Received: 5 August 2020 Accepted: 18 November 2020

DOI: 10.1002/tpg2.20077

The Plant Genome :.©

REVIEW & INTERPRETATION
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uitous tool for the investigation of complex traits. In large part, this was fueled by
advances in genomic technology, enabling us to examine genome-wide genetic vari-

Correspondence ants across diverse genetic materials. The development of the mixed model frame-
Jianming Yu, Dep. of Agronomy, Iowa State
Univ., Ames, IA, 50010, USA.

Email: jmyu@iastate.edu

work for GWAS dramatically reduced the number of false positives compared with
naive methods. Building on this foundation, many methods have since been devel-
oped to increase computational speed or improve statistical power in GWAS. These
methods have allowed the detection of genomic variants associated with either tra-
ditional agronomic phenotypes or biochemical and molecular phenotypes. In turn,
these associations enable applications in gene cloning and in accelerated crop breed-
ing through marker assisted selection or genetic engineering. Current topics of inves-
tigation include rare-variant analysis, synthetic associations, optimizing the choice of
GWAS model, and utilizing GWAS results to advance knowledge of biological pro-
cesses. Ongoing research in these areas will facilitate further advances in GWAS

methods and their applications.

1 | CURRENT STATUS OF GWAS

Understanding the genetic architecture of complex traits is

Abbreviations: BLINK, Bayesian information and linkage disequilibrium
iteratively nested keyway; CMLM, compressed mixed linear model;
ECMLM, enriched compressed mixed linear model; EMMA, efficient
mixed-model association; EMMAX, efficient mixed-model association
expedited; FarmCPU, fixed and random model circulating probability
unification; FaST-LMM, factored spectrally transformed linear mixed
model; FDR, false discovery rate; GEMMA, genome-wide efficient mixed
model analysis; GLM, general linear model; GP, genomic prediction; GS,
genomic selection; GWAS, genome-wide association studies; LD, linkage
disequilibrium; MLM, mixed linear model; MLMM, multi-locus mixed
model; OWAS, omic-wide association studies; P3D, population parameters
previously determined; PCA, principal component analysis; QTL,
quantitative trait loci; QTN, quantitative trait nucleotide; REML, restricted
maximum likelihood; RIL, recombinant inbred line; SLIDE, sliding-window
approach for locally intercorrelated markers with asymptotic distribution
errors corrected; SNP, single nucleotide polymorphism; SUPER, settlement
of MLM under progressively exclusive relationship.

fundamental to understanding biology. Most traits of agricul-
tural and evolutionary importance are complex traits that are
influenced by many genetic loci and environmental conditions
as well as their interaction (Mackay, Stone, & Ayroles, 2009).
Advances in genomic technology and methodology develop-
ment and a desire to examine trait variation across diverse
genetic backgrounds were the major driving forces behind the
initial wave of association mapping studies in model plant
and crop species (Zhu, Gore, Buckler, & Yu, 2008). Con-
tinued progress in sequencing technologies and coordinated
community effort have made genome-wide association stud-
ies (GWAS) a method of choice, particularly when rese-
quencing is conducted after the assemblage of the reference
genome or when a high-density genotyping array becomes
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available (Michael & Jackson, 2013). High-throughput phe-
notyping has also been expanding the trait list for GWAS.
For many crops, diversity panels and related genetic popula-
tions were built for GWAS, resulting in common resources for
the research community including genetic material, phenotyp-
ing protocols, genotyping and sequencing platforms, analysis
pipelines, and curated data.

In the decade since the previous review (Zhu et al., 2008)
and many other earlier reviews (e.g., Sukumaran & Yu, 2014;
Visscher, Brown, McCarthy, & Yang, 2012; Xiao, Liu, Wu,
Warburton, & Yan, 2017), GWAS have transformed from a
promising new tool to a powerful, ubiquitous technique for
understanding complex traits in plants. Major highlights in
GWAS include the following:

* Genome-wide association studies have investigated agricul-
turally important traits in many major crop species, includ-
ing maize (Zea mays L.), wheat (Triticum aestivum L.),
rice (Oryza sativa L.), soybean [Glycine max (L.) Merr.],
sorghum [Sorghum bicolor (L.) Moench], barley (Hordeum
vulgare L.), cotton (Gossypium hirsutum L.), and numer-
ous other crops beyond the model plant species Arabidopsis
(e.g., Ersoz, Yu, & Buckler, 2007; Liu & Yan, 2019; Suku-
maran & Yu, 2014; Varshney et al., 2012).

* Genome-wide association studies have identified genomic
regions associated with many agronomic, physiological,
and fitness traits including flowering time, plant height, ker-
nel number, stress tolerance, and grain yield (e.g., Ersoz
et al., 2007; Gupta, Kulwal, & Jaiswal, 2019; Liu & Yan,
2019; Sukumaran & Yu, 2014).

* Genome-wide association studies have also been used to
study other types of phenotypes. Genome-wide associa-
tion studies in rice have identified genes associated with
geographical divergence and adaptation during domesti-
cation (Chen, Huang, Tian, Wing, & Han, 2019) as well
as with biochemical and molecular phenotypes including
flavonoid, fatty acid, amino acid, and nucleic acid metabo-
lites (Chen et al., 2016). Data generated by high-throughput
automated phenotyping have also been analyzed by GWAS.
For example, GWAS in sorghum have detected significant
associations for panicle architecture using automated fea-
ture extraction from images (Zhou et al., 2019) and for
biomass traits using measurements taken by aerial drones
(Spindel et al., 2018).

* Genome-wide association studies are used both to detect
novel associations with valuable traits and to validate
loci identified by other methods. Genome-wide association
studies may be conducted as stand-alone investigations, as
a component of gene cloning studies, or as the foundational
step in marker-assisted selection, among other uses. In turn,
exploiting this information accelerates crop breeding. For
example, loci identified by GWAS on provitamin A levels
in maize grain were used as the basis of marker-assisted

Core Ideas

* GWAS dissect complex traits by testing genome-
wide SNPs across an assembled population.

* Unified mixed-model GWAS control for both pop-
ulation structure and kinship.

* New GWAS methods build on this widely adopted
mixed model foundation.

* Ongoing challenges call for the further develop-
ment of GWAS methods and software.

and genomic selection for this important nutritional trait
(Owens et al., 2014).

* Genome-wide association studies have also been used
to enable genetic engineering, as in the case of trans-
genic drought-tolerant maize developed after detection of
ZmVPPI by GWAS (S.B. Wang et al., 2016). As genome-
editing technologies continue to improve, particularly those
based on CRISPR (Zhang, Massel, Godwin, & Gao, 2018),
the use of GWAS is expected to increase to identify target
genes for editing.

