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We initiate the study of Schrödinger operators with ergodic potentials defined over

circle map dynamics, in particular over circle diffeomorphisms. For analytic circle

diffeomorphisms and a set of rotation numbers satisfying Yoccoz’s H arithmetic

condition, we discuss an extension of Avila’s global theory. We also give an abstract

version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues

for general potentials with repetitions. Coupled with the dynamical analysis, we obtain

that, for every C1+BV circle diffeomorphism, with a super Liouville rotation number and

an invariant measure µ, and for µ-almost all x ∈ T1, the corresponding Schrödinger

operator has purely continuous spectrum for every Hölder continuous potential V.

1 Introduction and the Statements of the Results

The spectral theory of discrete ergodic one-dimensional Schrödinger operators has

seen a considerable development in the past several decades. The general setup

involves Schrödinger operators H on the space of square-summable sequences ℓ2(Z),

defined by

(Hxu)n := un−1 + un+1 + V(Tnx)un, u ∈ ℓ2(Z), (1.1)
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where T is an ergodic automorphism of a phase space (M, µ), x ∈ M, and V : M → R.

Aside from the beautiful general results that hold for all ergodic operators, or under

minimal general assumptions (some also for multi-dimensional analogues and further

generalizations), most attention has been devoted to two families: random potentials (T

being a shift operator on a product measure space) and almost periodic, particularly,

quasiperiodic potentials (T being an irrational rotation of the torus). Both of these

families have strong origins in physics and both have led to deep mathematics.

While it would be very interesting to understand the features of potentials over other

base dynamics, it has proved surprisingly difficult and there are few results for

other underlying dynamical systems. We refer the reader to the reviews [9, 17] for

further history and discussion of these results. In this paper, we initiate the study of

Schrödinger operators with potentials over circle maps, that is, orientation-preserving

homeomorphisms of a circle T1 = R/Z.

As an irrational rotation is a basic example of a circle map, it is natural to view

corresponding potentials as generalizations of one-frequency quasiperiodic potentials.

The theory of the latter has seen dramatic advances in the past 20 years (see, e.g., [6, 18,

22, 23] and the references therein) and continues to develop rapidly. It remains the only

ergodic family with established transitions between the spectral types with changes

of parameters, which can often be proved and analyzed in a sharp arithmetic way or

through analytic behavior of certain dynamical quantities.

Poincaré established that, for every orientation-preserving homeomorphism

T : T1 → T1, there is a unique rotation number ρ ∈ (0, 1), given by the (x-independent)

limit

ρ := lim
n→∞

T n(x) − x

n
mod 1, (1.2)

where T is any lift of T to R and x ∈ R. Poincaré also proved that if the rotation number

ρ of an orientation-preserving circle homeomorphism T is irrational, T is topologically

semi-conjugate to the rotation Rρ : x 7→ x + ρ mod 1, that is, there is a continuous map

ϕ : T1 → T1 such that

T ◦ ϕ = ϕ ◦ Rρ . (1.3)

It follows that Tn ◦ ϕ = ϕ ◦ Rn
ρ , for every n ∈ Z, that is, the orbit xn = Tnx of x can

be viewed as the image of the orbit θn = Rn
ρ θ of a preimage θ of x = ϕ(θ) under ϕ.

This establishes a relation between Schrödinger operators over circle maps and one-

frequency quasiperiodic Schrödinger operators.
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It is a fundamental problem to understand the rigidity of Schrödinger operators

over circle maps [28]. Rigidity is a phenomenon that systems that are a priori equivalent

in a weak sense are actually equivalent in a much stronger sense. An important problem

is to determine the classes of these operators with, in a sense, equivalent spectral

properties [28].

In general, the semi-conjugacy ϕ may not even be invertible. However, as shown

by Denjoy [11], if T is a C1+BV circle diffeomorphism, that is, a C1-smooth circle

diffeomorphism with a derivative of bounded variation, ϕ is a homeomorphism, termed

the topological conjugacy. Herman’s theory [16]—further developed by Yoccoz [32]—

establishes a certain level of smoothness of the conjugacy for diffeomorphisms of higher

smoothness. In particular, as proved by Herman [16], analytic circle diffeomorphisms

with Diophantine rotation numbers are analytically conjugate to a rotation. A number

ρ ∈ R\Q is called Diophantine if there exist C > 0 and δ ≥ 0 such that |ρ −
p
q | ≥ C/q2+δ,

for every p ∈ Z and q ∈ N. These results are at the core of the rigidity theory

of circle diffeomorphisms. An optimal condition for analytic linearization has been

obtained by Yoccoz [32]. He established that for a set H of irrational numbers satisfying

an arithmetic condition, known as Yoccoz’s H arithmetic condition (defined at the

beginning of Section 2), every analytic circle diffeomorphism, with a rotation number

in this set, is analytically conjugate to the rotation.

