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ABSTRACT: The involvement of lattice oxygen species is important
toward oxidative coupling of the methane reaction (OCM) over
supported Mn-Na,WO,/SiO, catalysts, but there is no consensus
regarding the types, role, and origin of lattice oxygen species present in
supported Mn-Na,WO,/SiO, catalysts, which hinders the under-
standing of the OCM reaction network. In the present study, by
utilizing the temporal analysis of products technique, we show that
supported Na,WO,/SiO, catalysts possess two different types of
oxygen species, dissolved O, and atomic O, at an OCM-relevant
temperature. The addition of Mn-oxide to this catalyst increases the
total amount and release rate of dissolved O, species and improves C,
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temporal analysis of products (TAP)

O xidative coupling of methane (OCM) offers great
potential for the single-step conversion of natural gas
to value-added C, products." Among hundreds of catalysts
tested for the OCM reaction, the supported Mn-Na,WO,/
SiO, catalyst exhibits excellent thermal stability and high C,
product yield.”* The obtained C, yield, however, needs further
improvement for achieving practical industrial application.
This demands an advanced molecular-level understanding of
the Mn-Na,WO,/SiO, catalysts’ structure and the associated
OCM reaction mechanism.’

The complexity of the OCM reaction mechanism arises
from the involvement of both gas-phase and surface reaction
networks. Additionally, multiple types of lattice oxygen species
in Mn-Na,WO,/SiO, catalysts have been proposed to
contribute toward the OCM reaction in a Mars—van Krevelen
type mechanism that further complicates the catalytic
system.”” A summary of the types of lattice oxygen species
is given in Table 1 and briefly discussed below.

The conversion of CH, over Mn-Na,WO,/SiO, catalysts, in
the absence of gas-phase molecular O,, indicates the
involvement of lattice oxygen species.””® Additionally, pulses
of CH,+"0, gas mixtures over Mn-Na,WO,/SiO, catalysts
(preoxidized with '°O,) produced both '*O- and 'O-
containing CO, products.” This further highlights the
importance of lattice oxygen toward the OCM reaction
mechanism. The first detailed investigation of the nature of
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lattice oxygen species was conducted by sequential pulsing of
0,-CH, in a temporal analysis of products (TAP) reactor, with
only C,Hg and CO, as OCM products.” The amount of CO,
produced decreased with increasing time spacing between O,
and CH, pulses, while the C,H formation amount remained
unaltered. This is possible if at least two different types of
lattice oxygen species, loosely bound and strongly bound, are
involved in the formation of CO, and C,Hg products,
respectively.” A subsequent study utilizing anaerobic CH,,
C,Hy, and C,H, temperature-programmed reduction (TPR)
experiments proposed that electrophilic and nucleophilic
lattice O species are responsible for C, and CO, product
formation, respectively.’ In a different investigation, the
activation energy values for C, and CO formation were
found much higher than that of CO, formation.” This suggests
CO, formation must come from one type of site containing a
loosely bound oxygen species, whereas the CO and C,
products form on a second type of site possessing a strongly
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bound oxygen species. However, none of the above
investigations reports the origin of lattice oxygen species
observed in the corresponding studies.

Attempts to determine and assign the source of the lattice
oxygen species present in the supported Mn-Na,WO,/SiO,
catalysts are limited. One investigation reported the presence
of two different types of lattice oxygen species, strongly bound
and weakly bound, which can be removed from the catalyst by
CH, or H, reduction above 600 °C and by temperature-
programmed desorption above 650 °C, respectively.” This
study speculated the transition of Na,WO, from crystalline to
molten phase as the reason behind the release of weakly bound
oxygen species. In contrast, a follow-up study utilizing
calorimetric measurements of the enthalpy change for multiple
reduction and oxidation steps of Mn- and W-oxide phases
suggested the weakly bound oxygen is associated with the Mn-
oxide phase, while strongly bound oxygen originates from the
reduction of W-oxide phases.7 However, in situ Raman, X-ray
diffraction (XRD), and thermogravimetric analysis pointed out
that the sodium oxide (Na,O) present in the Na,WO, molten
phase is responsible for the reversible exchange of oxygen (O,)
between the catalyst lattice and gas phase, and the redox cycle
of Mn-oxide phases in Mn**WO, and Mn**Mn?**SiO,, further
expedite this process.'” However, the same study did not
provide experimental evidence for the presence of Na,O
species.'” Moreover, the Mn,SiO;, and MnWO, phases,
proposed to be crucial for lattice oxygen release and storage,
are not observed with other in situ investigations under OCM
reaction conditions.''~"> These observations suggest that the
catalytic OCM reaction can proceed even in the absence of
these oxide phases (Na,O, Mn,SiO;;, MnWO,) and raise
questions regarding the role of these 3D phases toward the
lattice oxygen exchange.

