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a b s t r a c t

Optimization of the performance for a wind turbine column is performed by coupling a RANS solver for
prediction of wind turbine wakes and dynamic programming. Downstream evolution of wind turbine
wakes is simulated with low computational cost comparable to that of wake engineering models, but
with improved accuracy and capability to simulate different incoming wind turbulence. Dynamic pro-
gramming is used to estimate optimal tip speed ratio (TSR) and streamwise spacing of the turbines by
using a mixed-objective performance index consisting of total power production from the entire turbine
array with the penalty of the average turbulence intensity impacting over the rotor discs. The penalty
coefficient, representing the economic impact of fatigue loads as ratio of wind energy revenue, is varied
in order to mimic different economic periods. The results suggest that a general strategy for wind farm
optimization should consist in coupling design performed through spacing optimization and using a
relatively low penalty coefficient for the fatigue loads, while wind turbine operations are optimized by
varying TSR.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Maximizing performance of the already installed power plants
and developing new generation tools for optimizing design and
operation of wind farms continues to be an important problem [1].
Performance of a wind turbine array is determined by engineering
parameters, such as wind farm layout, power curve and settings of
individual wind turbines, and by the characteristics of the wind
energy source, namely incoming wind velocity and turbulence.
Therefore, optimization of wind farm performance is a problem
involving a large number of parameters that must be simulta-
neously modeled and controlled.

Recent studies showed that improvements in wind power pro-
duction can be achieved by switching from greedy operations of the
turbines, namely operating each turbine to maximize its individual
power production, to a coordinated wind turbine control to maxi-
mize power harvested from the entire wind farm [2,3]. Wind tur-
bine controls modify not only power capture, but the produced
wakes as well, thus varying the available power and added wake-
ents (WindFluX) Laboratory,
y of Texas at Dallas, 75080

ungo).
generated turbulence for downstream wind turbines.
Control strategies are typically designed by means of static

models for prediction of wind turbine wakes, such as wake engi-
neering models [4,5], and rarely through more accurate large-eddy
simulations (LES) due to their large computational costs [6e9].
Computational cost of the tools used for prediction of wind turbine
wakes and turbine performance is crucial for wind farm design
optimization (WFDO). For instance, a WFDO problem consisting of
a single discretized variable of size n, such as number of turbines or
number of discretized locations for turbine layout, will have a time
complexity in the order of 2n � b for an exhaustive enumerative
algorithm, where b is the time required for a single evaluation [10].

For real-time control of wind turbines and optimal design of
wind farms, a good trade-off between high accuracy achievable
with LES and the low computational cost of the engineering wake
models is represented by solvers based on the Reynolds-Averaged
Navier-Stokes (RANS) equations [11e16]. We have recently pro-
posed a RANS solver that allows predictions of wind turbine wakes
and their complex interactions within a wind farm. This RANS
solver is based on a mixing lengthmodel for accurate predictions of
turbulence effects onwake evolution, and parabolic approximation
to drastically reduce computational costs compared to 3D global
RANS solvers [17]. Furthermore, the used RANS solver allows taking
into account effects of the incoming atmospheric turbulence on
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Nomenclature

a Penalty coefficient [e]
DPBL Percentage power difference from baseline power

production [%]
dx Streamwise grid spacing [m]
ninct Incoming turbulent eddy-viscosity [m2/s]
urot Angular rotor speed [rad/s]
TI Mean turbulence intensity at downstream turbines [e]
r Density of air [kg/m3]
a,b,c1,c2,cm Constants [e]
Cfarm
p Cumulative power coefficient of wind farm [e]

Caero Aerodynamic load correction [e]
Cml,i Mixing length amplification factor [e]

d Rotor diameter [m]
K von Karman constant [e]
k Turbulent kinetic energy [m2/s2]
l* Integral turbulent length scale [m]
lm Mixing length [m]
lwake Turbulent length scale [m]
Nwt Number of wind turbines [e]
P Turbine power production [Watt]
sk Normalized turbine position [e]
TIinc Incoming turbulence intensity [e]
TSR Tip Speed Ratio [e]
U∞ Incoming velocity [m/s]
zhub Turbine hub height [m]
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wake evolution and wind turbine performance.
Optimization of wind farm design and operations can be per-

formed with heuristic and metaheuristic methods, such as genetic
algorithm, simulated annealing algorithm, pattern search algo-
rithms, that, however, often require extensive computations, thus
making them not practical for real wind farm applications. Faster
solutions of WFDO problems can be attained with dynamic pro-
gramming, which decomposes the optimization problem including
a large number of control parameters into a sequence of sub-
problems with a much smaller number of control parameters
[18,19]. It practically consists in optimizing sub-arrays of the initial
wind farmwith gradually increasing size, by addingmore upstream
wind turbines. For each sub-array, the objective performance index
is maximized by varying parameters only for the most upstream
wind turbine. Regarding the cost functional used for the WFDO
problem, different models have been developed, ranging from the
most widely used Mosetti's cost function [20] to more complex
models [21], which consider awider range of economic factors [22].
A technoeconomical analysis of electricity generation was per-
formed in Ref. [23] for a location in Turkey by leveraging wind data
analysis spanning a period of 36 months. In Refs. [24,25], an eco-
nomic model for optimizing turbine spacing for very large wind
farms was used to maximize a mixed-objective cost functional
including the maximization of the power production penalized by
the fatigue loads on downstream turbines.

A possible strategy to perform a coordinated wind farm control
consists in varying the tip speed ratio (TSR ¼ urotd/2 U∞, where urot

is the rotor angular velocity, d is the rotor diameter and U∞ is the
freestream wind velocity) of each turbine, thus the percentage of
power extracted from the available wind power. For TSR optimi-
zation, the control actuation is represented by the induction factor
of the various wind turbines. Previous works showed the potential
of increasing overall power production from a turbine array by
derating upstream turbines in order to leave more available power
for downstreamwind turbines [2]. An increased power of 2.85% for
a wind turbine column similar to that used in this paper has been
estimated by using an empirical wake model [26]. However, larger
TSR than optimal value for an isolated turbine were used, which
imply higher loads on the turbines. In Ref. [26], the authors pointed
out that the function of power modification consequent to derating
of upstream turbines can be a non-convex function. In Ref. [27], a
power increase of 1% was obtained for the Princess Amalia Wind
Park. A theoretical maximum improvementwas calculated to be 6%,
but a more realistic estimate might yield an improvement of 3% for
a spacing of 5.6 d [28].