Some of the most interesting recent advances in the theory of one-frequency

quasiperiodic operators have been developed for analytic potentials [1, 6, 21, 25]. An

analytic conjugacy maps the potentials Vn = f (Tnx) with analytic f into the potentials

of the form Wn = g(Rn
ρ x) with analytic g, allowing for some results concerning the spec-

trum of the Schrödinger operators over (analytic) circle diffeomophisms to be obtained

directly from the corresponding results for one-frequency quasiperiodic operators.

However, when the conjugacy is not analytic the resulting g will not be analytic either,

potentially leading to counter-intuitive properties (e.g., [31]). An important aspect of

the study of the spectrum of Schrödinger operators over circle diffeomorphisms is to

understand what properties hold in the absence of an analytic conjugacy. In this paper,

we address one of the most basic questions of this nature—the absence of the point

spectrum for super Liouville rotation numbers—already leading to nontrivial analysis.

Finally, the study of the smoothness of conjugacy between circle diffeomor-

phisms with irrational rotation numbers and the corresponding rotations has been

one of the prime examples of small denominator analysis that has eventually led

to the 1st sharp arithmetic transition results [32]. The study of the spectral proper-

ties of quasiperiodic operators has also recently led to sharp arithmetic transitions
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[4, 19–21, 25]. The study of ergodic Schrödinger operators with circle map dynamics is

expected to lead to further interplay between those small denominator problems.

In this paper, we consider a class of Schrödinger operators H = H(x) = H(T, V, x)

of the form (1.1) where T : T1 → T1 is an orientation-preserving homeomorphism of the

circle, V : T1 → R, and x ∈ T1. Since T, V will usually be fixed, we will often suppress

them from the notation.

Ergodic Schrödinger operators are intimately related with a family of cocycles—

dynamical systems associated with each eigen-equation Hu = Eu. In the case of

Schrödinger operators over circle maps with an irrational rotation number, the cocycle

is given by

(T, A) : (x, y) 7→ (Tx, A(x, E)y), (1.4)

where A ∈ SL(2,R), x ∈ T1, y ∈ R2. If u = (un) is a sequence satisfying Hu = Eu, then

(
un+1

un

)
= An(x, E)

(
un

un−1

)
, where An(x, E) :=

(
E − V(Tnx) −1

1 0

)
(1.5)

is the transfer matrix. Thus,

(
un

un−1

)
= Pn(x, E)

(
u0

u−1

)
, (1.6)

where Pn(x, E) :=
∏0

i=n−1 Ai(x, E) = An−1(x, E) . . . A0(x, E). Thus, Pn(x, E) is the product

of the values of a matrix-valued function A(·, E) : T1 → SL(2,R) along the orbit xi = Tix

of x, under the action of T. We also define P−n(x, E) = Pn(T−nx, E)−1 and P0 = I.

One way to divide the spectrum of one-frequency quasiperiodic Schrödinger

operators into different regimes is through the Lyapunov exponent [1]. One regime

corresponds to positive Lyapunov exponent; another corresponds to zero Lyapunov

exponent stable under complexification; and the 3rd one (critical) corresponds to zero

Lyapunov exponent unstable under complexification. An operator is called acritical if

there are no critical energies E in the spectrum.

In the case of more general Schrödinger operators over circle maps with an

irrational rotation number, we can still define the Lyapunov exponent. If the rotation

number ρ of T is irrational, T is uniquely ergodic [13]. We will denote by µ the unique

invariant probability measure of T.
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We define the Lyapunov exponent

L(E) := lim
n→∞

Ln(E), (1.7)

where

Ln(E) :=

∫
Ln(x, E) dµ, Ln(x, E) :=

1

n
ln ‖Pn(x, E)‖. (1.8)

Due to submultiplicativity of Pn(x, E), L(E) exists. Since T is ergodic, by Kingman’s

ergodic theorem, for almost every x,

L(E) = lim
n→∞

1

n
ln ‖Pn(x, E)‖. (1.9)

This paper can be divided into two parts. In the 1st part, we discuss the spectral

properties of Schrödinger operators with large, small, as well as typical potentials,

over analytic circle diffeomorphisms, with badly approximable rotation numbers. The

following theorem is an immediate corollary of the known results [1] (see Section 2).

Theorem 1.1. Let T be an analytic circle diffeomorphism with rotation number ρ

satisfying Yoccoz’s H arithmetic condition and V : T1 → R be analytic. Then,

(i) there exists λ0(T, V) > 0 such that for λ < λ0(T, V) operator, H(T, λV) has

purely absolutely continuous spectrum;

(ii) there exists λ1(T, V) < ∞ such that for λ > λ1(T, V) the Lyapunov exponent

L(E) > 0 for all E;

(iii) for a (measure-theoretically) typical analytic V : T1 → R, the operator

H(T, V) is acritical.

In the 2nd part, we prove our main result and exclude eigenvalues for well-

approximable rotation numbers.

