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We initiate the study of Schrédinger operators with ergodic potentials defined over
circle map dynamics, in particular over circle diffeomorphisms. For analytic circle
diffeomorphisms and a set of rotation numbers satisfying Yoccoz's H arithmetic
condition, we discuss an extension of Avila’s global theory. We also give an abstract
version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues
for general potentials with repetitions. Coupled with the dynamical analysis, we obtain
that, for every C'*2V circle diffeomorphism, with a super Liouville rotation number and
an invariant measure p, and for u-almost all x € T!, the corresponding Schrédinger

operator has purely continuous spectrum for every Holder continuous potential V.

1 Introduction and the Statements of the Results

The spectral theory of discrete ergodic one-dimensional Schrédinger operators has
seen a considerable development in the past several decades. The general setup
involves Schrédinger operators H on the space of square-summable sequences ¢%(Z),
defined by

(Howy, = Up_; +Upyq +V(T0u,,  uel’2), (1.1)
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where T is an ergodic automorphism of a phase space (M, ), x € M, and V : M — R.
Aside from the beautiful general results that hold for all ergodic operators, or under
minimal general assumptions (some also for multi-dimensional analogues and further
generalizations), most attention has been devoted to two families: random potentials (T
being a shift operator on a product measure space) and almost periodic, particularly,
quasiperiodic potentials (T being an irrational rotation of the torus). Both of these
families have strong origins in physics and both have led to deep mathematics.
While it would be very interesting to understand the features of potentials over other
base dynamics, it has proved surprisingly difficult and there are few results for
other underlying dynamical systems. We refer the reader to the reviews [9, 17] for
further history and discussion of these results. In this paper, we initiate the study of
Schrodinger operators with potentials over circle maps, that is, orientation-preserving
homeomorphisms of a circle T! = R/Z.

As an irrational rotation is a basic example of a circle map, it is natural to view
corresponding potentials as generalizations of one-frequency quasiperiodic potentials.
The theory of the latter has seen dramatic advances in the past 20 years (see, e.g., [6, 18,
22, 23] and the references therein) and continues to develop rapidly. It remains the only
ergodic family with established transitions between the spectral types with changes
of parameters, which can often be proved and analyzed in a sharp arithmetic way or
through analytic behavior of certain dynamical quantities.

Poincaré established that, for every orientation-preserving homeomorphism
T : T! — T!, there is a unique rotation number p € (0, 1), given by the (x-independent)
limit

Th(x) —x
n

o= lim mod 1, (1.2)

n—oo
where 7T is any lift of T to R and x € R. Poincaré also proved that if the rotation number
p of an orientation-preserving circle homeomorphism T is irrational, T is topologically
semi-conjugate to the rotation R,:x—>x+p mod 1, that is, there is a continuous map
¢ : T' — T! such that

Top=¢oR,. (1.3)

It follows that T" o ¢ = ¢ o R?, for every n € Z, that is, the orbit x,, = T"x of x can
be viewed as the image of the orbit 6, = R}¢ of a preimage ¢ of x = ¢(f) under .
This establishes a relation between Schrédinger operators over circle maps and one-

frequency quasiperiodic Schrodinger operators.
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It is a fundamental problem to understand the rigidity of Schrodinger operators
over circle maps [28]. Rigidity is a phenomenon that systems that are a priori equivalent
in a weak sense are actually equivalent in a much stronger sense. An important problem
is to determine the classes of these operators with, in a sense, equivalent spectral
properties [28].

In general, the semi-conjugacy ¢ may not even be invertible. However, as shown
by Denjoy [11], if T is a C'*BY circle diffeomorphism, that is, a C'-smooth circle
diffeomorphism with a derivative of bounded variation, ¢ is a homeomorphism, termed
the topological conjugacy. Herman's theory [16]—further developed by Yoccoz [32]—
establishes a certain level of smoothness of the conjugacy for diffeomorphisms of higher
smoothness. In particular, as proved by Herman [16], analytic circle diffeomorphisms
with Diophantine rotation numbers are analytically conjugate to a rotation. A number
p € R\Q is called Diophantine if there exist C > 0 and § > 0 such that |p — %l > C/q*"9,
for every p € Z and q € N. These results are at the core of the rigidity theory
of circle diffeomorphisms. An optimal condition for analytic linearization has been
obtained by Yoccoz [32]. He established that for a set H of irrational numbers satisfying
an arithmetic condition, known as Yoccoz's H arithmetic condition (defined at the
beginning of Section 2), every analytic circle diffeomorphism, with a rotation number
in this set, is analytically conjugate to the rotation.