The above-mentioned works proved the potential of increasing
power production from a wind farm through a coordinated control
of the wind turbines. However, to the authors' knowledge none of
these works took into account the drastic variability of wind tur-
bine performance and evolution of wind turbine wakes under
different characteristics of the incoming wind velocity field and
turbulence. Indeed, in this paper we will address the variability of
the results achievable with a coordinated power optimization of a
wind farm for different turbulence characteristics of the incoming
wind. In Ref. [29], it was shown that variability of wind turbine
wakes is mainly associated with the static stability of the atmo-
spheric boundary layer. During daytime conditions, the convective
stability regime leads to higher turbulence levels and lower wind
shear than for nighttime stable conditions. Under convective re-
gimes, wind turbulence facilitates flow entrainment into the wakes
and faster wake recovery, thus wake interactions are less critical
than for stable conditions. In Ref. [30] for an onshore wind farm,
power losses were estimated to be about 4% of the total power
production under stable conditions, while of only 2.4% under
convective conditions.

In this paper, we carry out performance optimization for a wind
turbine column by coupling an efficient RANS solver with dynamic
programming. The RANS solver allows accurate estimations of the
effects due to incoming wind turbulence and wake-generated
turbulence on downstream evolution of wind turbine wakes. At
the same time, the required computational costs are very low and
comparable to those of engineering wake models, thanks to a
parabolic approximation. We perform both TSR and spacing opti-
mization for a wind turbine column in order to maximize a mixed-
objective performance index consisting of the total power pro-
duction from the entire turbine array with the penalty of the
average turbulence intensity impacting over the rotor discs, which
is considered as the main damaging factor for fatigue loads. The
penalty coefficient, a, which represents the economic impact of
fatigue loads on maintenance costs and durability of the wind
turbines as ratio of the revenue of power production, is varied in
order to mimic different economic periods. One of the main ob-
jectives of this paper is to highlight the profound effects on wind
farm performance and optimal turbine settings due to different
characteristics of the incoming turbulence, such as turbulence in-
tensity and integral length scale. Furthermore, we will highlight
how TSR and spacing optimization can be conveniently coupled to
maximize wind farm performance.

The remainder of the paper is organized as follows: the RANS
solver is described in Sect. 2. Successively, effects of incoming wind
turbulence on the performance of a wind turbine column are
investigated in Sect. 3. Optimization of performance for a wind
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turbine column is then presented by using as control parameters
both turbine TSR and spacing, and by considering incoming wind
turbulence with different characteristics (Sect. 4). The results of the
optimization study are discussed in Sect. 5. Finally, concluding re-
marks are reported in Sect. 6.
2. RANS solver

For this study, the CFD solver used for simulations of wakes
produced by wind turbines operating with different TSR and
different incoming turbulence is formulated through the Reynolds-
averaged Navier-Stokes (RANS) equations for incompressible and
axisymmetric flows [17]. The velocity and pressure fields are solved
with a parabolic approximation, i.e., by advancing the RANS equa-
tions in the downstream direction and neglecting the elliptic na-
ture of subsonic flows [31]. This strategy enables accurate
predictions of flows past wind turbines with computational costs
curtailed by about two orders of magnitude compared to global 3D
RANS solvers [17]. This CFD tool is meant to be a valid alternative to
engineering models for prediction of wind turbine wakes, such as
the Jensen model [4] or the more recent Gaussian model [5],
avoiding empirical tuning of model parameters and providing the
capability of simulating effects of incoming turbulence and wake-
generated turbulence on downstream evolution of wind turbine
wakes and power production.

The RANS solver used for this study allows simulating incoming
flows with different turbulence intensity, TIinc, and different inte-
gral length scale, l*, which represents the dimension of the typical
large energy-containing structures present in the incoming wind.
The freestream turbulent eddy-viscosity at the wind farm inlet, ninct ,
is estimated as [32,33]:

ninct ¼ 0:55

ffiffiffi
3
2

r
TIinc U∞;1 l�

d
(1)

Effects of different length scales of the incoming turbulence will
be investigated in detail in Sect. 3, together with a variable
incoming turbulence intensity.

Reynolds stresses in the RANS equations are modeled using the
Boussinesq hypothesis and a mixing length model [32]. The latter
provides the advantage of reproducing a volumetric variability of
the turbulent eddy-viscosity and Reynolds stresses by using a
parameter that is only a function of the streamwise position,
namely themixing length. For an isolated 5MWNRELwind turbine
[34], which is identical to that under examination in this paper, the
mixing length was calibrated through LES data and fittedwith a 4P-
logistic curve [17].

LES data of a wind farm have shown that turbines operating
within higher turbulence levels are characterized by larger wake
Reynolds stresses, which lead to enhanced flow entrainment from
the surrounding turbulent flow into the wake and a faster wake
recovery [35]. This wake behavior is modeled by multiplying the
calibrated mixing length for an isolated turbine by an amplification
factor, Cml,i, which is a function of the incoming turbulence. For the
first turbine in the column, the amplification factor of the mixing
length, Cml,1 is of unit value for near laminar incoming condition, i.e.
TIinc � 0.5%, while for higher turbulence intensity it is estimated as:

Cml;1 ¼ c1 ninct
d U∞;1

; (2)

where c1 is equal to 32.8, which was calibrated based on previous
LES data set of the wind turbine under examination.

Similarly, for downstream wind turbines operating within
wakes generated by upstream wind turbines, the mixing length is
multiplied by an amplification factor in order to take wake-
generated turbulence into account. The amplification factor for
the ith turbine, Cml,i, is proportional to the mixing length estimated
at an upstream distance of 1 d from the rotor disc using the
following relation:

Cml;i ¼ c2
lm;i

d
þ 1 (3)

where c2 ¼ 59. The amplification factor is expected to increase
downstream to each turbine due to the added wake-generated
turbulence. However, to mimic the status of a fully developed
wind farm after a certain number of wind turbines [36,37], which
can vary for different incoming turbulence and operative condi-
tions of thewind turbines, an upper limit to the amplification factor
Cml,i is set to be equal to 8 [17].