For ρ ∈ R\Q, let ‖ρ‖ := dist(ρ,Z) be the distance to the nearest integer. Let

β = β(ρ) := lim sup
n→∞

−
ln ‖ρn‖

n
. (1.10)

If ρ ∈ R\Q is Diophantine, then β(ρ) = 0. Hence, if β(ρ) > 0, ρ is a Liouville number,

that is, it belongs to the complement L = (R\Q) ∩ Dc of the set of all Diophantine

numbers D.
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Definition 1.2. A number ρ ∈ R\Q is called super Liouville if β(ρ) = ∞.

Definition 1.3. The class of C1+BV diffeomorphisms consists of C1-smooth diffeomor-

phisms T with ln T ′ of bounded variation.

In particular, a C2-smooth diffeomorphism of a circle is also of class C1+BV . As

a corollary of our main result, we have the following claim.

Theorem 1.4. For every super Liouville number ρ ∈ (0, 1)\Qq, and every C1+BV circle

diffeomorphism T, with rotation number ρ and the invariant measure µ, for µ-almost

all x ∈ T1, the corresponding Schrödinger operator H(T, V, x) has purely continuous

spectrum for every Hölder-continuous potential V : T1 → R.

Remark 1. As shown in a parallel work [28], an analogous claim holds for sufficiently

smooth circle diffeomorphisms with a single singular point where the derivative

vanishes (critical circle maps) or has a jump discontinuity (circle maps with a break).

The rigidity theory of these maps has been an important topic in circle dynamics—

in the context of an extension of Herman’s theory—that experienced a considerable

development in recent years [15, 26, 27].

Remark 2. It is an interesting question whether, unlike the case of Schrödinger

operators with Hölder continuous potential over rotations, for some circle diffeo-

morphisms T with Liouville rotation numbers, there are phases x ∈ T1 such that

H(T, V, x) has eigenvalues. Clearly, if the conjugacy to the corresponding rotation is

sufficiently regular (e.g., Hölder continuous), then there could be no such phases, for any

Hölder continuous potential. The existence of such phases for Schrödinger operators

over rotations is known only for unbounded (and therefore discontinuous) potentials

(e.g., [19]).

Remark 3. For C1+BV circle diffeomorphisms T, φ is a topological conjugacy, so

H(T, V, x) is unitarily equivalent to H(Rρ , V1, y) with a continuous V1 : T1 → R. Even

though the absence of point spectrum of H(Rρ , V1, y) holds for all y, for topologically

generic ρ (depending on V1), this is insufficient to conclude such an absence for

H(T, V, x) because V1 depends on T.

Theorem 1.4 is a corollary of the following sharp result. Different components of

the spectrum 6T,V of an operator H(T, V, x) are denoted by 6ac (absolutely continuous),
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6sc (singular continuous) and 6pp (pure point). By ergodicity, all those sets are

µ-a.e. x-independent; however, 6pp and 6sc may depend on x (e.g., [21]). We also denote

the collection of eigenvalues of H(T, V, x) by Spp(x). Finally, we set H = ℓ2(Z), Hsc(x)

the corresponding singular continuous subspace, and PA(x) the operator of spectral

projection on a Borel set A, corresponding to H(T, V, x).

Theorem 1.5. Let T : T1 → T1 be any C1+BV circle diffeomorphism with an irrational

rotation number ρ ∈ (0, 1) and an invariant measure µ. For µ-almost all x ∈ T1, and any

α-Hölder continuous real-valued function V : T1 → R on the circle, with α ∈ (0, 1],

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ(ρ)} = ∅,

(ii) P{E:0<L<αβ(ρ)}(x)H ⊂ Hsc(x).

Remark 4. This theorem is optimal in the sense that there exist H(T, V, x) with α = 1

and eigenvalues at E with L(E) ≥ β(ρ) [3, 20].

Remark 5. In fact, we prove a stronger result Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂(ρ)} = ∅ (see

(3.7) for the definition of β̂(ρ)) that follows from Theorem 3.3 below.

While Theorem 1.1 is a direct corollary of the main results of [1, 2, 30], the

proof of Theorems 1.4 and 1.5 requires new techniques from one-dimensional dynamics,

previously not used in the spectral theory of Schrödinger operators. In the next section,

we discuss the global theory of typical Schrödinger operators over analytic circle

diffeomorphisms. In Section 3, we prove a sharp Gordon theorem (that could be of

independent use) and give a proof of Theorem 1.5.

2 Typical Operators over Analytic Circle Diffeomorphisms

Yoccoz’s set H of rotation numbers can be defined as follows.