Some of the most interesting recent advances in the theory of one-frequency
quasiperiodic operators have been developed for analytic potentials [1, 6, 21, 25]. An
analytic conjugacy maps the potentials V,, = f(T"x) with analytic f into the potentials
of the form W,, = g(R}x) with analytic g, allowing for some results concerning the spec-
trum of the Schrodinger operators over (analytic) circle diffeomophisms to be obtained
directly from the corresponding results for one-frequency quasiperiodic operators.
However, when the conjugacy is not analytic the resulting g will not be analytic either,
potentially leading to counter-intuitive properties (e.g., [31]). An important aspect of
the study of the spectrum of Schrédinger operators over circle diffeomorphisms is to
understand what properties hold in the absence of an analytic conjugacy. In this paper,
we address one of the most basic questions of this nature—the absence of the point
spectrum for super Liouville rotation numbers—already leading to nontrivial analysis.

Finally, the study of the smoothness of conjugacy between circle diffeomor-
phisms with irrational rotation numbers and the corresponding rotations has been
one of the prime examples of small denominator analysis that has eventually led
to the 1st sharp arithmetic transition results [32]. The study of the spectral proper-

ties of quasiperiodic operators has also recently led to sharp arithmetic transitions
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[4, 19-21, 25]. The study of ergodic Schrédinger operators with circle map dynamics is
expected to lead to further interplay between those small denominator problems.

In this paper, we consider a class of Schrédinger operators H = H(x) = H(T, V, x)
of the form (1.1) where T : T! — T! is an orientation-preserving homeomorphism of the
circle, V : T! — R, and x € T!. Since T, V will usually be fixed, we will often suppress
them from the notation.

Ergodic Schrédinger operators are intimately related with a family of cocycles—
dynamical systems associated with each eigen-equation Hu = Eu. In the case of
Schrodinger operators over circle maps with an irrational rotation number, the cocycle

is given by
(T, A): (x,y) = (Tx,Ax,E)y), (1.4)

where A € SL(2,R), x € T!, y € RZ2. Ifu= (u,) is a sequence satisfying Hu = Eu, then

(u"+l) =An(X,E)( Un ), where A, (x,E) = (E_ V(T'x) _1) (1.5)
U, U,_1 1 0

is the transfer matrix. Thus,
u u
( n ):Pn(X,E)( 0), (1.6)
Up_1 u_y

where P, (x,E) = H?:nflAi(x, E)=A, |(x,E)...Ay(x,E). Thus, P,(x,E) is the product
of the values of a matrix-valued function A(-,E) : T — SL(2,R) along the orbit x; = Tix
of x, under the action of T. We also define P_,(x,E) = P, (T "x,E)~! and P, =I.

One way to divide the spectrum of one-frequency quasiperiodic Schrodinger
operators into different regimes is through the Lyapunov exponent [1]. One regime
corresponds to positive Lyapunov exponent; another corresponds to zero Lyapunov
exponent stable under complexification; and the 3rd one (critical) corresponds to zero
Lyapunov exponent unstable under complexification. An operator is called acritical if
there are no critical energies E in the spectrum.

In the case of more general Schrédinger operators over circle maps with an
irrational rotation number, we can still define the Lyapunov exponent. If the rotation
number p of T is irrational, T is uniquely ergodic [13]. We will denote by u the unique

invariant probability measure of T.
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We define the Lyapunov exponent

L(E) := lim L, (E), (1.7)
where
1
L,(E):= /Ln(X,E) du, L,(x,E):= - In|P,(x,E)|. (1.8)

Due to submultiplicativity of P, (x,E), L(E) exists. Since T is ergodic, by Kingman's

ergodic theorem, for almost every x,
.1
L(E) = lim —1In||P,(x,E)]|. (1.9)
n—oon

This paper can be divided into two parts. In the 1st part, we discuss the spectral
properties of Schrodinger operators with large, small, as well as typical potentials,
over analytic circle diffeomorphisms, with badly approximable rotation numbers. The

following theorem is an immediate corollary of the known results [1] (see Section 2).