The turbulent kinetic energy, k, is estimated with a parabolic
approximation as follows [32]:
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where the first term in the parenthesis represents advection of k,
the second and third terms represent production, the fourth term
dissipation, the fifth and sixth terms represent viscous diffusion.
For turbulent dissipation, a non-dimensional length scale lwake/
d ¼ 0.32 was calibrated based on the turbulence statistics from an
LES data set. dx is the step for advancement of the parabolic equa-
tions in the downstream direction, cm is equal to 0.09 [32], while n
represents a generic location in the downstream direction used for
the parabolic approximation.

The wind turbine under examination is the 5 MW NREL, which
has a rotor diameter of 126 m and hub height of 90 m [34]. It is
noteworthy that different types of turbines can be easily simulated
by providing the lift and drag coefficients for the different turbine
blades. Aerodynamic forcing exerted by the turbine blades on the
incomingwind is reproduced by using the actuator disc model with
rotation [14,38]. The incoming wind field for each wind turbine is
evaluated at an upstream distance of 1 d from the rotor disc, and it
is used to estimate the local angle of attack of the turbine blade and
velocity magnitude as a function of the radial position. Subse-
quently, lift and drag coefficients are calculated through look up
tables [34]. Aerodynamic loads at tip and root of the blades are
corrected through a modified Prandtl correction factor to take ef-
fects of vortices into account [39,40]. Furthermore, aerodynamic
loads of the turbine are also corrected for different turbulence
levels connected with upstream wind turbine wakes. This correc-
tion coefficient, Caero,i was calibrated separately for the thrust and
tangential forces, based on an LES data set [17], as follows:

Caero;i ¼ a e�10ðTI�TIincÞ þ b (5)

where a was calibrated as 0.6 and 0.21, b as 0.4 and 0.79 for the
thrust and tangential forces, respectively. It is worth noticing that
the aerodynamic correction is a function of the added turbulent
intensity, thus it is affected by the wake-generated turbulence
rather than the incoming turbulence intensity. In case TI is smaller
than the incoming turbulence TIinc, Caero,i is set to 1. The induction
zone of each turbine rotor is mimicked within the parabolic
framework by spreading the aerodynamic forces in the streamwise
direction with a Gaussian function centered at the turbine
streamwise position andwith standard deviation of 0.5 d and 0.05 d
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for the thrust and tangential forces, respectively. The turbine na-
celle is simulated by adding a thrust force over a volume with same
dimensions as for the nacelle of the 5 MW NREL turbine, namely
diameter of 0.056 d and extending 0.04 d and 0.07 d upstream and
downstream, respectively, to the rotor position.

At the inlet, a uniform streamwise velocity is imposed as
Dirichlet boundary condition, axisymmetry conditions are imposed
at the turbine axis for the three velocities in cylindrical coordinates
and pressure, while at the lateral boundaries null Neumann con-
ditions are imposed for velocities and pressure [17]. The RANS
equations are discretized in the radial direction by using a Cheby-
shev pseudospectral collocation method implemented in Matlab.
The numerical grid is mapped typically with 21 points over the
rotor radius, which was determined through a previous grid
sensitivity study [17]. The parabolic equations are marched in the
streamwise direction by using an explicit Euler method, which is
equivalent to a forward first order finite difference scheme. On a
normal laptop, a simulation with a streamwise extent of about 20 d
executes in less than 3 min.

The RANS solver was assessed against multiple LES cases of
isolated turbines operating with different TSR and incoming tur-
bulence intensity, as well as columns of wind turbines with
different TSR and streamwise spacing [17]. For instance, Fig.1 shows
the comparison of the streamwise velocity field obtained from LES
and RANS simulations for a column consisting of identical turbines,
all operating in greedy conditions with TSR ¼ 7.5, and a uniform
streamwise spacing of 3 d. The velocity fields obtained from LES and
RANS simulations, which are reported in Fig. 1a and b, respectively,
result to be in very good agreement; indeed, the absolute difference
between LES and RANS data is always smaller than 15% of the
freestream velocity (Fig. 1c).

3. Effects of freestream turbulence on wind turbine wakes
and power production

In this section, we use the RANS solver to simulate wakes
associated with a column of wind turbines aligned with the wind
direction, and estimate the respective power production. With this
study, we aim investigating effects of the freestream wind turbu-
lence, namely length scale, l*, and incoming turbulent intensity,
TIinc (see Eq. (1)), on downstream evolution of wind turbine wakes
and power production. According to the log-law similarity theory
[41], a good approximation for the length scale of the freestream
turbulence is l* ¼ K zhub, where K is the von Karman constant equal
to 0.41 and zhub is hub height of the 5 MW NREL wind turbine,
which leads to l*/d¼ 0.29. This value is considered as upper limit for
Fig. 1. Streamwise velocity for a column of wind turbines operating with a TSR ¼ 7.5 and an
data.
l*; thus, for this study we have considered three values for l*/d,
namely 0.04, 0.16 and 0.29.

The baseline case consists of a column of seven turbines aligned
with the wind direction, evenly spaced with a streamwise distance
of 5 d and all operating in greedy conditions, i.e., with TSR¼ 7.5 that
enables achieving the maximum power coefficient for an isolated
wind turbine [34]. RANS simulations were performed with the
three above-mentioned values of l* and by varying TIinc among 0%,
5% and 15%, which correspond to typical turbulence levels for
laminar, statically stable and statically unstable boundary layer
flows, respectively [30].

Fig. 2 shows streamwise velocity, tke, and turbulence intensity
averaged over the rotor area, as a function of the downstream po-
sition for different values of TIinc and l*. Locations of the turbines are
reported with vertical red lines. Fig. 2a shows that in proximity to
the turbine locations a relatively steep reduction of the streamwise
velocity is observed, which is a consequence of the power extracted
by the turbines from the incoming wind, thus leading to the gen-
eration of wakes characterized by a certain velocity deficit. Moving
downstream, wind velocity within the rotor area increases due to
entrainment of higher momentum from the surrounding regions,
thus gradually widening the wake and recovering it to the free-
stream incoming velocity according to the conservation of mass.
The recovery rate, which is represented by the slope of the curves in
Fig. 2a, varies along the turbine column and for different incoming
turbulence as a consequence of the local velocity and turbulence.

It is interesting to notice that downstream to the seventh tur-
bine, the various curves of the average velocity for the different
incoming turbulence practically collapse on the same curve, which
represents the condition of a fully adjusted intra-wind farm ve-
locity field [36,37]. For further downstream turbines, the wake
velocity field is mainly affected by the turbine settings and turbine
spacing rather than turbulence characteristics of the incoming
wind.

