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Abstract
We consider the mass-in-mass (MiM) lattice when the
internal resonators are very small. When there are no
internal resonators the lattice reduces to a standard
Fermi-Pasta-Ulam-Tsingou (FPUT) system. We show
that the solution of the MiM system, with suitable ini-
tial data, shadows the FPUT system for long periods of
time. Using some classical oscillatory integral estimates
we can conclude that the error of the approximation is
(in some settings) higher than one may expect.
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1 THE PROBLEM

We consider the mass-in-mass (MiM) variant of the Fermi-Pasta-Ulam-Tsingou (FPUT) lattice:
infinitelymany particles of unit mass (indexed by 𝑗 ∈ 𝐙) are arranged on a line, each connected to
its nearest neighbors by a “spring” with potential energy function𝑉 (whichwe assume is smooth1
and has 𝑉(0) = 𝑉′(0) = 0 < 𝑘 ∶= 𝑉′′(0)). The displacement of the 𝑗th particle is𝑈𝑗 . In addition,
each particle is connected by a linear spring (with spring constant 𝜅) to an internal resonator (of
mass 𝜇). The displacement of the 𝑗th resonator is 𝑢𝑗 . The equations of motion can be found using
Newton’s second law:

𝑈̈𝑗 = 𝑉′(𝑈𝑗+1 − 𝑈𝑗) − 𝑉′(𝑈𝑗 − 𝑈𝑗−1) + 𝜅(𝑢𝑗 − 𝑈𝑗)

𝜇𝑢𝑗 = 𝜅(𝑈𝑗 − 𝑢𝑗).
(1)

© 2020 Wiley Periodicals LLC
1 In this paper, when we say “smooth” we always mean 𝐶∞.
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These sorts of lattices have been the subject of quite a bit of research of late, in large part because
engineers have found a wide variety of applications for apparatus which are modeled byMiM sys-
tems. Applications range from shock absorption1 to remote sensing2 and in areas frommedicine3
to materials science.4
Our interest is analytical and in this paper we investigate the dynamics of (1) when 0 < 𝜇 ≪ 1,

that is when the internal resonators have small mass. When 𝜇 = 0 the second equation implies
𝑢𝑗 = 𝑈𝑗 and the first becomes

𝑈̈𝑗 = 𝑉′(𝑈𝑗+1 − 𝑈𝑗) − 𝑉′(𝑈𝑗 − 𝑈𝑗−1). (2)

These are the equations of motion for the standard FPUT. It takes little insight to conjecture that
solutions of (1) shadow solutions of (2) when 𝜇 is small. We prove a quantitative version of such
a conjecture. However, this is not a straightforward result: since 𝜇 multiplies the highest order
derivative in (1), the problem is one of singular perturbation. We also find something rather sur-
prising: by slightly adjusting the potential in (2) and adding some restrictions to the initial condi-
tions for the internal resonators, we can improve the accuracy of the approximation by more than
an order of magnitude.
Before getting into the weeds, we make some remarks on a recent spate of articles on MiM

and FPUT lattices and how they relate to our work. First, we mention the article by Kevrekidis
et al5. The authors use a variational argument to show that for the degenerate Hertzian potential
𝑉𝐻(ℎ) ∶= ℎ

5∕2
+ , there exists a countable number of choices for the internal mass 𝜇, converging

to zero, for which the MiM system admits spatially localized traveling wave solutions. This work
was extended by Faver et al6 to apply to more general, but nondegenerate, potentials. Again, for
a sequence of choices of 𝜇 converging to zero, there are spatially localized traveling waves. The
argument in Ref. 6 is perturbative and in particular, uses the 𝜇 = 0 FPUT traveling wave as the
point of bifurcation. In Ref. 7, Faver proves that away from the countable collection of masses,
the traveling waves are not spatially localized but instead converge at infinity to very small ampli-
tude periodic waves, ie, nanopterons.8 The point here is that despite the relative simplicity of the
system (1), from the standpoint of traveling wave solutions, the system depends subtly on the
mass of the internal resonators. This paper is, in part, an attempt to address similar issues for the
Cauchy problem. We also mention the article by Pelinovsky and Schneider9. In that paper, the
authors treat a diatomic FPUT lattice in the limit that the mass ratio tends to zero. They prove
that the small mass ratio lattice is well-approximated by the limiting monatomic FPUT lattice.
Their result directly inspired our work here. See Remark 1 for a more thorough comparison of
their work and ours.