Theorem 1.1. Let T be an analytic circle diffeomorphism with rotation number p

satisfying Yoccoz's H arithmetic condition and V : T! — R be analytic. Then,

(i) there exists Ay(T, V) > 0 such that for A < Ay(T, V) operator, H(T,AV) has
purely absolutely continuous spectrum;
(ii) there exists A;(T, V) < oo such that for A > A,(T, V) the Lyapunov exponent
L(E) > O for all E;
(iii) for a (measure-theoretically) typical analytic V : T' — R, the operator
H(T, V) is acritical.

In the 2nd part, we prove our main result and exclude eigenvalues for well-
approximable rotation numbers.
For p € R\Q, let || p|| := dist(p, Z) be the distance to the nearest integer. Let

In|lpn||

B = B(p) := limsup — (1.10)

n—oo
If p € R\Q is Diophantine, then B(p) = 0. Hence, if 8(p) > 0, p is a Liouville number,
that is, it belongs to the complement £ = (R\Q) N D¢ of the set of all Diophantine

numbers D.
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Definition 1.2. A number p € R\Q is called super Liouville if 8(p) = oco.

Definition 1.3. The class of C!*2V diffeomorphisms consists of C!-smooth diffeomor-

phisms T with In 77 of bounded variation.

In particular, a C?-smooth diffeomorphism of a circle is also of class C!*2V. As

a corollary of our main result, we have the following claim.

Theorem 1.4. For every super Liouville number p € (0,1)\Qg, and every C'*BV circle
diffeomorphism T, with rotation number p and the invariant measure u, for u-almost
all x € T!, the corresponding Schrédinger operator H(T, V,x) has purely continuous

spectrum for every Holder-continuous potential ¥ : T! — R.

Remark 1. As shown in a parallel work [28], an analogous claim holds for sufficiently
smooth circle diffeomorphisms with a single singular point where the derivative
vanishes (critical circle maps) or has a jump discontinuity (circle maps with a break).
The rigidity theory of these maps has been an important topic in circle dynamics—
in the context of an extension of Herman's theory—that experienced a considerable

development in recent years [15, 26, 27].

Remark 2. It is an interesting question whether, unlike the case of Schrodinger
operators with Holder continuous potential over rotations, for some circle diffeo-
morphisms T with Liouville rotation numbers, there are phases x € T! such that
H(T,V,x) has eigenvalues. Clearly, if the conjugacy to the corresponding rotation is
sufficiently regular (e.g., Hélder continuous), then there could be no such phases, for any
Holder continuous potential. The existence of such phases for Schrédinger operators
over rotations is known only for unbounded (and therefore discontinuous) potentials
(e.g., [19]).

Remark 3. For C!'*BY circle diffeomorphisms T, ¢ is a topological conjugacy, so
H(T,V,x) is unitarily equivalent to H(Rp, V,,y) with a continuous V] : T! — R. Even
though the absence of point spectrum of H(R,, V;,y) holds for all y, for topologically
generic p (depending on V;), this is insufficient to conclude such an absence for
H(T,V,x) because V, depends on T.

Theorem 1.4 is a corollary of the following sharp result. Different components of

the spectrum X, of an operator H(T, V, x) are denoted by X, (absolutely continuous),
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Ty (singular continuous) and X,, (pure point). By ergodicity, all those sets are
p-a.e. x-independent; however, X,, and X, may depend on x (e.g., [21]). We also denote
the collection of eigenvalues of H(T, V,x) by Spp(X). Finally, we set % = ¢2(Z), Hoo(X)
the corresponding singular continuous subspace, and P,(x) the operator of spectral

projection on a Borel set A, corresponding to H(T, V, x).

Theorem 1.5. Let T : T! — T! be any C'*8V circle diffeomorphism with an irrational
rotation number p € (0, 1) and an invariant measure j. For pu-almost all x € T!, and any

o-Holder continuous real-valued function V : T! — R on the circle, with « € (0, 1],
@) Sppx) N{E:0<LE) <af(p)} =1,
(@) Pizo<r<ap(p)H C Hse(X).

Remark 4. This theorem is optimal in the sense that there exist H(T, V,x) with o =1
and eigenvalues at E with L(E) > B(p) [3, 20].

