
ConMan: A Connection Manipulation-based Attack
Against Bitcoin Networking

Wenjun Fan∗§, Sang-Yoon Chang†, Xiaobo Zhou†, and Shouhuai Xu†
∗Department of Communications and Networking, School of Advanced Technology

Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, P. R. China, 215123

Email: Wenjun.Fan@xjtlu.edu.cn
†Department of Computer Science, College of Engineering and Applied Science

University of Colorado Colorado Springs, Colorado Springs, United States, CO 80918

Email: {schang2, xzhou, sxu}@uccs.edu

Abstract—Bitcoin is a representative cryptocurrency system
using a permissionless peer-to-peer (P2P) network as its
communication infrastructure. A number of attacks against
Bitcoin have been discovered over the past years, including
the Eclipse and EREBUS Attacks. In this paper, we present a
new attack against Bitcoin’s P2P networking, dubbed ConMan
because it leverages connection manipulation. ConMan achieves
the same effect as the Eclipse and EREBUS Attacks in isolating
a target (i.e., victim) node from the rest of the Bitcoin network.
However, ConMan is different from these attacks because it is an
active and deterministic attack, and is more effective and efficient.
We validate ConMan through proof-of-concept exploitation in
an environment that is coupled with real-world Bitcoin node
functions. Experimental results show that ConMan only needs a
few minutes to fully control the peer connections of a target
node, which is in sharp contrast to the tens of days that
are needed by the Eclipse and EREBUS Attacks. Further, we
propose several countermeasures against ConMan. Some of them
would be effective but incompatible with the design principles
of Bitcoin, while the anomaly detection approach is positively
achievable. We disclosed ConMan to the Bitcoin Core team
and received their feedback, which confirms ConMan and the
proposed countermeasures.

Index Terms—Cryptocurrency, Bitcoin, P2P Network, Eclipse,
Connection Manipulation, Anomaly Detection

I. INTRODUCTION

Bitcoin [1] uses a decentralized peer-to-peer (P2P) network
and computational Proof-of-Work (PoW) consensus for mining
blocks and maintaining a distributed ledger of transactions.
The financial incentive (1 BTC ≈ US$32,222.50 as of
Jan. 28, 2021) for mining Bitcoins has drawn worldwide
attackers’ attentions. A number of Bitcoin vulnerabilities have
been identified, which allow attackers to break down the
Bitcoin operations and manipulate transactions [2], [3]. Also,
the network-layer attacks (e.g., Eclipse Attack [4], Bitcoin
Partitioning Attack [5], and EREBUS Attack [6]) can be
waged to control the peer connections of the target Bitcoin
nodes, disrupt the PoW consensus protocol, and make the
attackers gain illegal rewards via double-spending [7], [8],
selfish mining [9], [10], and block withholding [11]–[13].

The attacks that attempt to control the peer connections of
Bitcoin nodes can be categorized into two classes: node-based
and network-based. On the one hand, node-based attacks

§This work was done while Dr. Fan was a Postdoctoral Research Associate
at University of Colorado Colorado Springs.

attempt to isolate some target node(s) from the rest of the
Bitcoin network. Two attacks in this class are Eclipse Attack
[4] and EREBUS Attack [6], which poison the peer-tables
of some target nodes (by replacing their legitimate peer
identifiers with malicious ones controlled by the attacker).
These attacks allow the attacker to control a target node’s
Bitcoin functions and benefit from this control. On the
other hand, the network-based attacks introduce mechanisms
targeting multiple nodes. The Bitcoin Partitioning Attack [5]
achieves such feat by using BGP hijacking to manipulate the
inter-Autonomous System (AS) routing so that the partitioned
or victim network’s packets go through the AS controlled by
the attacker, effectively isolating the victim network from the
Bitcoin Mainnet.

In this paper, we focus on node-based attacks against
Bitcoin. To clarify the relationship between the new attack
and the known node-based attacks (i.e., Eclipse Attack [4] and
EREBUS Attack [6]), we characterize the latter as follows: (i)
they require the attacker to poison the peer-tables of the target
nodes; (ii) they are probabilistic, meaning that their success
probability depends on the fraction of the peer-identifiers in
a target node’s peer-tables that are poisoned by the attacker
(i.e., these peers are under the attacker’s control); (iii) they
take effect only after a victim node selects a number of
poisoned peer-identifiers, which may force the attacker to
wait for a long period of time. The preceding characteristics
suggest that both Eclipse Attack [4] and EREBUS Attack [6]
are opportunistic. The state-of-the-art is that Bitcoin Core
version 0.18.0 (released on May 2, 2019) has fixed a number
of peer-table related bugs, which effectively renders Eclipse
Attack [4] infeasible. Moreover, the Bitcoin Core version
0.20.0 (released on June 3, 2020) has provided several patches
against EREBUS Attack [6], but their effectiveness is not clear
at the time of writing.

This paper proposes a new node-based attack, dubbed
Connection Manipulation (ConMan)1. Unlike Eclipse
Attack [4] and EREBUS Attack [6], which require the
attacker to poison a target node’s peer-table, a ConMan

1According to www.collinsdictionary.com, “A con man is a man
who persuades people to give him their money or property by lying to them,”
which coincides with ConMan’s consequence that a target or victim node
believes that its neighbors are legitimate, while they aren’t.

attacker controls a target node’s peer connections as follows:
(i) monopolizing the target node’s inbound peer connections,
meaning that these connections are initiated by the attacker
to the target node; (ii) hijacking a target node’s outbound
peer connections, which are the connections initiated by the
target node to some legitimate nodes; and (iii) spoofing these
legitimate outbound peers to the target node by replying
to the target node’s requests with expected messages. As a
consequence, ConMan can cause the same kind of damages
as what can be caused by Eclipse Attack [4] and EREBUS
Attack [6]. However, ConMan is more powerful in the
following sense: ConMan is in multiple orders of magnitude
efficient because it is deterministic, meaning that it can take
effect immediately; whereas, the other two are probabilistic,
namely that their success depends on the occurrence that
the target node selects some peers that are controlled by the
attacker. ConMan’s attack power is rooted in what it exploits,
namely directly hijacking the TCP connections between a
target node and its outbound peers without the target node’s
notice (otherwise, the target node would re-select its outbound
peers, which would be out of the attacker’s control).