2 FIRST-ORDER REFORMULATION AND EXISTENCE OF
SOLUTIONS

Let

𝑅𝑗 ∶= 𝑈𝑗+1 − 𝑈𝑗, 𝑃𝑗 ∶= 𝑈̇𝑗, 𝑟𝑗 ∶= 𝑢𝑗 − 𝑈𝑗 and 𝑝𝑗 ∶= 𝑢̇𝑗.

The variables are (in order): the relative displacement between adjacent external particles; the
velocity of the external particles; the relative displacement between the internal resonators and
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their hosts; and the velocity of the internal resonators. In these coordinates (1) reads:

𝑅̇ = 𝛿+𝑃

𝑃̇ = 𝛿−[𝑉′(𝑅)] + 𝜅𝑟

𝑟̇ = 𝑝 − 𝑃

𝜇𝑝̇ = −𝜅𝑟.

(3)

We suppress dependence on the lattice site 𝑗 and use the notation (𝛿±𝑞)𝑗 ∶= ±(𝑞𝑗±1 − 𝑞𝑗). In fact,
(3) is in classical Hamiltonian form, though since we do not utilize this feature very strongly, we
do not elaborate.
We view (3) as an ordinary differential equation (ODE) on the Hilbert space (𝓁2)4. The right-

hand side can easily be shown to be a smooth map in that topology and thus the Cauchy problem
is well-posed by Picard’s theorem and solutions exist for at least short periods of time. In fact
solutions exist for all 𝑡, at least if they are initially not too big. Before we state the result, we need
to define an appropriate norm for solutions. Let

‖(𝑅, 𝑃, 𝑟, 𝑝)‖𝜇 ∶=

√
𝑘

2
‖𝑅‖2 + 1

2
‖𝑃‖2 + 𝜅

2
‖𝑟‖2 + 𝜇

2
‖𝑝‖2. (4)

Here and throughout, we use

‖ ⋅ ‖ ∶= ‖ ⋅ ‖𝓁2 .
The norm ‖ ⋅ ‖𝜇 is just a scaling of the usual (𝓁2)4 norm and is equal to the (square root of the)
mechanical energy of the linearization of (3); recall that 𝑘 ∶= 𝑉′′(0).
For a solution (𝑅, 𝑃, 𝑟, 𝑝) of (3), let

𝐻(𝑡) ∶=
∑
𝑗∈𝐙

(
𝑉(𝑅𝑗) +

1

2
𝑃2
𝑗
+

1

2
𝜅𝑟2

𝑗
+

1

2
𝜇𝑝2

𝑗

)
.

If finite at 𝑡 = 0, this quantity is constant for all 𝑡: it is just the mechanical energy of the lattice.
Here is the calculation:

𝐻̇(𝑡) =
∑
𝑗∈𝐙

𝑉′(𝑅𝑗)𝑅̇𝑗 + 𝑃𝑗𝑃̇𝑗 + 𝜅𝑟𝑗𝑟̇𝑗 + 𝜇𝑝𝑗𝑝̇𝑗

=
∑
𝑗∈𝐙

𝑉′(𝑅𝑗)(𝛿
+𝑃)𝑗 + 𝑃𝑗((𝛿

−[𝑉′(𝑅)])𝑗 + 𝜅𝑟𝑗) + 𝜅𝑟𝑗(𝑝𝑗 − 𝑃𝑗) − 𝜅𝑝𝑗𝑟𝑗 = 0.

Since 𝐻̇(𝑡) = 0,𝐻(𝑡) is constant. In the above, we havemade liberal use of the summation by parts
identity,

∑
𝑗∈𝐙

(𝛿+𝑓)𝑗𝑔𝑗 = −
∑

𝑗∈𝐙
𝑓𝑗(𝛿

−𝑔)𝑗 .
The conservation of energy is crucial for proving:
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Theorem 1. Fix 𝜅 > 0 and assume that 𝑉 ∶ 𝐑 → 𝐑 is smooth with 𝑉(0) = 𝑉′(0) = 0 and
𝑉′′(0) =∶ 𝑘 > 0. There exists 𝜌∗ = 𝜌∗(𝑉) > 0, such that, for any 𝜇 > 0, if

‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖𝜇 ≤ 𝜌∗

then the unique solution of the MiM lattice (3) with initial data (𝑅0, 𝑃0, 𝑟0, 𝑝0) exists for all 𝑡 ∈ 𝐑

and

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡))‖𝜇 ≤ 2‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖𝜇.
Proof. The hypotheses on 𝑉 imply, by way of Taylor’s theorem, the existence of 𝜎∗ > 0 for which|ℎ| ≤ 𝜎∗ implies 𝑘