A complete fundamental understanding of the types and
nature of lattice oxygen species is important for correctly
establishing the OCM reaction mechanism for the supported
Mn-Na,WO,/SiO, catalyst. Moreover, knowledge about the
structure of the working catalyst will assist in rational catalyst
development by identifying the source oxide phases of these
lattice oxygen species. Recent in situ Raman and XRD studies
show that the crystalline Na,WO, phase melts in the high-
temperature OCM reaction environment.'’™"* The crystalline
Mn,0O; phase also becomes unstable and reduces during
OCM.">"*'* Surface Na-WO, sites are also present and are
thermally stable and catalytically active for the OCM
reaction. ®'” These recent structural insights warrant advanced
investigation of the lattice oxygen species of Mn-Na,WO,/
SiO, catalyst, which is the focus of the current study.

The unique TAP features (controlled pulse size with
excellent time resolution for probing the catalytic sites in a
time-resolved manner)'® are applied in the present inves-
tigation to address the (i) types of oxygen species present in
supported Na,WO,/SiO, catalysts at OCM reaction temper-
atures, (i) origin and nature of these oxygen species with
regards to the oxide phases present in Na,WO,/SiO, catalysts,
and (iii) effect of Mn toward the formation of oxygen species
in the conventional Mn-Na,WOQO,/SiO, OCM catalysts. The
details of the catalyst synthesis, structure, and experimental
protocols are provided in the Supporting Information.
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B '°0,-'®*0, PUMP—PROBE EXPERIMENTS

In the '*0,-'%0, pump—probe experiment, oxygen activation
by the catalytic active phases was studied by introducing a
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Table 1. Types, Role, and Origin of Lattice Oxygen Species Proposed in the Literature of Supported Mn-Na,WO,/SiO, Catalysts for the OCM Reaction
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pulse of '®0, (pump pulse) into the catalyst bed, followed by
an '®0, pulse (probe pulse), with a fixed time delay between
these pulses. For the SNa,WO,/SiO, catalyst at 800 °C (see
Figure 1), desorption of molecular '°O, is observed coincident

——— 5Na,WO,/Si0, (800 °C)
—— 0.5Na-5WO /Si0, (800 °C)
——— 5Na,WO,/Si0, (650 °C)

-8
8x10 I 5Na,WO,/Si0, (800 °C)
I 0.5Na-5WO /SiO, (800 °C)
I 5Na,WO,/Si0, (650 °C)

MS Signal of '°0, (a.u.)

160, Desorbed (mol/g cat)

time (s)

Figure 1. Mass-spectrometer (MS) response of 160, during 160,-1%0,
pump—probe experiment (pump—probe spacing, At = 2 s). The inset
shows the quantified '°O, evolution, coincident with the injection of
180, pulse.

to the secondary '*O, probe pulse. The 5Na,WO,/SiO,
catalyst contains both surface Na-WO, sites and molten
Na,WO, phase at 800 °C (see Figure S 1 and associated
discussion). To better understand the origin of this molecular
160, species, the same experiment was repeated for 0.5Na-
SWO,/SiO, catalyst (at 800 °C), which possesses only the
surface Na-WO, sites (see Figure S 1). Interestingly,
desorption of 'O, was not observed from the surface Na-
WO, phase, confirming that Na,WO, is the source oxide phase
for '°0, species. Further, when the temperature of the
SNa,WO,/SiO, catalyst was decreased to 650 °C, below the
melting temperature (~698 °C) of crystalline Na,WO,, the
pulse response of 0, coincident with secondary *0, pulse,
drastically decreased, indicating that only molten Na,WO,
phase is capable of releasing '°O, species. Additional
investigation and analysis of '°O, evolution from these two
catalysts at different temperatures (see Figure S 2 and
associated discussion) suggested that the '°0, species released
by 5Na,WO,/SiO, catalysts are due to the desorption of
dissolved oxygen from the molten Na,WO, phase.