The evolution of the average tke within wind turbine wakes is
then reported in Fig. 2b. Starting from the case with a laminar
incoming flow, i.e., TIinc ¼ 0%, wake turbulence increases moving
downstream as a consequence of the mechanically-produced tur-
bulence, which is connected with the velocity gradients present
within the wake [32]. Moving from the first to the second turbine, a
higher slope of tke is singled out due to the higher mixing length
that results from an enhanced incoming turbulence generated by
the first turbine. After the third turbine, the average tke starts
saturating, which indicates that the mechanically-produced tur-
bulence is practically balanced by turbulence dissipation. Indeed,
downstream to the fourth turbine the variation of the tke remains
uniform spacing of 3 d: a) LES data; b) RANS data; c) difference between LES and RANS



Fig. 2. Effects of incoming turbulence intensity and length scale, l*, on wind turbine wakes: a) streamwise velocity; b) turbulent kinetic energy; c) turbulence intensity. All the
parameters are estimated as average over the rotor area.

V. Santhanagopalan et al. / Renewable Energy 116 (2018) 232e243236
negligible.
Information gathered from the average streamwise velocity and

tke can be coupled in the plot of the turbulence intensity, TI, in
Fig. 2c. Downstream to the first turbine, TI increases almost linearly
as a consequence of the downstream turbulence production.
Downstream to the second turbine, in the near wake a higher slope
of TI occurs as a consequence of the increased mixing length, but it
is significantly reduced further downstream due to the faster wake
recovery, i.e., increased velocity. For the following downstream
turbines, the typical trend of TI is characterized by an increase in
the near wake due to turbulence production of the velocity shear,
followed by a decrease consequent to turbulence dissipation and
wake recovery. For the laminar case, the maximum TI of 21% is
detected just downstream to the third turbine, while downstream
to the turbine column, it is equal to only 13%.

Increasing TIinc to 5% and 15%, the average tke increases faster in
the near wake as a consequence of the enhanced mixing length
according to Eq. (3). Fig. 2b shows that for the cases with TIinc equal
to 5% and 15%, the competition between turbulence production and
dissipation already occurs downstream to the first turbine. For the
casewith TIinc¼ 15%, a gradual reduction of the average tke over the
rotor area is observed by moving downstream, which leads to
TI ¼ 14%, which is very close to the value obtained for a laminar
incoming flow. The main parameter in the RANS solver controlling
the budget between mechanically turbulence production and tur-
bulence dissipation is the length scale for wake-generated turbu-
lence, lwake (Eq. (4)).

As expected, effects of an increased l* are similar to those of an
increased turbulence intensity. This analysis enforces the syner-
gistic role of turbulence intensity and integral length scale of the
freestream turbulence for the flow field within a wind farm.

The condition of a fully developed intra-wind farmwind field is
achieved at slightly shorter downstream distances for higher
incoming turbulence and larger l*. This may suggest that for a fully
adjusted intra-wind farm flow, wake-generated turbulence might
be more significant than incoming freestream turbulence. On the
other hand, incoming turbulence is highly important for the wake
velocity field of the first turbine rows and for the downstream
distance where the intra-wind farm flow achieves a fully adjusted
condition.

The normalized power production from each turbine for the
baseline case and different incoming turbulence characteristics is
shown in Fig. 3. The plot for laminar incoming condition shows a
good agreement with the corresponding LES case consisting of 3
turbines in the column, while the other plots indicate the effect of
the turbulence length scale and different turbulence intensity. As
expected, increases in both TIinc and l* lead to higher power pro-
duction of the downstream turbines, especially for the first few
turbine rows. Furthermore, we also notice the turbine column
reaches a fully developed wind farm condition, here characterized
by a roughly invariant power production, faster as we increase
either the incoming turbulence or the length scale. In practice, the
different cases reported in Fig. 3 are piled as a function of the
incoming turbulent eddy viscosity, ninct , moving from zero for the
laminar case to the maximum value for TIinc ¼ 15% and l*/d ¼ 0.29.

For the case with a laminar incoming flow, the turbine with the
minimum power production is turbine 3, which has a power pro-
duction of only about 10% of an isolated turbine operating with
TSR ¼ 7.5. The second turbine follows with a power production of
16.3%, while moving downstream the power production starts
increasing. From the RANS simulations performed for different
turbulence characteristics of the incoming wind, it is evident that
the largest power losses generally occur at the turbine 2 or 3.
4. Performance optimization performed with dynamic
programming

The RANS solver has been developed in order to provide a
compelling tool for accurate predictions of wind turbine wakes
with a low computational cost. Therefore, it is suitable for optimi-
zation of wind farm operations for which a large number of wake
predictions is needed to achieve convergence of the optimization
process. In this section, optimization will be performed for a tur-
bine column consisting of 5 turbines deployed over a land with
fixed streamwise extent of 20 d, different atmospheric conditions,
and using two control variables, namely TSR and turbine position.
Fig. 4 shows the schematic of the optimization problem.

An economic model is considered for the optimization of wind
farm performance. Since, the number of turbines and land size is
fixed, their respective costs are constant and, thus, not included in
the optimization problem. According to previous works [25,42,43],
we assume the turbulence intensity over the rotor disc as main
damaging factor for fatigue loads. The influence on the fatigue loads
of different wind parameters, such as meanwind speed, turbulence



Fig. 3. Effects of turbulence length scale, l*, and incoming wind turbulence intensity, TIinc, on power production for seven turbines evenly spaced with a distance of 5 d and all
operating at TSR ¼ 7.5.

