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1 | THE PROBLEM

We consider the mass-in-mass (MiM) variant of the Fermi-Pasta-Ulam-Tsingou (FPUT) lattice:
infinitely many particles of unit mass (indexed by j € Z) are arranged on a line, each connected to
its nearest neighbors by a “spring” with potential energy function V (which we assume is smooth'
and has V(0) = V'(0) = 0 < k := V"(0)). The displacement of the jth particle is U;. In addition,
each particle is connected by a linear spring (with spring constant x) to an internal resonator (of
mass u). The displacement of the jth resonator is u;. The equations of motion can be found using
Newton’s second law:

iy =x(Uj —u;).

© 2020 Wiley Periodicals LLC

1n this paper, when we say “smooth” we always mean C®.
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These sorts of lattices have been the subject of quite a bit of research of late, in large part because
engineers have found a wide variety of applications for apparatus which are modeled by MiM sys-
tems. Applications range from shock absorption' to remote sensing” and in areas from medicine?
to materials science.*

Our interest is analytical and in this paper we investigate the dynamics of (1) when 0 < u <« 1,
that is when the internal resonators have small mass. When u = 0 the second equation implies
u;j = U; and the first becomes

U] = V,(Uj+1 - U]) - V/(UJ - Uj—l)' (2)

These are the equations of motion for the standard FPUT. It takes little insight to conjecture that
solutions of (1) shadow solutions of (2) when u is small. We prove a quantitative version of such
a conjecture. However, this is not a straightforward result: since 4 multiplies the highest order
derivative in (1), the problem is one of singular perturbation. We also find something rather sur-
prising: by slightly adjusting the potential in (2) and adding some restrictions to the initial condi-
tions for the internal resonators, we can improve the accuracy of the approximation by more than
an order of magnitude.

Before getting into the weeds, we make some remarks on a recent spate of articles on MiM
and FPUT lattices and how they relate to our work. First, we mention the article by Kevrekidis
et al’. The authors use a variational argument to show that for the degenerate Hertzian potential

Vyg(h) = hi/ 2, there exists a countable number of choices for the internal mass u, converging
to zero, for which the MiM system admits spatially localized traveling wave solutions. This work
was extended by Faver et al® to apply to more general, but nondegenerate, potentials. Again, for
a sequence of choices of u converging to zero, there are spatially localized traveling waves. The
argument in Ref. 6 is perturbative and in particular, uses the u = 0 FPUT traveling wave as the
point of bifurcation. In Ref. 7, Faver proves that away from the countable collection of masses,
the traveling waves are not spatially localized but instead converge at infinity to very small ampli-
tude periodic waves, ie, nanopterons.® The point here is that despite the relative simplicity of the
system (1), from the standpoint of traveling wave solutions, the system depends subtly on the
mass of the internal resonators. This paper is, in part, an attempt to address similar issues for the
Cauchy problem. We also mention the article by Pelinovsky and Schneider’. In that paper, the
authors treat a diatomic FPUT lattice in the limit that the mass ratio tends to zero. They prove
that the small mass ratio lattice is well-approximated by the limiting monatomic FPUT lattice.
Their result directly inspired our work here. See Remark 1 for a more thorough comparison of
their work and ours.

2 | FIRST-ORDER REFORMULATION AND EXISTENCE OF
SOLUTIONS

Let

:=Uj, - U;

r; j

R] = Uj+1_Uj’ P] j = uj and pj = 'LI.J

The variables are (in order): the relative displacement between adjacent external particles; the
velocity of the external particles; the relative displacement between the internal resonators and
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their hosts; and the velocity of the internal resonators. In these coordinates (1) reads:

R=6%P
P=5[V'(R)]+xr
3)
F=p-—P
up = —xr.

We suppress dependence on the lattice site j and use the notation (6*q); := +(g.+; — g;). In fact,
(3) is in classical Hamiltonian form, though since we do not utilize this feature very strongly, we
do not elaborate.