B ANAEROBIC 3CH, SERIES PULSING

To identify other possible kind of oxygen species, an anaerobic
OCM reaction was conducted over the 5Na,WO,/SiO,
catalyst at 800 °C by pulsing only *CH,/Ar. During the
initial pulses of *CH, (see Figure 2), molecular O, desorption
from the 5Na,WO,/SiO, catalyst was observed. No such
desorption of dissolved molecular oxygen species was observed
when the same experiment was conducted over the 0.5Na-
SWO,/SiO, catalyst at 800 °C (see Figure S 4). This further
verifies that the '°0, response from 5Na,WO,/SiO, catalyst
comes from the molten Na,WO, phase. Interestingly, even
after the complete release of this dissolved O, species (after
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Figure 2. Yield of various products during anaerobic *CH, series
pulsing over 5Na,WO,/SiO, catalyst at 800 °C. The corresponding
3CH, signal and conversion are shown in Figure S 3.

pulse number 150), generation of the OCM reaction products
continued until up to ~350 pulses. This clearly indicates the
presence of a second kind of oxygen species (that must be
atomic in nature, lattice O) in the lattice of SNa,WO,/SiO,
catalyst. The origin of lattice O species is assigned to the
surface Na-WO, phase since the only other oxide phase
present in the catalyst is surface Na-WO, sites. Additional
support for this conclusion comes from anaerobic '*CH, series
pulsing over the 0.5Na-SWO,/SiO, catalyst, which registered
both CH, conversion and production of *CO, *C,H; (see
Figure S 4 and associated discussion). Further investigation
shows that the amorphous bare SiO, and the crystalline
cristobalite silica supports do not participate in the formation
of dissolved O, and atomic lattice O species, confirming their
origin from the molten Na,WO, phase and surface Na-WO,,
sites, respectively (see Figure S S—S 7 and associated
discussion).

B PROMOTIONAL EFFECT OF MN

160,-%0, pump—probe experiments for 1.2Mn/SiO, and
1.2Mn-5Na,WO,/SiO, catalysts were performed to examine
the promotional effect of Mn. The generation of '°O, and
16080 products, induced by injection of the ‘30, probe pulse,
are shown in Figure S 11. Figure S 11a indicates that the total
amount of 0, released from 1.2Mn-5Na,WO,/SiO, catalyst
is ~25% higher than the sum of '°0, released from SNa,WO,/
SiO, and 1.2Mn/SiO, catalysts. To investigate this further, the
height normalized pulse response of Ar and '°O, (after %0,
injection) are analyzed (see Figure 3). The identical Ar
response curves for all catalysts indicate the uniformity of the
experimental protocol (see Figure 3a). The '°O, desorption
trends are strikingly different for all the catalysts. The
5Na,WO0,/SiO, catalyst exhibits the slowest '°O, desorption
with a peak desorption time of 0.23 s (see Figure 3b). The
1.2Mn/SiO, catalyst shows the fastest '°O, desorption
indicating MnO,’s ability to rapidly exchange oxygen between
the gas-phase and the catalyst lattice (see Figure 3c). The
addition of Mn to 5Na,WO,/SiO, catalyst has multiple effects
(see Figure 3d): (i) the desorption peak time of 6O,
decreased, indicating that Mn addition improves the dissolved
oxygen (O,) exchange rate of SNa,WO,/SiO, catalyst and (ii)
the '°0, desorption trend broadened significantly. The
broadening effect in the low desorption time regime is
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Figure 3. Height normalized mass-spectrometer response curves of Ar
(a) and 0, (b, ¢, and d) upon injection of !0, in the *0,-'*0,
pump—probe experiment (pump—probe spacing, At = 2 s) conducted
over different catalysts at 800 °C. Plot (d) is deconvoluted into 3
parts to show the effect of Mn addition to SNa,WO,/SiO, catalyst.
The cumulative trend of the three deconvoluted peaks is also shown
by the dotted line in plot (d).

attributed to the release of oxygen species associated with the
Mn-oxide phase (red highlighted area in Figure 3d). On the
other hand, broadening in the high desorption time regime
could be due to the release of additional dissolved oxygen
species in the molten Na,WO, phase that accounts for the
excess 25% oxygen release (green highlighted area in Figure
3d).