4
ℎ2 ≤ 𝑉(ℎ) ≤ 𝑘ℎ2. Thus, if ‖𝑅‖𝓁∞ ≤ 𝜎∗ we have

∑
𝑗∈𝐙

𝑘

4
𝑅2
𝑗
≤ ∑

𝑗∈𝐙
𝑉(𝑅𝑗) ≤∑

𝑗∈𝐙
𝑘𝑅2

𝑗
. This in turn implies

1

2
‖(𝑅, 𝑃, 𝑟, 𝑝)‖2𝜇 ≤ 𝐻 ≤ 2‖(𝑅, 𝑃, 𝑟, 𝑝)‖2𝜇 (5)

when

‖𝑅‖𝓁∞ ≤ 𝜎∗. (6)

That is to say when (6) holds,
√
𝐻 and ‖(𝑅, 𝑃, 𝑟, 𝑝)‖𝜇 are equivalent.

Since𝐻 is constant, (5) gives us:

1

2
‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡))‖2𝜇 ≤ 𝐻(𝑡) = 𝐻(0) ≤ 2‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖2𝜇.

If we cut out the middle terms and do some simple algebra we arrive at

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡))‖𝜇 ≤ 2‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖𝜇. (7)

This is the final estimate in the theorem but we are not yet done. The reason is that (7) only holds
for those values of 𝑡 where (6) is true.
By restricting the initial data, we can ensure that (6) holds for all 𝑡 and thus so does (7). Here

is the argument. We have the “𝓁2 ⊂ 𝓁∞ embedding estimate” ‖𝑅‖𝓁∞ ≤ ‖𝑅‖. Moreover, the defi-
nition of ‖(𝑅, 𝑃, 𝑟, 𝑝)‖𝜇 implies ‖𝑅‖ ≤ √

2∕𝑘‖(𝑅, 𝑃, 𝑟, 𝑝)‖𝜇. Putting these together with (6) we see
that we have (7) for those 𝑡 when

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡))‖𝜇 ≤
√

𝑘

2
𝜎∗. (8)

Now assume

‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖𝜇 ≤ 1

4

√
𝑘

2
𝜎∗ =∶ 𝜌∗. (9)

Thus (8) holds initially and the inequality is strict. The solution of (3) with these initial data either
satisfies (8) for all 𝑡 ∈ 𝐑 (in which case we have (7) for all 𝑡 ∈ 𝐑 and we are done) or it does not.
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If it does not then, because the solution is continuous in 𝑡, there is a time 𝑡1 for which

‖(𝑅(𝑡1), 𝑃(𝑡1), 𝑟(𝑡1), 𝑝(𝑡1))‖𝜇 =

√
𝑘

2
𝜎∗. (10)

However, note that at this time (8) is met and so we have (7). Putting (10), (7), and (9) together we
obtain √

𝑘

2
𝜎∗ = ‖(𝑅(𝑡1), 𝑃(𝑡1), 𝑟(𝑡1), 𝑝(𝑡1))‖𝜇 ≤ 2‖(𝑅0, 𝑃0, 𝑟0, 𝑝0)‖𝜇 ≤ 1

2

√
𝑘

2
𝜎∗.

This is an absurdity and thus (8) is met for all 𝑡 and we are done. ■

3 THE APPROXIMATION THEOREM

In this section, we prove a general approximation theorem for (3). Once this is done, we will turn
our attention to the specific problem of approximating MiM by FPUT.
For any function

Φ̃𝑗(𝑡) = (𝑅𝑗(𝑡), 𝑃𝑗(𝑡), 𝑟̃𝑗(𝑡), 𝑝𝑗(𝑡)),

define the residuals

Res1(Φ̃) ∶= 𝛿+𝑃 − ̇̃𝑅

Res2(Φ̃) ∶= 𝛿−[𝑉′(𝑅)] + 𝜅𝑟 − ̇̃𝑃

Res3(Φ̃) ∶= 𝑝 − 𝑃 − ̇̃𝑟

Res4(Φ̃) ∶= −𝜅𝑟̃ − 𝜇 ̇̃𝑝.

(11)

The residuals are identically zero if and only if Φ̃ solves (3). Our result gives sufficient conditions
on Φ̃ so that the smallness of the residuals implies solutions of (3) are well-approximated by Φ̃.

