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Wind turbine wakes are responsible for power losses and added fatigue loads of wind
turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmo-
spheric conditions and turbine settings with low computational requirements is crucial for the
optimization of wind-farm layout, and for improving wind-turbine controls aiming to increase
annual energy production (AEP) and reduce the levelized cost of energy (LCOE) for wind
power plants. In this work, wake measurements collected with a scanning Doppler wind Li-
DAR for broad ranges of the atmospheric static stability regime and incoming wind speed are
processed through  -means clustering. For computational feasibility, the cluster analysis is
performed on a low-dimensional embedding of the collected data, which is obtained through
proper orthogonal decomposition (POD). After data compression, we perform  -means of the
PODmodes to identify cluster centers and corresponding members from the LiDAR data. The
different cluster centers allow us to visualize wake variability over ranges of atmospheric, wind,
and turbine parameters. The results show that accurate mapping of the wake variability can
be achieved with  -means clustering, which represents an initial step to develop data-driven
wake models for accurate and low-computational-cost simulations of wind farms.

I. Introduction
Power generation through wind turbines encompasses an energy-transformation process from the wind kinetic energy

into mechanical rotation of the moving parts of the turbines and, finally, transformation into electricity through the
generator. The residual wind kinetic energy past a turbine rotor is typically characterized by higher turbulence intensity
and requires a downstream fetch of about one order of magnitude larger than the rotor diameter to recover an energy
potential comparable to that of the incoming wind field [1]. The near-wake flow features are mainly affected by the rotor
aerodynamics and control settings, which can be characterized through the rotor thrust coefficient and incoming wind
speed at hub height [2]. In contrast, the far-wake evolution is mainly governed by turbulent mixing and, in turn, the main
wake variability is induced by the characteristics of the incoming wind, such as turbulence intensity, shear, and veer [3].
Being able to predict accurately wake variability for different incoming wind field and turbine settings to optimize wind
farm layout and improve wind turbine controls is as important as to keep the computational costs of the used wind farm
models very low considering the hundreds of configurations to be simulated for a wind power project [4].

In this work, measurements were performed with a scanning Doppler wind light detection and ranging (LiDAR) for
wakes generated by utility-scale wind turbines deployed at an onshore wind farm. These are analyzed through cluster
analysis to achieve an accurate and efficient mapping of the variability of wind turbine wakes for different atmospheric
conditions, such as through the incoming turbulence intensity at hub height or the Bulk Richardson number [5], and
operative conditions of the wind turbines, i.e. incoming wind speed at hub height. With this approach, we aim to
provide a framework for the development of a new generation of data-driven models for predicting wind turbine wakes
with low computational costs.

The remainder of the paper is organized as follows. The LiDAR experiment and the wind farm under investigation
are described in Sect. II. Subsequently, the proper orthogonal decomposition (POD) analysis is presented in Sect. III,
while the  -means cluster analysis is detailed in Sect. IV. Finally, concluding remarks are reported in Sect. V.
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II. LiDAR measurements for an onshore wind farm
A LiDAR campaign was performed for an onshore wind farm located in North Texas consisting of 39 identical

2.3-MW wind turbines with rotor diameter, 3, of 108 m, and a hub height of 80 m. The elevation map of the site is
retrieved with a spatial resolution of 100 m from the U.S. Geological Survey [6]. By setting the offset altitude at the
location of the LiDAR deployment, the standard deviation of the terrain is only 16 m, which allows considering this site
as flat terrain. For the retrieval of the LiDAR data, the hub height of each turbine is corrected by taking the local altitude
at the turbine locations into account.

The measurement campaign was conducted through various phases between August 2015 and March 2017 for a total
of 236 days. Meteorological data (‘met-data’ hereafter) were provided as ten-minute averages and standard deviation of
wind speed, wind direction, temperature, humidity, and barometric pressure, at heights of 36 m, 60 m, and 80 m. The
atmospheric stability regime can be characterized through the Bulk Richardson number as follows [5]:

'8� (I) =
6 Δ)/ΔI

) (IF ) *2 (IF )
I2, (1)

where 6 is the gravitational acceleration, IF is the met-tower height where the wind speed,*, is measured, Δ) is the
temperature variation over ΔI = I2 − I1 (I2=75 m and I1=3 m), and I = √I1I2=15 m.