* Genome-wide association studies were first developed in
the context of human disease genetics (Lander, 1996; Lan-
der & Kruglyak, 1995; Lander & Schork, 1994; Risch &
Merikangas, 1996) and have led to the detection of thou-
sands of genetic variants significantly associated with these
diseases. New understanding gained from these GWAS
has been clinically relevant, enabling the development
of new therapeutic approaches for diseases ranging from
schizophrenia to diabetes (Visscher et al., 2012, 2017).

2 | DEVELOPMENT AND HISTORY OF
GWAS

In typical GWAS, phenotype and genotype data are collected
for a large sample of assembled individuals such

as a diversity panel. The genotype data usually consist of
genome-wide single nucleotide polymorphisms (SNPs) iden-
tified through resequencing, genotyping-by-sequencing, or
array-based genotyping. The genetic markers most associated
with the phenotype of interest are found using statistical meth-
ods. While it is possible that a genetic marker detected in this
way resides within a causative gene for the phenotype of inter-
est, this is often not the case. Instead, GWAS rely on linkage
disequilibrium (LD) between markers under testing and func-
tional polymorphisms of causative genes. Loci that are phys-
ically near to one another on the chromosome are separated
by recombination less often than are loci that are farther from
each other. This nonrandom association of alleles at two loci is
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called LD or gametic-phase disequilibrium. Those SNPs near
the causative locus can be in high LD with the functional poly-
morphisms and thus associated with the phenotype of inter-
est. Genome-wide association studies detect these associa-
tions and mark up the genomic regions harboring these signif-
icant SNPs and the implicated genes. If the time elapsed since
the last common ancestor in which functional polymorphisms
were generated through mutation is considerable in the unre-
lated populations typically desirable in GWAS, the genomic
regions in LD can be narrow and are therefore well suited for
mapping of the gene responsible in a high resolution (Lander
& Schork, 1994; Lipka et al., 2015; Visscher et al., 2017; Xiao
et al., 2017).

Linkage analysis for quantitative trait locus (QTL) map-
ping was the direct precursor of association studies including
GWAS. Instead of assembling individuals into a diverse
panel for GWAS, linkage mapping studies individuals with a
known relationship. For example, linkage mapping analyses
in crop species often use progeny purposefully generated
from biparental crosses, either F, individuals or recombinant
inbred lines (RILs). Genetic markers that are linked to the
QTL will cosegregate with the phenotype of interest more
often than expected by chance. Because the individuals
studied are closely related in pedigree, fewer rounds of
recombination have occurred since their most recent common
ancestor, and therefore large linkage blocks are present. This
means that the genetic markers used do not have to be as
dense as those used in GWAS in order to ensure the detection
of genomic regions harboring the causative locus. Once a
QTL has been found and validated, the area can be targeted
for fine mapping and QTL cloning (Korte & Farlow, 2013;
Lander & Schork, 1994; Mackay et al., 2009; Miles & Wayne,
2008; Sukumaran & Yu, 2014). Before the advent of next-
generation sequencing technologies, this was a considerable
advantage. This allowed the first genome-wide QTL analysis
to be conducted in tomato (Solanum lycopersicum L.) in 1988
(Paterson et al., 1988), 14 years before the publication of the
first GWAS (Ozaki et al., 2002). Today, linkage analysis and
GWAS are complementary approaches that can be used to
understand complex traits in different populations.

Even while linkage analysis was the dominant method of
understanding complex traits, the potential value of asso-
ciation studies was appreciated. Advantages of association
studies compared with linkage studies include eliminating
the need to perform experimental crosses (Lander & Schork,
1994), increasing power to detect genes with smaller effect
sizes (Risch & Merikangas, 1996), and improving resolu-
tion with smaller blocks of LD (Lander & Schork, 1994).
However, the requirement for high-density genotypes meant
that the first association studies, carried out before the devel-
opment of next-generation sequencing, could focus only on
small subsets of the genome. This meant that an association
study could only investigate a region of interest already identi-
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fied by other methods. For example, an early association study
of plant height and flowering time in maize focused on a sin-
gle candidate gene that had been identified by previous muta-
genesis and QTL mapping, dwarf8, by examining 123 poly-
morphisms in and near dwarf8 along with 141 genome-wide
markers (Thornsberry et al., 2001). Researchers at the time
recognized, though, that a dense, genome-wide set of genetic
markers would alleviate this problem and allow association
studies to become genome-wide (Lander, 1996; Lander &
Kruglyak, 1995; Lander & Schork, 1994; Risch & Merikan-
gas, 1996).

The ideas behind GWAS were theoretically discussed
beginning in the mid-1990s (Lander, 1996; Lander &
Kruglyak, 1995; Lander & Schork, 1994; Risch & Merikan-
gas, 1996). These early papers anticipated problems that
are still being addressed today, including high rates of false
positives as a result of population structure (Lander &
Schork, 1994) and multiple testing (Lander & Kruglyak,
1995). However, their ideas had to wait to be put into practice
until the publication of the draft human genome in 2001
(International Human Genome Sequencing Consortium,
2001) and the subsequent development of early SNP datasets
such as dbSNP (Sherry et al., 2001) and HapMap (The
International HapMap Consortium, 2003). In 2002, the first
GWAS paper was published. This study, based on 65,000
SNPs and 94 individuals, reported genetic associations for
myocardial infarction risk (Ozaki et al., 2002). Three years
later, in 2005, the first GWAS in an area outside of human
medical genetics was published in Arabidopsis (Aranzana
et al., 2005). Soon after, GWAS papers based on thousands
of SNPs were published for livestock (Abasht & Lamont,
2007) and crop species (Bel6 et al., 2008).

All association studies, genome-wide or otherwise, use sta-
tistical methods to associate genetic markers with phenotypes.
Conceptually, GWAS aims to find those SNPs at which vari-
ation in genotype is significantly associated with variation in
phenotype. At the simplest level, this can be accomplished by
performing a statistical test such as an ANOVA on each SNP
individually. The null hypothesis that there is no difference
between the trait mean for any genotype group (i.e., AA, Aa,
and aa) can then be tested for every SNP (Bush & Moore,
2012).