We view (3) as an ordinary differential equation (ODE) on the Hilbert space (£2)*. The right-
hand side can easily be shown to be a smooth map in that topology and thus the Cauchy problem
is well-posed by Picard’s theorem and solutions exist for at least short periods of time. In fact
solutions exist for all ¢, at least if they are initially not too big. Before we state the result, we need
to define an appropriate norm for solutions. Let

k 1 X u
R,P = —||IR||Z + =||P||? + = 24 = 2, 4
IR, P, Pl \/2|| 2+ SIPI2 + S 1irll> + S ipll “)
Here and throughout, we use

-1 == e

The norm || - ||, is just a scaling of the usual (¢*)* norm and is equal to the (square root of the)
mechanical energy of the linearization of (3); recall that k := V"(0).
For a solution (R, P,r, p) of (3), let

. 1o, 1 o 1 5
H(t) := JEZZ <V(Rj)+ EPJ' + SKI5 + E,upj>.

If finite at t = 0, this quantity is constant for all ¢: it is just the mechanical energy of the lattice.
Here is the calculation:

H(t) = ) V/(R)R; + PjP; +xrji; + up;p;
jez
=Y V/(R)(E*P); + Py(&~[V'(R)); + xr;) + xrj(p; — Pj) — xpjr; = 0.

jez

Since H(t) = 0, H(¢) is constant. In the above, we have made liberal use of the summation by parts

identity, Zjez(5+f)jgj =— ZjeZ fj(d‘g)j.
The conservation of energy is crucial for proving:
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Theorem 1. Fix x > 0 and assume that V : R = R is smooth with V(0) = V'(0) = 0 and
V"(0) =: k > 0. There exists p,, = p,(V) > 0, such that, for any u > 0, if

”(RO’PO’rO’p())“,u < P

then the unique solution of the MiM lattice (3) with initial data (Ry, Py, g, Do) exists for all t € R
and

IR(®), P(2), r(8), p(E)Il . < 21I(Ro, Po, 7o, Po)ll -

Proof. The hypotheses on V imply, by way of Taylor’s theorem, the existence of o,, > 0 for which
.k . k
|h| < o, implies th < V(h) < kh?. Thus, if ||R||;~ < 0, we have Zjez ZRJZ' < Ejez V(R)) <

Yz kRJz.. This in turn implies

1
SIRPrp)IZ < H < 2R P,r, DI )
when
IRll¢w < 0. (6)

That is to say when (6) holds, \/ﬁ and ||(R, P, r, p)||, are equivalent.
Since H is constant, (5) gives us:

1
SIR@®), P(D), r(®), p)l, < H(t) = H(0) < 2[|(Ro, Po, o, Pl
If we cut out the middle terms and do some simple algebra we arrive at

”(R(t)7P(t)’ V(t), p(t))”/,( < 2||(R07P07r07 pO)”,u (7)

This is the final estimate in the theorem but we are not yet done. The reason is that (7) only holds
for those values of t where (6) is true.

By restricting the initial data, we can ensure that (6) holds for all ¢ and thus so does (7). Here
is the argument. We have the “¢? C ¢ embedding estimate” ||R||;- < ||R||. Moreover, the defi-
nition of [|(R, P, r, p)||, implies ||R|| < \/2/_k||(R, P,r, p)l|,- Putting these together with (6) we see
that we have (7) for those t when

IR, PO, (1), pOI, < @a*. ®)

Now assume

1 [k
1(Ro> Po, 7o, Pl < Z\/;O'* =! P, 9)

Thus (8) holds initially and the inequality is strict. The solution of (3) with these initial data either
satisfies (8) for all t € R (in which case we have (7) for all t € R and we are done) or it does not.
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If it does not then, because the solution is continuous in ¢, there is a time ¢; for which

I(R(#1), P(t1), r(t1), p(E )l = \/gcf*. (10)

However, note that at this time (8) is met and so we have (7). Putting (10), (7), and (9) together we
obtain

\/go'* = “(R([l),P(tl)’ r(tl)sp(tl))”y < 2||(R0’P0’r0’p0)”,u < %\/go'*

This is an absurdity and thus (8) is met for all ¢t and we are done. [ |

3 | THE APPROXIMATION THEOREM

In this section, we prove a general approximation theorem for (3). Once this is done, we will turn
our attention to the specific problem of approximating MiM by FPUT.
For any function

®;(1) = (R;(1), P;(0), 75(1), B (1),

define the residuals

Res, (@) := 7P —R

Res,(®) := 6 [V/(R)] + xr — P
(11)

Res;(®) :=p—P -7

Resy(®) 1= —xF — up.