Supervisory control and data acquisition (SCADA) data were provided for each turbine as ten-minute averages and
standard deviation of wind speed, power output, rotor rotational velocity, and yaw angle. For more details on this dataset
and the used quality-control process see El-Asha et al. [1], Zhan et al. [3].

The scanning Doppler wind LiDAR deployed for this experiment is a Windcube 200S manufactured by Leosphere,
which emits a laser beam into the atmosphere and measures the radial wind speed, i.e. the velocity component parallel
to the laser beam, from the Doppler frequency shift of the back-scattered light. The LiDAR system operates in a
spherical coordinate system and measures the radial velocity defined as the summation of the three velocity components
projected onto the laser beam direction. It features a typical scanning range of about 4 km with a range gate of 50 m, an
accumulation time of 500 ms, and an accuracy of 0.5 m/s in wind speed measurements. More details on the LiDAR
system and the field campaign are available in El-Asha et al. [1], Zhan et al. [3].

The LiDAR measurements were typically performed by using a range gate of 50 m, an elevation angle of q = 3◦,
azimuthal range of 20◦, a rotation speed of the scanning head of 2◦/s, leading to a typical scanning time for a single
planar-position indicator (PPI) scan of about 10 s [7, 8]. After rejecting LiDAR data with a carrier-to-noise ratio (CNR)
lower than -25 dB, a proxy for the streamwise velocity is obtained from the LiDAR radial velocity, +A , through the
streamwise equivalent velocity*4@ = +A/[2>Bq 2>B(\ − \F )] [3], where \ is the azimuthal angle of the LiDAR laser
beam and \F is the wind direction. The streamwise equivalent velocity is then made non-dimensional through the
velocity profile in the vertical direction of the incoming boundary layer, which is also measured with the LiDAR. The
reference frame used has G-direction aligned with the wake direction, which is estimated with the linear fitting of the
wake centers at various downstream locations [3], H-direction in the horizontal transverse direction, and I-direction
vertically and positive moving upwards.

A total number # = 6,781 of quality-controlled planar-position indicator (PPI) LiDAR scans of isolated wind turbine
wakes have been processed to provide the non-dimensional wake velocity fields used for this study [3]. The wake
velocity fields measured with the LiDAR are interpolated over the horizontal plane at hub height within the domain
1 ≤ G/3 ≤ 7 and −1 ≤ H/3 ≤ 1 by leveraging the assumption of an axisymmetric wake when removing the distortion
induced by the incoming boundary layer flow [3]. The wake velocity data have a spatial resolution of 0.13 and 0.053 in
the G and H directions, respectively, generating for a single snapshot a data matrix of [? × @] = [61 × 41] (?@ = 2, 501).

For grid points where the LiDAR data are not available, which can be due to the quality control process of the
LiDAR data or a significant misalignment between the wake direction and the direction connecting the LiDAR and
turbine locations, the velocity fields are interpolated through the inpaint-nans function available in Matlab [9]. The
ensemble-averaged velocity fields calculated over the entire dataset are reported in Fig. 1 for both raw and interpolated
data. The main data distortion due to the velocity interpolation occurs at the downstream corners of the spatial domain,
which are the areas where the probability of missing LiDAR samples is higher. The interpolated velocity fields are only
used for the POD, which does not allow for not-a-number (NaN) values over the spatial domain for the calculation of the
eigenproblem of the velocity covariance matrix. In contrast, statistics of the wake velocity field are calculated with the
original non-interpolated velocity fields by ignoring the NaN values.
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Fig. 1 Ensemble mean of the non-dimensional wake velocity fields calculated over the entire dataset: a) NaN
values interpolated with the function inpaint-nans; b) interpolation-free data.