A major problem of this naive approach is its high rate
of false positives, which occur when a finding is declared
significant even though it is not actually true. In part, this is
because testing each SNP in the dataset results in thousands
or even millions of statistical tests. To understand the problem
with this, consider that the significance threshold of 0.05
commonly used in statistical tests means that the researcher
is accepting a false positive rate of up to 5%. For a single
test, this is an acceptable risk. However, as more markers
are tested, the probability that at least of these test will be a
false positive increases (Brzyski et al., 2017; Bush & Moore,
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FIGURE 1

Genome-wide association study methods for improving computational speed and statistical power. Different methods are grouped by

general strategy, and the position of each method shows the general trend of improved statistical power (shown on the x axis) and computational speed

(shown on the y axis). CMLM, compressed mixed linear model; ECMLM, enriched compressed mixed linear model; EMMA, efficient mixed-model

association; EMMAX, efficient mixed-model association expedited; FarmCPU, fixed and random model circulating probability unification; FaST-

LMM, factored spectrally transformed linear mixed models; GEMMA, genome-wide efficient mixed model analysis; K, kinship; MLMM, multi-locus

mixed-model; P3D, population parameters previously determined; PCA, principal component analysis; Q, population structure; SUPER, settlement

of mixed linear model under progressively exclusive relationship

2012). Common methods of multiple testing correction
include limiting the false discovery rate (FDR), which is
the proportion of all positive results that are expected to
be false positives (Benjamini & Hochberg, 1995; Storey &
Tibshirani, 2003) or using the Bonferroni correction, which
divides the desired significance threshold by the total number
of tests conducted to determine the corrected significance
threshold. However, setting an appropriate significance
threshold presents additional challenges in the context of
GWAS.

Another major contributor to false positives in naive GWAS
is relatedness among individuals. In the diverse populations
typically used for GWAS, some individuals are more closely
related to one another than they are to are others, forming
subpopulations of related individuals within the population.
The existence of unequal relationships within an assembled
population for GWAS is not easy to minimize or avoid (Yu
et al., 2006; Zhu & Yu, 2009). Because of this, SNPs that
are more common in a given subpopulation may show spu-
rious associations with the phenotype of interest if the phe-
notype happens to be present at a higher frequency in that

group.

2.1 | Addressing population structure
Different methods of using genome-wide markers to control
for population structure have been developed, and this con-
tinues to be an important research topic (Figure 1). The first
of these methods was genomic control (Devlin & Roeder,
1999), which used null markers—markers unlikely to affect
the trait of interest—to estimate the effect of population struc-
ture on the test statistic. This information was used to adjust
the final p value for each marker, reducing false positives
(Devlin & Roeder, 1999). Soon after, Pritchard, Stephens,
and Donnelly (2000) developed the structured association (or
STRUCTURE) method. Structured association also uses null
markers but uses them to define a set of subpopulations within
the dataset. The individuals are assigned to one or more of
these subpopulations, and subpopulation membership is used
as a cofactor within the association model (Pritchard et al.,
2000). Adding cofactors to correct for population structure in
this way is called the general linear model (GLM) (Pritchard
et al., 2000).

These older methods have now been widely replaced by the
mixed linear model (MLM) (Yu et al., 2006) (Figure 1). The



TIBBS CORTES ET AL.

MLM accounts for relatedness at two levels: population struc-
ture (Q) and kinship (K) (Yu et al., 2006). Population structure
can be determined from genotype data using STRUCTURE
(Pritchard et al., 2000) or principal component analysis (Price
et al.,, 2006). The kinship matrix estimates the relatedness
among all individuals in the dataset using their genotype
data (Yu et al., 2006). There are several algorithms available
to calculate kinship. For example, the methods of Loiselle,
Sork, Nason, and Graham (1995) and VanRaden (2008)
both use allele frequencies and identity-by-state to estimate
identity-by-descent and thereby kinship coefficients (Speed &
Balding, 2015). Under the mixed model framework of MLM,
control of false positives is realized by having both a fixed
effect of population structure and a random effect of polygenic
background that is defined by the kinship (Yu et al., 2006).

2.2 | Improving computational efficiency
Several methods have been introduced to increase the effi-
ciency of solving MLM equations. The first of these to be
developed was efficient mixed-model association (EMMA),
which improved computational speed in part by eliminating
redundant matrix operations at each iteration of computation
of the likelihood function (Kang et al., 2008). In addition, the
EMMA implementation can also be used to calculate the kin-
ship matrix, which it calculates simply by using identity by
state to produce a matrix of pairwise genetic similarity among
all individuals.

Other methods improve computational speed using approx-
imation. These include population parameters previously
determined (P3D) (Zhang et al., 2010) and EMMA expe-
dited (Kang et al., 2010), both of which apply a computa-
tional shortcut in the mixed model. Rather than estimating
the genetic and residual components repeatedly as each SNP
is added to the base model, these methods estimate the vari-
ance components only once, using the base model before any
SNPs are tested. These estimated variance components are
used when calculating all SNP effects (Kang et al., 2010;
Zhang et al., 2010). Genome-wide rapid association using
mixed model and regression, a residual-based method, also
estimates model parameters once before testing SNPs but uses
a GLM rather than MLM for SNP testing (Aulchenko, De
Koning, & Haley, 2007). However, these approximate solu-
tions may differ from the exact solutions to the MLM, espe-
cially in the presence of strong population structure or SNPs
with large effect sizes (Zhou & Stephens, 2012).

Methods to improve the speed of exactly solving MLM
equations have also been developed. These methods include
factored spectrally transformed linear mixed models (FaST-
LMM) (Lippertetal., 2011) and genome-wide efficient mixed
model analysis (GEMMA) (Zhou & Stephens, 2012). Both
methods improve efficiency by rewriting the likelihood func-
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tion of the MLM in a form that is easier to evaluate. Compared
with the approximate methods discussed above, these exact
methods do not require the assumption that variance parame-
ters be the same across all SNPs, potentially increasing power
(Lippert et al., 2011; Zhou & Stephens, 2012). The two exact
methods differ in that FaST-LMM uses only a subset of SNPs
to estimate kinship (Lippert et al., 201 1), while GEMMA uses
all markers and therefore produces results identical to EMMA
with increased speed (Zhou & Stephens, 2012).

2.3 | Improving power

Correcting for population structure in the MLM can also
increase false negatives, particularly when the true biological
signal is correlated with population structure. This increase
in false negatives also represents a decline in the statisti-
cal power of the GWAS, which is defined as the probabil-
ity that an association between a trait and a given marker
will be detected given that the association truly exists (Klasen
et al.,, 2016). Therefore, methods have been developed to
improve the power of GWAS, often—though not always—
while increasing computational speed.