For α ∈ (0, 1), and x ∈ R, we define

rα(x) :=





α−1(x − ln α−1 + 1), if x ≥ ln α−1,

ex, if x ≤ ln α−1.
(2.1)

For α ∈ R\Q and k > 0, we set

ϒk(α) := rαk−1
◦ · · · ◦ rα0

(0), (2.2)
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where α0 = α − [α], αn = Gn(α0) and G is the Gauss map G : x 7→
{

1
x

}
. Here, [·] and {·}

denote the integer and fractional part of a number, respectively. We also define

Hk,n := {α ∈ B, B(αn) ≤ ϒk(αn−k)}, (2.3)

where B(α) =
∑

n≥0 βn−1 ln α−1
n is the Brjuno function, βn =

∏n
j=0 αj, and B is the set of

Brjuno numbers α for which B(α) < ∞. We define

H := ∩m≥0(∪k≥0Hk,k+m). (2.4)

Clearly, D ⊂ H ⊂ B and, thus, H has full Lebesgue measure.

In this section, we restrict our considerations to ρ ∈ H. The study of the

spectrum of Schrödinger operators with analytic potentials over analytic circle dif-

feomorphisms with rotation numbers that do not satisfy the Yoccoz’s H arithmetic

condition corresponds to the study of one-frequency quasiperiodic Schrödinger oper-

ators with not necessarily analytic potentials and involves difficult problems. In the

case when T is an analytic circle diffeomorphism with a rotation number ρ ∈ H

satisfying this condition, however, there is an analytic conjugacy ϕ to the rotation Rρ ,

and many results follow directly from the corresponding results for the one-frequency

quasiperiodic Schrödinger operators with analytic potentials. Indeed, we have the

following correspondence:

H(T, V, x) = H(Rρ , V ◦ ϕ, ϕ−1x). (2.5)

In the case when T = Rρ , to simplify the notation, we denote the spectrum 6Rρ ,V

of H(Rρ , V, x) by 6ρ,V . Since orientation-preserving circle homeomorphisms with an

irrational rotation number are minimal, we have 6T,V,x = 6T,V .

As in [1], we can classify energies in the spectrum 6T,V of H(T, V, x) in the

following way. An energy E in the spectrum 6T,V of H(T, V, x) is said to be

(i) supercritical if L(E) > 0, so supx∈T1 ‖Pn(x, E)‖ grows exponentially;

(ii) subcritical if there is a uniform subexponential bound on the growth of

‖Pn(z, E)‖ through some band |Imz| < ε;

(iii) critical otherwise.

Clearly, the notions of supercritical, subcritical, and acritical are also indepen-

dent of x.
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It is well known that, contrary to the case of the almost Mathieu operator, in the

case of general quasiperiodic potentials, and T = Rρ , the coexistence of these regimes

is possible. Hence, the supercritical and subcritical are properties of the individual

energies, not of the whole operators. Although a given potential may display both

subcritical and supercritical energies, in order to go from one regime to the other, it

may not be necessary to go through the critical regime. The reason is that the spectrum

may be a Cantor set and the transition may happen through a gap. Avila [1] showed

that this is a prevalent behavior, when T is a circle rotation. The same holds when T is

analytic circle diffeomorphism with an irrational rotation number satisfying Yoccoz’s

H arithmetic condition.

The operator H(T, V, x) is said to be acritical, if no energy E in the spectrum

6T,V of H(T, V, x) is critical. Since the spectrum 6T,V and the notion of acritical do not

depend on x, we will simply say that the operator H(T, V) is acritical if no energy E in

the spectrum 6T,V of H(T, V) is critical.

Proof of Theorem 1.1. When T = Rρ , it follows from [30] that large potentials fall

into the supercritical regime. It further follows from [2] and [7] that small potentials

fall into the subcritical regime. When T is an analytic circle diffeomorphism with

rotation number satisfying Yoccoz’s H arithmetic condition, we similarly obtain that

large potentials fall into the supercritical regime and that small potentials fall into the

subcritical regime. This follows from the above correspondence (2.5), the fact that in

this case the conjugacy ϕ is analytic (so V ◦ ϕ is analytic, whenever V is), and the fact

that the supremum norms of V and V ◦ ϕ are the same. This implies parts (i) and (ii) of

the claim. Since the composition operator is an isometry, part (iii) of the claim follows

from the main theorem of [1]. �

3 Absence of Eigenvalues for Well-approximable Rotation Numbers

3.1 A sharp Gordon theorem

Gordon’s [14] trick has been fruitfully used to prove absence of point spectra of one-

dimensional operators since [5] (see, e.g., [10]). A sharp version was used in [4] to treat

the singular continuous part of arithmetic spectral transition for the almost Mathieu

operator. Here, we give an abstract formulation, for any bounded (not necessarily

ergodic) potential (in fact, only the boundedness of the Cesaro average of ln V(n) is

required).
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Consider Schrödinger operator on ℓ2(Z) given by

(Hu)n = un+1 + un−1 + V(n)un. (3.1)

For β > 0, we say that a real sequence {V(n)}n∈Z has β-repetitions [25] if there is a

sequence of positive integers qn → ∞ such that

max
0≤j<qn

|V(j) − V(j ± qn)| ≤ e−βqn . (3.2)

As in (1.5), we can define the transfer matrix An(E) and, as in (1.6), the n-step

transfer-matrix Pn(E). Let

3(E) := lim sup
|n|→∞

ln ‖Pn(E)‖

n
. (3.3)

Clearly, for bounded V, 3(E) < ∞, for every E.