The residuals are identically zero if and only if ® solves (3). Our result gives sufficient conditions
on ® so that the smallness of the residuals implies solutions of (3) are well-approximated by ®.

Definition 1. We say {®* = (R¥, P*,7¥, P"ue(o,u) 18 @ family of good approximators of OuN)

for (3) on the interval [-T,, T,.] if the following occur.
First,

{8} o) € C =T TLL (€)Y,

Second, the residuals are small: there exists C > 0 for which u € (0, 1] implies

_ — _ 1 _
sup \/ | Res (@)]12 + || Resh (@4)[|2 + || Resh (PH)]12 + L. Res,(®4)[|2 < CouN. (DD
[t|<T,
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Finally, R* and d,R* are not too big: there exist «,, 8, > 0 so that u € (0, u,] implies

sup [|[R*|lp» <, and sup ||atie7*” < B.. (D2)
|tI<T. |t|<T., ¢

We additionally require that

a, <sup{a: V'([-a,al) C [k/2,2k]}. (D3)

Here is our result:

Theorem 2. Fix x > 0 and assume that V : R — R is smooth with V(0) = V'(0) = 0 and
V"' (0) =: k > 0. Suppose that {®* = (R, P*,7*, D ue(o,) IS a family of good approximators of
O(uN) for (3) on the interval [T, T, ], where N > 0.

Then, for all K., > 0, there exists positive constants p, and C, such that the following holds when

p € (0, ). If
@5 — SOl < K™ (12)
and ®* is the solution of (3) with initial data (Dg then
|0#(1) = DX, < Copt (13)

forallt € [-T,,T.]
That is to say, if ®* and ®* are initially O(uN) close then they are O(uN) close on all of [T, T ].

Proof. Part 1—the Error Equations: Let

U = (31, 92,93, 9y) 1= DF — DK,

This is the error between the true solution and the approximator. A direct calculation shows that
WY satisfies

)1 = 61, + Res! (DH)
Py =67 [W (15 0)] + xth3 + Resh(DH)
¥3 = Py — o + Resy (D)

uy = —xhs + Res) (D),

(14)

where

Wi = VIR0 +) - VIR (1),
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Note that W;(g ;1) = 0:W;(¢;t) with

Wi =V (ﬁ;‘(t) + g) _v (E;‘(t)) _y (Ejf(t)) . (15)

We are done when we show that ||¥(¢)],, < c.uN fort € [-T,,T.].
Part 2—the Modified Energy: The heart of the proof is closely related to the conservation of the

energy H. Let
. 1 2 1 2 1 2
E() 1= Y, W) + 593 + 5% + Su97 ).
JEZ

This quantity is a modification of H and, while it is not conserved, grows only slowly. Below, we
will show that \/E is equivalent to ||¥]|,,, but first we compute its time derivative to develop the
key energy estimate:

E(t) = 2 (W @)1 + W (@15 0) + Yoty + k33 + uipais).

Jjez
Using (14)

E(t) = ) (W' @15 0) (8%, + Resy (BH)) + 9, (87 [W/ (13 0] + xh; + Res) (BH))
JEZ

+ 13 (Vs — Py + Resy (D)) + Py (—xh; + Res); (PH)) + 3, W (Y131)) -

There are many cancelations:

E@t) = 2 (W’(z,bl; 1) Res’f(@f‘) + P, Res’;(ff)/‘) + k3 Resé‘(?{“)f‘) + 1y Resff(@‘) + 0, W(y; t)).
jez

Using the Cauchy-Schwarz inequality, Young’s inequality, and (D1) we estimate the above:
: Lo 2, 1 2, K 2, H 2 L o oon
E(t) < SIW Gu DI + 3117 + S 10112 + S 194l + 16, W @y Dller + 5Cou2N. 16)

To go further than this, we need more information about W'.
Part 3—Estimates for W: Taylor’s theorem tells us that for { € R we have

1
SDE EV”(zj(t))Q'z,
where z(t) lies between ﬁﬁ.‘ (t) and ﬁ;‘ (t) + ¢. We have assumed (D2) and the condition (D3) on

a, tells us that V”(Eﬁ.‘(t)) € k/2,2k] for jeZ,t € [-T,,T,] and u € (0, 4y]. Thus, since V is
smooth, there exists 7, > 0 so that |{| < 7, implies V"' (z;(t)) € [k/4,4k] and as such

