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Abstract. The LiDAR Statistical Barnes Objective Analysis
(LiSBOA), presented in Letizia et al. (2021), is a procedure
for the optimal design of lidar scans and calculations over
a Cartesian grid of the statistical moments of the velocity
field. Lidar data collected during a field campaign conducted
at a wind farm in complex terrain are analyzed through LiS-
BOA for two different tests. For both case studies, LISBOA
is leveraged for the optimization of the azimuthal step of the
lidar and the retrieval of the mean equivalent velocity and
turbulence intensity fields. In the first case, the wake velocity
statistics of four utility-scale turbines are reconstructed on a
3D grid, showing LiSBOA’s ability to capture complex flow
features, such as high-speed jets around the nacelle and the
wake turbulent-shear layers. For the second case, the statis-
tics of the wakes generated by four interacting turbines are
calculated over a 2D Cartesian grid and compared to the
measurements provided by the nacelle-mounted anemome-
ters. Maximum discrepancies, as low as 3 % for the mean
velocity (with respect to the free stream velocity) and turbu-
lence intensity (in absolute terms), endorse the application of
LiSBOA for lidar-based wind resource assessment and diag-
nostic surveys for wind farms.

1 Introduction

The use of Doppler light detection and ranging (lidar) tech-
nology for wind energy applications has largely increased
over the last decade (Clifton et al., 2018; Veers et al., 2019).
Thanks to the achieved measurement accuracy and simpler

and cost-effective deployments compared to traditional me-
teorological tower instrumentation, this remote sensing tech-
nique is now included in the international standards as a
reliable tool for performance diagnostics of wind turbines
and wind resource assessments (International Electrotechni-
cal Commission 61400-12-1, 2017). Nonetheless, due to the
limited spatiotemporal resolution and the distribution of the
sample points in a spherical reference frame, the reconstruc-
tion of wind statistics from lidar samples still presents several
challenges (Sathe et al., 2011; Newman et al., 2016).

In the companion paper (Letizia et al., 2021), we presented
a revisited Barnes objective analysis (Barnes, 1964) for the
calculation of wind statistics from scattered lidar data, which
is referred to as LiDAR Statistical Barnes Objective Analy-
sis (LiSBOA). This procedure enables the estimation, over a
Cartesian grid, of the mean, variance, and even higher-order
central statistical moments of the radial velocity field probed
by a scanning Doppler pulsed wind lidar. LiSBOA also per-
forms adequate filtering of small-scale variability in the mean
velocity field and mitigation of the dispersive stresses on the
higher-order statistics, provided that the algorithm is tuned
based on the characteristics of the flow under investigation
and the free parameters of the lidar scan are optimally de-
signed through LiSBOA.

LiSBOA’s ability to estimate statistics of an ergodic turbu-
lent velocity field makes it a suitable tool for the analysis of
wind turbine wakes and the resource assessment of sites char-
acterized by heterogeneous wind conditions, such as in pres-
ence of flow distortions induced by complex terrain. Over
the last decade, wind lidars have been used to investigate
wind turbine wakes; for instance, Kisler et al. (2010) and
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Clive et al. (2011) measured the velocity deficit past utility-
scale wind turbines, while Bingol et al. (2010) used a nacelle-
mounted lidar to detect wake displacements and validate the
dynamic wake meandering model (Larsen et al., 2008). Fit-
ting of the wake velocity deficit was successfully exploited to
extract quantitative information about wake evolution from
lidar measurements (Aitken and Lundquist, 2014; Wang and
Barthelmie, 2015; Kumer et al., 2015; Tryjillo et al., 2016;
Bodini et al., 2017).

A deeper understanding of the physics of turbine wakes
was achieved by calculating temporal (Trujillo et al., 2011;
Tungo et al., 2013b; Iungo and Porté-Agel, 2014; Kumer
et al., 2015; Machefaux et al., 2015; Van Dooren et al., 2016)
or conditional (Aubrun et al., 2016; Machefaux et al., 2016;
Garcia et al., 2017; Bromm et al., 2018; Tungo et al., 2018;
Zhan et al., 2019, 2020) statistics of the velocity collected
through lidar scans performed at different times. Using this
approach, Iungo and Porté-Agel (2014) detected a signifi-
cant dependence of the wake recovery rate on atmospheric
stability, based on time-averaged volumetric lidar scans. The
same concept was expanded by other authors using ensem-
ble statistics (Machefaux et al., 2016; Carbajo Fuertes et al.,
2018; Zhan et al., 2019, 2020). Kumer et al. (2015) car-
ried out a comparison between instantaneous, 10 min, and
daily averaged velocity and turbulence intensity fields around
utility-scale wind turbines, highlighting the presence of per-
sistent turbulent wakes. Trujillo et al. (2011) used a nacelle-
mounted lidar to quantify meandering-induced wake diffu-
sion and added turbulence from statistics calculated over
10 min periods.

Second-order statistics are of great interest in wind energy.
Tungo et al. (2013b) used velocity time series extracted from
lidar fixed scans performed downstream of a 2 MW wind tur-
bine to detect enhanced turbulence intensity in the proximity
of the wake shear layers. More recently, temporal statistics
over 30 min periods allowed for the identification of turbulent
wake shear layers from both numerical (Fuertes Carbajo and
Porté-Agel, 2018) and experimental (Carbajo Fuertes et al.,
2018) velocity fields. Aubrun et al. (2016) attempted to char-
acterize the turbulence intensity using bin statistics, despite
achieving higher values than expected, i.e., larger than 50 %.
Zhan et al. (2019) used clustered data of wake velocity fields
to retrieve a proxy for the standard deviation of wind speed in
the wake of utility-scale turbines. These authors reported sig-
nificant variability in the wake turbulent statistics, depending
on the atmospheric stability regime and operative conditions
of the wind turbines.