The rest of the paper is organized as follows. Section II
presents a primer on Bitcoin P2P network. Section III gives an
overview of ConMan. Section IV presents the proof-of-concept
of ConMan and the experimental results. Section V explores
countermeasures against ConMan. Section VI reviews the
related work. Section VII concludes the paper.

II. A PRIMER ON BITCOIN NETWORK SECURITY

Bitcoin network. The Bitcoin network is a P2P overlay built
on top of the TCP protocol. That is, two Bitcoin nodes
establish a TCP connection and then use Bitcoin’s VERSION
and VERACK messages to establish an Bitcoin session for
application-layer interactions. Since Bitcoin P2P network is
permissionless, there is no admission control. Moreover,
all Bitcoin messages are transmitted in plaintext through
TCP connections with neither confidentiality nor integrity
protection because the current Bitcoin network does not use
any cryptographic protection for Bitcoin P2P communications
[5]. The lack of cryptographic protections makes the Bitcoin
P2P network vulnerable to TCP spoofing and TCP hijacking.
TCP spoofing means an attacker can inject spoofed TCP
segments [14], [15], which requires the attacker to impersonate
an end node at both the transport layer and the network layer.
TCP hijacking means that an attacker can impersonate one end
node to the other end node of an established TCP connection
without the latter’s notice.

In the Bitcoin P2P network, the peer identifier is a pair of
IP address and TCP Port number, denoted by [IP:Port].
This means that a Bitcoin node with one IP address can
initiate multiple peer connections through multiple ports. Since
a Bitcoin node always listens on the TCP Port 8333 to receive
inbound peer connections, a malicious node can wage a Sybil
attack [16] by initiating multiple connections (via multiple
private Port numbers between 49,152 and 65,535) to a target
node on Port 8333. Each node maintains two peer-tables for
tracking the IP addresses of its peers in the network. A new

table contains the IP addresses it has received from the ADDR
messages but has yet to connect, and a tried table maintains
the IP addresses to each of which it has successfully made
an outbound connection. The new table originally has 16,384
slots and the tried table originally has 4,096 slots, both of
which are later expanded to cope with Eclipse Attack [4].

Bitcoin’s private vs. public nodes. A Bitcoin node can be a
private node if it uses a private IP address (i.e., IP address
behind Network Address Translation or NAT), or a public
node if it uses an IP address which is publicly routable.
Note that a private node will not have any inbound peer
connections, unless there is at least one peer that resides
in the same private network. Currently, a private node can
have at most 11 outbound peer connections, including: (i) 2
blocks-only connections that only transmit BLOCK messages
(all 26 message types refer to Bitcoin Developer2); and (ii) 1
feeler connection that connects/disconnects quickly to test if
an IP address in the new table is valid or not. More precisely,
a new feeler connection is created in every two minutes3, by
selecting an IP address randomly from the new table to test
if the IP address is valid or not. On the other hand, every
feeler connection only persists for α seconds, where α ∈ [1, 2]
is a random number. Thus, the feeler connection is transient
rather than persistent, meaning that a private node often has
10 persistent outbound peer connections. In contrast, a public
node has 11 outbound peer connections and up to 117 inbound
peer connections (i.e., up to 128 connections in total, or 127
persistent connections other than the feeler connection).

Bitcoin’s inbound vs. outbound peer connection. If Bitcoin
node A initiates a P2P connection to node B, then B is
an outbound peer of node A, and A is an inbound peer of
node B. The inbound/outbound connection types are tracked
in a distributed manner; for example, node A registers its
connection to node B as an inbound peer connection because
A initiated the connection. Note that the Bitcoin protocol treats
inbound and outbound connections differently. For example,
in order to mitigate Eclipse Attack [4], the current Bitcoin
Core makes nodes randomly select outbound peers without
any bias in regards to timestamps. This can mitigate Eclipse
Attack [4] unless a node’s peer-table is already fully occupied
by malicious peers controlled by the attacker.

III. OVERVIEW OF THE CONMAN ATTACK

A. Basic Idea

As reviewed above, the Bitcoin protocol allows a (public)
node to have: (i) up to 117 inbound peer connections that
are initiated by other nodes to the target node in question;
and (ii) up to 10 outbound peer connections that are initiated
by the target node. Recall that the Bitcoin network nodes are
connected to each other through a permissionless P2P network,
and the communications between them are not protected by
cryptographic means (i.e., neither confidentiality nor integrity

2Available on: https://developer.bitcoin.org/reference
/p2p_networking.html, Nov.30, 2020.

3In fact, the timestamp corresponding to the time at which the next
feeler connection will be added is computed by the function known as
PoissonNextSend(FEELER_INTERVAL).

Attacker against inbound
peer connections

Outbound Peers
(up to 10)

Target Node

Inbound Peers
(up to 117)

Attacker against outbound
peer connections

Fig. 1: Illustration of ConMan, where the target node’s
inbound connections are initiated by the attacker and outbound
connections are hijacked by the attacker.

is assured). This means that in principle, an attacker can
intercept, disrupt, hijack, and control any node’s inbound and
outbound peer connections to achieve the effect of Eclipse
Attack [4] and EREBUS Attack [6]. This explains the basic
idea of ConMan.

As illustrated in Figure 1, the target node is defined as the
eclipse-victim, and the ConMan attack exploits the lack of
cryptographic protection to intercept the connections between
the target node and its peers, as follows: (i) monopolizing
the inbound peer connections to the target node, which can
be legitimately achieved by the attacker; (ii) hijacking the
outbound peer connections of a target node, which can be
achieved by spoofing the original legitimate outbound peer;
and (iii) replying to the target node’s requests with expected
messages that to benefit the attacker.