Fig. 4. Schematic of the optimization problem showing different incoming wind turbulence intensities, TSRi and position, si, for each turbine.
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intensity, length scales, vertical shear of velocity, yaw misalign-
ment, was shown in Ref. [43]. Indeed, it was found that the fatigue
loads in blade flapwise bending moment are primarily affected by
turbulence intensity, and increased up to 60% for a 10% increase in
turbulence intensity, for a turbine operating in flat terrain. There-
fore, the mixed-objective performance index for the optimization
problem is formulated as:

J ¼
PNwt

j¼1 Pj
1
2 rp

d2

4U
3
∞;1

� a
XNwt

j¼2

TIj (6)

where Nwt is the total number of wind turbines in the column, r is
air density, d is the rotor diameter, Pj and TIj are power production
and turbulence intensity averaged over the rotor disc, respectively,
for the j-th turbine. The first term on the right-hand-side repre-
sents the power production from the entire turbine column made
non-dimensional through the incoming freestream wind velocity,
U∞,1, while the second term is the penalty due to the fatigue loads
and a is the respective penalty coefficient. It is noteworthy that the
average turbulence intensity over the most upstream turbine, TI1, is
not included in the penalty being only a function of the incoming
turbulence intensity. The penalty coefficient can vary significantly
according to time and location of the wind farm, as the market
value of wind power varies [44,45]. In this work, the following
values are considered a¼ 0, 0.05, 0.5, 2. The case a¼ 0 is equivalent
to only powermaximization, while higher a-values increaseweight
given to the maintenance costs due to effects of fatigue loads on
turbine durability or represent a lower economic profitability of
wind power production.
4.1. TSR optimization for an evenly-spaced turbine column

The problem of finding the optimal TSR values for a turbine
column is solved through dynamic programming [18,19,46]. The
theoretical justification for using dynamic programming for wind
farm power maximizationwas provided in Refs. [18,19]. In Ref. [18],
a dynamic programming algorithm using an analytical actuator disc
model was proposed, while it was studied in Ref. [19] using a near-
wake and far-wake model, both developed using engineering wake
models. These authors also suggested the applicability of dynamic
programming by leveraging high fidelity models. While [47] used a
high-fidelity LES code for verifying the results, the dynamic pro-
gramming optimization was still performed using the Jensen wake
model. In this work, the RANS solver introduced in Sect. 2 is used
with the dynamic programming algorithm derived in Ref. [18].
Considering wind advection in the positive streamwise direction,
the control performed on the last turbine does not affect the up-
stream turbines. Hence a multistage recursive optimization process
is used in dynamic programming with a backward induction, i.e.
starting from the last turbine. Specifically, for TSR optimization of a
column of five turbines, we generate five sub-problems starting
from the most downstream turbine and gradually adding one up-
stream turbine. For each sub-problem, TSR is only optimized for the
most upstream turbine, while downstream turbines are set with
their optimal TSR determined through the previous optimization
steps [18]. For the TSR optimization, the mixed-objective perfor-
mance index in Eq. (6) can be written for the i-th dynamic pro-
gramming step as:

J
�
TSRNwt�iþ1

�¼ 1
1
2rp

d2

4U
3
∞;Nwt�iþ1

Xi
j¼1

PNwt�jþ1�a
Xi
j¼2

TINwt�jþ2 (7)
4.2. Spacing optimization

Considering a heterogeneous turbine spacing leads to a new
optimization parameter, namely the position variable, sk, which is



Fig. 5. TSR and spacing optimization by varying the penalty coefficient a: a, b, c) Percentage difference of cumulative power; d, e, f) Difference in mean turbulence intensity, TI. The
three columns are for incoming turbulence intensity, TIinc, of: a, d) 0%; b, e) 5%; c, f) 15%.
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defined as the distance of the turbine k from the most upstream
turbine. With the constraints of a fixed land area, i.e. fixed distance
between the first and the last turbine in the column, and a fixed
number of turbines Nwt ¼ 5, optimization is then performed by
varying sk with k ¼ 2, 3, 4 and maximizing the mixed performance
index in Eq. (6).

For the k�th turbine, an increased distance from the most up-
stream turbine results in a larger distance for enhanced wake re-
covery and, in turn, higher wind velocity and lower wake-
generated turbulence intensity occurring over the rotor of the
considered turbine. However, an increase of the position sk leads to
a smaller separation distance from the next downstream turbine,
thus less available power and enhanced fatigue loads for the
downstream turbine. Therefore, it is easily explained the need for
solving an optimization problem, thus finding a trade-off among
the available power and turbulence intensity for the various
turbines.

While existing works on dynamic programming for power
optimization of wind farms were performed using as control vari-
able the induction factor or the TSR, the dynamic programming
algorithm developed in Ref. [18] can also be used with other opti-
mization variables, such as the turbine position. Indeed, the prin-
ciple of optimality, upon which the dynamic programming was
Fig. 6. Power maximization with TSR optimization of a column with five turbines, streamw
wind farm; b) efficiency of the wind farm; c) percentage difference between cumulative po
applied for a column of wind turbines, remains unaltered by using a
different control variable. Following dynamic programming [18],
we begin simulating the baseline case of five turbines set with
TSR ¼ 7.5, uniform spacing of 5 d, then performing spacing opti-
mization from the turbine k¼ Nwt�1 to k¼ 2, and varying only sk at
each optimization step. The minimum distance between two
consecutive turbines is constrained to 2 d, while increments in sk
are multiples of 0.25 d.
5. Results of performance optimization

The results of the optimization problem defined in Sects. 4.1 and
4.2 are shown in Fig. 5, where the first row represents the per-
centage difference in power production between the optimal and
the baseline configuration, which consists of the same incoming
turbulence intensity, all the turbines evenly spaced with a distance
of 5 d and under greedy operation at TSR ¼ 7.5. The second row
represents the difference in mean turbulence intensity experienced
by the downstream turbines of the column
ðTI ¼PNwt

j¼2TIj=ðNwt � 1ÞÞ. In Fig. 5, the three columns correspond to
incoming turbulence intensities TIinc ¼ 0%, 5% and 15%. The blue-
colored bars in the plots show the results from only TSR optimi-
zation (Sect. 4.1), while the yellow-colored bars show results from
ise spacing of 5 d and laminar incoming wind: a) cumulative power coefficient of the
wer of the turbine sub-array and the baseline case.



Fig. 7. Comparison of the streamwise velocity averaged over the rotor area for the baseline case, TSR-optimized configuration, optimally-spaced configuration all the turbines set
with TSR ¼ 7.5, and configuration optimized in spacing and TSR by considering laminar incoming flow (TIinc ¼ 0%) and power maximization (a ¼ 0).
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performing only spacing optimization (Sect. 4.2). In each figure, the
various bars represent results by using four different values of the
penalty coefficient, a, namely 0, 0.05, 0.5 and 2.
5.1. Maximization of power production

By considering a null penalty coefficient in Eq. (6) (a ¼ 0), the
optimization problem reduces to the power maximization for the
entire turbine column. From Fig. 5aec, it is observed that spacing
optimization generally produces larger power increments than
performing TSR optimization. It is interesting to note from Fig. 5def
that even performing only power optimization with a ¼ 0, the
optimal configuration always leads to reduction of fatigue loads,
except for the spacing optimization for an incoming turbulence
intensity of TIinc¼ 0%. These results suggest that increase (decrease)
of the distance from the upstream turbine or a reduction (increase)
of TSR of the upstream turbine lead to higher (lower) wind velocity,
thus available power, and lower (higher) wake-generated turbu-
lence, thus fatigue loads. Furthermore, the TSR optimization while
producing lesser power improvement than spacing optimization,
results in a greater reduction of the average turbulence intensity, TI.