Remark 5. In fact, we prove a stronger result Spp@) N{E : 0 < L(E) < ocﬁ(,o)} = () (see
(3.7) for the definition of ,é(,o)) that follows from Theorem 3.3 below.

While Theorem 1.1 is a direct corollary of the main results of [1, 2, 30], the
proof of Theorems 1.4 and 1.5 requires new techniques from one-dimensional dynamics,
previously not used in the spectral theory of Schrodinger operators. In the next section,
we discuss the global theory of typical Schrédinger operators over analytic circle
diffeomorphisms. In Section 3, we prove a sharp Gordon theorem (that could be of

independent use) and give a proof of Theorem 1.5.

2 Typical Operators over Analytic Circle Diffeomorphisms

Yoccoz's set H of rotation numbers can be defined as follows.

Fora € (0,1), and x € R, we define

0 o lx—lnat+1), if x>1lna™?, 1)
r,(x) = .
e, if x<lne 1.

For @ € R\Q and k > 0, we set

Yi(e) :=1, 001, (0), (2.2)
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where oy = a — [a], @, = G™(e) and G is the Gauss map G : x — {i}. Here, [] and {-}

denote the integer and fractional part of a number, respectively. We also define
Hip = o € B,Bay) < Tr(a,_p)), (2.3)

where B(@) = 3,0 Bp_1 Ina;," is the Brjuno function, g, = [[_,«;, and B is the set of

Brjuno numbers « for which B(a) < oco. We define
H = N0 (Vg0 M fem)- (2.4)

Clearly, D C ‘H C B and, thus, A has full Lebesgue measure.

In this section, we restrict our considerations to p € 7. The study of the
spectrum of Schrodinger operators with analytic potentials over analytic circle dif-
feomorphisms with rotation numbers that do not satisfy the Yoccoz's #H arithmetic
condition corresponds to the study of one-frequency quasiperiodic Schrédinger oper-
ators with not necessarily analytic potentials and involves difficult problems. In the
case when T is an analytic circle diffeomorphism with a rotation number p € H
satisfying this condition, however, there is an analytic conjugacy ¢ to the rotation R,
and many results follow directly from the corresponding results for the one-frequency
quasiperiodic Schrodinger operators with analytic potentials. Indeed, we have the

following correspondence:
H(T,V,x) =HR,,Vog,¢ 'x). (2.5)

In the case when T = R, to simplify the notation, we denote the spectrum Xp
of H(Rp,V,X) by Ep'V. Since orientation-preserving circle homeomorphisms with an
irrational rotation number are minimal, we have X, . = X7 .

As in [1], we can classify energies in the spectrum Zry of H(T,V,x) in the

following way. An energy E in the spectrum X1, of H(T, V, x) is said to be

(i) supercritical if L(E) > 0, so sup,.p ||IP,,(x, E)|| grows exponentially;
(ii) subcritical if there is a uniform subexponential bound on the growth of
|P,(z, E)| through some band |Imz| < ¢;

(iii) critical otherwise.

Clearly, the notions of supercritical, subcritical, and acritical are also indepen-

dent of x.
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It is well known that, contrary to the case of the almost Mathieu operator, in the
case of general quasiperiodic potentials, and T = R, the coexistence of these regimes
is possible. Hence, the supercritical and subcritical are properties of the individual
energies, not of the whole operators. Although a given potential may display both
subcritical and supercritical energies, in order to go from one regime to the other, it
may not be necessary to go through the critical regime. The reason is that the spectrum
may be a Cantor set and the transition may happen through a gap. Avila [1] showed
that this is a prevalent behavior, when T is a circle rotation. The same holds when T is
analytic circle diffeomorphism with an irrational rotation number satisfying Yoccoz's
‘H arithmetic condition.

The operator H(T,V,x) is said to be acritical, if no energy E in the spectrum
Ypy of H(T, V,x) is critical. Since the spectrum ¥, and the notion of acritical do not
depend on x, we will simply say that the operator H(T, V) is acritical if no energy E in
the spectrum X, of H(T, V) is critical.
Proof of Theorem 1.1. When T = R, it follows from [30] that large potentials fall
into the supercritical regime. It further follows from [2] and [7] that small potentials
fall into the subcritical regime. When T is an analytic circle diffeomorphism with
rotation number satisfying Yoccoz's A arithmetic condition, we similarly obtain that
large potentials fall into the supercritical regime and that small potentials fall into the
subcritical regime. This follows from the above correspondence (2.5), the fact that in
this case the conjugacy ¢ is analytic (so V o ¢ is analytic, whenever V is), and the fact
that the supremum norms of V and V o ¢ are the same. This implies parts (i) and (ii) of
the claim. Since the composition operator is an isometry, part (iii) of the claim follows