The compressed MLM (CMLM) and enriched CMLM
(ECMLM) methods improve power by using a lower-rank
kinship matrix. Both approaches use a clustering algorithm
to divide individuals into groups based on similar genotypes.
The number of groups used is optimized for each population
studied. A summary of kinship within and between groups is
then used as a reduced kinship matrix when solving the MLM
(Li et al., 2014; Zhang et al., 2010). The CMLM always uses
unweighted pair-group method with arithmetic mean cluster-
ing and calculates kinship between groups as the mean of
all individual pair-wise kinship values between those groups
(Zhang et al., 2010). In contrast, ECMLM adds two more
parameters to be optimized: the algorithm used to cluster the
individuals into groups (chosen from eight hierarchical clus-
tering algorithms) as well as the method used to calculate kin-
ship between groups (mean, maximum, or median) (Li et al.,
2014). These additional parameters are optimized by using
P3D to maximize model fit before adding marker effects. In
effect, MLM and GLM are both extreme types of CMLM run
without this optimization step; each individual comprises its
own kinship group in MLM, while all individuals are com-
pressed into a single group in GLM. The CMLM and ECMLM
methods improve both computational speed and statistical
power compared with typical MLM through improved model
fit and reduced kinship matrix rank (Li et al., 2014; Zhang
et al., 2010). Because of its additional parameters, ECMLM
provides the greater increase in power but is somewhat slower
than CMLM (Li et al., 2014).

Other methods calculate the kinship matrix more rapidly by
using a reduced number of SNPs. The FaST-LMM method
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uses this approach simply to improve computational effi-
ciency as described above (Lippert et al., 2011), but careful
selection of the SNPs used can also improve power, as imple-
mented in FaST-LMM-Select (Listgarten et al., 2012) and set-
tlement of MLM under progressively exclusive relationship
(SUPER) (Wang, Tian, Pan, Buckler, & Zhang, 2014). While
FaST-LMM uses SNPs spaced equidistantly throughout the
genome (Lippert et al., 2011), the newer methods select a sub-
set of SNPs that are associated with the trait of interest, so that
calculated kinship matrices are specific to each trait. These
SNPs are expected to be the most informative because this
association may be due to confounding by kinship. In both
methods, the first step is to perform simple linear regression
and then sort SNPs based on the significance of their asso-
ciation with the trait of interest (Listgarten et al., 2012; Q.
Wang et al., 2014). In FaST-LMM-Select, the next step is
to construct genetic similarity matrices with ever-increasing
numbers of these SNPs, beginning with those SNPs with the
lowest p values under linear regression. The matrix that min-
imizes the genomic control factor, a measure used to control
inflation or deflation of the test statistic, is used as a reduced-
rank kinship matrix in the MLM (Listgarten et al., 2012). In
SUPER, after sorting SNPs by association with the trait of
interest, the genome is divided into bins. Within each bin, the
SNP with the lowest p value is designated the pseudo quan-
titative trait nucleotide (QTN). Maximum likelihood is used
to optimize the size and number of bins. Finally, these QTNs
are used to build a reduced kinship matrix (Wang et al., 2014).
Both methods were designed to use the FaST-LMM algorithm
to solve the MLM, though SUPER’s developers suggest using
P3D and EMMA expedited instead to improve computational
efficiency. In addition, while a given SNP is being tested in
the MLM, these methods will exclude this SNP and those in
LD with it from the kinship calculation to avoid confound-
ing. Overall, SUPER is somewhat more powerful than FaST-
LMM-Select, particularly for traits with higher heritability,
but has lower computational efficiency. Both methods could
also potentially be combined with CMLM or ECMLM (List-
garten et al., 2012; Wang et al., 2014).

Multi-locus GWAS methods improve power over single-
locus methods by incorporating multiple markers in the model
simultaneously as covariates. This approach was first imple-
mented in the multi-locus mixed model (MLMM) (Segura
et al., 2012). The MLMM is an iterative approach; in each
step, the genetic and error variance components are estimated
then used to calculate p values for the association of each SNP
with the trait of interest. The EMMA method is used to cal-
culate kinship. The most significant SNP found is then added
to the model as a fixed cofactor, and the process is repeated.
This continues until a user-set threshold or until the genetic
variance unaccounted for by covariate SNPs approaches zero.
Then, backward stepwise regression is carried out as the least
significant cofactor SNP is removed at each iteration. Finally,

the optimal number of iterations is determined using extended
Bayesian information criterion or multiple Bonferroni crite-
ria, and the SNP effect sizes and p values from that step pro-
vide the final results (Segura et al., 2012).

Other multi-locus methods that build upon MLMM include
fixed and random model circulating probability unification
(FarmCPU) (Liu, Huang, Fan, Buckler, & Zhang, 2016)
and Bayesian information and LD iteratively nested keyway
(BLINK) (Huang, Liu, Zhou, Summers, & Zhang, 2018).
The FarmCPU is a multi-locus method that uses the reduced-
rank kinship matrix of SUPER to improve power and effi-
ciency. This method iterates between the fixed-effect model
based on MLMM and the random-effect model of SUPER,
using restricted maximum likelihood (REML) as the opti-
mization criterion (Liu et al., 2016). It is also implemented
more efficiently in FarmCPUpp using C language (Kusmec
& Schnable, 2018). The FarmCPU method was also mod-
ified by its creators to produce the BLINK method, which
enhances power by relaxing the requirement of SUPER that
QTNs be evenly distributed in bins throughout the genome,
recognizing that true QTNs are often clustered within the
genome. This modification also improves speed, as optimiza-
tion of bin size and number is no longer required. In addi-
tion, BLINK increases speed by replacing the computation-
ally expensive random-effect model and associated REML
optimization with a fixed-effect model using Bayesian infor-
mation criterion optimization (Huang et al., 2018). In general,
multi-locus approaches are particularly powerful for complex
traits controlled by several large-effect loci (Segura et al.,
2012), especially when these loci are closely linked (Li, Li,
Fridman, Tesso, & Yu, 2015).

The genome-wide complex trait analysis program is a tool
developed for human GWAS that performs several functions.
This program can estimate values including SNP-based kin-
ship and population structure, variance explained by SNPs,
and LD structure, as well as enabling GWAS simulations and
data management. The genome-wide complex trait analysis
estimate of variance explained by all genotyped SNPs for a
given trait, which is typically less than the estimated heri-
tability of that trait, provides an upper bound for the variance
expected to be captured in GWAS for a given SNP set and trait
(Yang, Lee, Goddard, & Visscher, 2011).

2.4 | Bayesian methods

Although this review focuses on frequentist, linear model-
based approaches, GWAS can also be conducted using
Bayesian methods originally developed for genomic predic-
tion. While other GWAS methods discussed in this review
test only one or a few markers at a time for association with
a trait, Bayesian methods leverage prior information about
marker effects and phenotypes to estimate all marker effects
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simultaneously (Fernando & Garrick, 2013). For example,
this prior information may include whether a given SNP is
near a gene with known relevant function, the marker’s minor
allele frequency, or whether the trait is thought to be con-
trolled by additive or nonadditive genetic effects. Bayesian
approaches allow this prior knowledge to be incorporated
in the GWAS analyses themselves through such choices as
the prior probability of association with the trait at each
SNP, the genetic model (e.g., additive or dominant), and the
expected distributions of SNP effects, although the need to
estimate these priors explicitly does add additional modeling
challenges and complexity to Bayesian GWAS. This type
of information may also be incorporated into frequentist
approaches but typically this is done only when evaluating
significant associations for follow-up after GWAS have been
conducted (Stephens & Balding, 2009).