Definition 1. We say {Φ̃𝜇 = (𝑅𝜇, 𝑃𝜇, 𝑟̃𝜇, 𝑝𝜇)}𝜇∈(0,𝜇0] is a family of good approximators of (𝜇𝑁)

for (3) on the interval [−𝑇∗, 𝑇∗] if the following occur.
First, {

Φ̃𝜇
}
𝜇∈(0,𝜇0]

⊂ 𝐶1([−𝑇∗, 𝑇∗]; (𝓁
2)4).

Second, the residuals are small: there exists 𝐶0 > 0 for which 𝜇 ∈ (0, 𝜇0] implies

sup|𝑡|≤𝑇∗
√‖Res𝜇

1
(Φ̃𝜇)‖2 + ‖Res𝜇

2
(Φ̃𝜇)‖2 + ‖Res𝜇

3
(Φ̃𝜇)‖2 + 1

𝜇
‖Res𝜇

4
(Φ̃𝜇)‖2 ≤ 𝐶0𝜇

𝑁. (D1)
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Finally, 𝑅𝜇 and 𝜕𝑡𝑅𝜇 are not too big: there exist 𝛼∗, 𝛽∗ > 0 so that 𝜇 ∈ (0, 𝜇0] implies

sup|𝑡|≤𝑇∗ ‖𝑅𝜇‖𝓁∞ ≤ 𝛼∗ and sup|𝑡|≤𝑇∗
‖‖‖𝜕𝑡𝑅𝜇‖‖‖𝓁∞ ≤ 𝛽∗. (D2)

We additionally require that

𝛼∗ ≤ sup
{
𝛼 ∶ 𝑉′′([−𝛼, 𝛼]) ⊂ [𝑘∕2, 2𝑘]

}
. (D3)

Here is our result:

Theorem 2. Fix 𝜅 > 0 and assume that 𝑉 ∶ 𝐑 → 𝐑 is smooth with 𝑉(0) = 𝑉′(0) = 0 and
𝑉′′(0) =∶ 𝑘 > 0. Suppose that {Φ̃𝜇 = (𝑅𝜇, 𝑃𝜇, 𝑟̃𝜇, 𝑝𝜇)}𝜇∈(0,𝜇0] is a family of good approximators of(𝜇𝑁) for (3) on the interval [−𝑇∗, 𝑇∗], where𝑁 > 0.
Then, for all 𝐾∗ > 0, there exists positive constants 𝜇∗ and 𝐶∗ such that the following holds when

𝜇 ∈ (0, 𝜇∗]. If

‖Φ𝜇

0
− Φ̃𝜇(0)‖𝜇 ≤ 𝐾∗𝜇

𝑁 (12)

and Φ𝜇 is the solution of (3) with initial data Φ𝜇

0
then

‖Φ𝜇(𝑡) − Φ̃𝜇(𝑡)‖𝜇 ≤ 𝐶∗𝜇
𝑁 (13)

for all 𝑡 ∈ [−𝑇∗, 𝑇∗].
That is to say, ifΦ𝜇 and Φ̃𝜇 are initially(𝜇𝑁) close then they are(𝜇𝑁) close on all of [−𝑇∗, 𝑇∗].

Proof. Part 1—the Error Equations: Let

Ψ = (𝜓1, 𝜓2, 𝜓3, 𝜓4) ∶= Φ𝜇 − Φ̃𝜇.

This is the error between the true solution and the approximator. A direct calculation shows that
Ψ satisfies

𝜓̇1 = 𝛿+𝜓2 + Res
𝜇

1
(Φ̃𝜇)

𝜓̇2 = 𝛿−
[
𝑊′(𝜓1; 𝑡)

]
+ 𝜅𝜓3 + Res

𝜇

2
(Φ̃𝜇)

𝜓̇3 = 𝜓4 − 𝜓2 + Res
𝜇

3
(Φ̃𝜇)

𝜇𝜓̇4 = −𝜅𝜓3 + Res
𝜇

4
(Φ̃𝜇),

(14)

where

𝑊′
𝑗
(𝜁; 𝑡) ∶= 𝑉′(𝑅

𝜇

𝑗
(𝑡) + 𝜁) − 𝑉′(𝑅

𝜇

𝑗
(𝑡)).
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Note that𝑊′
𝑗
(𝜁; 𝑡) = 𝜕𝜁𝑊𝑗(𝜁; 𝑡) with

𝑊𝑗(𝜁; 𝑡) ∶= 𝑉
(
𝑅
𝜇

𝑗
(𝑡) + 𝜁

)
− 𝑉

(
𝑅
𝜇

𝑗
(𝑡)

)
− 𝑉′

(
𝑅
𝜇

𝑗
(𝑡)

)
𝜁. (15)

We are done when we show that ‖Ψ(𝑡)‖𝜇 ≤ 𝐶∗𝜇
𝑁 for 𝑡 ∈ [−𝑇∗, 𝑇∗].