Fig. 6 shows the results for the TSR optimization for the case of
power maximization (a ¼ 0) and laminar incoming wind
(TIinc ¼ 0%). The different subplots of Fig. 6 depict the same results
of the TSR optimization from different perspectives. Fig. 6a shows
the overall power production for each stage of the dynamic pro-
gramming optimization process in terms of cumulative power co-
efficient of the wind farm. At the first step, power is optimized only
for the most downstream wind turbine, i.e., turbine 5. Variation of
the TSR produces a power curve analogous to that of the 5 MW
NREL wind turbine [34]. Following the Bellman's principle of
optimality [18,46], we expect the most downstream turbine to
operate at TSR corresponding to the maximum power production
for an isolated turbine, i.e. TSR ¼ 7.5. Indeed, the wake associated
with the most downstream turbine does not produce any detri-
mental effect on the remaining upstream turbines.

At the second step of the dynamic programming optimization,
the sub-array consisting of turbines 4 and 5 is considered. As shown
in Fig. 6a, the parameter Cfarm

p;2 is estimated by varying TSR of the
turbine 4, while TSR of turbine 5 remains fixed at its optimal value
of 7.5. The optimal Cfarm

p;2 is obtained at TSR ¼ 7.1 for the turbine 4.
Proceeding with the dynamic programming optimization up to the
most upstream turbine, namely turbine 1, the optimal configura-
tion for a laminar incoming flow is estimated to be with TSR equal
to 6.2 - 6.2 - 6.2 - 7.1 - 7.5, moving from the most upstream turbine
towards downstream. This optimal configuration enables power
increase of 0.8% over the baseline case.

Fig. 6a shows a monotonic increase of Cfarm
p;i by adding more

upstream wind turbines to the turbine column. However, this
might be a misleading information derived by the larger power
extracted from the incoming wind power, which is merely a
consequence of a larger number of turbines included in the array.
Therefore, it can be convenient to analyze performance of a wind
turbine column through efficiency of the turbine array, (SPi)/(NiP1),
which is defined as ratio between the cumulative power produc-
tion from the array and the potential power extracted by the same
number of turbines operating under isolated conditions. Fig. 6b
shows that efficiency of the wind farm gradually decreases by
adding more turbines to the array, which is clearly connected with
thewake losses produced by upstreamwind turbines. Furthermore,
from both Fig. 6a and b it is observed that increasing the number of
turbines, the cumulative power curves become flatter within the
range 6 � TSR � 8, which indicates a limited potential of increasing
power production by optimizing TSR of the wind turbines.

This feature can better be highlighted by plotting the difference
between the power production from the optimized array and the
baseline case as percentage of the power production from the
baseline case. Fig. 6c shows that for the step 2 of the dynamic
programming optimization, namely considering a sub-array of only
two turbines, the potential of increasing power production with
respect to the baseline case is practically negligible. Conversely, at
the step 3 for an array of three turbines, the maximum potential for
power optimization is estimated. Indeed, by setting the turbines
with TSR 6.2 - 7.1 - 7.5, moving downstream from the most up-
stream turbine, a power increase of 1.6% is achieved with respect to
the baseline case. This result is in agreement with the analysis of
the wind farm velocity field presented in Fig. 2 and the consequent
power production reported in Fig. 3. The second and the third
turbines are typically characterized by the largest power losses due
to wake interactions, thus these turbines can largely benefit from
derating the most upstream turbine.

With a larger number of turbines, the cumulative power curves
become flatter, indicating that TSR of more upstream turbines do
not affect significantly the slope of the overall power curve of the
turbine column and the typical power improvement is about 0.8%
over the baseline case. This is in agreement with the results ob-
tained for a similar study performedwith LES and the Jensenmodel
[47]. However, in that work a stronger derating of upstream tur-
bines was performed, which might be a consequence of the tuning
of the wake expansion parameter for the Jensen model [4].

To gain a physical understanding of the results obtained from
the different optimization processes to perform power maximiza-
tion (a ¼ 0) for the case of laminar incoming wind (TIinc ¼ 0%), the
streamwise velocity averaged over the rotor area is reported in
Fig. 7 and power production from individual turbines is reported in
Fig. 8. In both figures, the baseline case, the TSR-optimized
configuration, the optimally-spaced configuration with all turbines
operating with TSR ¼ 7.5, and the configuration optimized first in
spacing and then in TSR are reported. In Fig. 7, the streamwise
positions of the turbines for the case with uniform spacing are
reported with vertical black dashed lines, while those for the space-
optimized configurations are reported with vertical pink lines.



Fig. 8. Power maximization (a ¼ 0) by considering laminar incoming flow. Power
production of individual turbines as percentage of the power from an isolated turbine
with TSR ¼ 7.5 for the different optimized configurations.
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Starting from the TSR optimization and all the turbines evenly
spaced with a distance of 5 d, Fig. 8 shows that derating turbine 1
with TSR ¼ 6.2 leads to a curtailed power production of about 94%
with respect to the greedy condition. Concurrently, a higher ve-
locity is produced in the wake of the derated turbine 1, which leads
to higher power for the turbines 2 and 3 (respective power increase
of 6% and 3% over the baseline case). Effects of TSR optimization
become practically negligible for the remaining downstream wind
turbines. This confirms that TSR optimization is primarily advan-
tageous for turbines 2 and 3, which are the turbine mostly affected
by wake-generated power losses.

For the spacing optimization, there is an increase in the
incoming velocity for turbines 2, 3 and 4, as compared to the
baseline case with uniform spacing, which is a consequence of the
larger streamwise spacing and, in turn, to the extended wake re-
covery leading to higher available power for downstream wind
turbines. However, incoming velocity is slightly reduced for turbine
5 due to the short spacing of 2.5 d from the adjacent upstream
turbine, which is a consequence of the constrained land area.