III. Proper Orthogonal Decomposition of the LiDAR dataset
Analyzing a large dataset of correlated variables to detect trends, data variability, and features can be very challenging

and computationally prohibitive. Rather than analyzing the dataset in its entirety, it can be more convenient to represent
the data on a lower-dimensional subspace with a suitable lower rank to enable a simplified analysis, which typically entails
lower computational costs and a clearer interpretation of the results (see e.g. [10–12]). Specifically, proper orthogonal
decomposition (POD) [13–16] allows generating an orthonormal basis, which is optimal for the reconstruction of the
data variability. A snapshot of the wake velocity field measured with the LiDAR, D, can be represented through a linear
combination of deterministic functions, which are referred to as POD modes q 9 :

D(G, H, I, C) =
#∑
9=1

q 9 (G, H, I) 0 9 (C), (2)

where C is time and # is the total number of snapshots. The POD modes, q 9 , represent the typical realizations in a
statistical sense. In this study, the parameters 0 9 (C) are coefficients that represent the amplitude of each mode and
vary according to the collected snapshots. POD provides a modal decomposition that is completely a-posteriori and
data-dependent, which does not neglect the non-linearities of the original dynamical system, even being a linear
procedure. Furthermore, the POD basis is orthonormal and optimal in variance, i.e. among all linear decomposition
techniques, it provides the most efficient detection, in a certain least-squares optimal sense, of the dominant components.

We introduce the POD procedure in the following. The LiDAR dataset, U, with dimension [?@ × #] can be
approximated by computing the first A most energetic principal components through the singular value decomposition
(SVD):

U ≈ Φ × Σ ×+>, (3)

where Φ ([?@ × A]) and + ([# × A]) are orthonormal matrices and Σ is a diagonal [A × A] matrix with the first A
singular values of U in descending order as diagonal entries [17]. Each diagonal element of Σ, f9 , represents the energy
contribution of the POD mode q 9 to the covariance matrix of the velocity snapshots. The POD modes are obtained
as columns of the matrix Φ, while the principal components, 0 9 , associated with each POD mode are obtained by
projecting the snapshot dataset onto the POD basis:

A = U>Φ, (4)

where the principal components, 0 9 , are the columns of A, whose size is [# × A].
We applied POD to the non-dimensional LiDAR wake measurements over the horizontal plane at hub height. The

obtained eigenvalues of the POD modes, f9 , and the respective cumulative energy reconstructed with an increasing
number of POD modes are reported in Fig. 2. It is now crucial to select the smallest number of POD modes enabling an
efficient reconstruction of the wind-turbine wake variability probed through the LiDAR measurements. The selection of
POD modes can be done based on the energetic contribution of the various POD modes. In other words, by leveraging
the energy optimality of the POD basis, the latter is truncated to reconstruct a certain percentage of the total energy of
the velocity covariance matrix (see Fig. 2b). An alternative to this energetic approach has been used for the present
work, which consists of visually inspecting the most energetic POD modes and selecting only POD modes whose spatial
morphology indicates a clear physical feature.

The first 12 most energetic POD modes are reported in Fig. 3. POD mode 0 resembles the ensemble-average of
the interpolated wake velocity fields, which is shown in Fig. 1a. Therefore, this POD mode has an evident physical
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Fig. 2 Eigenvalues of the covariance matrix of the LiDAR snapshots, �: a) eigenvalues, f8; b) cumulative POD
energy.

contribution to the wake morphology. In contrast, POD modes 1 and 2 represent the corrections performed by the
interpolation of the LiDAR data with the Matlab function inpaint-nans [9] and, thus, they only represent a numeric
artifact rather than a physical feature to model. POD modes 3 and 4 seem to indicate a modulation in the transverse
direction of the wake over the shape provided through the ensemble mean (POD mode 0). In other words, POD modes
3 and 4 can represent contractions or expansions of the wake in the transverse directions, and non-symmetric wake
conditions that have been observed in the near wake for stable atmospheric conditions [2, 3]. Similarly POD modes 5
and 11 seem to indicate contractions or extensions of the wake in the streamwise direction. The remaining modes shown
in Fig. 3 seem to indicate similar wake distortions, yet with slightly larger wavelengths, which can be considered as
sub-harmonics of the above-mentioned wake modulations. Based on this qualitative analysis of the POD modes, which
we understand is speculative rather than based on quantitative characteristics, the truncated POD basis selected for
this work includes only POD modes 0, 3, 4, 5, and 11, which allows reconstructing 44.8% of the overall energy of the
velocity covariance matrix.