Theorem 3.1. Suppose that V has β-repetitions with β > 3(E). Then, E is not an

eigenvalue of operator (3.1).

Remark 6. This theorem is sharp in the sense that there are operators (3.1) (found,

e.g., within the almost Mathieu family) with β ≤ 3(E) and eigenvalues [3, 4, 20].

Remark 7. As usual with the Gordon-type arguments, we actually prove more: the

absence of decaying solutions to H9 = E9, in fact that lim infn→∞ |9n| ≥ 1/2 if 9(0) = 1.

Remark 8. The small but crucial difference with the usual Gordon-type proof is to

study the characteristic polynomial not of the periodic approximation but of the q-step

transfer matrix itself.

Proof. Since E is fixed, we will suppress it from the notations. Let q = qn.

By a standard telescoping argument (the core of the argument is the identity

Pq − P̃q =
∑q−1

i=0 Aq−1 . . . Ai+1(Ai − Ãi)Ãi−1 . . . Ã0), for any ǫ > 0 and sufficiently large

n, we have

‖P−q − P−1
q ‖ < e(3−β+ǫ)q, (3.4)

‖P2qv − P2
qv‖ < e(3−β+ǫ)q‖Pqv‖. (3.5)
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Assume there is a decaying u such that Hu = Eu. Let v = (u0, u−1)T , and assume

‖v‖ = 1. Then, for sufficiently large n, we have max(‖Pqv‖, ‖P−qv‖, ‖P2qv‖) < 1/2. Since,

by the characteristic equation, Pq − TrPqI + P−1
q = 0, using (3.4) (assuming ǫ < β −3) and

applying the characteristic equation to v, we obtain |TrPq| < 1, for n large enough.

Then, applying another form of the characteristic equation, P2
q − TrPqPq + I = 0,

again to v and using (3.5), we obtain, for large enough n, ‖P2qv‖ > 1/2, which is a

contradiction. �

Consider the Schrödinger operator (3.1) with Vn = V(Tnx) where V : T1 → R

is a bounded real-valued function on the circle and T is an orientation-preserving

homeomorphism of a circle with an irrational rotation number ρ. Let the Lyapunov

exponent L(E) be defined as in (1.7). We then have the following theorem.

Theorem 3.2. Assume that for some x ∈ T1, C > 0 and β̄ > 0, there is a sequence of

positive integers qn → ∞ such that

sup
0≤i<qn

|Vi±qn
(x) − Vi(x)|} < Ce−β̄qn . (3.6)

If L(E) < β̄, then E is not an eigenvalue of the Schrödinger operator H(T, V, x).

Proof. In order to apply Theorem 3.1, it suffices to prove lim sup|n|→∞
ln ‖Pn(E)‖

n ≤ L(E).

This is a result of Furman [12] and also a well-known corollary of subadditivity,

compactness, and unique ergodicity (see, e.g., [24] for a short proof). �

For a sequence qn → ∞, let

β̂ := lim inf
n→∞

ln(sup0≤i<qn
|xi − xi±qn

|)−1

qn
, (3.7)

where xi = Tix.

Let Spp, PA,H,Hsc be as in Theorem 1.5.

Theorem 3.3. Let V : T1 → R be a α-Hölder continuous real-valued function on the

circle, with α ∈ (0, 1]. Then, we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂} = ∅,

(ii) P{E:0<L<αβ̂}(x)H ⊂ Hsc(x).
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Proof. It suffices to prove part (i) of the claim, that is, to exclude the point spectrum.

Part (ii) of the claim then follows from Kotani’s theory [8], x-independence of the

absolutely continuous spectrum [29], and the minimality of T, since, the set {E : L(E) > 0}

does not support any absolutely continuous spectrum. If L < αβ̂, then vi = V(Tix)

satisfy the assumption (3.6) of Theorem 3.2 for any β̄ satisfying L < β̄ < αβ̂. The claim

follows. �

In order to establish Theorem 1.5, all we need is an appropriate bound on β̂(x).

For T = Rρ , we have β̂ = β(ρ) for all x. This is no longer true in general. However, our

goal is to show that for C1+BV diffeomorphisms β̂ ≥ β(ρ) for µ-a.e. x, which is sufficient.

3.2 Dynamical partitions of a circle and renormalization

The construction of a set of full measure for which Theorem 1.5 holds is based on the

dynamical partitions of a circle. These partitions are obtained by using the continued

fraction expansion of the rotation number ρ ∈ (0, 1) of the map T. Every irrational ρ ∈

(0, 1) can be written uniquely as

ρ =
1

k1 + 1

k2+ 1
k3+...