For the abovementioned technical features of lidars, these
remote sensing instruments are now also used for wind re-
source assessment (Liu et al., 2019), enabling estimates of
wind statistics for broad ranges of wind conditions and site
typology, such as for flat terrains (Karagali et al., 2018;
Sommerfeld et al., 2019; Sanchez-Gomez and Lundquist,
2019), complex terrains (Krishnamurthy et al., 2011, 2013;
Pauscher et al., 2016; Kim et al., 2016; Vasiljevié et al., 2017;
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Karagali et al., 2018; Risan et al., 2018; Menke et al., 2019;
Fernando et al., 2019), and near-shore (Hsuan et al., 2014;
Floors et al., 2016; Shimada et al., 2018) and off-shore lo-
cations (Pichugina et al., 2012; Koch et al., 2014; Gottschall
etal., 2018; Viselli et al., 2019). Lidar scanning strategies for
wind resource assessment encompass Doppler beam swing-
ing (DBS; Hsuan et al., 2014; Pauscher et al., 2016; Kim
et al., 2016; Shimada et al., 2018; Gottschall et al., 2018;
Viselli et al., 2019; Sommerfeld et al., 2019; Sanchez-Gomez
and Lundquist, 2019), plan position indicator (PPI) scans
(Krishnamurthy et al., 2011, 2013; Pauscher et al., 2016;
Floors et al., 2016; Vasiljevi¢ et al., 2017; Karagali et al.,
2018), range height indicator (RHI) scans (Pichugina et al.,
2012; Floors et al., 2016; Menke et al., 2019; Fernando et al.,
2019), or fixed scans (Risan et al., 2018). Statistics are gen-
erally calculated based on the canonical 10 min periods, as-
suming steady inflow conditions, while linear interpolation is
widely used for data postprocessing.

In light of the great relevance for the wind energy appli-
cations of the statistical analysis of wind lidar data, for this
work the LiSBOA procedure is applied to real lidar measure-
ments of wind turbine wakes. The scope of this study is dual.
First, there is an assessment of the capabilities provided by
LiSBOA for the optimal selection of the angular step of the
lidar scans by maximizing the statistical accuracy of the mea-
surements and coverage of the sampling domain with the pre-
scribed spatial resolution; second, the potential of LiISBOA
to reconstruct mean velocity and turbulence intensity fields
from lidar data to unveil important flow features of wind tur-
bine wakes is shown.

With these aims, real lidar data collected in the wakes gen-
erated by four 1.5 MW wind turbines are analyzed through
LiSBOA. Specific wake features, such as the high-speed jet
around the nacelle and the turbulent shear layers, as well as
perturbations induced by the complex topography, are de-
tected. Then, to provide a quantitative comparison with the
data retrieved through traditional anemometers, LiSBOA is
employed to calculate mean velocity and turbulence intensity
fields of the wakes generated by four 1 MW turbines interact-
ing with each other.

The remainder of the paper is organized as follows: Sect. 2
provides a description of the site and the experimental setup
of the field campaign. In Sect. 3, the scan design and the
reconstruction of the statistics of the noninteracting wakes
are discussed, while Sect. 4 presents the results of the com-
parison between nacelle anemometer statistics and LiSBOA
for the multiple interacting wakes. Finally, conclusions are
drawn in Sect. 5. The paper uses the symbols introduced in
the companion paper Letizia et al. (2021), which the reader
is encouraged to review for a better understanding of the
present paper.
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2 Site description and experimental setup

Lidar data collected during an experimental campaign car-
ried out at an onshore wind farm are used to assess the poten-
tial of the LiSBOA algorithm for wind energy applications.
The measurements were collected during a long-term exper-
imental campaign conducted at a large wind farm located in
northeastern Colorado (Fig. 1). This wind park encompasses
221 Mitsubishi 1-MW and 53 General Electric 1.5-MW wind
turbines. More technical specifications of the wind turbines
are provided in Table 1.

The wind rose, based on 3 years of wind speed and di-
rection measured by the two meteorological (met) towers
present on the site, reveals a prevalence of northwesterly and
southeasterly wind directions. A characteristic of this site is
the presence of a steep escarpment, with an average jump in
altitude of about 80 m, surrounding a relatively flat plateau
where the turbines are installed.

A total of two pulsed Doppler scanning wind lidars were
deployed. A WindCube 200S manufactured by Leosphere
(Fig. 2a) was installed for the period May—-December 2018
in the southern part of the farm, with the scope of detect-
ing turbine wakes and flow distortions induced by the topog-
raphy. The lidar was connected to the University of Texas
at Dallas (UTD) mobile lidar station (El-Asha et al., 2017;
Zhan et al., 2019) for remote control, scan setup, and data
acquisition. Furthermore, a StreamLine XR by HALO Pho-
tonics (Fig. 2b) was deployed for the period 11-19 Oc-
tober 2018 at specific sectors to investigate wake interac-
tions and topography-related flow features. Additional de-
tails about the lidars, including the settings adopted for the
present study, are provided in Table 2.