ConMan is different from the Eclipse Attack [4] and
EREBUS Attack [6] as follows. (i) ConMan causes the same
kind of damages as Eclipse Attack [4] or EREBUS Attack [6]
does, but much more efficiently. This is because ConMan is
a deterministic attack and takes effect immediately; whereas,
the other two are probabilistic because as mentioned above,
their success depends on when the target node selects the IP
addresses controlled by the attacker as its outbound peers.
(ii) The approaches they leverage are different. ConMan
manipulates and hijacks TCP connections, while making
the hijacking stealthy and not noticed by the target node
(otherwise, the target node would re-select its outbound peers,
which is out of the attacker’s control). In contrast, Eclipse
Attack [4] poisons a target node’s peer-table with IP addresses
under its control; and EREBUS Attack [6] poisons a target
node’s peer-table by exploiting adversary AS to spoof shadow
IP addresses (which can be any IP addresses whose target-to-IP
routes go through the adversary AS [6]). (iii) The defenses
against them are different. As we will present later, the
defenses that are effective against Eclipse Attack [4] and
EREBUS Attack [6] are not effective against ConMan.

B. Requirements for ConMan to Succeed

To make ConMan succeed, the following three requirements
must be satisfied: (i) the attacker must be able to obtain
the TCP states of the target node’s inbound and outbound
connections, which is necessary for preparing TCP spoofing
and hijacking; (ii) the attacker must be able to monopolize
the target node’s inbound peer connections; and (iii) the
attacker must be able to hijack the target node’s outbound
peer connections. As illustrated in Figure 1, satisfying these

requirements makes the target node effectively communicate
only with the attacker, despite that the target node “thinks”
it is communicating at least with some legitimate peers. This
coincides with the meaning of the term con man mentioned
above. In what follows we show how these requirements can
be satisfied.

Satisfying Requirement 1: Obtaining the TCP states of
the target node’s inbound and outbound connections.
To break the target node’s inbound connections and hijack
its outbound connections with legitimate nodes, the attacker
must be able to obtain the TCP states of these inbound and
outbound connections, namely the seqnums and acknums.
We call an attacker who can obtain such information by
an sniffing-capable attacker or sniffing-incapable attacker
otherwise (i.e., the latter must infer the TCP states through
other means).

A sniffing-capable attacker can monitor all of the
networking packets from/to the target node to learn the
4-tuple <source IP, source Port, destination
IP, destination port> information and to derive the
current seqnum and acknum of those connections. A
sniff-capable attacker can be instantiated as: (i) a node that
resides in the same local area network as the target node,
such as a 802.11 wireless network or a wired network using
promiscuous mode; (ii) a node resides on the path of the
connection between the target node and a legitimate peer,
which is the same as the attacks studied in [5], [17], [18],
namely that the attacker manipulates routes via BGP hijacking.
Note that BGP hijacking can be achieved by compromising
the routers/switches near the target node, or by leveraging
the AS(es) under the attacker’s control to spoof shadow IP
addresses as shown in [6]. It is worth mentioning that what
is required for ConMan to succeed is strictly weaker (so that
it is easier to fulfill and thus greater security risk) than what
can be achieved by the attacks studied in [5], [6], [17], [18].

While the preceding discussion has justified how a
sniffing-capable attacker can obtain the TCP states of the target
node’s inbound and outbound connections, it is still interesting
to explore whether a sniffing-incapable attacker can achieve
the same. In contrast, a sniffing-incapable attacker can wage
the ConMan attack, by leveraging the side-channels related to
the shared variables of certain implementations of the TCP
stack, such as the global ACK Challenge Counter [19] and
the IP-ID Counter [20], [21].

Satisfying Requirement 2: Monopolizing the target node’s
inbound peer connections. To isolate the target node from
the rest of the Bitcoin network, the attacker must take over
the target node’s inbound connections first. For this purpose,
the attacker needs to break the target node’s existing inbound
peer connections and then create inbound connections to
the target node. This can be achieved by an attacker who
has a computer with multiple Sybil identities/connections
or controls multiple computers, because the current Bitcoin
protocol allows inbound peer connections to come from a same
IP address with different TCP ports.

Figure 2 illustrates how the attacker, Mallory, monopolizes
the target node Alice’s inbound connections. Suppose Alice

Fig. 2: Illustrating how ConMan attacker Mallory “takes over”
Alice’s inbound connection with legitimate peer Bob.

Fig. 3: Illustrating how ConMan attacker Mallory hijacks
Alice’s outbound connection with legitimate peer Charlie.

has an inbound connection with Bob. 1© Mallory wages
an appropriate attack (e.g., TCP Reset) to cause Alice to
disconnect her inbound connection with Bob. 2© Alice tears
down the inbound connection with Bob. 3© Mallory initiates an
inbound connection to Alice. By repeating the preceding 1©- 3©
as many times as needed, Mallory can successfully monopolize
Alice’s (up to) 117 inbound connections. In practice, Mallory
would not need to tear down 117 inbound connections, because
the pool of inbound connections of a node is often not full,
which is less than 117 most of the time. Further, if the pool of
inbound connections is full, the attacker can evict the benign
existing inbound connection even much easier, i.e., without
needing TCP Reset attack, but just keep creating (malicious)
inbound connections. This is so because starting Bitcoin Core
version 0.17.0 [22], a node is required to start evicting (benign)
inbound connection when reaching 117 inbound connections.

Satisfying Requirement 3: Hijacking the target node’s
outbound peer connections. To isolate the target node
from the rest of the Bitcoin network, the attacker must
control the target node’s outbound connections as well. Since
the outbound connections are initiated by Alice randomly
selecting peers, Mallory cannot guarantee that the peers
under her control will be selected by Alice. This explains
why Mallory needs to hijack and maintain Alice’s outbound
connections with legitimate peers, while assuring that Charlie
cannot interfere with the attack.

Figure 3 illustrates how Mallory (i) hijacks target node
Alice’s outbound peer connections with legitimate node, say
Charlie, and (ii) spoof Charlie to communicate with Alice. The
preceding (ii) is important because Alice will establish a new
outbound connection otherwise. 1© Mallory wages an attack
(e.g., TCP Reset or flooding-based DoS) against Charlie to
prevent him from sending data to Alice. 2© Charlie stops to
send data to Alice. 3© Mallory spoofs Charlie to communicate
with Alice by hijacking the Alice-Charlie connection. To
make this hijacked connection active, Mallory must be able
to receive the data sent by Alice to Charlie and send Alice
meaningful data in return.