Ko cwien<are a7)
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Now suppose that y € £2 has ||y|| < 7. Since £ C £® we have ||y||s» < ||7||. Thus (17) gives
us:

k 2 . 2
377 SWilrt) < 2ky;.
And so

k
Iyl < 7= <llyI? < Y Wirs0) < 2klly )12 (18)
8 jez

This estimate in turn implies that, forall t € [-T,,T,] and u € (0, o],

1
1l <7, = ZII‘PIIf, <E(t) <41¥Il 19)

This is the equivalence of \/E and [|¥||, which was foretold. Completely analogous calculations
can be used to show that

IVl < 7o = W/ (r; Ol < 4kl . (20)
‘We also need an estimate on d;W. Computing the derivative gets:
S — Su S S S
Wit =V (Riw+¢)-v' (Rw) -v" (Ri®) ¢[a.Ry.
Taylor’s theorem tells us that
1 ~
oW;(;t) = EV”’(zj(t))Q'zatR?

with z;(t) in between RV;‘ and ﬁ? + . Letting By := max <., 44, |V ()| and using the estimate
for GIR? in (D2) we now see that

1
[0, W;($; 0| < zﬁoﬁ*gz
when [¢| < 7,.. Thus we find that for all ¢t € [-T,,,T..] and u € (0, y]
7l < 7. =2 10,W s Dllez < Baliy Il (21)

where 8, = BoB./2.
Part 4—Final Steps: Applying (19), (20), and (21) to (16) gets us

E <T.(E+u™)

so long as ||, ]| < 7,. The constant T, = T',(V, S, x, Cy) > 0 is independent of u.
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We apply Gronwall’s inequality and get
E(t) < e"'(E(0) + u*N).
Then, we use (19) again:
1P < 16e™ (PO + uN).

We have assumed that [|¥(0)]|,, < K, u and we know [t| < T, so we have

4" T2\ [K2 + 1N,
POl <

~—————oro—
C.

The constant C,, does not depend on u, but the above estimate holds only so long as ||, ]| < 7..
However, we can make the right-hand side of this last displayed inequality (which controls |[#1]|)
as small as we like, so this restriction is not a serious one. And so we find that there exists x, > 0
so that u € (0, u, ] implies ||¥(t)|| < C,u" for all || < T, and we are done with the proof. [ ]

4 | THE LEADING ORDER FPUT APPROXIMATION

In (3), if we put = 0 we find that the last two equations become:
r=0 and p=P. (22)

That is to say, as one may expect, the internal resonators are fixed at the center of their hosting
particle and their velocity p is exactly equal to that of its host. Then we put (22) into the first two
equations of (3):

R=6%P and P=65[V'(R)]. (23)
Of course (23) is just a vanilla monatomic FPUT lattice, equivalent to (2). Thus, our approximating

system is

Drpyr i= (R, P,0,P), (24)

where (R, P) solves (23).

Now we will show that ®ppy 7 is a good approximator; note that it does not depend on , though
the residuals will. An argument identical to that which led to Theorem 1 tells us that there is a
positive constant p;, such that ||[R(0)|| + ||P(0)|| < p, implies

IROI + IPOI < 2(IRO)I + IPO)]I) (25)

for all t € R. Thus, so long as ||[R(0)|| + [|P(0)]| is not too big, the conditions (D2) and (D3) are
more or less automatically met and, moreover, they hold for all t € R.
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‘We compute directly that
Res; (Pppyr) = Resy(Prpyr) = Ress(Pppyr) =0
and
Resy(Brpur) = —uP = =~ [V/(R)]

Thus

_ — _ 1 —
\/” Res) (@rpyr)lI? + || Resh (@ppyr)lI + || Resy (@rpyr)lI? + p” Res), (Pppyr)|I2
= Vulls~[V'®]Il.

Standard estimates and (25) tell us that /|6~ [V B < C y/uforallt € R. Thus, we have (D1)
with N = 1/2. We now call on Theorem 2 and get:

Corollary 1. Let x>0, K, >0, T, >0, and V : R—> R be smooth with V(0)=V’'(0) =
0 and V"(0) =: k > 0. Then there exist p, = p.(V) >0, u, = u.K,,T,,x,V) >0, and C, =
C.(K,,T.,x,V) > 0 for which we have the following when u € (0, u..].