=: [k1, k2, k3, . . . ], (3.8)

with an infinite sequence of partial quotients kn ∈ N. Conversely, every infinite

sequence of partial quotients defines uniquely an irrational number ρ as the limit of

the sequence of rational convergents pn/qn = [k1, k2, . . . , kn], obtained by the finite

truncations of the continued fraction expansion (3.8). It is well known that pn/qn form a

sequence of best rational approximations of an irrational ρ, that is, there are no rational

numbers, with denominators smaller or equal to qn, that are closer to ρ than pn/qn.

The rational convergents can also be defined recursively by pn = knpn−1 + pn−2 and

qn = knqn−1 + qn−2, starting with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the dynamical partitions of an orientation-preserving homeomor-

phism T : T1 → T1, with an irrational rotation number ρ, we start with an arbitrary

point x0 ∈ T1 and consider the orbit xi = Tix0, with i ∈ N. The subsequence xqn
,

n ∈ N, indexed by the denominators qn of the sequence of rational convergents of

the rotation number ρ, are called the sequence of dynamical convergents. It follows

from the simple arithmetic properties of the rational convergents that the sequence of

dynamical convergents xqn
, n ∈ N, for the rigid rotation Rρ has the property that its

subsequence with n odd approaches x0 from the left and the subsequence with n even

approaches x0 from the right. Since all circle homeomorphisms with the same irrational
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rotation number are combinatorially equivalent, the order of the dynamical convergents

of T is the same.

The intervals [xqn
, x0], for n odd, and [x0, xqn

], for n even, will be denoted by 1
(n)
0 .

We also define 1
(n)

i = Ti(1
(n)
0 ). Certain number of images of 1

(n−1)
0 and 1

(n)
0 , under the

iterates of a map T, cover the whole circle without overlapping beyond the end points

and form the n-th dynamical partition of the circle

Pn :=
{
Ti(1

(n−1)
0 ) : 0 ≤ i < qn

}
∪
{
Ti(1

(n)
0 ) : 0 ≤ i < qn−1

}
. (3.9)

The intervals 1
(n−1)
0 and 1

(n)
0 will be called the fundamental intervals of Pn. These

partitions are nested, in the sense that the intervals of partition Pn+1 are obtained by

dividing intervals of partition Pn into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism

T : T1 → T1, with rotation number ρ, with respect to a point x0 ∈ T1, is a function

fn : [−1, 0] → R, obtained from the restriction of Tqn to 1
(n−1)
0 , by rescaling the

coordinates. More precisely, if τn is the affine change of coordinates that maps xqn−1
to

−1 and x0 to 0, then

fn := τn ◦ Tqn ◦ τ−1
n . (3.10)

If we identify x0 with zero, then τn is just the multiplication by (−1)n/|1
(n−1)
0 |. Here, and

in what follows, |I| denotes the length of an interval I on T1.

3.3 A set of full invariant measure

In this section, we construct a set of full invariant measure, for which we have an

appropriate control on the distances between an orbit of a point under the map and

an orbit of the ±qn-th iterate of the point, that is, the control of the quantity β̂ in (3.7).

Let σn, n ∈ N be an increasing subsequence of N such that β = limn→∞
ln kσn+1

qσn
. This

subsequence exists by the definition of β (1.10). We will assume that the corresponding

sequence kσn+1 of partial quotients diverges to infinity sufficiently rapidly such that

β > 0. Let ηn be any sequence converging to zero such that ηnkσn+1 diverges to infinity

as well, and q−1
σn

ln ηn converges to zero, as n → ∞.

For each n ∈ N, let

In,0 :=

{
I ∈ Pσn+1|I ⊂ 1

(σn−1)
0 \1

(σn+1)
0 , |τσn

(I)| ≤
1

ηnkσn+1

}
, (3.11)
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and let

En,0 :=
⋃

I∈In,0

I, En,i := Ti(En,0), for i = 1, . . . , qσn
− 1. (3.12)

We define

En :=

qσn−1⋃

i=0

En,i (3.13)

and

E := lim sup
n→∞

En =
⋂

n≥1

⋃

j≥n

Ej. (3.14)

Proposition 3.4. µ(E) = 1.

Proof. The number of the elements I of partition Pσn+1 inside of 1
(σn−1)
0 that do

not belong to En,0 is bounded from above by ηnkσn+1, since the length of each of

the corresponding rescaled intervals τσn
(I) ⊂ τσn

(1
(σn−1)
0 ) is larger than (ηnkσn+1)−1

and the length of their union is less than or equal to 1. Since the invariant measure

of the intervals τ−1
σn

([f i−1
σn

(−1), f i
σn

(−1)]) is independent of i and equal to µ(1
(σn)
0 ), for

i = 1, . . . , kσn+1, and 1
(σn+1)
0 ⊂ τ−1

σn
([f i−1

σn
(−1), f i

σn
(−1)]), for i = kσn+1 + 1, we have

µ(En,0)/µ(τ−1
σn

([−1, 0])) ≥ 1 −
ηnkσn+1µ(1

(σn)
0 )

kσn+1µ(1
(σn)
0 ) + µ(1

(σn+1)
0 )