IV. PROTOTYPE AND EXPERIMENTS

A. Prototype Implementation
In order to validate ConMan, we set up a real Bitcoin

network in a lab environment. Specifically, we create a real
Bitcoin node and connect it to the public Bitcoin Mainnet as
the target node. The target node runs Bitcoin Core (software
version Satoshi 0.20.0 and protocol version 70015) in its
default setting. We develop a set of dedicated programs in
another computer as the attacker node. Both the attacker node
and the target node run on virtual machines (VMs) having
the same specifications (i.e., Ubuntu 18.10 64-bit operation
system, Intel Core i7 4GHz CPU, 4GB memory, and Intel
PRO/1000 MT Desktop network adapter).

The programs running in the attacker node leverages
Bitcoinlib and Scapy as well as the TCP Reset attack as
aforementioned. Specifically, we use the python-bitcoinlib [23]
(i.e., a Bitcoinlib-based program) to facilitate the Bitcoin
networking protocol for the attacker node to create up to
117 Sybil identifiers (i.e., [IP:Port] pairs). We apply
Scapy [24] which is a tool that can satisfy the sniffing-capable
attack requirement mentioned above, to (i) learn the states of
the TCP states of the target node’s peer connections and (ii)
craft spoofing data to manipulate the target connections.

We also specify the experimental attack environment, which
is connected to the real-world Bitcoin network. For ethical
research, we stress that the target node’s other inbound and
outbound peers than our attacker node are real-world Bitcoin
nodes which reside out of our lab environment, and we make
sure that our attack experiment is only waged against the
target node in our lab (i.e., there is no side-effect on the
operation of the real-world Bitcoin network). Corresponding
to the sniffing-capable threat model, we make the attacker
node be able to sniff the target node’s packets to learn
the TCP seqnum and acknum. To mimic real attacks, we
consider various networking conditions, including arbitrary
delays between the connected peers and the packet drop
rate. We also consider the absence of a ConMan attacker
(dubbed the no-attack case), which serves as the baseline for
validating the Bitcoin node operations and providing reference
measurements for our experimental analysis.

B. Baseline Experiment in the Absence of ConMan
We took an empirical measurement of the number of

peer connections of a public Bitcoin node during 25
consecutive days (10/10/2020-11/4/2020), where the node
ran the by-default code/setting and there was no ConMan
attacker. As stated, a Bitcoin node by design should have 10
outbound connections and up to 117 inbound connections; we
call this worst-case (protocol) because it is specified by the
protocol and represents the worst-case scenario to the attacker
(i.e., demanding maximum attack effort). Our measurement
result (see Figure 4) shows that the node can have less
than 10 outbound connections due to its disconnection and
re-connection to the Bitcoin Mainnet (e.g., the Bitcoin node
had less than 10 connections corresponding to 2.162% of the
lifetime of the experiment). During these 25 days, the node has
a maximum of 82 total connections (occurring on 10/19/2020),

0 10 20 30 40 50 60 70 80
Number of Peer Connections

10-6

10-5

10-4

10-3

10-2

10-1

N
or

m
al

iz
ed

 F
re

qu
en

cy

Fig. 4: Empirical measurement of the number of connections
(log scale) when there are no ConMan attacks.

0 10 20 30 40 50 60 70 80 90 100110120
Number of Sockets Created

10-4

10-3

10-2

10-1

100

Ti
m

e
(s

)

0.00037

0.0072

0.0228
0.046

Socket creation
1 connection
Average case (measured)
Worst case (measured)
Worst case (protocol)

Fig. 5: ConMan’s computing
overhead for attacking
inbound connections.

0.0952.618

10.999

21.857

0.135
3.498

13.879

26.537

0.495

11.418

39.799

68.657

0 10 100
Networking Latency (ms)

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

1 connection
Average case (measured)
Worst case (measured)
Worst case (protocol)

Fig. 6: ConMan’s networking
overhead for attacking
inbound connections.

including 10 outbound and 72 inbound connections; we call
this worst-case (measured) because it represents the worst-case
scenario in practice. On average, the node has 32 connections
(32.00046 to be precise) on a daily basis, including 10
outbound and 22 inbound connections; we call this the
average-case (measured) scenario.

C. ConMan Attack Experiment and Results

1) The ConMan Attack Experiment: Built on the prototype,
the attacker can monopolize the target node’s inbound
connections and hijack the target node’s outbound connections.
Specifically, this is conducted as follows. (i) The attacker node
generates and sends a TCP Reset packet to the target node
to disconnect an inbound peer, or to the outbound peer to
make the outbound peer connection half-closed (i.e., making
the original outbound peer connection open at the target node’s
end). (ii) The attacker creates inbound peer connections to the
target node, and periodically sends Bitcoin PING messages
to the target node at a certain interval (e.g., once a minute)
to keep the inbound peer connections alive. (iii) The attacker
node generates a PONG message to reply to PING message
sent by the target node, by spoofing the original outbound peer
to prove the pinging outbound peer that is still alive. This is
needed because the Bitcoin Core disconnects any connection
when the corresponding peer does not respond to the PING
message within 20 minutes by default. To make this realistic,
we let the Scapy-based program construct the corresponding
PONG message according to the received PING message as
in the real world. This is important because Bitcoin Core
(protocol version 60001) makes PONG send back the nonce
that is received in PING, while noting that PONG has the same
format as PING except the packet header.

2) Experimental Results: Figure 5 plots the ConMan
attacker node’s computing overhead for attacking inbound

0 10 20 30 40 50 60 70 80 90
Packet Drop Rate (%)

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f P
ac

ke
ts

 S
en

t

Connection resetting
Connection building

Fig. 7: The packets needed for ConMan with respect to
the drop rate. The “connection resetting” (in TCP Reset)
equally applies to the attacks against inbound and outbound
connections, but the “connection building” only applies to the
attacks against inbound connections.

connections. We observe that the average computing overhead
is 0.37 milliseconds per victim inbound connection, where
average is taken between when the attack starts and when
the attack succeeds in isolating the target node. Figure 6
plots the ConMan attacker node’s networking overhead in
terms of the incurred network latency, including the TCP
three-way handshake time and the Bitcoin-application level
VERSION/VERACK handshake time. These latencies are
measured in three networking environments, namely 0 ms vs.
10 ms vs. 100 ms delay in one-way network transmission.
We observe, e.g., that in the average case, the measured
networking delay is correspondingly 2.618 seconds vs. 3.498
seconds vs. 11.418 seconds, incurred by attacking and taking
over all of the inbound connections. In Figure 7, the
“connection building” curve shows the number of packets that
are needed for the ConMan attacker to send including the TCP
three-way handshake and the VERSION and VERACK message
exchange, but excluding the TCP Reset packets, while the
“connection resetting” curve shows the number of the needed
TCP Reset packets, with respect to varying packet drop rate.
We see that the worse the networking condition, the greater
the packet drops, and the greater the number of packets the
ConMan attacker needs to send.