from the main theorem of [1]. [ |

3 Absence of Eigenvalues for Well-approximable Rotation Numbers
3.1 A sharp Gordon theorem

Gordon's [14] trick has been fruitfully used to prove absence of point spectra of one-
dimensional operators since [5] (see, e.g., [10]). A sharp version was used in [4] to treat
the singular continuous part of arithmetic spectral transition for the almost Mathieu
operator. Here, we give an abstract formulation, for any bounded (not necessarily
ergodic) potential (in fact, only the boundedness of the Cesaro average of InV(n) is

required).
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Consider Schrédinger operator on ¢2(Z) given by
(Hu), =uy, | +u,_; +V(n)u,. (3.1)

For B > 0, we say that a real sequence {V(n)},., has p-repetitions [25] if there is a

sequence of positive integers q,, — oo such that

max |V(j) — V(j+q,)| < e P, (3.2)

0<j<@gn
As in (1.5), we can define the transfer matrix A, (E) and, as in (1.6), the n-step

transfer-matrix P, (E). Let

A(E) :=lim sup

In|—o00

In ||P, ()| (3.3)
ma— .

Clearly, for bounded V, A(E) < oo, for every E.

Theorem 3.1. Suppose that ¥V has g-repetitions with § > A(E). Then, E is not an

eigenvalue of operator (3.1).

Remark 6. This theorem is sharp in the sense that there are operators (3.1) (found,

e.g., within the almost Mathieu family) with 8 < A(E) and eigenvalues [3, 4, 20].

Remark 7. As usual with the Gordon-type arguments, we actually prove more: the

absence of decaying solutions to H¥ = EV, in fact that liminf,,_ _|¥,| > 1/2if ¥(0) = 1.

Remark 8. The small but crucial difference with the usual Gordon-type proof is to
study the characteristic polynomial not of the periodic approximation but of the g-step

transfer matrix itself.

Proof. Since E is fixed, we will suppress it from the notations. Let ¢ = gq,.
By a standard telescoping argument (the core of the argument is the identity
P, — }~°q = Zf:_ol Agq- A (4 — ApA; | ...Ap), for any € > 0 and sufficiently large

n, we have

IP_, — Pt < A Ftaa, (3.4)

IPyqv — Pav| < ePH99 P v, (3.5)
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Assume there is a decaying u such that Hu = Eu. Let v = (ug, u_;)T, and assume
|v|l = 1. Then, for sufficiently large n, we have max([|[Pyvll, [P_qVI. [IPyqvI) < 1/2. Since,
by the characteristic equation, P, — TquI+P[;1 = 0, using (3.4) (assuming ¢ < 8 — A) and
applying the characteristic equation to v, we obtain |TrP,| < 1, for n large enough.
Then, applying another form of the characteristic equation, Pg — TrPP, +1 = 0,
again to v and using (3.5), we obtain, for large enough n, ||P2qv|| > 1/2, which is a

contradiction. [

Consider the Schrédinger operator (3.1) with V,, = V(T"x) where V : T! — R
is a bounded real-valued function on the circle and T is an orientation-preserving
homeomorphism of a circle with an irrational rotation number p. Let the Lyapunov

exponent L(E) be defined as in (1.7). We then have the following theorem.

Theorem 3.2. Assume that for some x € T!, C > 0 and 8 > 0, there is a sequence of

positive integers g,, — oo such that

SUp |Vigg, () — Vi(x)[} < Ce Pan, (3.6)

0<i<gn
If L(E) < B, then E is not an eigenvalue of the Schrédinger operator H(T, V, x).

Proof. In order to apply Theorem 3.1, it suffices to prove limsup,,_, o, w < L(E).
This is a result of Furman [12] and also a well-known corollary of subadditivity,

compactness, and unique ergodicity (see, e.g., [24] for a short proof). |
For a sequence g,, — oo, let

. In(supg-i_, |x; — X0, D7}
B := liminf Posi<gn i ™ ¥ing) (3.7)

n—oo qn

where x; = T'x.