Finally, TSR optimization performed on the space-optimized
column leads to a further increase in power production by about
0.8%, which is, as expected, due to the derating of the most up-
stream turbine and slight improvements for the downstream tur-
bines. It is interesting to note that this optimized TSR configuration
7.1 - 7.1 - 6.2 - 7.1 - 7.5, has a slightly higher TSR for the upstream
turbines as compared to the respective optimized TSR configuration
for a uniformly spaced array. This again is a consequence of the
increased spacing for the upstream turbines.

A detailed summary of the results of the optimization problem
performed for a ¼ 0, thus maximizing power production, is pre-
sented in Table 1. For laminar incoming wind, spacing optimization
leads to a power increase of 1.5% with the configuration of sk equal
to 5.5 d - 11.75 d - 17.5 d, for turbine 2, turbine 3 and turbine 4,
respectively. If the baseline case is TSR-optimized, then a power
increase of 0.8% is achieved. Indeed, spacing optimization always
produces higher power increase than TSR optimization. Therefore, a
suitable strategy may consist in performing first spacing optimi-
zation, then the space-optimized configuration is further improved
by varying TSR from greedy conditions. Indeed, coupling spacing
and TSR optimization allows achieving power increase of 2.2%.

By increasing the incoming turbulence intensity to 5% and 15%,
the power production of the baseline case increases of 50.4% and
83.5%, respectively. Therefore, room for power improvements is
reduced for higher incoming turbulence intensity, which is mainly
due to the faster wake recovery and, in turn, reduced wake in-
teractions. It can be seen from the results of optimal TSR configu-
ration in Table 1, that the upstream turbines are weakly derated as
the freestream turbulence intensity is increased. Indeed, for
TIinc¼ 15% the optimal TSR configuration is the same as the baseline
case, implying that the power cannot be increased significantly by
performing only TSR optimization. Similarly, when comparing the
optimal layout obtained through spacing optimization for the three
incoming turbulence cases, it is seen that the spacing between the
last two turbines in the optimal configuration increases as the
turbulence intensity is increased, while still being lower than the
baseline spacing of 5 d. In general, it is seen that the intermediate
turbines in the optimally spaced configuration have a larger sk than
the uniformly spaced baseline case. Similar, to the TSR optimization,
the optimally spaced configuration was closer to the baseline
configuration, as the TIinc was increased. By coupling TSR and
spacing optimization power increase of 1.3% and 0.6% are attained
for incoming turbulence intensity of 5% and 15%, respectively,
which are mainly achieved with the spacing optimization.

These results reflect effects of the incoming wind turbulence on
downstream evolution of wind turbine wakes and, in turn, on po-
wer production. By increasing the incoming wind turbulence, a
faster wake recovery occurs leading to higher available wind power
for downstream wind turbines [17,29,30]. Therefore, for a given
wind farm layout, derating upstream turbines, which leads to a
reduction of the power production of the derated turbines, turns
out to be a positive effect only if it entails higher available power for
downstream turbines. In case a sufficient wake recovery already
occurs, which is a combination of wind turbine settings, down-
stream distance among turbines and freestream turbulence, then
derating upstream turbines may turn out to be a detrimental
control action.

5.2. Maximization of the mixed-objective performance index

In scenarios where the importance of decreasing fatigue loads is
higher or when the electricity demand or load of the wind farm is
less, the value of the penalty coefficient, a, in the mixed-objective
performance index in Eqs. (6) and (7) is increased to improve the
life and durability of the turbines. Reviewing once again Fig. 5, the
results on power production and TI for a ¼ 0.05, 0.5 and 2, are then
discussed.

Performing only TSR optimization, the optimal configuration for
the various incoming wind conditions, does not change for the
penalty coefficient a ¼ 0.05 from power maximization with a ¼ 0.
Increasing a to 0.5, for laminar incoming condition, the TSR opti-
mization reduces TI by 0.27% without significant compromise in
power production. The TSR optimization for TIinc ¼ 5%, helped
significantly reduce TI by a value of 0.58%, while also decreasing the
power production to a lower value than that for the baseline case.
However, for higher incoming turbulence TIinc ¼ 15%, the resulting
configuration was the same as for a ¼ 0.05, namely the baseline
configuration. The TSR optimization with highest penalization fac-
tor a ¼ 2 for TIinc ¼ 0%, results in the same configuration as for
a ¼ 0.5. For the cases with higher incoming turbulence TIinc ¼ 5%
and 15%, using the highest penalization weight of a ¼ 2 in TSR
optimization, leads to a drastic reduction in power while reducing
TI by a maximum of 0.5%.

For stable and convective incoming conditions (TIinc ¼ 5% and
15% respectively), spacing optimization with a ¼ 0.05 produces the
same configuration as for a¼ 0. However, for the laminar incoming
condition, TIinc ¼ 0%, this penalization factor results in a TI reduc-
tion of 0.2% without any noticeable compromise in power pro-
duction. For a¼ 0.5 the spacing optimization leads to a reduction of
0.2% on both power and TI for laminar incoming wind, while
negligible variations are observed for TIinc ¼ 5% and 15%. Finally, the
layout-optimization with highest penalization factor a ¼ 2 for
TIinc ¼ 0%, helps reducing the TI by 0.2%, but affecting power pro-
duction significantly. Similarly, for higher incoming turbulence of
TIinc ¼ 5% and 15%, negligible reduction in fatigue loads is achieved



Table 1
Percentage power increment for the various optimized configurations with respect to the baseline case with laminar flow, DPBL0, and baseline case with same incoming
turbulence intensity, DPBL, and difference of average turbulence intensity at downstream turbines, TI, between optimal configurations and respective baseline case.