Also, we observe that the attacker node’s CPU usage
grows to 13% in the case of worst case (protocol), 10%
in the case of worst case (measured), and 8% in the case
of average case (measured) (and 6% for the one connection
case as reference) respectively. The average case CPU usage
decreases more drastically than the other two cases because it
has a smaller number of inbound peer connections to build.
After the connection generation stage, all the cases’ resource
usages become stable along with time, i.e., after 16.82 seconds
the average case CPU usage stays at 0.3%, after 27.49 seconds
the worst case (measured) CPU usage stays at 0.7%, and after
31.13 seconds the worst case (protocol) CPU usage stays at
1.1%. Along with the CPU usage testing, we test the memory
usages for all these cases. We observe that all these cases have
0.3% memory usage in the stable stage other than the worst
case (protocol) that increases the memory usage from 0.3% to
0.6% after 10 seconds.

For attacking outbound connections, the ConMan attacker
constructs a single TCP Reset packet to the outbound peer of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Time (s) 104

6.59212

6.59217

6.59222

6.59227

6.59232

6.59237

6.59242

6.59247

6.59252

B
lo

ck
 H

ei
gh

t

105

No-attack
Under-ConMan

Fig. 8: ConMan withholding blocks. The vertical jumps and
the momentary synchronization is from the eclipse slippage.

the target node (i.e., Charlie in Figure 3). This is sufficient
in an ideal networking environment with no packet drop. In
order to understand what happens if there are packet-drops in
a realistic networking environment, Figure 7 plots the number
of TCP Reset packets that need to be sent by the ConMan
attacker with varying packet drop rates. The attacker hijacks
an outbound connection by simply sending a PONG message
to respond to the target node’s (i.e., Alice’s) PING message.

Overall, We observe that the overhead of ConMan for
controlling all the inbound and outbound peer connections is
in the order of magnitude of minutes, which is much smaller
than what is incurred by Eclipse Attack [4] and EREBUS
Attack [6].

Summarizing the preceding discussion, we draw:

Insight 1: The ConMan attack is relatively easy to wage
and takes effect just in minutes (rather than tens of days).

D. Implication of ConMan

To show the damage that can be caused by ConMan, we
now show its consequences when applied to delay the BLOCK
delivering to the target node.

After an attacker wages ConMan against a target node,
the attacker can deliver all of the relevant messages, except
BLOCK, to the target node to maintain its inbound and
outbound connections, which is equivalent to the block
withholding attack [25]. When a spoofed TCP Reset packet
that is sent to an outbound peer of the target node gets
dropped (for whatever reason), an eclipse slippage event
occurs, causing that at least one outbound peer not to be
controlled by the attacker, and therefore the target node can
still synchronize with the Bitcoin ledger.

Figure 8 plots the block height growing pattern in the
absence vs. presence of ConMan. We observe that during
the period of 6 hours for a measurement study, 34 blocks
are generated, and 10 eclipse slippage events occur under
ConMan, causing the target node to get synchronized with the
Bitcoin ledger. Nevertheless, the attacker can quickly isolate
the target node after each synchronization. In our experiment,
the target node has the Bitcoin ledger during a total of 3,804
seconds, or 3, 804/21, 917=17.356% of the 6-hour experiment.

Insight 2: Eclipse slippage can occur and a target node can
occasionally synchronize with the Bitcoin ledger, but ConMan
can isolate a target node as frequently as the attacker wants.

V. EXPLORING COUNTERMEASURES

This section explores countermeasures against ConMan.
A status of the countermeasures up-to-date is presented in
Table I, which shows that simple countermeasures, which
are often effective against Eclipse Attack [4] and EREBUS
Attack [6], would not be effective against ConMan.

For ethical disclosure, we sent our manuscript to the Bitcoin
Core team [26] on January 13, 2021 to inform them the
ConMan attack as well as the potential countermeasures. We
received their response on February 4, 2021 by acknowledging
ConMan and resonating the following countermeasures,
despite that some of them might be effective while are
not compatible with the design principle behind Bitcoin.
However, they confirmed that the anomaly-detection-based
countermeasure is positively achievable and have suggested
that a better solution is to incorporate it into a future version
of Bitcoin Core. Therefore, the countermeasure via anomaly
detection will be elaborated more in this section.

A. Effective Countermeasures Are not Compatible with
Bitcoin’s Design Principles

We attribute the root cause of ConMan to (i) Bitcoin
network is permissionless and (ii) Bitcoin communication is
not cryptographically protected. This observation suggests the
following countermeasures, which are effective but are not
compatible with Bitcoin’s design principle.

In order to prevent ConMan, it suffices to prevent the
attacker from hijacking Bitcoin’s peer connections. One
solution to this problem is to employ cryptography to
protect the integrity of the communications (e.g., each
connection is associated with a cryptographic key of a
message authentication scheme), because confidentiality is not
necessary. However, any attempt to incorporate cryptography,
e.g., transport layer security (TLS), appears to be incompatible
with fundamental principle behind Bitcoin. An alternate
approach is to use some trusted and centralized nodes, which
can be leveraged to offer additional assurance. However,
this approach also conflicts with the decentralization and
permissionless principle of Bitcoin.

B. Countermeasure via Anomaly Detection

We build the anomaly detection approach to resist against
ConMan. Though this is a passive countermeasure, the Bitcoin
Security team positively considers that such a direction is
achievable and beneficial for Bitcoin security.