Let S

pp,PA,H,HSC be as in Theorem 1.5.

Theorem 3.3. Let V: T! — R be a «-Holder continuous real-valued function on the
circle, with a € (0, 1]. Then, we have

(i) S, N{E:0 < L(E) < ap) =0,

(ll) P{E:O<L<o¢/§}(X)H - HSC(X)‘
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Proof. It suffices to prove part (i) of the claim, that is, to exclude the point spectrum.
Part (ii) of the claim then follows from Kotani's theory [8], x-independence of the
absolutely continuous spectrum [29], and the minimality of T, since, the set {E : L(E) > 0}
does not support any absolutely continuous spectrum. If L < «f, then v; = V(T'x)
satisfy the assumption (3.6) of Theorem 3.2 for any f satisfying L < 8 < aB. The claim
follows. |

In order to establish Theorem 1.5, all we need is an appropriate bound on B(x).
For T = R,, we have B = B(p) for all x. This is no longer true in general. However, our

goal is to show that for C!*8Y diffeomorphisms g > B(p) for u-a.e. x, which is sufficient.

3.2 Dynamical partitions of a circle and renormalization

The construction of a set of full measure for which Theorem 1.5 holds is based on the
dynamical partitions of a circle. These partitions are obtained by using the continued
fraction expansion of the rotation number p € (0, 1) of the map T. Every irrational p €

(0, 1) can be written uniquely as

1
:—Z:[k,k,k,...], (38)
1Y k1+ 1 1r %213

k2+k31+.“

with an infinite sequence of partial quotients k, € N. Conversely, every infinite
sequence of partial quotients defines uniquely an irrational number p as the limit of
the sequence of rational convergents p,/q, = lk;,k,, ..., k,], obtained by the finite
truncations of the continued fraction expansion (3.8). It is well known that p,,/q,, form a
sequence of best rational approximations of an irrational p, that is, there are no rational
numbers, with denominators smaller or equal to g, that are closer to p than p,/q,.
The rational convergents can also be defined recursively by p,, = k,,p,_; + P,_» and
q, = k,4q,_1 +q,_,, starting withp, =0,qp=1,p_;=1,q_; =0.

To define the dynamical partitions of an orientation-preserving homeomor-
phism T : T! — T!, with an irrational rotation number p, we start with an arbitrary
point x, € T! and consider the orbit x; = T'x,, with i € N. The subsequence Xg,:
n € N, indexed by the denominators g, of the sequence of rational convergents of
the rotation number p, are called the sequence of dynamical convergents. It follows
from the simple arithmetic properties of the rational convergents that the sequence of
dynamical convergents x, , n € N, for the rigid rotation R, has the property that its
subsequence with n odd approaches x; from the left and the subsequence with n even

approaches x; from the right. Since all circle homeomorphisms with the same irrational
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rotation number are combinatorially equivalent, the order of the dynamical convergents
of T is the same.

The intervals [an,XO], for n odd, and [XO,an], for n even, will be denoted by A(()").
We also define AE”) = TH(AY). Certain number of images of A" ™" and A", under the
iterates of a map T, cover the whole circle without overlapping beyond the end points

and form the n-th dynamical partition of the circle
P = {THAY ™) 0<i< g, u{TiAM) :0<i<q, ) (3.9)

The intervals Aé”fl) and A(()”) will be called the fundamental intervals of P,. These
partitions are nested, in the sense that the intervals of partition P, are obtained by
dividing intervals of partition P, into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism
T : T' — T!, with rotation number p, with respect to a point x; € T!, is a function
f, : [-1,01 - R, obtained from the restriction of T9" to Af)"fl), by rescaling the
coordinates. More precisely, if 7, is the affine change of coordinates that maps x, | to
—1 and x, to O, then

Jo = rnqu"o‘l:,;l. (3.10)

If we identify x, with zero, then 7, is just the multiplication by (— 1)"/|Agn_l) |. Here, and

in what follows, |I| denotes the length of an interval I on T!.