Suppose that (R, P) solves the FPUT system (23) with

IR + [IPO)]| < p.
and (R, P, r, p) solves the MiM lattice (3) with
[(R(0), P(0),7(0), p(0)) — (R(0), P(0), 0, P(O))l,, < K,/u.
Then
IR(®), P(£), (1), p()) = (R(£), P(£), 0, P(t))ll, < Corn/1t
forallt € [-T,,T,]
Remark 1. As we mentioned in the introduction, the article® treats the monatomic limit of a
diatomic FPUT lattice in the case of small mass ratio. Their mass ratio is named ¢ and is most
comparable to our internal mass . Their main result, Theorem 1, gives a rigorous error bound of

O(e) on O(1) time scales. Given the comparison €2 ~ u, our result here is exactly the analogous
one for MiM with small internal resonators.

5 | HIGHER-ORDER EXPANSIONS

The final two equations in (3) are solvable for (r, p) in terms of (R, P) with elementary ODE tech-
niques. In this way, we can eliminate (r, p) from the system (almost) entirely and are left with what
isa perturbation of FPUT with a continuous delay term. This delay term can then be approximated
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using classical oscillatory integral methods. Then we will use Theorem 2 to justify some of these
approximations, which are of a higher order in u than what we saw in Corollary 1.

5.1 | Delay equation reformulation
Take the time derivative of the equation for # in (3) and get
F=—wir—P, (26)

where

We solve (26) using variation of parameters:

t
r1(0) cos(e,t) + wiu(p 1(0) = P;(0)) sin(cu”t)] - /O sin(e, (¢ — ()P (¢')dr.

rj(t) = M

FH[r(0), p(0), P]

Though we do not use it, the equation for 7 can be used to figure out p:

t
p;(®) :[Pj(t) — w,r(0)sin(w,t) + (p;(0) — P;(0)) cos(cth)] - / cos(w,(t — t")P(t")dt’.
0

Putting the solution for r back in the first two equations of (3) gets:
R=6%P
. 27)
P =57 [V'(R)] + xF¥[r(0), p(0), P].
This system is equivalent to (3); only the initial conditions of (r, p) still play a role. Because of the
integral in F¥, this is a continuous delay equation.
5.2 | The general strategy

Suppose we have an approximation of F¥:

F#[r(0), p(0), P] = F¥ + O(uN).
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Then we can make an approximating system easily:

R=6"P
P=8"[V(R)] + kF*
(28)
F=p-P
P = —iF.

For this approximating system, we have
Res!(®#) = Resh(P*) = Res);(P*) = 0
and

Res” (B#) = kF*[7(0), p(0), P| — xF*.

Thus, modulo some details, Theorem 2 tells us that the error made by this approximation is O(uV).
The point here is that now all we have to do is find expansions of F#. Note that doing so does imply

additional conditions on the initial data.

5.3 | Oscillatory integral expansions

We put
FH[7(0), p(0), P] = [rm) cos(@ut) + - (p(0) — PO sin(@,t)| + I[P,
u

where

t
#[QI(t) 1= ——TIm / el @ut=Q(dt' .
M 0

w

Since w, = \/x/u, the frequency of the complex sinusoid is very high as u — 0% and we can use
classical oscillatory integral techniques to expand I* in (negative) powers of w,,. Specifically, we
use the following lemma whose proof (which we omit) is obtained by integrating by parts many,
many times:

Lemma 1. Suppose that f(t) is C"*'(R, C) and w # 0. Then

t . n N J . jot N
/Oeicu(z—z/)f(tr)dtr =éz<_é> f(j)(t)_% <_é> F9(0)

Jj=0 j=0

.\ h+l t
+ _t eiw(t—t,)f(n"'l)(t/)dt/.
@ 0

(29)
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In this lemma, the integral term and the j = n terms in the sums are O(1/w"*!) and all other
terms are lower order. Using this observation, we get the expansion