1) Approach Overview: The proposed anomaly detection
approach focuses on analyzing the traffic information rather
than tracking the peer identifier that creates the anomalies,
since in the permissionless Bitcoin P2P network, the spoofing
and Sybil attacks would make an identifier-based detector
ineffective. Also, the detection approach does not require
modifying the Bitcoin Core implementation itself; the Bitcoin
nodes implement a detector as a module that can monitor
misbehaving traffic and report alerts. Our countermeasure
identifies and presents the detection features specific to
ConMan, in addition to building on those which are popularly
used for anomaly detection in general.

TABLE I: Status of Countermeasures Up-to-Date.
Countermeasure Proposed by Developed Eclipse’15 EREBUS’20 ConMan (ours)
Deterministic random eviction Eclipse’15 Yes Effective Ineffective Ineffective
Random peer selection Eclipse’15 Yes Effective Ineffective Ineffective
Test before evict Eclipse’15 Yes Effective Ineffective Ineffective
Feeler Connections Eclipse’15 Yes Effective Ineffective Ineffective
More buckets Eclipse’15 Yes Effective Ineffective Ineffective
More outbound connections Eclipse’15, EREBUS’20 Yes Effective Effective Ineffective
Ban unsolicited ADDR messages Eclipse’15 No Effective Ineffective Ineffective
Diversify incoming connections Eclipse’15 No Limited Effective Ineffective Limited effective
Anomaly detection Eclipse’15, ConMan No Effective but passive Effective but passive Effective but passive
Limited scalability EREBUS’20 No Effective Effective Ineffective
Centralization EREBUS’20, ConMan No Effective Effective Effective
Selecting peers with AS topology information EREBUS’20 Yes Ineffective Effective Ineffective
Eviction policy protecting some peers EREBUS’20 No Effective Effective Ineffective
Single protected peer connection ConMan No Ineffective Ineffective Effective

2) Key Features of Detection: The features are based on
what the victim node experiences specifically due to ConMan,
and we use a blend of features which are useful for detection
during and after the attack occurs.

The following feature detects the anomolous networking
while the attack is undergoing to reach the eclipse state:

Peer Connection Growth Rate (rconn) This feature
represents the creation rate of the peer connections (including
both inbound and outbound ones) to the target node. We know
that if the target node is under normal network context without
ConMan, its peer connection increases gradually, while if it
is under ConMan, since the attacker needs to monopolize
the inbound peer connections as soon as possible and then
maintains such connections, the whole peer connection number
would grow drastically in a certain duration. In other words,
the connection request arrivals would be more sporadic than
the normal case, making the instantaneous connection growth
rate an effective feature for detection.

The following features detect the networking anomalies
after the ConMan attack, including the attacker behavior of
withholding/delaying blocks and transactions:

Block Height Growth Rate (rblk) This feature is for
growth rate of the block height, which is very ConMan specific
because of the implication of ConMan. It actually counts
both the arrival BLOCK and CMPCTBLOCK messages (e.g.,
approximately 0.1 blocks per minute on average). It counts
only the new blocks which contribute to the ledger growth,
as opposed to the redundant blocks which are already in the
ledger. It can detect the ConMan attack’s implication like block
withholding and selfish mining, since such implications change
the rate of the block height growth of the target node, e.g., slow
or sporadic block creation.

TX Message Rate (rtx) This feature indicates the TX
message count per minute (rate), which has the similar use of
the block height growth rate in order to detect the ConMan
attack’s implications.

Inter-message Distribution (Λ) This feature represents
the relative count distribution among all messages. That is
used for detecting the anomalous networking behavior carried
out by the inbound peer connections controlled by the attacker,
because the attacker only sends PING message with a constant
rate to the target node for maintaining the connections while
never transmits any other types of messages. That anomalous
traffic will change the inter-message distribution.

Block Height TX Message
Feature

10-2

100

102

104

R
at

e
R

an
ge

 (n
um

be
r/m

in
ut

e) No-attack
Under-ConMan

Fig. 9: Detection features of
the block height growth rate
(rblk) and the TX message
rate (rtx).

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

0

20

40

60

80

100

120

C
on

ne
ct

io
n

N
um

be
r

No-attack
Under-ConMan

Fig. 10: Detection feature of
the connection growth rate
(rconn)

.

VERSIO
N

VERACK
ADDR INV

GETDATA

GETHEADERS TX

HEADERS

BLOCK

GETADDR

MEMPOOL
PING

PONG

NOTFOUND

SENDHEADERS

FEEFILTER

SENDCMPCT

CMPCTBLOCK

GETBLOCKTXN

BLOCKTXN

REJE
CT

Message types of Bitcoin Core

10-4

10-2

100
N

or
m

al
iz

ed
 C

ou
nt No-attack

Under-ConMan

Fig. 11: Anomaly detection feature for comparing the
frequency of messages (Λ): the no-attack case and the
under-ConMan case have the correlation coefficient ρ = 0.025.

3) Anomaly Detection Performance: We establish the
detection threshold by training the anomaly detector so that
ConMan is detected if it falls outside of the threshold
range. After training the model with statistical analysis using
the normally collected data for approximate 35 hours, the
threshold of rblk is τrblk = [0.09, 0.27] messages per minute,
the threshold of rtx is τrtx = [11.4, 4395.6] messages per
minute, the threshold of Λ (i.e., the similarity using correlation
coefficient) is τΛ = 0.993, and the threshold of rconn is
τrconn = [0.71, 19.1] connections per minute.

