cloud data using the built-in dimensionality reduction module.
As shown in Figure 12, we see that a t-SNE embedding of this point
cloud clearly shows the separation by location.

BCB °21, August 1-4, 2021, Gainesville, FL, USA

[=] KS; A
KS; B
NE; A
NE; B

]

Figure 11: KS/NE dataset: the 1D mapper graph constructed
with a 3D (i.e, growth rate, solar radiation, and humidity) point
cloud. Filter function: DAP. For DBSCAN, we chose € = 0.15,
minPts = 2. For mapper graph, we set n =20, p = 65%.
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Figure 12: KS/NE dataset: t-SNE embedding of the 3D point
cloud colored by the four (location, phenotype) categories.

Scatter plot analysis. To investigate such an observation further,
we utilize the scatter plot modules provided by Pheno-Mapper. As
shown in Figure 13a, the scatter plot of humidity (x-axis) vs. growth
rate (y-axis) shows a clear separation between KS subpopulations
and NE subpopulations by location (see the grey dotted separating
boundary). The same is true for the scatter plot of solar radiation
vs. growth rate (not shown here). The scatter plot, again, confirms
that the environmental variable humidity (or solar radiation) alone
differentiate the plants by their planting locations.

Figure 13: KS/NE dataset: (a) scatter plot of humidity vs.
growth rate; (b) scatter plot of DAP vs. growth rate. Points are
colored by the four (location, genotype) categories.

We push our exploratory analysis further by studying DAP vs
growth rate using the scatter plot module. We observe a unimodal
distribution for each of the four (location, phenotype) categories, as
shown in Figure 13b, which is quite interesting.
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6 USE CASE: IRRIGATION DATASET

For the second maize dataset, referred to as the Irrigation dataset,
data are collected from two field locations in NE with identical condi-
tions except for the irrigation environmental variable: one location
was irrigated but the other was not; this dataset has been explored
previously by Kamruzzaman et al. [9]. The measured maize plants
have more biodiversity since they come from 80 different genotypes.
Similar to the KS/NE dataset, the columns consist of the genotype
of each plant (among 80 genotypes), DAP, its growth information
such as the height difference and the growth rate difference, and
the weather information of each day, such as the temperature, hu-
midity, etc. The dataset contains 6400 rows (data points).

6.1 Reproducing Known Results

To reproduce the experimental results of Kamruzzaman et al. [9], we
use the growth rate difference to form our point cloud and DAP as
the filter function to construct a 1D mapper graph.

We again work with an alternative mapper graph layout that aligns
DAP along the x-axis, as shown in Figure 14. We are interested in
identifying genotypes that have varying growth rate differences
between the two field locations; such genotypes are considered as
anomalies in the population. As shown in Figure 14c, we observe
that at nodes 13 (~30 days) and 16 (~34 days), the genotype PHW52
x LHI23HT bifurcates from other genotypes (blue box). At nodes 15
(~34 days), 18, and 20 (~40 days), the genotype PHB47 x PHR55
bifurcates from other genotypes (red box). Among nodes 30, 31,
32, 34, and 35 (~ 55 - 59 days, green box), four genotypes bifur-
cate from other genotypes, including LH198 x PHW30, PHW52 x
Q381, PHB47 x PHGS83, and LHI198 x LH51. At node 38 (~ 62
days, purple box), the genotypes PHB47 x LHI85 and PHPO2 x
PHB47 bifurcate from other genotypes. Among nodes 40, 41, 44,
45, 49, and 50 (~ 65 - 70 days, orange box), three genotypes bi-
furcate from other genotypes, including PHB47 x PHGS83, LH198
x LH51, and PHB47 x LH38. Finally, at nodes 54 (~75 days) and
57(~79 days), the genotype ICI 441 x PHZ51 bifurcates from other
genotypes (teal box). The same anomaly detection applies to the
nodes enclosed by gray boxes as well. As shown in Figure 14b,
these genotypes/subpopulations enclosed by colored boxes have dis-
tinct growth rate differences, and thus are considered as anomalies
based on our topological analysis.

This result demonstrates that using Pheno-Mapper, we are able
to reproduce the insights regarding when specific genotypes with
different growth rates start to deviate from the main population of
plants. Such subpopulations of anomalies can be further used to
study the characteristics of these specific genotypes.

6.2 Conducting New In-depth Analysis

With Pheno-Mapper, we can now perform new, in-depth analysis
of selected subpopulations. Using the Irrigation dataset, we demon-
strate the analysis and visualization capabilities of Pheno-Mapper
in studying subpopulations. Specifically, we perform linear regres-
sion on the entire population of 80 genotypes as well as selected
abnormalities as shown in Figure 14c.