Part 2—the Modified Energy: The heart of the proof is closely related to the conservation of the
energy𝐻. Let

𝐸(𝑡) ∶=
∑
𝑗∈𝐙

(
𝑊(𝜓1; 𝑡) +

1

2
𝜓2
2
+

1

2
𝜅𝜓2

3
+

1

2
𝜇𝜓2

4

)
.

This quantity is a modification of 𝐻 and, while it is not conserved, grows only slowly. Below, we
will show that

√
𝐸 is equivalent to ‖Ψ‖𝜇, but first we compute its time derivative to develop the

key energy estimate:

𝐸̇(𝑡) =
∑
𝑗∈𝐙

(
𝑊′(𝜓1)𝜓̇1 + 𝜕𝑡𝑊(𝜓1; 𝑡) + 𝜓2𝜓̇2 + 𝜅𝜓3𝜓̇3 + 𝜇𝜓4𝜓̇4

)
.

Using (14)

𝐸̇(𝑡) =
∑
𝑗∈𝐙

(𝑊′(𝜓1; 𝑡)
(
𝛿+𝜓2 + Res

𝜇

1
(Φ̃𝜇)

)
+ 𝜓2

(
𝛿−[𝑊′(𝜓1; 𝑡)] + 𝜅𝜓3 + Res

𝜇

2
(Φ̃𝜇)

)
+𝜅𝜓3

(
𝜓4 − 𝜓2 + Res

𝜇

3
(Φ̃𝜇)

)
+ 𝜓4

(
−𝜅𝜓3 + Res

𝜇

4
(Φ̃𝜇)) + 𝜕𝑡𝑊(𝜓1; 𝑡)

)
.

There are many cancelations:

𝐸̇(𝑡) =
∑
𝑗∈𝐙

(
𝑊′(𝜓1; 𝑡) Res

𝜇

1
(Φ̃𝜇) + 𝜓2 Res

𝜇

2
(Φ̃𝜇) + 𝜅𝜓3 Res

𝜇

3
(Φ̃𝜇) + 𝜓4 Res

𝜇

4
(Φ̃𝜇) + 𝜕𝑡𝑊(𝜓1; 𝑡)

)
.

Using the Cauchy-Schwarz inequality, Young’s inequality, and (D1) we estimate the above:

𝐸̇(𝑡) ≤ 1

2
‖𝑊′(𝜓1; 𝑡)‖2 + 1

2
‖𝜓2‖2 + 𝜅2

2
‖𝜓3‖2 + 𝜇

2
‖𝜓4‖2 + ‖𝜕𝑡𝑊(𝜓1; 𝑡)‖𝓁1 + 1

2
𝐶2
0
𝜇2𝑁. (16)

To go further than this, we need more information about𝑊.
Part 3—Estimates for W: Taylor’s theorem tells us that for 𝜁 ∈ 𝐑 we have

𝑊𝑗(𝜁; 𝑡) =
1

2
𝑉′′(𝑧𝑗(𝑡))𝜁

2,

where 𝑧𝑗(𝑡) lies between 𝑅
𝜇

𝑗
(𝑡) and 𝑅

𝜇

𝑗
(𝑡) + 𝜁. We have assumed (D2) and the condition (D3) on

𝛼∗ tells us that 𝑉′′(𝑅
𝜇

𝑗
(𝑡)) ∈ [𝑘∕2, 2𝑘] for 𝑗 ∈ 𝐙, 𝑡 ∈ [−𝑇∗, 𝑇∗] and 𝜇 ∈ (0, 𝜇0]. Thus, since 𝑉 is

smooth, there exists 𝜏∗ > 0 so that |𝜁| ≤ 𝜏∗ implies 𝑉′′(𝑧𝑗(𝑡)) ∈ [𝑘∕4, 4𝑘] and as such

𝑘

8
𝜁2 ≤ 𝑊𝑗(𝜁; 𝑡) ≤ 2𝑘𝜁2. (17)
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Now suppose that 𝛾 ∈ 𝓁2 has ‖𝛾‖ ≤ 𝜏∗. Since 𝓁2 ⊂ 𝓁∞ we have ‖𝛾‖𝓁∞ ≤ ‖𝛾‖. Thus (17) gives
us:

𝑘

8
𝛾2
𝑗
≤ 𝑊𝑗(𝛾𝑗; 𝑡) ≤ 2𝑘𝛾2

𝑗
.