The atmospheric stability is characterized through the
Obukhov length (Monin and Obukhov, 1959) retrieved by
two CSAT3 3D sonic anemometers manufactured by Camp-
bell Scientific, Inc., which were deployed in the proxim-
ity of the UTD mobile lidar station at 1.4 and 2.8 m above
the ground. A total of two met towers are installed in the
northern part of the park, as shown in Fig. 1. Each tower is
equipped with four anemometers installed in a paired config-
uration at heights of 50 and 80 m, for met tower no. 1, and
50 and 69 m, for met tower no. 2. Mean and standard devi-
ation of wind speed and direction are stored every 10 min,
along with the mean temperature and barometric pressure.
In the present work, wind velocity data at each height are
corrected for the flow distortion due to the tower following
the guidelines provided by the International Electrotechni-
cal Commission (IEC) standards (International Electrotech-
nical Commission 61400-12-1, 2017, Annex G). Addition-
ally, mean and standard deviation over 10min periods of
nacelle wind speed, power, revolutions per minute (RPM),
and blade pitch, collected and stored by the supervisory con-
trol and data acquisition (SCADA) system, were made avail-
able. Normalized average power, Pnorm, and Cp, curves based
on the nacelle anemometers are built by leveraging data for
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the period 20162018 and shown in Fig. 3 as a function of
the density-corrected normalized wind speed (International
Electrotechnical Commission 61400-12-1, 2017) as follows:

Uscapa ( Pmet )’
Unorm = . s ( 1)
Urated Pref

where prer = 1.225kg m~3 is the reference density at the sea
level, Uscapa is the 10 min average of the wind speed mea-
sured by the nacelle-mounted anemometers, while the local
air density pme; is calculated from the meteorological data
according to the international standard (International Elec-
trotechnical Commission 61400-12-1, 2017). Another im-
portant parameter derived from the SCADA data is the tur-
bulence intensity at the rotor, which is defined as follows:

Usp, scapa
Uscapa

Tlscapa = 2)
where Usp scapa is the standard deviation of wind speed
over 10 min periods.

The two lidars performed a great variety of scans during
the campaign, based on the specific phenomena under inves-
tigation. For the present analysis, we focus on the 3D recon-
struction of noninteracting wakes using the high-resolution
data collected with the Halo StreamLine XR lidar and the 2D
reconstruction of multiple overlapping wakes detected by the
WindCube 200S.

3 Application of LiSBOA to volumetric lidar data

This section aims to explore the potential of LiSBOA for the
selection of the optimal azimuthal resolution of a lidar scan,
data postprocessing, and reconstruction of 3D flow statistics.
The data set used in this section was collected on 11 Octo-
ber 2018 over the farm region, shown in Fig. 1b, through a
StreamLine XR lidar. The goal of the experiment is to inves-
tigate the evolution of multiple turbine wakes advected over
complex terrain. Figure 4 shows the site of the deployment
and the relative distances between the lidar and the turbine
hubs.

The deployment location was chosen to scan the wakes
generated by wind turbines B16-B19 for south-southeast
(SSE) wind directions. The lidar was deployed off a county
road that connects the plateau with the surrounding plains,
with a consequent difference in altitude between the instru-
ment and the base of the turbines of about 40 m. To probe
the wake region of turbines B16-B19 (Fig. 2¢) and the lee-
ward side of the ridge, seven PPI scans were performed by
sweeping an azimuthal range of 65° with elevations angles,
B,setto 5, 6,7,8, 10, 12, and 15°. The total sampling time
was selected equal to 7 = 1 h, since the local weather fore-
cast service provided by the wind farm operator predicted 1 h
of steady wind conditions, blowing in a SSE mean direction
and having a speed of Us, 2~ 6 ms™!. The aerosol concentra-
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Figure 1. Map of the wind farm under investigation. (a) Top view of the wind farm, with the diameter of the dots representing the turbine
rotor diameter (in the wind rose, the sectors where both meteorological (met) towers are potentially affected by turbine wakes are displayed
in lighter color). (b) Area probed through StreamLine XR lidar on 11 and 12 October 2018. (¢) Typical field of view of the WindCube 200S

lidar.

Table 1. Technical specifications of the wind turbines under investigation.

MWT-1000-61 GEsslel.5
Rated power (kW) 1000 1500
Cut-in wind speed (ms~1) 3.5 3.5
Cut-out wind speed (ms™ 1) 25 25
Rated wind speed (m s_l) 13.5 14
Type Variable pitch and/or fixed speed  Variable pitch and/or variable speed
Hub height (m) 69 80
Rotor diameter (m) 61.4 77

tion allowed for the selection of a gate length of Ar =18 m
and accumulation time of 1.2s.

As reported in Sect. 4 of Letizia et al. (2021), several
parameters of the flow under investigation are required for
the optimal design of the lidar scans. The fundamental half
wavelengths typical for wind turbine wakes were selected
equal to those used in Sect. 5 of Letizia et al. (2021),
ie., Anox =2.5D and Angy = Ang;=0.5D. Similarly,
the integral timescale was chosen equal to tUx /D = 0.4
(t ~5s). Finally, a measurement volume with dimensions
of 1000, 950, and 130 m in the streamwise, transverse, and
vertical directions, respectively, was selected to probe wakes
generated from turbines B16-B19 and the downwind region
of the escarpment. The expected characteristic velocity stan-

dard deviation was estimated to be Vv u? =0.125 Uxo, based
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on previous field measurements of turbine wakes under sta-
ble conditions (Zhan et al., 2019).