Case Configuration TIinc% DPBL0 DPBL TI � TIBL

Baseline 0% Position 5-10-15 0 0.0% 0% 0%
TSR 7.5-7.5-7.5-7.5-7.5

Spacing Opt. 0% Position 5.5-11.75-17.5 0 1.5% 1.5% 0.28%
TSR 7.5-7.5-7.5-7.5-7.5

TSR Opt. 0% Position 5-10-15 0 0.8% 0.8% �1.10%
TSR 6.2-6.2-6.2-7.1-7.5

Spacing-TSR Opt. 0% Position 5.5-11.75-17.5 0 2.2% 2.2% 0.04%
TSR 7.1-7.1-6.2-7.1-7.5

Baseline 5% Position 5-10-15 5 50.4% 0% 0%
TSR 7.5-7.5-7.5-7.5-7.5

Spacing Opt. 5% Position 6-12.5-17 5 52.2% 1.2% �0.26%
TSR 7.5-7.5-7.5-7.5-7.5

TSR Opt. 5% Position 5-10-15 5 50.8% 0.3% �0.17%
TSR 7.1-7.1-7.1-7.1-7.5

Spacing-TSR Opt. 5% Position 6-12.5-17 5 52.3% 1.3% �0.41%
TSR 7.1-7.1-7.1-7.1-7.5

Baseline 15% Position 5-10-15 15 83.5% 0% 0%
TSR 7.5-7.5-7.5-7.5-7.5

Spacing Opt. 15% Position 5-11-16 15 84.6% 0.6% �0.18%
TSR 7.5-7.5-7.5-7.5-7.5

TSR Opt. 15% Position 5-10-15 15 83.5% 0% 0%
TSR 7.5-7.5-7.5-7.5-7.5

Spacing-TSR Opt. 15% Position 5-11-16 15 84.6% 0.6% �0.18%
TSR 7.5-7.5-7.5-7.5-7.5

Table 2
Percentage power increment and TI difference with respect to the baseline case with TIinc ¼ 5%, for the economic model TSR-optimization of the optimized layout for various
values of the penalty coefficient a.

a Case Configuration TIinc% DPBL TI � TIBL

0 Spacing Opt. TSR 7.5-7.5-7.5-7.5-7.5 5 1.2% �0.26%
Position 6-12.5-17

0 TSR-Opt. for optimized spacing TSR 7.1-7.1-7.1-7.1-7.5 5 1.3% �0.41%
0.4 TSR-Opt. for optimized spacing TSR 7.1-7.1-7.1-6.2-7.5 5 0.9% �0.50%
0.45 TSR-Opt. for optimized spacing TSR 7.1-7.1-6.2-6.2-7.5 5 0.4% �0.57%
0.5 TSR-Opt. for optimized spacing TSR 6.2-7.1-6.2-6.2-7.5 5 �0.2% �0.99%
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with a noticeable power reduction.
This economic analysis confirms that TSR optimization is more

beneficial for decreasing fatigue loads while spacing optimization
allows achieving better performance in power production. It is
evident that a penalty for fatigue loads in the optimization problem
with a ¼ 2 leads to drastic reduction in power, while a ¼ 0.05
produces similar results as for the case with a ¼ 0. The penalty
factor a ¼ 0.5 was found to be a good trade-off in reducing the
fatigue loads without compromising noticeably power production.

According to these results, it is deemed convenient to perform
spacing optimization for maximizing power production. Subse-
quently, with the resulting optimized layout, TSR optimization can
be performed with an economic model for a around 0.5, to reduce
the fatigue loads without compromising significantly on the power
production. For the case with incoming wind turbulence TIinc ¼ 5%,
spacing optimization for maximizing power produces optimal po-
sitions 6-12.5-17 for the three intermediate turbines, which are
then optimized for TSR with a ¼ 0.4,0.45 and 0.5. The results pre-
sented in Table 2 shows the sensitivity to a of the optimized
configuration, power production and added fatigue loads.
6. Conclusions

Optimization of the performance for a wind turbine column has
been performed by coupling a newly-developed RANS solver and
dynamic programming. Predictions of wakes and power production
of wind turbines operating with different values of the tip speed
ratio, TSR, and incoming wind turbulence have been carried out
with the proposed RANS solver, for which turbulence closure is
carried out with a mixing length model. Parabolic and boundary
layer approximations in the RANS solver allows achieving very low
computational costs comparable to those of engineering wake
models and improved accuracy. However, accuracy in prediction of
the turbulent kinetic energy might be affected by the above
mentioned approximations and estimations of the turbulent length
scales of the incoming and wake-generated turbulence.

Optimization on TSR of the wind turbines has shown that a
maximum power improvement of 0.8% is achievable for a column
of five wind turbines evenly spaced with a distance of 5 d and
laminar incoming wind field, while also decreasing the average
turbulence intensity experienced by the downstream turbines by
1.1%. The power increase is achieved by derating the upstreamwind
turbine allowing enhanced residual wind power for downstream
wind turbines and reducing shear generated turbulence. However,
TSR optimization is practically ineffective to increase power pro-
duction for highly turbulent incoming wind fields. Indeed, in
presence of wind turbulence, enhanced mixing and flow entrain-
ment lead to a faster wake recovery and reduced effects of
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detrimental wake interactions. Thus, derating upstream wind tur-
bines does not affect significantly the available power for down-
stream turbines in presence of a turbulent incoming wind. On the
other hand, derating of the upstream turbines helps reducing the
fatigue loads throughout the turbine column up to 1%, while also
entailing power reduction from the entire turbine column. Based
on economic considerations, a suitable compromise between po-
wer increment and fatigue load reduction should be achieved ac-
cording to different incoming wind turbulence.

The RANS solver has also been used in combination with dy-
namic programming to perform spacing optimization of a wind
turbine column with the constraints of a fixed land area and total
number of turbines. It has been shown that a turbine column
optimized only in spacing, yields higher power improvement than
performing only TSR optimization. A combination of spacing and
TSR optimization, and operating with a laminar incoming wind,
allows producing 2.2% more power than the baseline case with
evenly spaced turbines operating in greedy conditions. A holistic
approach towards maximizing profit over the lifetime of the wind
farm, suggests that spacing optimization in maximizing power
production be performed initially, followed by performing real-
time TSR optimization for an economic model considering power
production and maintenance costs associated with fatigue loads.

This study has highlighted that results of the various optimi-
zation processes are highly sensitive to the incoming wind turbu-
lence and wake-generated turbulence, and thus the importance of
the daily cycle of atmospheric stability in design and operation of
wind farms. Indeed, by considering an incoming turbulence in-
tensity of 15%, a power variation as high as 83% over the baseline
case with laminar incoming wind has been documented, while, in
contrast, power improvements obtained through model-based
optimization are typically smaller than 10%. Therefore, it is very
important to perform optimization of wind farm operations using
models or CFD tools that enable accurate predictions of the in-
teractions between a turbulent wind field and awind turbine array.
In future, robust fault detection techniques and fault tolerant con-
trol approach introduced for wind turbine applications [48,49], can
be performed by coupling the power predictions obtained through
the RANS solver and SCADA data. Furthermore, we suggest per-
forming a synergistic design of wind farm layout and control
strategies according to the specific characteristics of the wind field
over the test site under examination.
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