. n—1
L,[QI) = —Im(# > < ) ( ) Q(’)(O)> +&,[Q1(1),  (30)
u j=0 D =

where the estimate

€ IQIMI < o <IIQ(”)(I)II+IIQ(”)(0)II+III sup IIQ(”“)(t)II) (31)

Wy le/1<le)

is easily obtained. The above estimate tells us that we expect £ = O(u"/>*1).
If Q is purely real (as in our application), taking the imaginary part eliminates the odd values

of j from the first sum in the expansion of I,. This, and the annoying but easily verified fact that

(—1)j/2 cos(wt), jiseven

Im(ie®! (—i))) = .
=DV sin(wt), jis odd

lead us to

L =-+5 3 00

n—1 _ -/2
+ iz( &QU)(O)> cos(@,f)
@y \ j=0,even Cl)i
o )G-D/2
+ %( > LQQ)(O)) sin(e,t)
@y \ j=1,0dd wfl
+ £, 1QI®).

The first sum is over evens and so only changes for every other n. To squeeze the most out of
the above expansion, we therefore choose n = 2m for integers m. A bit of reindexing gives us

m—1

15

2
M k=0 w

i< Z ) cos(wt)

2
u k:Ow

L[QI(t) =— Q(z")(t)

e

8

(32)

%( Z -1 Q(Z"“)(O)) sin(w,t)

+ &, 1Q1().
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5.4 | The FPUT approximation revisited

Now that we have our oscillatory integral expansions (32), we get back to approximating solutions
of (3). Applying (32) with m = 0 to F#[r(0), p(0), P] yields

FH[r(0), p(0), P] = |r(0) cos(ea, t) + wi(p(o) — P(O))sin(w,t)| + EXTPI(0). (33)
u

Our computations above indicate that £/ is @(1) and we can make the other terms above small
by restrictions on the initial conditions. ’?’hus, we put

Fr =0.

In which case the approximating system (28) consists of a standard FPUT

R=6"P
) (34)
P=¢5[V'(R)
whose solution drives a simple harmonic oscillator
F=p-P
, (35)
KD = —KT.

This is very similar to the approximation from Section 4. The key difference is that instead of ¥ = 0
and p = P as in Corollary 1, the internal oscillators solve their equations of motion exactly with

the caveat that they are driven by what is now an approximate version of P.
Asdescribed in Section 5.2, all the residuals apart from the second are zero, which is Res‘; (®) =
xF*{7(0), p(0), P]. Using (31) and (33), we have:

l| Res5 (@01l < C(IIFO)] + 1/l B0) — P(O)]])
+ C/«£<IIP(t)II + POl + || |tS|l<1¥ III%(t)II)-

Because it is part of the solution of FPUT, P satisfies a global in time estimate like (25). A routine
bootstrap argument can be used to get global in time control of all higher-order time derivatives of
P as well. Therefore, the final term above is genuinely O(u) for |t| < T,.If we additionally demand
that [|F(0)|| + /ullB(0) — P(0)|| < Cy then we have || Resh(®*)|| < Cu on [T, T.]. Theorem 2
tell us the error of the approximation (34)-(35) is O(w), a half power of u better than in Corollary 1.
Here is the rigorous result:

Corollary 2. Let x>0, K, >0, T, >0, and V : R— R be smooth with V(0)=V’'(0) =
0 and V"(0) =: k > 0. Then there exists p, = p,.(V) >0, u, = u(K,, Ty, %, V) >0, and C, =
C.(K,,T,,x,V) > 0 for which we have the following when u € (0, u..].
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Suppose that (R, P) solves the FPUT system (34) with
IRO)Il + 1PO)] < p..
and (7, p) solve the driven simple harmonic oscillator (35) with

IFO)Il + 4/ullp(0) — P(0)|| < K, u.

Furthermore, suppose that (R, P, r, p) solves the MiM lattice (3) with

I(R(0), P(0), (0), p(0)) — (R(0), P(0), 7(0), P(O))|| , < p.

Then

IR, P(t), (1), p(1)) — (R(®), P(D), 7(1), P(D) Il < C.pt

forallt € [-T,,T,].

5.5 | The higher-order FPUT approximation

Going to next order of the approximation has a surprising outcome: the approximation remains
an FPUT approximation. Applying (32) with m = 1 to F#[r(0), p(0), P] gets us, after some algebra,

FH#[r(0), p(0),P] = — %P

Dy

+ <r(0) + %P(O)) cos(wyt)
w

K (36)

+ w_< p(0) — P(0) + ;P(O)> sin(wt)

K u

+ E[PI().