For the selection of the optimal azimuthal angular reso-
lution of the lidar scan, LiSBOA is applied to produce a
Pareto front for six possible angular resolutions, A6, be-
tween 0.25 and 4°, and four values of the smoothing param-
eter, 0 =[1/4,1/6,1/8,1/17]. As shown in Fig. 5, the op-
timal lidar scan is that with angular resolution A6 = 1° and
o =1/4 or 0 = 1/6. Generally, an increasing A6 entails a
reduction in the standard deviation of the mean, €1, yet val-
ues higher than A8 = 1° do not lead to significant reductions
in €', while worsening the data loss, €!, indicating a larger
number of grid points not satisfying the Petersen—Middleton
constraint.

In Fig. 5, the values of the cost function €' and €I, cal-
culated from the lidar data after the quality control process

https://doi.org/10.5194/amt-14-2095-2021
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Figure 2. Photographs of the lidar experiment. (a) Lidar WindCube 200S and sonic anemometers (Campbell Scientific, Inc.; CSAT3).

(b) Lidar StreamLine XR. (¢) GE 1.5sle turbines of the B row.

Table 2. Technical specifications and settings of the wind lidars deployed during the field campaign.

WindCube 200S StreamLine XR
Type Pulsed — scanning  Pulsed — scanning
Scanning mode Continuous Step stare
Wavelength (nm) 1543 1500
Pulse length (ns) 200 200
Frequency (kHz) 20 10
Gate length (m) 50 18
Number of gates 80 200
Rotation speed (° s—h 1 0.85
Detection range (ms™ 1) +30 +20

0.6

0.5

0.4

303

0.2

075 1

0 025 05 075 1

Figure 3. Performance curves for the General Electric (GE) and Mitsubishi (MHI) wind turbines. (a) Normalized power, Pnorm, and (b)

power coefficient, Cp.

(Beck and Kiihn, 2017), are also reported for the optimal an-
gular spacing of the lidar A@ = 1°. It is noteworthy that there
is a negligible difference between the values calculated be-
fore and after the quality control of the lidar data, indicating
that the data loss due to the acquisition error is negligible in
the domain of interest. The spatial distributions of the grid
points satisfying the Petersen—Middleton constraint for dif-
ferent values of A@ and o = 1/4 are reported in Fig. 6. It can
be observed, as Af = 1° represents the highest angular step,
ensuring an acceptable coverage of the spatial domain.

The data collected, adopting the optimal scanning strategy
with A@ = 1°, are now postprocessed to calculate the mean
streamwise velocity and turbulence intensity. The time se-

https://doi.org/10.5194/amt-14-2095-2021

ries of the wind speed and direction recorded by the sensors
installed on met tower no. 1 at hub height and located at a
distance of 2700 m in the northern direction of the test site
are leveraged to characterize the incoming wind. The evolu-
tion of wind speed and direction along with the velocity field,
measured with three specific PPI scans, are reported in Fig. 7.
For the period between 20:30 and 21:30 local time (Moun-
tain daylight time — MDT), and indicated by the shaded area
in Fig. 7a and b, the wind speed remained within the range
between 5.1 and 7.1 ms~!, while the wind direction departed
less than 10° from its mean value of 8y, = 163.4°. The wind
and power data, which are recorded by SCADA (Fig. 8), con-
firm that the turbines experienced fairly homogeneous inflow

Atmos. Meas. Tech., 14, 2095-2113, 2021
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Figure 4. Satellite map of deployment of Halo StreamLine XR on 11 October 11 2018. Source: ©Google Maps.
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Figure 5. Pareto front for the design of the optimal lidar scan for the
reconstruction of the wakes generated by wind turbines B16-B19.
The markers highlighted in red correspond to the respective param-
eters obtained from the actual lidar data after the quality control
process.

conditions, with the differences in power capture being 5 %
smaller than the rated value. The values of normalized veloc-
ity, together with the performance curves (Fig. 3), indicate
that the turbines were operating in region II of the power
curve for the whole interval of interest.

Since statistical stationarity is an important assumption for
the LiSBOA applications, adequate postprocessing of the li-
dar data is needed to avoid effects on the reconstructed flow
statistics due to the wind variability. Specifically, the wind
speed variability is corrected by making the line-of-sight ve-
locity nondimensional with the incoming wind speed. To this
end, the instantaneous velocity field measured by the lidar is
divided by the synchronized mean wind speed obtained from
met tower no. 1, as explained above. Furthermore, scans per-
formed when the wind direction was outside of the range
Oy + Aby /2, with A6, = 10°, are excluded. After the qual-
ity control based on the dynamic filtering (Beck and Kiihn,
2017), 169000 data points out of 455000 are made avail-

Atmos. Meas. Tech., 14, 2095-2113, 2021

able for the LiSBOA reconstruction on a Cartesian grid, with
resolution equal to dx = 0.25Any. Isolated grid regions vio-
lating the Petersen—Middleton constraint (< 2% of the to-
tal number of grid points) are rejected, and their respec-
tive values are filled through a Laplacian interpolation (in-
paint_nans.m in MATLAB). This analysis is restricted to the
streamwise component of the wind velocity, which is esti-
mated using the equivalent velocity approach (Zhan et al.,
2019). The nondimensional equivalent velocity is referred to
as u/Us in the remainder of the paper, while the associated

turbulence intensity is referred to as \/ﬁ Ju.