Linear regression on the entire population. We first perform a
linear regression on the entire population of the Irrigation dataset. For
this dataset, we treat growing degree days (GDD) as a temperature
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Figure 14: Mapper graphs of the Irrigation dataset aligned
along the horizontal time axis quantified by DAP: (a) nodes are
colored by DAP; (b) nodes are colored by growth rate differ-
ence; (c) nodes are visualized with pie charts according to 80
genotypes. Pie charts involving more than 16 categories are vi-
sualized with a fixed glyph. For DBSCAN, we chose ¢ = 0.15,
minPts = 2. For mapper graph, we set n =28, p =27%.

measurement when plants show a phenotypic response. As shown
in Figure 15a, all the environmental variables are significantly related
to the growth rate difference based on the p-values (blue box).
However, the R-squared value (0.021, red box) is low, which informs
us of the relative low predictive capability of the model based on
these variables (see [13] for an interpretation of the R-squared).
We extend the tool by adding the predicted values versus actual
values plot and the residual plot under the regression result panel;
see Figure 15b-c, which further confirm the low predictive capability
of the model.

Linear regression on selected subpopulations. We are also inter-
ested in studying how environmental variables affect the plants of
different genotypes. We study a few abnormal subpopulations with
growth rate differences that are noticeably distinct from the rest
of the population, such as those enclosed by colored boxed in Fig-
ure 14b-c.

These selected subpopulations are shown in Figure 16. We now
apply linear regression to these subpopulations. Recall from the pre-
vious section, the subpopulation (blue box in Figure 16a) containing



Pheno-Mapper: An Interactive Toolbox for the Visual Exploration of Phenomics Data

®

Figure 15: Irrigation dataset: (a) linear regression on the entire

population; (b) predicted values vs. actual values plot; (c) resid-
ual plot of the model.

nodes 13 and 16 is related to genotype PHW52 x LHI23HT. The sub-
population containing nodes 15, 18, and 20 (red box in Figure 16b)
is related to genotype PHB47 x PHR55. Linear regression applied
to these subpopulations shows relatively high R-squared values, as
shown in Figure 17a and Figure 17b (red boxes), respectively.

However, for the subpopulation (green box in Figure 16¢) con-
taining nodes 31, 32, 34, and 35 with four genotypes, and the sub-
population containing nodes 40, 41, 44, 45, 49, and 50 (orange box
in Figure 16d) with three genotypes, the R-squared values are both
relatively low, as shown in Figure 17c-d (red boxes), respectively.

The different regression results for these four subpopulations
indicate that the environment variables tend to have different effects
on plants from different genotypes with abnormal behaviors.

Bar charts of selected nodes. For each selected node in a mapper
graph, Pheno-Mapper provides a bar chart that treats each dimen-
sion (column) as a separate category, and represents the average
values of each dimension with rectangular bars. We utilize these bar
charts to further explore how selected nodes/genotypes differ from
one another in terms of the environmental conditions. As shown
in Figure 18, we select nodes from each subpopulation of abnormal-
ities (Figure 16b-d) and observe the differences among the average
environmental variables of plants contained in these nodes, such
as the average temperature, humidity, precipitation, and solar
radiation.

Scatter plot analysis of abnormal subpopulations. Finally, we
apply scatter plot analysis of the abnormalities identified using the
mapper graph based analysis (as seen in Figure 14c). As shown
in Figure 19, as time (DAP) increases, different genotypes have
increased diversity in terms of their growth rate differences. At the
same time, the anomalies identified by our topological approach are
now shown to be on the boundaries of the scatter plot. The scatter
plot indicates that the mapper graph helps to identify “extremities”
as anomalies in this setting.

7 CONCLUSION

We presented Pheno-Mapper, an interactive visualization tool for
complex multidimensional phenomics data. Notably, the tool pro-
vides the user a way to interactively explore the data and perform
in-depth analysis by visually exploring and comparing subpopula-
tions. For example, Pheno-Mapper contains a number of built-in
data analysis and ML modules useful for feature selection, linear
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Figure 16: Irrigation dataset: green nodes in (a)-(d) correspond
to the selected subpopulations for linear regression.

regression, and detection of anomalous subpopulations. These capa-
bilities enable users to answer important questions such as “Which
subsets of my population phenotypically differ from one another?”,
“Which subsets of environment variables best correlate with those
phenotypic changes?”, “Which genotypes display more plasticity
than the others?”, and so on. The ability to answer such questions
is central to hypothesis formulation, which is, in particular, very
challenging for multidimensional phenomics data. Pheno-Mapper
provides interactive and ML capabilities towards this direction.

Furthermore, our case studies have not substantively examined
the effects of different environments on given genotypes at the same
developmental stage (i.e., G x E interactions). To do this, we would
need to collect data for the same genotypes from multiple (ideally
many) locations and/or years; this would make for an excellent
follow-up study.
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Figure 17: Irrigation dataset: linear regression for selected sub-
populations.
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Figure 18: Irrigation dataset: the bar charts of selected subpop-
ulations.
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