We can make the second two lines as small as we please by imposing restrictions on the initial
data and the last line is expected to be @(u?). Thus we are lead to the choice of
Pr=—tp-= £,
Wy
With, this (and some really easy algebra) we form an approximating system from (28). The vari-
ables (R, P) solve

R=6%P

. ~ 37)
—— 5 [V'(®)]

p=
1+pu
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and the variables (7, p) solve

F=p-P

R N (38)
Up = —x7.

These are, again barely different that the FPUT approximations (28) or (34)-(35). The (R, P) system
(37) is once more FPUT, but the potential function is slightly modified by the factor 1/(1 + u), a
roughly O(u) change.

To wit, we compute the residuals. As we saw above in Section 5.2, only Res,(®*) is nonzero and
in this setting is given by

Res,(3H) = K('f(O) + %ﬁ(@) cos(w,t)

Wy
+ \/ﬁ<5(0) — P(0) + w—zﬁ(0)> sin(w,t) 39
"
+ 1kEXPI).
Since (R, P) satisfy an FPUT system, we get global in time estimates for them as in (25); that there

is a mild u dependence in the equations for (R, P) does not effect this estimate in any way, so long
as u is not too big. And, as in the previous section, it is elementary to bootstrap and get u-uniform

estimates on P, P, and so on. Thus if we apply (31) we find
IELTPION < CCU;"_2<||P(4)(0|| + [PD)]| + |T| sup ||P(5)(f/)||> < Cpl
t'<|t|

Then we demand

7(0) + —P(0) <cu.
w

u

+ VR

B(0) — P(0) + —P(0)
w
u

In which case we now have || Res,(®)|| < Cu?. Since P= (1 4 w)~18~[V'(R)] we can rewrite the
above condition in a slightly more functional way as

u
x(1+ w)

[0+ o v @on| + vpo - For +

x(1+ w) 5‘[V”(R(0))5+P(0)]H < Cu?.

And the geometric series tells us that the above is implied by

)+ £5-1V/ RO + Va|50) - F0) + E6-1vRos Fo)l| < K.

With all of the above considerations, we can invoke Theorem 2:
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Corollary 3. Let x>0, K, >0, T, >0, and V : R > R be smooth with V(0) =V’'(0) =
0 and V"(0) =: k > 0. Then there exists p, = p,(V) >0, u, = u(K,, Ty, %, V) >0, and C, =
C.(K,,T,,x,V) > 0 for which we have the following when u € (0, u.|.

Suppose that (R, P) solves the FPUT system (37) with

IRO)Il + IPO)I| < p.

and (7, p) solve the driven simple harmonic oscillator (38) subject to

FO)+ £6-1v @Ol + Vi [p0) - P + Eo-1v R0 POl | < K4
Furthermore, suppose that (R, P, r, p) solves the MiM lattice (3) with
IICR(0), P(0), (0), p(0)) = (R(0), P(0), F(0), P(O))l s < K.
Then
IR, PA©). r(0), p()) — (R(0), PO, 7o), B, < €.t

forallt € [-T,,T,].

5.6 | Challenges at the next order

Does this strategy always yield an FPUT system whose solutions drive the internal oscillators? Put
m = 2 into (32).

F¥[r(0), p(0), P] = — —P + —33P
u Dy

1 . 1
+ <r(0) + FP(O) - JafP(O)> cos(ewt)

14 I (40)

1 1. 1 .
+ w—#( p(0) — P(0) + w_iP(O) - w—ia;‘P(o)> sin(aw,t)
+ E[PI().

If we followed the earlier strategy, we would truncate after the first line and use initial data
restriction and (31) to control errors from the last two. Imagine that we do this now, then our
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approximating system reads:
R=6*P
#2 35 o ~
——P+(1+wWP=6[V(R
—0:P +(1+ WP = 5 [V/(R)] @
F=p-P
up = —KT.

Again the first two lines are self-contained, but are not an FPUT system—they are a singularly
perturbed FPUT equation. It is not at all obvious that such an approximation is useful, since the
approximating system is now as complex as the original. We go no further.
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