3.3 A set of full invariant measure

In this section, we construct a set of full invariant measure, for which we have an
appropriate control on the distances between an orbit of a point under the map and
an orbit of the +q,,-th iterate of the point, that is, the control of the quantity g in (3.7).
koni1 This

Let 0,, n € N be an increasing subsequence of N such that 8 = lim,,_, -

subsequence exists by the definition of 8 (1.10). We will assume that the corresponding
sequence k, ., of partial quotients diverges to infinity sufficiently rapidly such that
B > 0. Let n,, be any sequence converging to zero such that n,k, ., diverges to infinity
as well, and q;nl Inn,, converges to zero, as n — oo.

For each n € N, let

Lo = [1 € P, I C AT NATY, |7, (D] < (3.11)

1
nnkanJrl ,
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and let
Eno=|J I  E, =T, for i=1,..,q, —1 (3.12)
IeTyo
We define
qan_l
E,:= | E,; (3.13)
i=0
and
E:=limsupkE, = ﬂ U E;. (3.14)
n— oo n=1j=n

Proposition 3.4. u(E) =1.

Proof. The number of the elements I of partition P, ,, inside of Ag”‘_l) that do
not belong to E, , is bounded from above by n,k, ., since the length of each of
the corresponding rescaled intervals 7, (I) C an(Ag’"_l)) is larger than (n,k, )"
and the length of their union is less than or equal to 1. Since the invariant measure
of the intervals r;f([fj;l(—l),fjn(—l)]) is independent of i and equal to M(Ag’”)), for
i=1,...,k, 41, and A7 c o W(FN(-1), fE (~D)D), fori =k, ., + 1, we have

MKy 1 14 (DG™)

W(En0)/ 1175, (1=1,00) = 1 — : — >
: kon+1M(Ag M) Aty

1—1n,. (3.15)

By the invariance of the measure pu, M(En,i)/lt(A§g”_l)) >1—n,. Since

Gop,—1 Qop-1—1
DA+ D A = g AT + g ATV =1, (3.16)
i=0 i=0

Qo1 = G, a0 w(AG™) = u(z5 1 (1=1,£,, (=DD), we have

w(E,) > (1—n )M. (3.17)

Since nUjsnEp) > w(Ey, for any i > n, and u(E;) — 1 as i — oo, it follows that
n(UjspEp) =1, forany n € N. The claim follows. |
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3.4 Distance of dynamical convergents

In this section, we consider circle maps (orientation-preserving homeomorphisms of a
circle) T with an irrational rotation number and bounded variation V = Varp In T < oco.
Consider the dynamical partitions of a circle defined by an arbitrary point x, € T!. The
following proposition holds for all intervals I, C Agn_l) such that I, € P,,; and the

corresponding intervals I; = T'(I,), i € Z.

Proposition 3.5. If T is C'*BY(T!) orientation-preserving circle diffeomorphism with

|A§n71)| ol

for
gy’

an irrational rotation number, there exists C; > 0 such that |I;| < C,;

alli=0,...,q,—1,andallneN.

Proof. Fori=0,...,q,—1,thereexist{; ; eI, ; C AEE;I) and §;_; € Agffl) such that

I;] TGl TGy 1l
e = D = T T (3.18)
ATV T ) G- |A" T
This implies the estimate
I T' (¢ ) — T' (&
2 (e e Tt Bl a1
1A T'(§1) AT

By iterating this inequality, we obtain that, for some ¢;,§; € AJ(."_I),

i-1 T/(C) — T (&
) H( L) @J)l) ol (3.20)

NGl ming i ') ) |A0Y)

Using the obvious inequality 1 4+ x < e*, we obtain

I ST @ -TEI I
Al | =5 Milgem T'(%) A"
Since, fori=0,...,q, — 1, the intervals Agnfl) do not overlap except possibly at the end
points, we have
qn—1 gn—1
DT - T' &) < maxT (0 D IInT'(g) —InT'¢)| < VmaxT 0, (3.22)

Jj=0 Jj=0
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where V = Varp In T”. Since T’ is bounded both from below and from above by positive

constants, the claim follows. | |

Let I, = max,.q [T — &|. If T is C'*BY(T') orientation-preserving circle

diffeomorphism, Denjoy’s theory implies that, for some C > 0,

(A) In(T9%) () <V, for any & € T};

1
(B) ln < C)\n, where A = Tre2V"

Proposition 3.6. If T is C!*BY(T!) orientation-preserving circle diffeomorphism, then

there exists C, > 0 such that, for all x € E, there are infinitely many n € N such that

CylA Y|

|T%nx — x| < , (3.23)

nnkan—i-l
where AE“"il) is an element of partition P, containing x.