Markov-chain Monte Carlo sampling is used to obtain
results in Bayesian methods (Fernando & Garrick, 2013);
these results can be presented as a Bayes factor for each
marker, which is the ratio between the probability of the data
under the alternative hypothesis of a marker—trait association
and its probability under the null hypothesis of no association.
In turn, the Bayes factor can be used to calculate the poste-
rior probability of association, which is the probability that a
marker is truly associated with the phenotype of interest given
the specified model assumptions. This value already takes into
account such factors as how many markers were tested and the
power of the analysis, enabling the control of the proportion
of false positives among all positive results in the analysis,
an approach similar to FDR, without the need for an addi-
tional multiple-testing correction step (Stephens & Balding,
2009). Rather than searching for individual SNPs that have
a significant association with the phenotype as in frequen-
tist GWAS, Bayesian GWAS methods typically aim to detect
genomic windows that explain more than a specified propor-
tion of the total genetic variance (Fernando & Garrick, 2013).

While a full description of available Bayesian methods
is beyond the scope of this review, some of the common
Bayesian methods include Bayesian RR-BLUP (Meuwissen,
Hayes, & Goddard, 2001; Whittaker, Thompson, & Denham,
2000), Bayesian LASSO (de los Campos et al., 2009), BayesA
(Meuwissen et al., 2001), BayesB (Meuwissen et al., 2001),
BayesC (Kizilkaya, Fernando, & Garrick, 2010), BayesCn
(Habier, Fernando, Kizilkaya, & Garrick, 2011), and many
others (Gianola, 2013). Because these methods differ in the
prior distribution assumed for the marker effects, they differ
in relative accuracy and power depending on how well their
assumed distributions reflect the genetic architecture of the
trait in question, such as its heritability and the number of
causal markers (Wang et al., 2018), and the genetic structure
of the study population. For example, BayesA assumes that all
SNPs have nonzero effects, while BayesB assumes that at least
some markers have no effect; therefore, BayesA is expected
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to outperform BayesB when the trait of interest is controlled
by a very large number of genes, while BayesB is expected to
outperform BayesA when the trait is controlled by a few large-
effect loci (Fernando & Garrick, 2013; Habier et al., 2011).

Comparison studies using both simulated (Miao, Yang, &
Schnable, 2018) and empirical data (Yang et al., 2018) sug-
gest that Bayesian and frequentist mixed model approaches
can complement one another when each is used in the appro-
priate context. For example, Miao et al. (2018) found that
FarmCPU outperformed BayesCn when analyzing moder-
ately complex traits, while the opposite was true in the case
of highly complex traits. The authors therefore recommended
that researchers first estimate the number of causal variants
controlling a trait of interest before model fitting in order
to choose the optimal GWAS model for each trait. Where
computational resources are a limiting factor, mixed model
approaches may be preferred, as they are typically less com-
putationally demanding. However, the constant development
of new implementations to improve the computational effi-
ciency of both Bayesian and mixed-model GWAS may allevi-
ate this constraint (Miao et al., 2018).

2.5 | Ongoing method and software
development

The methods described above have been included because
they provide major improvements in speed and power com-
pared with naive GWAS models and have also been incor-
porated into common software packages such as TASSEL
(Bradbury et al., 2007), GAPIT (Lipka et al., 2012; Tang
et al.,, 2016), and GEMMA (Zhou & Stephens, 2012). Of
course, an exhaustive list of methods used to improve power
and efficiency of GWAS is impossible to compile as devel-
opment of new methods continues. Some of these methods
integrate frequentist mixed models with Bayesian concepts.
For example, the BOLT-LMM method incorporates both
Bayesian priors and a mixed-model framework to achieve
improvements (Loh et al., 2015). Several multi-locus methods
have been developed that unite the MLM framework with an
expectation—maximization empirical Bayes approach. These
methods include multi-locus random-SNP-effect MLM (S.B.
Wang et al., 2016) and fast multi-locus random-SNP-effect
EMMA (Wen et al., 2018). Judging by the many manuscripts
describing new methods to conduct GWAS or analyze their
results on the biology preprint server bioRxiv at the time of
this writing, more methods will certainly be added to this list
in the next few years.

In addition, the datasets used for GWAS are constantly
increasing in size as high-throughput methods decrease the
cost of obtaining both genotypic and phenotypic data. Using
more phenotypic and genotypic data in GWAS improves
power and resolution but may also make previous methods
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computationally intractable. Therefore, any new methods
developed must be not only statistically robust but also com-
putationally efficient to address this challenge. For methods
already in existence, more efficient implementations must
be developed, as has occurred in the case of GEMMA and
FarmCPUpp, if they are to keep pace with the ever-increasing
availability of data (Kusmec & Schnable, 2018; Zhou &
Stephens, 2012).

3 | PERSPECTIVES
3.1 | Challenges and opportunities in further
development of GWAS

The challenge posed by loci with low minor allele frequency
was known when the GWAS approach was initially proposed.
(Risch & Merikangas, 1996). Some researchers remove vari-
ants with minor allele frequency below 5% before perform-
ing GWAS (e.g., Chen et al., 2016; Kremling, Diepenbrock,
Gore, Buckler, & Bandillo, 2019; X. Wang et al., 2016). Their
argument is that because statistical power is very low for these
rare alleles, preventing identification unless their effect size is
extremely large, the large number of these variants only exac-
erbates the multiple-testing issue. However, the unequal sam-
ple size of two alleles of these variants is already considered
in the test statistics the same way as other variants and there is
no a priori reason why a rare allele should not be biologically
important. In fact, because of purifying selection, many dele-
terious alleles will be present at low frequencies (Sukumaran
& Yu, 2014; Visscheretal., 2012; Xiao etal., 2017; Zhu, Li, &
Yu, 2011). Many new statistical models have been designed to
test the rare variants, often by aggregating nearby rare variants
and testing their combined effects (reviewed in the context of
human disease genetics in Lee, Abecasis, Boehnke, and Lin
[2014]). Many tests designed for rare alleles should be imple-
mented in software packages. Unless including many variants
with low minor allele frequency inflates the genome-wide sig-
nificance threshold as a result of multiple testing, we recom-
mend the testing of variants with low minor allele frequency.