Examples of the approximation performed on the LiDAR dataset through the truncated POD basis selected for
this work are reported in Fig. 4. Two LiDAR snapshots collected during operations in Region 3 of the power curve
(incoming wind speed normalized with turbine rated wind speed, *∗

ℎD1
≥ 1) and stable atmospheric condition, and

Region 2 of the power curve (*∗
ℎD1

< 1) and convective atmospheric condition are reported in Figs. 4a and 4c,
respectively. Experimental details of those measurements are reported in the caption of that figure. The corresponing
POD-approximated wake velocity fields are reported in Figs. 4b and 4d, respectively. For both cases, a good
approximation of the wake morphology is achieved, especially in the near-wake region, while noticeable differences
are observed at the most downstream locations. In general, the wake morphology is smoothed throughout the spatial
domain. This seems an affordable drawback of the POD data compression considering that the dimensionality of each
snapshot is reduced from ?@ = 2, 501 down to 5.

IV.  -means clustering
Clustering in general refers to a very broad set of techniques for finding subgroups in a dataset, which are referred to

as clusters. The aim of clustering a dataset is to partition it into distinct sub-groups where samples sharing similar
features belong to the same cluster and are segregated from those characterized by different features [18].  -means
clustering is a simple approach for partitioning a dataset into  distinct, non-overlapping clusters. To perform  -means
clustering, the desired number of clusters,  , must be provided as input. Then, the algorithm assigns each observation
to one of the clusters. The standard method used to perform  -means clustering is an iterative algorithm and it proceeds
in two steps until convergence is achieved. Firstly, each observation is assigned a random integer (1 to  ) as an initial
cluster assignment. Next, for each of the  clusters, the centroid of the cluster is computed and each observation is
assigned to the cluster that it is closest to. The second step is repeated until the assignment does not change anymore
[17]. For our study, the inputs provided for the cluster analysis are the time-series of the principal components associated
with the six POD modes selected to approximate the LiDAR dataset. The  -means outputs are the cluster centers,
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Fig. 3 First 12 POD modes obtained from the LiDAR dataset.
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Fig. 4 Reconstruction of the LiDAR wake measurements through the selected truncated POD basis. The top
row shows LIDAR data for*∗

ℎD1
=1.08, ) �=5.3%, %=>A<=1, '8�=0.005 with the true (a) and POD-reconstructed

(b) velocity fields. The bottom row shows LiDAR data for *∗
ℎD1

=0.72, ) �=15.4%, %=>A<=0.51, '8�=-0.003 with
the true (c) and POD-reconstructed (d) velocity fields.

namely the typical realization for each cluster, and labeling for each LiDAR snapshot to its respective cluster.
One of the challenges with using the  -means clustering algorithm is the choice of the number of clusters,  . This

decision process is facilitated through the evaluation of the “inertia curve”, which shows the relevance of each cluster
within the dataset. After a preliminary analysis, we selected a total of  = 6 clusters, whose inertia is reported in
Fig. 5a. The generated clusters have a reduced relevance for the cluster analysis with an increasing number of clusters
generated. However, the relevance of the clusters does not correspond to the occurrence of the data points within each
cluster, as reported in Fig. 5b. It is observed that the cluster occurrence does not decrease with an increasing number of
clusters, while the cluster with the largest occurrence (30.4%) is Cluster 2.
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Fig. 5 Generation of the clusters: a) Inertia values of the clusters generated; b) Occurrence of the various
clusters.
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Fig. 6 Mean non-dimensional velocity fields associated with the various clusters.