Detection Accuracy With the reference profile and the fixed
thresholds of the proposed detection features, we detect the
anomaly networking traffic launched by ConMan. Figure 9
shows that when the target node is under ConMan, the block
height growth rate can decrease to 0.01 blocks per minute, and
that is lower than the lowerbound of τrblk . That is because
the attacker withholds the new blocks. Also, we see that
the block height growth rate can increase to 5.39 blocks
per minute, which is even higher than the upperbound of
τrblk . That is because the withheld blocks are transmitted to

TABLE II: Comparison of latency using different approaches.
Phase (sec) Ours LR GB RF SVM DNN OC-SVM AE
Training 6.15×

10−4
1.81 37.41 30.09 14744.31 498.09 2422.84 1414.86

Testing 4.64×
10−4

0.04 0.27 0.84 52.58 1.03 7538.69 21.37

the target node on a sudden, e.g., when the eclipse slippage
event occurs. Also, the TX message rate has the similar
result. In fact, the under-ConMan case can decrease both
of the rates even lower and increase them even higher, this
figure just shows one example of ConMan. Figure 10 presents
that the under-ConMan case increases the target node’s peer
connections to the maximum number in a quite short time,
in particular, it creates 117 inbound peer connections using
28.42 seconds in this example, which varies the connection
growth rate significantly from the no-attack case. Figure 11
illustrates that the under-ConMan case has the PING message
dominating the inter-message distribution, whereby the PING
message takes 94.53% of the normalized count of the overall
messages, it is 45.57 times greater than the PING’s normalized
count in the no-attack case. That is because the under-ConMan
case prevents the other messages to arrive to the target node
(especially, the BLOCK and TX messages) after the attack
succeeds, while the inbound peer connections controlled by
the attacker keep sending the PING messages. Thus, the
similarity of the no-attack case and the under-ConMan case
becomes very low, i.e., ρ = 0.025 and it is largely lower than
τΛ = 0.993.

We find that our detection accuracy performance is 100%
because the tested under-ConMan cases are not deliberately
sophisticated and intelligent against the proposed detection
approach. However, an intelligent attacker which controls its
traffic for avoiding the detection, whereas the attack would
have a smaller impact on the victim (e.g., the application data
withholding reduces), and thus, our detection scheme has the
security effect of mitigating the attack.

Detection Cost Overhead In addition, we present that our
detection approach can just rely on lightweight statistical
analysis rather than machine learning algorithms. We compare
the time latencies of both training and testing between our
approach and the machine learning (ML)-based approaches
used for anomaly detection in the Bitcoin context described
in the literature [27]–[32], including Logistic Regression (LR),
Gradient Boosting (GB), Random Forest (RF), Support Vector
Machine (SVM), Deep Neural Network (DNN), One-Class
SVM (OC-SVM) and AutoEncoder (AE). Table II shows that
our approach (“Ours” in the table) is at least four orders of
magnitudes efficient than the ML-based approaches depending
on the certain ML algorithm which is adopted.

VI. RELATED WORK

We divide the related studies into two categories: those
attacking the Bitcoin networks (i.e., the Eclipse and
Partitioning attacks), and those serving as building-blocks to
ConMan (i.e., TCP Hijacking).

Prior studies on the Eclipse attack. As discussed, the
Eclipse attack isolates a target node from the rest of the
Bitcoin network. The attack implementation against Bitcoin

[4] requires the attacker to control hundreds of bots and IP
addresses; the attack implementation against Ethereum [33]
requires the attacker to use a single IP address. EREBUS
Attack [6] leverages compromised ASes as man-in-the-middle
between the target nodes and the rest of the Bitcoin network.
Defenses against Eclipse include: (i) detecting suspicious
block timestamps, which however takes 2-3 hours to take
effect [34]; (ii) using a gossip protocol to make the Bitcoin
clients connect to the servers to obtain the strongest blockchain
view [34]; and (iii) using blockchain anomaly detection [35].
The ConMan attack is different from the Eclipse attacks
because it is (i) deterministic rather than probabilistic, (ii)
resource-efficient rather than demanding the attack to control
hundreds of IP addresses, and (iii) fast rather than needing to
await the target node to reboot. As a consequence, it is harder
to defend because both the countermeasures mentioned above
[34], [35] are not effective against ConMan. We attribute this
difficulty to the fact that the the Bitcoin network uses plaintext
TCP connections for performance reasons.

Prior studies on the Partitioning attack. The Partitioning
attack attempts to partition the Bitcoin network into multiple
isolated networks. Apostolaki et al. [5] showed how to achieve
this by (i) poisoning the routing tables of the ASes near to
the target network of Bitcoin victim nodes and (ii) forcing
Bitcoin connections to go through those ASes controlled
by the attacker, while assuming that the attacker can wage
the BGP interception attack which is not always possible
[17]. The ConMan attack is different from the Partitioning
attack because it (i) targets Bitcoin nodes without incurring
any partition, (ii) does not need to carry out the much
harder-to-achieve route manipulations. Moreover, an effective
defense against Partitioning is to carefully configure and
protect the routing system by sanitizing and controlling the
routing table of ASes. However, this defense is not effective
against the ConMan attack because ConMan does not rely on
redirecting the routing paths of the target’s peer connections,
meaning that preventing route manipulation cannot defend
against ConMan.

Prior studies on the TCP Hijacking attack. This attack
exploits the TCP protocol to intercept a TCP connection,
by learning the expected seqnum and acknum and then
injecting data into the connection. This attack is easy to
wage by an on-path attacker that resides on the path of the
connection. This attack can also be waged by an off-path
attacker, which does not reside on the path of the connection,
via one of the following methods: (i) exploiting a side-channel,
which is known as the global IP-ID counter of the TCP
protocol either in the Microsoft Windows implementation [20]
or in the Linux implementation [21], to guess the expected
seqnum and acknum; (ii) compromising a firewall to learn
the seqnum of the packets passing through it [36]; (iii)
exploiting a side-channel related to a host’s packet counter
to infer the seqnum [37]; (iv) leveraging a browser-based
automated puppet script running on at the victim node to learn
seqnum and acknum [38]; (v) using a side-channel of the
TCP stack in the Linux implementation to infer the expected
seqnum and acknum, which is made possible by the fact that

the challenge-ACK counter is a global variable shared by all
TCP connections (as per RFC 5961) [19]. All these attacks can
be leveraged by ConMan in a modular/plug-and-play fashion.

VII. CONCLUSION

We proposed a new attack against Bitcoin, dubbed ConMan,
which manipulates the TCP connections used by Bitcoin
nodes. ConMan can achieve the same effect as Eclipse
Attack and EREBUS Attack against Bitcoin, but is much
more efficient. We presented some countermeasures that are
effective against Eclipse Attack and EREBUS Attack while
are not effective against ConMan. Also, We proposed some
countermeasures that would be effective but are not compatible
with the design principles of Bitcoin. Further, we elaborated
the anomaly detection as the more promising countermeasure
for defending against ConMan. We disclosed ConMan to the
Bitcoin Core team, and received their quick response (in three
weeks) to confirm our attack and suggest research directions
that would lead to employable solutions.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant #2122631
(#1814825) and by Colorado State Bill 18-086.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.

Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE Symposium on Security and Privacy,
2015, pp. 104–121.

[3] M. Conti, E. Sandeep Kumar, C. Lal, and S. Ruj, “A survey on security
and privacy issues of bitcoin,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3416–3452, 2018.

[4] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15), August 2015, pp. 129–144.

[5] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in 2017 IEEE Symposium on Security and
Privacy (S&P), 2017, pp. 375–392.

[6] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A
stealthier partitioning attack against bitcoin peer-to-peer network,” in
IEEE Symposium on Security and Privacy (S&P), 2020.

[7] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and
S. Capkun, “Misbehavior in bitcoin: A study of double-spending and
accountability,” ACM Transactions on Information and System Security
(TISSEC), vol. 18, no. 1, 2015.

[8] S. Zhang and J. Lee, “Double-spending with a sybil attack in the bitcoin
decentralized network,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 10, pp. 5715–5722, Oct 2019.

[9] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack,” in
2016 IEEE European Symposium on Security and Privacy (Euro S&P),
March 2016, pp. 305–320.

[10] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, no. 7, pp. 95–102, Jun. 2018.

[11] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 195–209.

[12] M. Walck, K. Wang, and H. S. Kim, “Tendrilstaller: Block delay
attack in bitcoin,” in 2019 IEEE International Conference on Blockchain
(Blockchain), 2019, pp. 1–9.

[13] S.-Y. Chang, Y. Park, S. Wuthier, and C.-W. Chen, “Uncle-block attack:
Blockchain mining threat beyond block withholding for rational and
uncooperative miners,” in Applied Cryptography and Network Security,
2019, pp. 241–258.

[14] M. De Vivo, G. O. de Vivo, and G. Isern, “Internet security attacks at
the basic levels,” ACM SIGOPS operating systems review, vol. 32, no. 2,
pp. 4–15, 1998.

[15] B. Harris and R. Hunt, “Tcp/ip security threats and attack methods,”
Computer communications, vol. 22, no. 10, pp. 885–897, 1999.

[16] J. Dinger and H. Hartenstein, “Defending the sybil attack in p2p
networks: Taxonomy, challenges, and a proposal for self-registration,” in
First International Conference on Availability, Reliability and Security
(ARES’06), 2006.

[17] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the internet,” SIGCOMM Comput. Commun. Rev., vol. 37,
no. 4, p. 265–276, Aug. 2007.

[18] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen,
“Partitioning attacks on bitcoin: Colliding space, time, and logic,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 1175–1187.

[19] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits: Global rate limit considered dangerous,”
in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp.
209–225.

[20] lkm, “Remote blind tcp/ip spoofing,” 2007. [Online]. Available:
http://phrack.org/issues/64/13.html

[21] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path tcp exploits of
the mixed ipid assignment,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1323–1335.

[22] “Attempt to evict connection when incoming slots
are full,” Released: 2019. [Online]. Available:
https://github.com/bitcoin/bitcoin/blob/0.17/src/net.cpp#L1128-L1136

[23] L. Jongeneel, “Python bitcoin library,” Released: September 8, 2020.
[Online]. Available: https://pypi.org/project/bitcoinlib/

[24] P. Biondi and the Scapy community, “Scapy project,” Released:
September 28, 2020. [Online]. Available: https://scapy.net/

[25] M. Rosenfeld, “Analysis of bitcoin pooled mining reward
systems,” CoRR, vol. abs/1112.4980, 2011. [Online]. Available:
http://arxiv.org/abs/1112.4980

[26] “Bitcoin security team.” Feb. 2021. [Online]. Available:
https://bitcoincore.org/en/contact/

[27] H. Sun Yin and R. Vatrapu, “A first estimation of the proportion of
cybercriminal entities in the bitcoin ecosystem using supervised machine
learning,” in 2017 IEEE International Conference on Big Data (Big
Data), Dec 2017, pp. 3690–3699.

[28] M. Harlev, H. Sun Yin, K. Langenheldt, R. Mukkamala, and R. Vatrapu,
“Breaking bad: De-anonymising entity types on the bitcoin blockchain
using supervised machine learning,” in Proceedings of the 51st Hawaii
International Conference on System Sciences (HICSS), United States,
2018, pp. 3497–3506.

[29] H. Tang, Y. Jiao, B. Huang, C. Lin, S. Goyal, and B. Wang, “Learning to
classify blockchain peers according to their behavior sequences,” IEEE
Access, vol. 6, pp. 71 208–71 215, 2018.

[30] J. Hirshman, Y. Huang, and S. Macke, “Unsupervised approaches to
detecting anomalous behavior in the bitcoin transaction network,” 3rd
ed. Technical report, Stanford University, 2013.

[31] S. SAYADI, S. B. REJEB, and Z. CHOUKAIR, “Anomaly detection
model over blockchain electronic transactions,” in Proceedings of
the 15th International Wireless Communications Mobile Computing
Conference (IWCMC), June 2019, pp. 895–900.

[32] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, and
S.-Y. Chang, “Anomaly detection based on traffic monitoring for
secure blockchain networking,” in IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), Sydney Australia, May 2021.

[33] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on ethereum’s peer-to-peer network.” IACR Cryptol. ePrint Arch., vol.
2018, p. 236, 2018.

[34] B. Alangot, D. Reijsbergen, S. Venugopalan, and P. Szalachowski,
“Decentralized lightweight detection of eclipse attacks on bitcoin
clients,” 2020.

[35] M. Signorini, M. Pontecorvi, W. Kanoun, and R. D. Pietro, “Bad:
Blockchain anomaly detection,” 2018.

[36] Z. Qian and Z. M. Mao, “Off-path tcp sequence number inference attack
- how firewall middleboxes reduce security,” in 2012 IEEE Symposium
on Security and Privacy, 2012, pp. 347–361.

[37] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp sequence number
inference attack: How to crack sequence number under a second,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2012, p. 593–604.

[38] Y. Gilad and A. Herzberg, “Off-path tcp injection attacks,” ACM
Transactions on Information and System Security (TISSEC), vol. 16,
no. 4, pp. 1–32, 2014.