≥ 1 − ηn. (3.15)

By the invariance of the measure µ, µ(En,i)/µ(1
(σn−1)

i ) ≥ 1 − ηn. Since

qσn−1∑

i=0

µ(1
(σn−1)

i ) +

qσn−1−1∑

i=0

µ(1
(σn)

i ) = qσn
µ(1

(σn−1)
0 ) + qσn−1µ(1

(σn)
0 ) = 1, (3.16)

qσn−1 ≤ qσn
and µ(1

(σn)
0 ) = µ(τ−1

σn
([−1, fσn

(−1)])), we have

µ(En) ≥ (1 − ηn)
kσn+1

kσn+1 + 1
. (3.17)

Since µ(∪j≥nEj) ≥ µ(Ei), for any i ≥ n, and µ(Ei) → 1 as i → ∞, it follows that

µ(∪j≥nEj) = 1, for any n ∈ N. The claim follows. �
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3.4 Distance of dynamical convergents

In this section, we consider circle maps (orientation-preserving homeomorphisms of a

circle) T with an irrational rotation number and bounded variation V = Var
T1 ln T ′ < ∞.

Consider the dynamical partitions of a circle defined by an arbitrary point χ0 ∈ T1. The

following proposition holds for all intervals I0 ⊂ 1
(n−1)
0 such that I0 ∈ Pn+1 and the

corresponding intervals Ii = Ti(I0), i ∈ Z.

Proposition 3.5. If T is C1+BV(T1) orientation-preserving circle diffeomorphism with

an irrational rotation number, there exists C1 > 0 such that |Ii| ≤ C1|1
(n−1)

i | |I0|

|1
(n−1)
0 |

, for

all i = 0, . . . , qn − 1, and all n ∈ N.

Proof. For i = 0, . . . , qn − 1, there exist ζi−1 ∈ Ii−1 ⊂ 1
(n−1)

i−1 and ξi−1 ∈ 1
(n−1)

i−1 such that

|Ii|

|1
(n−1)

i |
=

|T(Ii−1)|

|T(1
(n−1)

i−1 )|
=

T ′(ζi−1)

T ′(ξi−1)

|Ii−1|

|1
(n−1)

i−1 |
. (3.18)

This implies the estimate

|Ii|

|1
(n−1)

i |
≤

(
1 +

|T ′(ζi−1) − T ′(ξi−1)|

T ′(ξi−1)

)
|Ii−1|

|1
(n−1)

i−1 |
. (3.19)

By iterating this inequality, we obtain that, for some ζj, ξj ∈ 1
(n−1)

j ,

|Ii|

|1
(n−1)

i |
≤

i−1∏

j=0

(
1 +

|T ′(ζj) − T ′(ξj)|

minξ∈T1 T ′(ξ)

)
|I0|

|1
(n−1)
0 |

. (3.20)

Using the obvious inequality 1 + x ≤ ex, we obtain

|Ii|

|1
(n−1)

i |
≤ exp




i−1∑

j=0

|T ′(ζj) − T ′(ξj)|

minξ∈T1 T ′(ξ)


 |I0|

|1
(n−1)

i−1 |
. (3.21)

Since, for i = 0, . . . , qn − 1, the intervals 1
(n−1)

i do not overlap except possibly at the end

points, we have

qn−1∑

j=0

|T ′(ζj) − T ′(ξj)| ≤ max
χ∈T1

T ′(χ)

qn−1∑

j=0

| ln T ′(ζj) − ln T ′(ξj)| ≤ V max
χ∈T1

T ′(χ), (3.22)
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where V = Var
T1 ln T ′. Since T ′ is bounded both from below and from above by positive

constants, the claim follows. �

Let ln = maxξ∈T1 |Tqnξ − ξ |. If T is C1+BV(T1) orientation-preserving circle

diffeomorphism, Denjoy’s theory implies that, for some C > 0,

(A) ln(Tqn)′(ξ) ≤ V, for any ξ ∈ T1;

(B) ln ≤ Cλn, where λ = 1
1+e−2V .

Proposition 3.6. If T is C1+BV(T1) orientation-preserving circle diffeomorphism, then

there exists C2 > 0 such that, for all x ∈ E, there are infinitely many n ∈ N such that

|Tqσn x − x| ≤
C2|1

(σn−1)

i |

ηnkσn+1

, (3.23)

where 1
(σn−1)

i is an element of partition Pσn
containing x.

Proof. For every x ∈ E, there are infinitely many n, such that x ∈ En. Furthermore,

there exists an element Ii of partition Pσn+1 inside En,i ⊂ 1
(σn−1)

i , for some i = 0, . . . , qσn
−

1, such that x ∈ Ii. It follows from the definition of En,0 and Proposition 3.5 that there

exists χ ∈ En,i, such that Ii = [χ , Tqσn χ ] and |Ii| ≤ C1|1
(σn−1)

i |/(ηnkσn+1). Then, |x − χ | ≤

|Tqσn χ − χ | ≤ C1|1
(σn−1)

i |/(ηnkσn+1).