For the sake of brevity, the cluster centers are not shown here, while the mean non-dimensional wake velocity fields
calculated for each cluster are displayed in Fig. 6. This analysis shows that the clusters have been generated based on
the intensity of the velocity deficit, recovery rate, and downstream extent of the wake. To provide a more quantitative
analysis of the results obtained through the clustering procedure, for each cluster, the maximum velocity deficit,*∗

<8=
, is

estimated as a function of the downstream location, G, as reported in Fig. 7. Subsequently,*∗
<8=

is fitted through the
following power law for G/3 ≥ 3 [3, 19]:

*∗<8= = 1 − �*
( G
3

)−#*

, (5)

where �* and #* represent the velocity deficit at G/3 = 1 and the wake-recovery rate, respectively. The values of �*
and #* obtained by fitting the experimental data obtained for each cluster for G/3 ≥ 3 (Fig. 7) are reported in Table 1.
First, we observe that the characteristics of Clusters 1 and 2 are very similar to each other. Analogously, Clusters 0
and 4 share similar flow characteristics. Cluster 3 has the largest values of the parameters �* and #* . This feature
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Fig. 7 Maximum velocity deficit, *∗
<8=

, as a function of the downstream location, G, for the various clusters.
Solid black lines represent their fitting with Eq. 5.

Iluster # G[ T[

0 1.49 1.00
1 1.05 0.52
2 0.98 0.46
3 2.82 2.10
4 1.57 1.04
5 0.50 0.31

Table 1 Coefficients of Eq. 5 �* and #* fitted for the various clusters.

seems to be due to the short near-wake region and an anticipated wake recovery at around G/3 ≈ 1.5, as shown in
Fig. 6(3). Indeed, besides Cluster 5, all the clusters have an initial velocity deficit at G/3 ≈ 1 of about*∗

<8=
≈ 0.5. In

contrast, Cluster 5 has the lowest initial velocity deficit (�* = 0.5) and the lowest recovery rate of #* = 0.31. Indeed,
as can be observed in Fig. 6(5), the mean velocity field for this cluster entails a very shallow wake with a persistent
downstream extent. Finally, Clusters 1 and 2 have a smaller value of �* ≈ 1 than for Clusters 0 and 4 (�* ≈ 1.5), and
lower recovery rate (#* ≈ 0.5 and #* ≈ 1 for Clusters 1-2 and Clusters 0-4, respectively).

As mentioned above, the input provided for the  -means clustering analysis consists of the principal components
selected for the truncated POD basis of the LiDAR measurements. Therefore, no input is provided about the incoming
wind conditions or the settings of the turbine through the meteorological or SCADA data, respectively. We now
investigate the effects of the cluster analysis on several meteorological and SCADA parameters through their histograms
for the various clusters, which are reported in Fig. 8.

Starting from Cluster 5, we can state that the LiDAR measurements ascribed to Cluster 5 were collected for turbine
operations in Region 3 of the power curve, namely for incoming wind speed larger than the rated wind speed of the
turbine, which is equal to 11 m/s. Indeed, the histogram of the power for Cluster 5 has the largest occurrence for 2,300
W, which is the rated power of the turbines under investigation. Similarly, the pitch angle is typically larger than 0◦,
which indicates that the pitch controller of the turbine is activated to keep the generated power equal to the rated power
by increasing the pitch angle for increasing incoming wind speed. These wind operations correspond to near-neutral
atmospheric stability conditions, as highlighted by a Bulk Richardson number, '8�, close to zero for Cluster 5, and
relatively low turbulence intensity with ) � being typically between 5% and 12%. This cluster analysis justifies the
relatively low-velocity deficit observed for the mean velocity field of Cluster 5 (Fig. 6(5)), which is due to a lower rotor
thrust coefficient for blades with a higher pitch angle; indeed, �* = 0.5 for Cluster 5. Furthermore, the relatively low
) � of the incoming wind and smaller wake-generated turbulence associated with a reduced thrust coefficient, lead to a
lower wake recovery rate (#*=0.31).
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Fig. 8 Histograms of the hub-height wind speed, power, pitch angle, Bulk Richardson number, and hub-height
turbulence intensity for the entire dataset and the various clusters generated.