Figures 9 and 10 show 3D renderings of the nondimen-
sional velocity and turbulence intensity fields obtained by us-
ing the parameters o = 1/4 — m = 5. Wake features, such as
turbulent diffusion, the high-momentum jet in the hub region,
and the turbulent shear layer at the wake boundary, are well-
captured. A total of two highly turbulent regions are located
on both sides of the wakes, which is a distinctive signature of
wake meandering occurring mostly horizontally in the atmo-
spheric boundary layer (ABL; Espaifia et al., 2011). The lack
of symmetry and similarity among different turbines, how-
ever, suggests that full statistical convergence is not achieved
on the second-order statistics for the available data set. The
low-speed region hovering over the downslope most proba-
bly represents the upper part of the low momentum zone that
occurs past sharp escarpments (Berg et al., 2011).

The effect of the combination ¢ — m on higher-order
statistics is investigated by extracting the turbulence inten-
sity at different cross-stream planes. The optimal pairs o —m
identified by the Pareto front analysis (Fig. 5), namely o =
1/4—m=5and o =1/6 —m =2, are tested here. One may
expect that, due to the difference in the response of the high-
order moments of the fundamental mode between the two
pairs, D(Aftg), the first case would exhibit a significantly

lower \/u_’2 /u with respect to the second one. However, as
shown in Fig. 11, the peaks of turbulence intensity are quite
similar between the two cases. The main difference between
the two reconstruction processes is a smoother distribution
of \/ﬁ /u for o0 = 1/4 —m = 5. The similarity between the
two cases is due, essentially, to the following two reasons:

https://doi.org/10.5194/amt-14-2095-2021
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Figure 7. 3D lidar scans of five wind turbines. (a) The 10 min average wind speed measured from the anemometers installed at 50 and 80 m
height on met tower no. 1. The error bar represents the standard deviation over 10 min. The shaded area represents the interval selected for
the LiSBOA application. (b) The 10 min average wind direction in the geophysical reference system measured from the vanes installed at
50 and 80 m on met tower no. 1. (c—e) Equivalent velocity fields measured with PPI scans at different times. The green arrow is oriented as
being the mean wind direction measured by met tower no. 1, while the black cross indicates the lidar location.
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first, the smallest energy-containing length scales of the tur-
bulence intensity field (i.e., shear layer thickness) are larger
than the selected fundamental mode Ang y = Ang; =0.5D;
second, the larger number of points per grid node averaged
for the o = 1/4 case, leads to a higher variance due to the
reduction in the bias of the estimator of the variance, which
partially compensates the lower theoretical response. In sum-
mary, this sensitivity analysis suggests that the choice of the
o —m pair cannot be based purely on the theoretical response,
since it does not take into account the nonideal effects deriv-
ing from the discrete and nonuniform data distribution. In-
stead, an a posteriori analysis of the statistics retrieved is rec-
ommended to select the best o — m values.

Turbine-wake statistics are extremely sensitive to the
width of the selected wind sector (Barthelmie et al., 2009;
Hansen and Barthelmie, 2014). It is well known that widen-
ing the wind direction range can lead to an enhanced wake
diffusion and turbulence intensity (Trujillo et al., 2011;
Kumer et al., 2015), which is compensated by higher data
availability and statistical significance. A sensitivity analy-
sis to the wind sector width for reconstructing the statistics
through LiSBOA for two additional values of A6, is now
presented. Besides the baseline value of 10°, the effects of
a narrower (Afy, = 5°) and wider (A6, = 15°) range are in-
vestigated. The standard deviation of the wind direction as-
sociated with the different sectors is 1.08, 1.93, and 2.74° for
Aby, = 5,10, 15°, respectively. Figure 12 shows the rotor-
averaged velocity and turbulence intensity for each turbine
as a function of the downstream distance from the rotor. The
profiles of the mean and standard deviation obtained for dif-
ferent A6, are practically the same, indicating that the ef-
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fects of the wind direction variability on wake flow statistics
are not significant.

For the sake of completeness, the velocity and turbulence
intensity sampled in the cross-stream plane, where the maxi-
mum velocity deficit occurs (x/D ~ 1.3), for all the turbines
and the A6y, are shown in Fig. 13. The discrepancies due to
different A6,, are negligible. A more evident mismatch can
be observed in the shape of the wakes among different wind
turbines, with the wake of turbine B19, in particular, show-
ing the velocity deficit and turbulence peak that are displaced
above the hub height. Turbine B19 is also the only one fac-
ing a slightly inclined terrain (see Fig. 12), which may have
caused a skewed inflow.

4 Application of LiSBOA to interacting wind turbine
wakes

An assessment of the accuracy of LiISBOA in the calculation
of mean wind speed and turbulence intensity is now provided
for lidar measurements performed during the occurrence of
wake interactions. To this end, point-wise measurements pro-
vided by the nacelle-mounted anemometers and saved in the
SCADA data of four closely spaced Mitsubishi wind tur-
bines, roughly aligned with the wind direction, are compared
with the statistics obtained from the postprocessing of the li-
dar data with LiSBOA.