Since there exists ζ ∈ Ii such that

Tqσn x = Tqσn χ + (Tqσn )′(ζ )(x − χ), (3.24)

we obtain the following estimate:

|Tqσn x − x| ≤ |Tqσn χ − χ | + |χ − x| + (Tqσn )′(ζ )|x − χ |. (3.25)

If T is C1+BV(T1) orientation-preserving circle diffeomorphism, by Denjoy’s estimate (A),

we have ln(Tqn)′(ξ) ≤ V, for all ξ ∈ T1. The claim now follows. �

Let xi = Tix, and let Ii := [xi−qn
, xi], if n is even, or Ii := [xi, xi−qn

], if n is odd.

Let χ0 ∈ T1, χj = Tjχ0, and let 1
(n−1)

j (χ0) := [Tqn−1χj, χj], if n is even, or 1
(n−1)

j (χ0) :=

[χj, Tqn−1χj], if n is odd.
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Proposition 3.7. Let x ∈ 1
(n−1)

j (χ0). There exists C3 ≥ 1 such that

|Ii| ≤ C3|1
(n−1)

i (χj−qn
)|

|Iqn
|

|1
(n−1)

j (χ0)|
, (3.26)

for all i = 0, . . . , qn − 1.

Proof. It follows from the mean value theorem that, for i = 0, . . . , qn − 1, there exist

ξi ∈ 1
(n−1)

i (χj−qn
) ∪ 1

(n)

i (χj−qn
) and ζi ∈ 1

(n−1)

i (χj−qn
), such that

|Ii|

|1
(n−1)

i (χj−qn
)|

=
|T−1(Ii+1)|

|T−1(1
(n−1)

i+1 (χj−qn
))|

=
|Ii+1|

|1
(n−1)

i+1 (χj−qn
)|

T ′(ζi)

T ′(ξi)
. (3.27)

This implies the estimate

|Ii|

|1
(n−1)

i (χj−qn
)|

≤
|Ii+1|

|1
(n−1)

i+1 (χj−qn
)|

(
1 +

|T ′(ζi) − T ′(ξi)|

|T ′(ξi)|

)
. (3.28)

By iterating the latter inequality, we obtain

|Ii|

|1
(n−1)

i (χj−qn
)|

≤
|Iqn

|

|1
(n−1)

j (χ0)|
exp




qn−1∑

k=i

|T ′(ζk) − T ′(ξk)|

minξ∈T1 |T ′(ξ)|


 . (3.29)

Since the intervals 1
(n−1)

i (χj−qn
), for i = 0, . . . , qn − 1, belong to the same partition of

a circle, taking into the account the order of points ζk and ξk, for k = i, . . . , qn − 1, we

obtain

|Ii|

|1
(n−1)

i (χj−qn
)|

≤
|Iqn

|

|1
(n−1)

j (χ0)|
exp

(
maxξ∈T1 |T ′(ξ)|

minξ∈T1 |T ′(ξ)|
2V

)
. (3.30)

The claim follows. �

Propositions 3.6 and 3.7 and Denjoy’s estimate (A) imply the following lemma.

Lemma 3.8. If T is C1+BV(T1) orientation-preserving circle diffeomorphism with an

irrational rotation number ρ, then there exists C4 > 0 such that, for all x ∈ E, there are
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infinitely many n ∈ N such that, for all i = 0, . . . , 2qσn
− 1,

|xi − xi−qσn
| ≤

C4lσn−1

ηnkσn+1

. (3.31)

Proof. For i = qσn
, the claim holds directly from Proposition 3.6, with C4 ≥ C2.

Propositions 3.6 and 3.7 together imply (3.31) for i = 0, . . . , qσn
− 1, with C4 ≥ C2C3.

Using Denjoy’s estimate (A), the bound (3.31) can be extended to i = qσn
+ 1, . . . , 2qσn

− 1,

with C4 ≥ C2C3eV , since |xi+qσn
− xi| ≤ eV |xi − xi−qσn

|, for i = 1, . . . , qσn
− 1. �

3.5 Proof of the main result

Proof of Theorem 1.5. Let pn/qn be the sequence of rational convergents of ρ, given by

the truncations of the continued fraction algorithm of ρ. If ρ satisfies L < αβ, then β > 0

and there is an increasing sequence σn, such that β = limn→∞
ln kσn+1

qσn
. In particular, the

subsequence kσn+1 diverges to infinity. Let ηn be any sequence converging to zero such

that ηnkσn+1 diverges to infinity as well, and the sequence q−1
σn

ln ηn converges to zero.

We use these sequences to construct the set E, as in Section 3.3. For every x ∈ E, by

Lemma 3.8, there are infinitely many n, such that estimate (3.31) holds. This implies

β̂ ≥ β. The claim now follows from Theorem 3.3. �
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