The remaining 5 clusters are associated with operations in Region 2, namely with incoming wind speed at hub
height lower than rated wind speed of 11 m/s, power capture lower than the rated power of 2,300 W, and typical pitch
angle equal to the baseline position of −2◦ (Fig. 8). Clusters 1 and 2 are associated with operation under neutral-stable
atmospheric conditions, indeed the Bulk Richardson number, '8�, is generally positive and ) � generally lower than
15%. It is difficult to justify why the  -means analysis has generated two clusters for similar operative and atmospheric
conditions. Indeed, the overall characteristics of the mean velocity field reported through Figs. 6, 7, and Table 1 are
very similar for Clusters 1 and 2.

In contrast, Clusters 0 and 4 are related to operations in Region 2 of the power curve under neutral-convective
conditions. Fig. 8 shows that the Bulk Richardson number, '8�, for Clusters 0 and 4 is typically negative, representing
convective atmospheric conditions, and ) � achieving larger values as high as 30%. The wake recovery for these clusters
is faster than for Clusters 1 and 2, as confirmed by the larger values of the parameters �* and #* reported in Table 1.

Finally, Cluster 3 is associated again with operations under unstable conditions ('8� < 0). Furthermore, the levels
of ) � are even larger than for Clusters 0 and 4. Interestingly, the operations associated with Cluster 3 are characterized
by a higher occurrence of wind conditions at the transition between region 2 and region 3, which is confirmed by the
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higher occurrence of pitch angle values larger than 0◦, which are typical for an activated pitch controller in Region
3 of the power curve. Therefore, this analysis suggests that Cluster 3 is associated with operations under convective
conditions and for the so-called Region 2.5 of the power curve, namely when the pitch control starts operating for
transitioning from Region 2 with maximum thrust coefficient and Region 3 with a fixed rated power. The combination of
these operative conditions with highly turbulent convective wind conditions leads to the very narrow near-wake region
and fast wake recovery observed through the LiDAR measurements.

V. Discussion and Concluding remarks
Wind LiDAR measurements collected in the wake of isolated wind turbines have been analyzed through  -means

clustering to capture wake variability induced by different conditions of the incoming wind field and operative settings
of the wind turbines.

First, the dimensionality of the LiDAR data has been reduced through a truncated basis generated with proper
orthogonal decomposition (POD). Specifically, only five POD modes have been selected to efficiently reproduce the
measured wake variability, while keeping the computational costs of the proposed procedure very low.

The  -means analysis has been performed by providing as input the principal components of the five selected
POD modes. We generated six clusters from the LiDAR dataset, whose mean wake velocity fields differ in terms of
wake velocity deficit, recovery rate, and downstream extent. It has been shown that one cluster is ascribed to turbine
operations in Region 3 of the power curve, namely for incoming wind speed larger than rated wind speed and power
capture equal to the rated power of the turbines of 2,300 W. For this cluster, the mean wake velocity field is characterized
by a very shallow velocity deficit and slow wake recovery.

Two clusters have been ascribed to operations in Region 2 of the power curve under stable atmospheric conditions,
while the other two clusters have been associated with operations in Region 2 of the power curve, but under convective
atmospheric conditions. The latter are characterized by a faster recovery rate than for those connected with stable
atmospheric conditions. Finally, the last cluster has been ascribed to transitional operations between Region 2 and
Region 3 when the pitch controller kicks in under unstable conditions. The mean velocity field connected with this
cluster is characterized by a very short near-wake region and a faster recovery rate.

Summarizing, it is noteworthy that by performing  -means clustering analysis of the only LiDAR data, namely
without providing any information of the incoming wind field through the meteorological data and turbine operations
through the SCADA data, it has been possible to reconstruct variability of the wake velocity field associated with
utility-scale wind turbines. These results corroborate the concept that it is possible to develop fully data-driven wake
models for which the variability of the wake velocity field will reflect effects induced by the turbine rotor and the
characteristics of the incoming wind field.
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