Proof. For every x € E, there are infinitely many n, such that x € E,. Furthermore,
there exists an element I; of partition P, ., inside E,, ; C A%””fl), forsomei=0,...,q, —
1, such that x € I;. It follows from the definition of E,, , and Proposition 3.5 that there
exists x € E, ;, such that I; = [x, T%n x] and |[;| < Cl|A§Un_l)|/(7lnkan+1)- Then, |x — x| <
Ty — x| < 1A V1 (kg 41)-

Since there exists ¢ € I; such that
Tinx = Ty + (T%) (0)(x - X)), (3.24)
we obtain the following estimate:
|T9nx — x| < |T% x — x|+ |x — x| + (T%) ()lx — xI. (3.25)

If T is C1*BY(T1) orientation-preserving circle diffeomorphism, by Denjoy’s estimate (A),
we have In(T9")'(§) < V, for all £ € T!. The claim now follows. |

Let x; = T'x, and let I = [Xi_qn,

Let xo € T', x; = T yo, and let AJ(."_I)(XO) = [Ty, x;], if n is even, or AJ(.n_l)(XO) =

x;], if n is even, or I; := [Xi,Xi_qn], if n is odd.

[xj, T9 1 x;1, if n is odd.
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Proposition 3.7. Letx e A](‘"fl)(xo). There exists C5 > 1 such that

I, |
(n—-1) | qn
|I;] < C3|A; Kj—g )| — (3.26)
‘ 1A ()]
foralli=0,...,q,—1.
Proof. It follows from the mean value theorem that, fori = 0,...,q, — 1, there exist
g€ A V(i) UAT (1 g, and & € ATV (x;_, ), such that
o TGl Gl TG 8.27)
(n—1) = 1 A(m—D) = T (-1 e ‘
ATV OGog)] 1T AL OGog )] 1A (g ) TG0
This implies the estimate
I. I. T () — T/ (&
1 (1 TG (sm) _ 3.28)
AP D g 18T g, ')
By iterating the latter inequality, we obtain
I an—1 /
;] - IIg,,| 1T (&) — T' ()1 (3.29)
(n—1) - (n—1) i 4 ’
1A (g 187" (x0)] i N [T/
Since the intervals AEnfl)(xj_qn), fori =0,...,q, — 1, belong to the same partition of
a circle, taking into the account the order of points ¢; and &, fork =1,...,q, — 1, we
obtain
I. I, | maxg 1 |T'(§)]
(n—1|)l| N =y eXp( =l o). (3.30)
187V g 18 (o) ming . [T7(§)]
The claim follows. |

Propositions 3.6 and 3.7 and Denjoy's estimate (A) imply the following lemma.

Lemma 3.8. If T is C!*BV(T!) orientation-preserving circle diffeomorphism with an

irrational rotation number p, then there exists C, > 0 such that, for all x € E, there are
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infinitely many n € N such that, foralli =0,..., 2q0n -1,

Cyl, _
X —x,_, | < —2on7l (3.31)
13 1 q”n n k
nVop+1

Proof. Fori = 7y the claim holds directly from Proposition 3.6, with C, > C,.
Propositions 3.6 and 3.7 together imply (3.31) for i = 0,....9,, — 1, with C, > C,C,.
-1,

—x;| <e’lx;—x;_g | fori=1,...,q, —1. [

Using Denjoy's estimate (A), the bound (3.31) can be extended toi =g, +1,...,2q

On
with C, > C,C,eY, since |x;
4 — ~¥2%3 ! 1+qop

3.5 Proof of the main result

Proof of Theorem 1.5. Letp, /q, be the sequence of rational convergents of p, given by

the truncations of the continued fraction algorithm of p. If p satisfies L < o8, then § > 0

In krrn+1

and there is an increasing sequence o,,, such that 8 =1lim,,_ -

. In particular, the
subsequence k, ., diverges to infinity. Let 5, be any sequence converging to zero such
that n,k, ., diverges to infinity as well, and the sequence q;nl Inn,, converges to zero.
We use these sequences to construct the set E, as in Section 3.3. For every x € E, by
Lemma 3.8, there are infinitely many n, such that estimate (3.31) holds. This implies

B > B. The claim now follows from Theorem 3.3. |
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