Figure 14 reports a satellite image of the site used in
this experiment. The tests were performed during the occur-
rence of a nearly steady northeasterly wind (Us, ~ 8 ms™')
from 21:00 to 01:00 local time (T =4h) in the night be-
tween 5 and 6 September 2018. This wind condition created

https://doi.org/10.5194/amt-14-2095-2021
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Figure 9. 3D rendering of the normalized mean equivalent velocity field reconstructed with A6y = 10°. The three isosurfaces represent
u/Uso =0.45, 0.6, and 0.75, while the color maps represent cross sections of the mean velocity field over the respective planes reported
in the rendering. The dashed circles correspond to the rotor-swept area of turbines B16-B19 (from left to right) projected onto the specific

cross-plane.

a good alignment of the wakes emitted by the turbines FO1
to FO4. The aerosol conditions allowed us to run the Wind-
Cube 200S lidar with a gate length of 50 m and an accumu-
lation time of 0.5 s. The lidar is located at a distance of about
25D from wind turbine FO4, which is the most downstream
turbine for that specific wind condition, while the average
streamwise spacing between the turbines is 3.6D. The ve-
locity and turbulence intensity fields are reconstructed over
a horizontal plane, including only points within the vertical
range spanning from the bottom-tip to the top-tip of the tur-
bine rotors. The 2D reconstruction adopted here implies that
a uniform weight is applied for points displaced at different
z, which means the reconstructed statistics represent time-
averaged and vertically averaged fields. This 2D approach is
deemed convenient for the comparison with point-wise mea-
surements recorded by SCADA through nacelle-mounted in-
struments as it represents an average of the wind characteris-
tics over the rotor.

The region of interest was probed through a volumetric
scan consisting of three PPI scans with elevation angles § =
2.1, 2.6, and 3.3°. The fundamental half wavelengths were
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selected as Ang y =2.25D and Ang,y =0.75D. According
to the previous cases, the integral timescale was estimated to
be tUx/D = 0.4 (r ~ 35). The characteristic velocity stan-

dard deviation was set to \/LT’ = 0.2U4. The value of the
associated turbulence intensity is higher than that used for
nonoverlapping wakes to account for the turbulence build-
up, which is known to occur for turbines operating experi-
encing wake interactions (Chamorro and Porté-Agel, 2011;
Tungo et al., 2013a).

The incoming wind is characterized by averaging mea-
surements collected from all the anemometers and wind
vanes installed on both met towers, which are located 12
and 10.4km away from the leading turbine FO1 (Fig. 15).
The Obukhov length is calculated from both sonic anemome-
ters, indicating a stable stratification regime. The SCADA
data exhibit the typical signature of multiple wake interac-
tions with reduced wind speed and power for downstream
turbines, while turbulence intensity is enhanced, in particular
for the FO2 and FO4 wind turbines.

The optimal design of the lidar scan is performed, consid-
ering six values of A@ and four values of o. The obtained

Atmos. Meas. Tech., 14, 2095-2113, 2021
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Figure 10. 3D rendering of the turbulence intensity field reconstructed with Ay = 10°. The two isosurfaces represent ﬁ/ﬂ levels of 20 %

and 30 %, while the color maps represent cross sections of the turbulence intensity field over the respective planes reported in the rendering.
The dashed circles correspond to the rotor-swept area of turbines B16-B19 (from left to right) projected onto the specific cross-plane.
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Figure 11. Comparison of the turbulence intensity reconstructed with c =1/4 —m =5 (a, b, ¢) vs. 0 =1/6 —m =2 (d, e, f) and their
difference (g, h, i) for three selected streamwise locations indicated by the red lines in the top maps.
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Figure 12. Rotor-averaged streamwise mean velocity and turbulence intensity as a function of the downstream distance from the turbine and

associated altitude profile.

Figure 13. Fields reconstructed adopting several A6y, values and sampled at x/D ~ 1.3 downstream of turbines B16, B17, B18, and B19.

(a) Mean streamwise velocity and (b) streamwise turbulence intensity.

Pareto front is shown in Fig. 16, which indicates A6 = 0.5°
and o = 1/3,1/4 or 1/6 as the optimal scanning parameters.
The equivalent velocity retrieved by the lidar is made nondi-
mensional with the free stream velocity provided by the met
towers. The wind direction range is set to Afy, = 10°, re-
sulting in a total measuring period of 150 min. Data points
lying above the top-tip or below the bottom-tip heights are
excluded for this data analysis. The dynamic filter technique
is used to reject corrupted lidar data, producing a total of
544 000 quality controlled lidar samples over 1327 000 col-
lected lidar data within the selected wind direction range.
LiSBOA is carried out on a grid with resolution dx =
0.25Any, using the combination smoothing parameters —
number of iterations ¢ = 1/6 — m = 1, which is, among the
allowable combinations, the one providing the largest re-
sponse of the higher-order moments. The obtained veloc-
ity and turbulence intensity fields over the horizontal plane
at hub height are displayed in Fig. 17. The velocity deficit
of FO2 appears slightly larger than that detected behind the
unwaked turbine FO1, which is most probably due to the
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wake superimposition. An even deeper velocity deficit can
be observed behind FO3, which operates in a partially waked
condition for this specific wind direction. Downstream of
the third turbine, the wake deficit build-up saturates, con-
firming results from previous studies on close wake inter-
actions (Barthelmie et al., 2010; Chamorro and Porté-Agel,
2011). Finally, the relatively fast recovery of the wake of the
trailing turbine, FO4, can be ascribed to the enhanced mix-
ing due to the wake-generated turbulence. Indeed, Fig. 17b
shows significant wake-generated turbulence increasing past
the leading turbine that reaches its maximum at a distance
of 1D downstream of the rotor of FO3. Interestingly, wake-
generated turbulence is concentrated on the sides of the wake
of FO1, which experiences undisturbed flow, while it spreads
around the whole wake region for the downstream turbines.
This feature might be related to the presence of coherent
wake vorticity structures in the near wake of turbine FO1
(Iungo et al., 2013a; Viola et al., 2014; Ashton et al., 2016),
while, further downstream, the perturbed inflow promotes
the breakdown of such coherent structures, leading to more

Atmos. Meas. Tech., 14, 2095-2113, 2021
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Figure 14. Satellite map of the site for the deployment of the Wind-
Cube 2008 lidar, including the four Mitsubishi wind turbines under
investigation. Source: ©Google Maps.

homogeneous turbulence. Finally, the large velocity deficit
and/or high turbulence detected in the wake of FO3 may
be a consequence of the mentioned partial wake interaction,
which exposes the rotor to a nonhomogeneous flow, resulting
in a severely off-design operation.