Synthetic associations are misleading associations that
occur when GWAS identifies noncausal SNPs as more sig-
nificant than truly causal variants (Dickson, Wang, Krantz,
Hakonarson, & Goldstein, 2010). The most significant peak
may actually be located in a different LD block from the true
gene, making the gene very difficult to identify. This may hap-
pen in the case of allelic heterogeneity, when multiple inde-
pendent alleles of a given gene are present in a population. If
each allele affects the phenotype similarly, none of the alleles
responsible will be perfectly correlated with the trait of inter-
est and so their tagging SNPs may not be detected by GWAS.
However, there may be SNPs in a different location that are
associated with the presence or absence of all alleles respon-

sible. These SNPs may then be detected as synthetic associa-
tions. For example, in the case of the HdI gene that controls
days to heading in rice, allelic heterogeneity prevented SNPs
in the true gene from being significant. However, the adjacent
linkage block included SNPs that were well correlated with
functional vs. nonfunctional versions of the gene and there-
fore could be detected (Yano et al., 2016). If the true causal
alleles are rare and therefore already difficult to detect, this
problem can be exacerbated (Lin et al., 2014; Lin et al., 2012).
Rare alleles can also produce synthetic associations even in
the absence of allelic heterogeneity. For example, sickle cell
anemia is controlled by a single rare allele, but Dickson et al.
(2010) showed that common variants in other locations in the
genome are significantly associated with this allele by chance.
Genome-wide associations studies may then detect these com-
mon SNPs as synthetic associations (Dickson et al., 2010).
Genome-wide association study approaches based on genes or
regions rather than SNPs have been helpful in addressing this
problem. However, more work remains to be done in develop-
ing these methods, particularly because several of the meth-
ods developed have yet to be implemented in freely available
software (Yano et al., 2016; Zhu et al., 2011).

Establishing an appropriate significance threshold for
GWAS has been a research topic since the beginning (Lander
& Kruglyak, 1995; Lander & Schork, 1994). Although Bon-
ferroni correction using the total number of markers tested
is known to be overly stringent because it assumes that each
marker is independent, which is not the case in GWAS, it has
been used in cases where significant GWAS peaks can still
be declared with such a threshold (e.g., Li et al., 2015). False
discovery rate (Benjamini & Hochberg, 1995), an approach
proposed under an expression QTL mapping context (Storey
& Tibshirani, 2003), was also used in GWAS (e.g., Owens
et al., 2014). However, FDR assumes that test statistics are
independent (Benjamini & Hochberg, 1995) and so is not
appropriate for GWAS because SNPs in LD within a genomic
region yield similar test statistics. Permutation tests are
considered the gold-standard method to establish the signif-
icance threshold (Gao, Becker, Becker, Starmer, & Province,
2010; Joo, Hormozdiari, Han, & Eskin, 2016) because this
method directly samples the test statistic’s distribution under
the null hypothesis of no association between the markers
and the trait of interest. This is accomplished by shuffling the
phenotypes while keeping the genotypic data constant and
calculating the test statistic for each marker. However, many
such permutations are required, often making this method
so computationally intensive as to be impractical (Gao et al.,
2010; Joo et al., 2016). In the MLM framework specifically,
researchers must also be sure to only permute the permutable
part in order to avoid disrupting the covariance structure
stemming from genetic relatedness (Joo et al., 2016).

Because of these challenges, other methods of setting sig-
nificance thresholds for GWAS have been developed. In one
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example, SimpleM addresses the dependency among mark-
ers by calculating the number of effective markers (M) and
then using 0.05/M, as the genome-wide significant thresh-
old (Gao et al., 2010; Gao, Starmer, & Martin, 2008). The
number of effective markers is obtained as the number of
principal components that cumulatively capture a high per-
centage (e.g., 99.5%) of variance in the pairwise correlation
matrix for all SNPs, which is derived from the composite LD
among SNPs. Another method, a sliding-window approach for
locally intercorrelated markers with asymptotic distribution
errors corrected (SLIDE), is designed to account for the cor-
relation among SNPs within a sliding window and corrects
for the departure of the true null distribution of the statis-
tic from the asymptotic distribution (Han, Kang, & Eskin,
2009). The SLIDE method was shown to have a near identical
false positive control to permutation but to be more computa-
tionally efficient. In a comparison study with empirical data,
Bonferroni correction using the number of LD blocks was
found to be inadequate, but SLIDE and SimpleM were rec-
ommended (Johnson et al., 2010). More recently, a paramet-
ric bootstrapping resampling method, called ‘multiple testing
in transformed space,” was proposed for GWAS with the lin-
ear mixed model (Joo et al., 2016); this method performs a
transformation of genotype data to account for genetic related-
ness and heritability under linear mixed models and is shown
to be computationally efficient by directly sampling statistics
instead of sampling phenotypes as in bootstrapping. For stud-
ies with local dependency in test statistics, defining discov-
ery at the genomic region level and grouping SNPs within a
genomic region together as a single discovery were proposed
(Benjamini & Heller, 2007; Sabatti, Service, & Freimer, 2003;
Siegmund, Zhang, & Yakir, 2011), and this approach was
recently applied to GWAS (Brzyski et al., 2017). Studies to
examine these multiple testing correction methods with data
in crops need to be carried out.

In addition to conducting GWAS with individual SNPs,
genome scans with haplotypes can also be conducted. How
to construct haplotypes has been a standing question, and
different haplotype construction methods have been proposed
(Cardon & Abecasis, 2003). Haplotypes can be built through
a sliding-window approach (Guo, Li, Bonham, Wang, &
Deng, 2009), based on LD among adjacent SNPs (Gabriel
et al., 2002), by selecting informative SNPs (Laramie, Wilk,
DeStefano, & Myers, 2007), or inferred by considering
different subgroups (Pook et al., 2019). While it is commonly
agreed that multiple alleles exist for genetic loci underlying
complex traits, it is still debated whether testing individual
SNPs or haplotypes better approximates testing of functional
alleles. As sequencing technologies continue to improve
(Hickey et al., 2019), haplotype-based GWAS in plants is
expected to be conducted more often after the sequencing
depth is increased to a level where haplotype information is
not used extensively in the imputation of missing data.
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Ongoing investigation stems from the fact that different
GWAS methods often yield similar but nonidentical results.
In some cases, significant SNPs detected by one method
and experimentally validated as biologically relevant are not
detected at all by other methods (Klasen et al., 2016; Li
et al., 2015; Yang et al., 2018). These differences in results
are expected to occur as a result of differences in the details
of the statistical methods used. In many cases, the known
strengths of various GWAS methods in traits with disparate
genetic architectures and populations with differing structures
can explain these differences. For example, MLM, MLMM,
and FarmCPU all identify DwI and Dw?2 as top loci affecting
sorghum height. However, the dwarfing gene Dw3 in sorghum
was detected by the multi-locus methods MLMM and Farm-
CPU but not by MLM GWAS because it was in tight repul-
sion linkage with gHT7.1, another locus associated with plant
height (Figure 2). Because multi-locus approaches consider
multiple SNPs simultaneously as cofactors in the model, they
will perform better than single-locus approaches in detecting
repulsion-linked loci (Li et al., 2015).