The above observations indicate (i) the independent
existence of the Mn-oxide phase and also (ii) the presence
of interaction between Mn-oxide and molten Na,WO, phases
in 1.2Mn-5Na,WO,/SiO, catalyst. To further verify these
phenomena, 3CH, series pulsing experiments were conducted
for 1.2Mn/SiO, and 1.2Mn-5Na,WO,/SiO, catalysts (see
Figure S 8 and Figure S 9 and associated discussion), and the
selectivity values of the products were calculated (see Figure 4
and Figure S 10). From Figure 4, one can see that the *C,Hy
selectivity for SNa,WO,/SiO, catalyst remains constant
between ~25—30% over the range of *CH, pulses (up to
100). For the 1.2Mn-SNa,WO,/SiO, catalyst, however, the
13C,Hj selectivity increases up to pulse number 30 and remains
fairly constant at the higher pulse numbers. The discrepancy in
the ®C,Hy selectivity values of 5Na,WO,/SiO, and 1.2Mn-
5Na,WO0,/SiO, catalysts, in the first 30 pulses, can be
attributed to the dominating contribution of Mn-oxide
(present as a separate oxide phase) in 1.2Mn-SNa,WO,/
SiO, catalyst (compare the “C,Hg selectivity trend with
1.2Mn/SiO, catalyst in Figure 4). For a pulse number higher
than 30, the *C,Hj selectivity of SNa,WO,/SiO, and 1.2Mn-
5Na,WO0,/SiO, catalysts remains fairly constant. However, the
significantly higher '*C,Hy selectivity (~45—50%) observed
for 1.2Mn-SNa,WO,/SiO, catalyst further confirms the
promotion effect of Mn on molten Na,WO, phase and surface
Na-WO, sites (through close interation between Mn-oxide,
molten Na,WO,, and surface Na-WO,, phases).

Additional investigations regarding the effect of Mn toward
oxygen dissociation (see Figure S 11 and Figure S 12 and
associated discussion section) indicate that (i) when Mn is
present alone (1.2Mn/SiO, catalyst), it is capable of
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Figure 4. '*C,Hj selectivity fraction for various catalysts. The original

data used for this are presented in Figure 2 (SNa,WO,/SiO, catalyst),

Figure S 8 (1.2Mn/SiO, catalyst), and Figure S 9 (1.2Mn-5Na,WO,/
SiO, catalyst).

dissociating molecular O, to form large amounts of '°0'*0
scrambled products, and (ii) addition of Mn to SNa,WO,/
SiO, catalyst does not result in the increase of oxygen
dissociation capability.

In conclusion, the supported S5Na,WO,/SiO, catalyst
possesses two distinct kinds of oxygen species at 800 °C: (i)
a dissolved molecular O, type species only released from the
molten Na,WO, phase and (ii) an atomic lattice O type
species associated with surface Na-WO,, sites that can be
removed by reduction with CH,. Both these oxygen species are
catalytically active for the OCM reaction. Moreover, the
1.2Mn/SiO, catalyst also releases molecular O, type species
associated with the Mn-oxide phase. However, these O,
species associated with the Mn-oxide phase are highly
unselective toward C, product formation. The addition of
Mn to 5Na,WO,/SiO, catalyst (i) accelerates the release of
dissolved O, species, (ii) increases the total availability of
dissolved O, species, (iii) improves the selectivity of dissolved
O, and lattice atomic O species toward C, product formation,
and (iv) does not improve gas-phase O, dissociation capability
of 1.2Mn-5Na,WO,/SiO, catalyst. The above findings add
clarity to the debate in the OCM literature regarding the active
oxygen species present in the supported Mn-Na,WO,/SiO,
catalyst, and future studies will contribute toward deciphering
the complex OCM reaction mechanism.
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