From a more quantitative standpoint, the incoming wind
conditions experienced by each turbine are characterized to
perform a direct comparison with the nacelle anemometer
data. To this aim, the mean velocity and turbulence intensity
profiles are extracted from the lidar statistics at a distance
of 1D upstream of the rotors over a segment spanning the
whole rotor diameter. The sampling location is chosen based
on previous studies (Politis et al., 2012; Hirth et al., 2015),
since 1D is generally considered the minimum distance up-
stream of the rotor where the influence of the induction zone
can be neglected for normal operative conditions. The aver-
aged values of u/Uy and \/ﬁ /u of each upstream profile
are then used for the comparison with the respective values
recorded through SCADA.

A well-posed comparison of the wind statistics obtained
from LiSBOA, SCADA, and met data requires two important

Atmos. Meas. Tech., 14, 2095-2113, 2021
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elements. First, the statistical moments compared have to be
equivalent; second, both the LiISBOA and SCADA data must
be representative of the free stream conditions experienced
by each turbine.

Regarding the first issue, the mean field obtained through
LiSBOA, u, can be expressed as follows:

(7o), =), ~ (), ®
IT olITIT met T

where (.)7 is the average calculated over the whole sam-
pling period of 150 min, while (.); is the 10 min average
performed by SCADA and the met tower acquisition sys-
tem. Uscapa and Upe are the 10 min averaged velocities
recorded from SCADA and the met tower, respectively, while
the symbol ~ indicates statistical equivalence.

Similarly, for the comparison between the velocity vari-
ance calculated through LiSBOA and the respective values
recorded through SCADA, we have the following relation-
ship:

(i), (), (), ()
U lr U l#ly Uscl [, U717
~ USZD, SCADA + U§CADA

UI%ICI T UI%let T

B < Uscapa >2 @
n

Umet

where u’ and i’ are the velocity fluctuations with zero mean
calculated over the period T and T, respectively. The param-
eter U, SZD’ scapa 18 the velocity variance recorded by SCADA

over the period T of 10 min.

To ensure that the SCADA mean and standard deviation
of velocity are representative of the undisturbed wind con-
ditions at each rotor, these velocity statistics are corrected
for the flow distortion induced by the turbine through appro-
priate nacelle transfer functions (NTFs), which convert the
velocity statistics measured at the nacelle of a wind turbine
to the corresponding free stream values measured from a met
tower located nearby. The IEC standard 61400-12-2 (Interna-
tional Electrotechnical Commission, 61400-12-2, 2017) pre-
scribes the calculations of the NTF from the bin average, with
bin size 0.5ms™!, of the velocity measured by a reference
anemometer as a function of the nacelle wind speed. In the
present work, besides correcting the mean wind speed as in-
dicated by the IEC standards, a linear correction of the wind
speed standard deviation is also applied, as suggested by Ar-
gyle et al. (2018). We adopted, as reference, an anemometer
that is installed at 69 m above the ground on met tower no. 2.
The SCADA data of Mitsubishi turbines HO5 and HO6, both
falling in the range of distances from the met tower recom-
mended by the IEC 61400-12-1 (International Electrotechni-
cal Commission 61400-12-1, 2017), are used. Only the un-
waked wind sectors calculated based on the same standard
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2018. (a) Wind speed from met towers. (b) Wind direction from met towers. (¢) Inverse Obukhov length from our sonic anemometers.
(d) Normalized wind speed from SCADA. (e) Turbulence intensity from SCADA. (f) Normalized power from SCADA.
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Figure 16. Pareto front for the design of the optimal lidar scan for
the reconstruction of the wakes statistics for turbines FO1-F04. The
markers highlighted in red represent the actual lidar data after qual-
ity control.

are considered. The described layout is shown in Fig. 18,
while Fig. 19 shows the result of this analysis. There is a high
correlation between the velocity measured by the met tower
and the nacelle-mounted anemometer (o = 0.976). Never-
theless, the NTF of the velocity reveals consistently lower
values occurring at the nacelle compared to the met tower,
with a peak at 20ms~!. Concerning the standard deviation of
velocity, the agreement between the SCADA and met tower
data is significantly lower (p = 0.828), yet a linear correction
can be still calculated with acceptable significance (error on
slope and intercept are 0.0038 and 0.0034, with 95 % confi-
dence).

The results of the comparison between LiSBOA and
SCADA are provided in Fig. 20. The mean velocity is ac-
curately captured and confirms that FO2 and F04 are the tur-
bines mainly affected by the upstream wakes. The slightly
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higher momentum impinging FO3 is mostly due to the im-
perfect alignment of that rotor with the upstream turbine
wakes, which creates a condition of partial wake interaction.
A slightly larger discrepancy between LiSBOA and SCADA
data is observed for the turbulence intensity, with a maximum
difference of ~ 3 % for FO3. Nonetheless, the main trend is
well reproduced, and the overall agreement is satisfactory.
The observed difference in turbulence intensity can be re-
lated to several factors, such as turbulence damping due to
the lidar-measuring process and LiSBOA calculations, the
accuracy of the NTF, the estimate of the streamwise veloc-
ity from the lidar radial velocity, or the vertical dispersive
stresses.