In general, it is probably not possible to identify a sin-
gle best GWAS method for all situations given the biolog-
ical complexity inherent among GWAS samples, but each
GWAS method does provide a tool to uncover associations
that may be missed by other methods depending on the unique
genetic architecture and population structure in the study in
question (Figure 3). We recommend that researchers con-
duct both a genome scan of individual SNPs with the MLM
methods and genome scans with other multi-locus methods.
For additional genomic regions identified by the multi-locus
methods, researchers need to evaluate whether the genome-
wide marker coverage was adequate so that the multi-locus
method’s attempt to dissect the polygenic effect of population
structure and kinship and attribute it to covariate markers is
justified. Developing criteria for selecting the optimal method
or methods in any given experiment is therefore an important
topic for further investigation.

3.2 | Beyond GWAS

While GWAS are powerful, they are only one step in the
process of understanding the underlying genetics of a trait.
Significant associations may be prioritized for further inves-
tigation based on criteria including p value, replication of
significance across multiple locations and related traits, and
degree of confounding with population structure (Spindel
et al., 2018). After promising SNPs have been prioritized,
the genes underlying those peaks remain to be identified.
Significant SNPs may be near to and in strong LD with true
causal variants, but this is not always the case. Even when a
significant SNP is near a true causal gene, other genes may
be within the same LD block, making it difficult to determine
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FIGURE 2 Genome-wide association studies of plant height in sorghum. (a) Mixed linear model (MLM), (b) multi-locus mixed-model
(MLMM), and (c) Fixed and random model circulating probability unification (FarmCPU). All three methods detected the same strong signals at
Dwl and Dw?2. (Left) GWAS plots across all chromosomes. (Right) Regional plots on chromosome 7 near Dw3. (a) Because Dw3 and gHT7.1 are
in tight repulsion linkage, MLM could not detect these loci. The capacity of (b) MLMM and (c) FarmCPU to consider multiple SNPs as cofactors
revealed that Dw3 and gHT?7.1 both affect plant height in sorghum. The horizontal line in each plot represents the significance threshold used in the
original publication. The red points in (b) are the SNPs identified as covariates in the optimal model by MLMM; the red points in (c) are the SNPs

identified as covariates by FarmCPU

which gene is responsible for the signal (Yano et al., 2016).
One of the most basic ways to prioritize genes for further
validation is to manually examine nearby genes for relevant
functions as predicted by homology, gene networks, or other
methods. Gene network tools including RiceNet (Lee et al.,
2015a), AraNet (Lee et al., 2015b), and PlaNet (Mutwil et al.,
2011) expedite this process in many plant species, especially
when a priori candidate genes for the trait are known. Other

tools such as RafSee and RAP combine these network
results with evolutionary, epigenetic, or other information
to rank candidate genes (Zhai et al., 2016). Another method
is to prioritize SNPs based on the predicted effect of the
polymorphism, that is, whether the mutation is synonymous
or nonsynonymous, or in a coding or noncoding region, for
example. (Yano et al., 2016). These and other techniques
can be combined, as in composite resequencing-based
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FIGURE 3

Different genome-wide association study methods ask different questions. For the single-locus mixed linear model (MLM) method,

acknowledging the embedded unequal genetic relationship among the assembled samples, we ask the question: “After controlling for the relatedness

among individuals, where are the association signals?”” For the multi-locus methods, multi-locus mixed-model (MLMM) and fixed and random model

circulating probability unification (FarmCPU), attempting to identify variants to explain the observed phenotypic variation, we ask the question,

“Within the current data, where are the association signals?”” The multi-locus methods should only be used as a stand-alone analysis when there is an

adequate marker coverage and with the assumption that a genomic region harboring the causal variant can be generally identified consistently even if

the chance of tagging causal variants in other genomic regions may vary

GWAS, which prioritizes candidate genes by integrating
conventional GWAS with rare allele testing as well as
functional prediction, prior biological knowledge, and gene
networks (Zhu et al., 2011). Because these methods require
well-annotated genomes and fine-scale genome sequencing,
their utility in facilitating the move from GWAS to biology
will increase as sequencing costs decrease and annotations
improve.

As data collection accelerates in all levels of biology,
GWAS approaches will expand to omic-wide association
studies (OWAS) (Xiao et al., 2017). In a typical GWAS, geno-
type explains a single terminal phenotype. However, GWAS
can also predict other omic endophenotypes, which include
epigenomic, transcriptomic, proteomic, and metabolomic
data. For example, expression QTL studies explain transcript
number variation (Brem, Yvert, Clinton, & Kruglyak, 2002),
while other analyses predict epigenetic markers using geno-
type data (Schmitz et al., 2013). Endophenotypes may also
act as the predictors rather than as the predicted trait. A
veritable alphabet of association studies have been devel-
oped in this area; EWAS, TWAS, and MWAS explain traits
using epigenomic (Teschendorff et al., 2009), transcriptomic
(Guseyv et al., 2016), and metabolomic data (Holmes et al.,
2008), respectively. These can even be combined, such as by
integrating TWAS and GWAS into a single analysis using
Fisher’s combined test (Kremling, Diepenbrock, Gore, Buck-
ler, & Bandillo, 2019). In addition, GWAS can expand to ana-
lyze multiple traits simultaneously. Multi-trait GWAS mod-
els can be used on either individual-level phenotype and
genotype data or as a metaanalysis method combining sum-
mary statistics from previous GWAS of single traits (meth-

ods reviewed and compared in Porter & O’Reilly, 2017). By
applying GWAS to multiple levels and multiple traits simulta-
neously in a multi-OWAS approach, we can expect to achieve
a better understanding of the intricate biological systems that
produce terminal phenotypes.