The effect of the sampling location upstream of the tur-
bines in the LiSBOA field is investigated by quantifying the
discrepancy of the LiSBOA statistics with respect to the ref-
erence SCADA values for all the turbines through the 95th
percentile of the absolute error, AEgs. Figure 21 shows AEgs
as a function of the distance upstream, where the incoming
flow is extracted from the LiSBOA statistics. For the mean
velocity, it is confirmed that the value suggested by the liter-
ature (x = —1D) is sufficiently far from the rotor to limit the
effects of the induction zone on the definition of the refer-
ence free stream velocity. Furthermore, the rotor thrust does
not seem to have noticeable effects on the incoming turbu-
lence, in that the induction zone is essentially devoid of sig-
nificant turbulent fluctuations due to the loads of the turbine
blades. The discrepancy between the turbulence intensity re-
trieved through LiSBOA and SCADA steeply increases for
sampling locations further than 2D from the rotor.

In summary, the satisfactory agreement between LiSBOA
and SCADA data achieved in the present study indicates the
proposed procedure as a promising candidate for wind re-
source assessment, especially for complex terrains, and in-
vestigations of the intra-wind-farm flow.

Atmos. Meas. Tech., 14, 2095-2113, 2021
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Figure 17. Velocity statistics of the wakes generated by turbines FO1-F04 reconstructed over the horizontal plane at hub height. (a) Mean
streamwise velocity and (b) streamwise turbulence intensity. The black dots indicate the sampling locations used for the estimation of the

incoming flow for the respective turbine.
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Figure 18. Met tower and turbines selected for the nacelle trans-
fer function estimation. The directions highlighted in gray repre-
sent the valid wind sectors unaffected by turbine wake interactions.
The dashed circles bound the allowed range of distances from the
tower in compliance with IEC standard 61400-12-1 (International
Electrotechnical Commission 61400-12-1, 2017).

5 Conclusions

The LiDAR Statistical Barnes Objective Analysis (LiSBOA)
has been applied to two different cases of wind turbine wakes
to estimate the optimal azimuthal step of the lidar and re-
trieve mean velocity and turbulence intensity fields.

First, LISBOA has been used to process real lidar data col-
lected for a utility-scale wind farm. For the first test case,
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the statistics of the wakes of four noninteracting 1.5 MW tur-
bines placed at the brink of an escarpment have been recon-
structed. The optimal azimuthal resolution of the lidar scan
has been selected through LiSBOA, while the mean veloc-
ity and turbulence intensity fields retrieved through LiISBOA
have offered a detailed insight of the wake morphology. Fur-
thermore, a sensitivity analysis of the wind direction range
has confirmed the robustness of the data selection and qual-
ity control methods.

Subsequently, the complex velocity field arising from the
interaction of four 1 MW turbines has been analyzed by cal-
culating first- and second-order moments on the horizontal
plane. The mean velocity and turbulence intensity extracted
1D upstream of the rotors have agreed well with the values
provided by the nacelle anemometers, with maximum dis-
crepancies as low as 3 % of the undisturbed wind speed for
the mean velocity and 3 % (in absolute terms) for the turbu-
lence intensity.

The applications of LISBOA discussed in this work aim to
showcase the potential of the proposed procedure for the op-
timal design of lidar scans and to provide guidelines for the
utilization of LiSBOA for the analysis of lidar data. A total of
two noticeable advantages of LISBOA arise from the present
work. First, once the wavelengths of interest and the lidar ba-
sic scanning parameters dictated by the atmospheric condi-
tions and target position are selected, LiISBOA allows a sys-
tematic and effective optimization of the azimuthal resolu-
tion, which includes all the essential information of the flow
under investigation and the lidars used. This feature can be
of interest, especially when planning field experiments that
involve multiple lidars, complex topography, or articulated
turbine configurations. In such situations, the use of the pro-
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Figure 20. Comparison between LiSBOA and SCADA wind statistics for a case with wake interactions.
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posed quantitative and comprehensive scan design approach
may be beneficial for narrowing down a great deal of arbi-
trariness and uncertainty associated with campaign planning.
Second, LiSBOA offers complete control over the response
of the spatial wavelengths of the velocity field for the statisti-
cal moments with various orders. This feature is crucial when
dealing with turbulent and multiscale flows because it allows
the extraction of meaningful information from the flow while
filtering out small-scale variability.
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Appendix A: List of symbols

X, Y, 2

Rmax

Unorm

Pnorm

U
Uscapa
Usp, scapA

TIscapa
Umet
Lo
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Streamwise, spanwise, and vertical

Cartesian coordinates

Time

Air density

Streamwise, spanwise, and vertical

velocity components

Number of realizations and/or scans

Azimuth angle

Elevation angle

Azimuth angle resolution

Accumulation time

Gate length

Number of range gates along the laser per beam
Total sampling time

Smoothing parameter

Number of iterations

Radius of influence

Half-wavelength vector

Fundamental half-wavelength vector

Random data spacing

Resolution vector in Cartesian coordinates
Response at the mth iteration

Cost function I (data loss)

Cost function II (standard deviation of

the sample mean)

Integral timescale

Spatial variable in the scaled frame of reference
Rotor diameter

10 min averaged normalized density-corrected
hub height wind speed

10 min averaged normalized active power

10 min averaged undisturbed incoming wind speed
10 min averaged hub height wind speed

10 min based hub height standard deviation

of wind speed

10 min based hub height turbulence intensity
10 min averaged wind speed from met tower
Obukhov length
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