It is worthwhile to point out that GWAS is closely related
to genomic prediction (GP) and genomic selection (GS). Both
GWAS and GP use large genomic and phenotypic data sets
(in GP, called the training set) to estimate marker effects, but
rather than simply identifying the most significant loci as in
GWAS, GP uses these marker effects to predict the pheno-
types of unobserved individuals (the testing set) based on their
genotype data (Bernardo & Yu, 2007; Heffner, Sorrells, &
Jannink, 2009; Meuwissen et al., 2001). Genomic selection
applies the results of GP, using the predicted phenotypes to aid
the selection decisions in a breeding program (Crossa et al.,
2017; Xu et al., 2020). Because of these data and procedu-
ral overlaps, methods developed for GWAS may be applied
to GS and vice versa (Fernando & Garrick, 2013; Tang et al.,
2016), and many common software programs can use these
methods to perform both GWAS and GS (Bradbury et al.,
2007; Tang et al., 2016; Yang et al., 2011). Results of pre-
vious GWAS, whether significant markers or validated genes,
can be incorporated into GS models, an approach that has been
particularly useful in complex, low-heritability traits in live-
stock but has yet to be extensively applied in crops (Xu et al.,
2020). Genome-wide association studies can also be incorpo-
rated directly into GS through GS + de novo GWAS, in which
GWAS is conducted on the training set to identify markers that
are then used as fixed effects in genomic prediction of the test-
ing set (Spindel et al., 2016).
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FIGURE 4 Challenges and opportunities in genome-wide association studies (GWAS). Challenges arise in each step of GWAS through the

complex interplay of both biology and statistics. Surmounting these challenges will provide new opportunities for understanding and application

3.3 | Methodology development for GWAS in
plants

There is no doubt that complex trait dissection requires long-
term efforts to address long-standing and newly emerging
issues as different technologies advance and understanding
improves (Figure 4) (Boyle, Li, & Pritchard, 2017; Mackay
et al.,, 2009; Zhu et al., 2008). Genome-wide association
studies present a unique opportunity to study the genotype—
phenotype relationship across diverse genetic backgrounds.
Concerted efforts are needed in association panel assem-
bly, experimental design, genotyping and sequencing, phe-
notyping, comprehensive analysis, and postanalysis interpre-
tation and validation. Many biological and statistical per-
spectives deserve careful consideration. While researchers
may think newer statistical methods would solve some long-
standing issues, the biological complexity should be regarded
as the root cause of these challenges. While many research
groups may be devoting efforts to understanding different
complex traits through GWAS and other approaches, very
few groups have been working on methodology develop-
ment. Funding support to methodology development and soft-
ware implementation has been scarce, even though there is
a consensus that developing new methods and implement-
ing them in user-friendly software packages have a broad
impact.

Genome-wide association studies in plants have several
unique aspects different from studies in human genetics.
Association mapping panels assembled in plants have com-
plex genetic relatedness. The sizes of these panels with diverse
inbreds are typically on the order of hundreds because of the
challenges associated with extensively phenotyping a panel
with a large number across multiple environments. Rather
than a single species as in human genetics, our scope is
many different plant species. While the sequencing cost has
dramatically reduced, obtaining genomic data through rese-
quencing with a high genome coverage or de novo assem-
bly in crops with complex genomes for hundreds of individ-
uals is still beyond the reach of individual research groups.
The relatively constant sample size (7) but increased marker
(i.e., SNPs, structural variations) number (p) exacerbate many
issues including low minor frequency and rare alleles, syn-
thetic association, multiple testing, haplotype construction,
and GWAS model comparison.

As new GWAS methods are created, they should be val-
idated in order to assess their performance. In many cases,
the newly developed method and one or more older methods
are used to analyze simulated data so that authors can accu-
rately assess their statistical power (Li et al., 2014; Segura
et al., 2012; Yu et al., 2006). In addition to statistical valida-
tion, biological validation of candidates identified by GWAS
is also important. For well-studied traits, peaks detected by
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a new GWAS method can be compared with known asso-
ciated genes or genomic regions for validation (Yang et al.,
2018). New causal genes underlying GWAS peaks have been
identified through transgenic and other approaches, includ-
ing RNAi, mutant rescue, and CRISPR/Cas9-mediated gene
silencing, knockout, and overexpression (Li et al., 2017; Si
et al., 2016; Sun et al., 2018; Yano et al., 2016). In some
exemplary cases, a single paper may perform both biological
and statistical validation of GWAS methods (Liu et al., 2016;
Miao et al., 2018; Wen et al., 2018). Especially in the case
of newly identified causal genes, the combination of compu-
tational, laboratory, and other resources required means that
validation of new GWAS methods will remain challenging.

4 | CONCLUSION

Genome-wide association studies have successfully identified
thousands of loci associated with agronomic and other traits
in crop species, and several methods have been developed
to improve power and computational speed. As the devel-
opment of GWAS in crops continues, it may emulate the
recent progress of GWAS in human diseases. Human dis-
ease GWAS have been coupled with tools including in silico
models, tissue-specific resources, and wet-lab experiments to
understand the biological functions of significant loci and to
determine the causal and protective alleles. This deeper under-
standing has led to tangible results including new drug targets
and therapeutic optimization for individual patients depend-
ing on genotype (reviewed in Visscher et al., 2017). Today,
especially in the major species of crops, similar validation
tools are being developed or are already available. It is worth-
while to point out the synergistic relationship between GWAS
and genome editing. While GWAS is a major tool to identify
genes underlying complex traits, providing targets for genome
editing to generate engineered alleles, improved genome edit-
ing enables the validation of gene function under different
genetic backgrounds, which can inform the method research
of GWAS. Ultimately, the biological understanding gained
from complementing GWAS with many genomic, phenomic,
biotechnological, and data analytical tools in crop species may
in turn be used to produce genetically modified plants contain-
ing specific alleles known to influence desirable traits includ-
ing drought resistance, increased yield, and improved nutri-
tional quality.

To help readers grasp the essence of this GWAS review, we
summarize the main points as follows:

* Genome-wide association studies techniques were devel-
oped beginning in the 1990s, and the first GWAS were pub-
lished in the early 2000s.

* Genome-wide association studies dissect complex traits by
associating genotypic variants with phenotypic variation in

a large panel. Although unrelated individuals are preferred,
this is often not the case when we assemble existing samples
to form the study panel.

* Because of the existence of population structure and kin-
ship among samples within the panel, naive GWAS anal-
ysis with simple linear regression results in many false
positives.

* The unified mixed model was developed for GWAS to con-
trol for both population structure and kinship. This frame-
work has been widely adopted.

* Genome-wide association studies methods have been devel-
oped to improve computational speed by improving the
efficiency of solving the MLM equations. Other methods
improve power by alternative kinship calculation meth-
ods and by including multiple markers as covariates; these
methods often improve efficiency as well.

* Ongoing challenges include analyzing variants with low
minor allele frequency, avoiding synthetic associations, and
understanding differences among results generated by var-
ious GWAS methods.

* Candidate gene prioritization methods help in moving from
GWAS results to biological understanding.

* Continued methodology development in GWAS is needed
and funding support for methodology development and
software implementation benefits a wide range of research
disciplines.
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