And so

‖𝛾‖ ≤ 𝜏∗ ⇒
𝑘

8
‖𝛾‖2 ≤ ∑

𝑗∈𝐙

𝑊𝑗(𝛾𝑗; 𝑡) ≤ 2𝑘‖𝛾‖2. (18)

This estimate in turn implies that, for all 𝑡 ∈ [−𝑇∗, 𝑇∗] and 𝜇 ∈ (0, 𝜇0],

‖𝜓1‖ ≤ 𝜏∗ ⇒
1

4
‖Ψ‖2𝜇 ≤ 𝐸(𝑡) ≤ 4‖Ψ‖2𝜇. (19)

This is the equivalence of
√
𝐸 and ‖Ψ‖𝜇 which was foretold. Completely analogous calculations

can be used to show that

‖𝛾‖ ≤ 𝜏∗ ⇒ ‖𝑊′(𝛾; 𝑡)‖ ≤ 4𝑘‖𝛾‖. (20)

We also need an estimate on 𝜕𝑡𝑊. Computing the derivative gets:

𝜕𝑡𝑊𝑗(𝜁; 𝑡) =
[
𝑉′

(
𝑅
𝜇

𝑗
(𝑡) + 𝜁

)
− 𝑉′

(
𝑅
𝜇

𝑗
(𝑡)

)
− 𝑉′′

(
𝑅
𝜇

𝑗
(𝑡)

)
𝜁
]
𝜕𝑡𝑅

𝜇

𝑗
.

Taylor’s theorem tells us that

𝜕𝑡𝑊𝑗(𝜁; 𝑡) =
1

2
𝑉′′′(𝑧𝑗(𝑡))𝜁

2𝜕𝑡𝑅
𝜇

𝑗

with 𝑧𝑗(𝑡) in between 𝑅
𝜇

𝑗
and 𝑅𝜇

𝑗
+ 𝜁. Letting 𝛽0 ∶= max|𝜌|≤𝜏∗+𝛼∗ |𝑉′′′(𝜌)| and using the estimate

for 𝜕𝑡𝑅
𝜇

𝑗
in (D2) we now see that

|𝜕𝑡𝑊𝑗(𝜁; 𝑡)| ≤ 1

2
𝛽0𝛽∗𝜁

2

when |𝜁| ≤ 𝜏∗. Thus we find that for all 𝑡 ∈ [−𝑇∗, 𝑇∗] and 𝜇 ∈ (0, 𝜇0]

‖𝛾‖ ≤ 𝜏∗ ⇒ ‖𝜕𝑡𝑊(𝛾; 𝑡)‖𝓁2 ≤ 𝛽2‖𝛾‖2, (21)

where 𝛽2 ∶= 𝛽0𝛽∗∕2.
Part 4—Final Steps: Applying (19), (20), and (21) to (16) gets us

𝐸̇ ≤ Γ∗
(
𝐸 + 𝜇2𝑁

)
so long as ‖𝜓1‖ ≤ 𝜏∗. The constant Γ∗ = Γ∗(𝑉, 𝛽∗, 𝜅, 𝐶0) > 0 is independent of 𝜇.
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We apply Grönwall’s inequality and get

𝐸(𝑡) ≤ 𝑒Γ∗𝑡
(
𝐸(0) + 𝜇2𝑁

)
.

Then, we use (19) again:

‖Ψ(𝑡)‖2𝜇 ≤ 16𝑒Γ∗𝑡
(‖Ψ(0)‖2𝜇 + 𝜇2𝑁

)
.

We have assumed that ‖Ψ(0)‖𝜇 ≤ 𝐾∗𝜇
𝑁 and we know |𝑡| ≤ 𝑇∗ so we have

‖Ψ(𝑡)‖𝜇 ≤ 4𝑒Γ∗𝑇∗∕2
√

𝐾2
∗ + 1

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝜇𝑁.

𝐶∗

The constant 𝐶∗ does not depend on 𝜇, but the above estimate holds only so long as ‖𝜓1‖ ≤ 𝜏∗.
However, we can make the right-hand side of this last displayed inequality (which controls ‖𝜓1‖)
as small as we like, so this restriction is not a serious one. And so we find that there exists 𝜇∗ > 0

so that 𝜇 ∈ (0, 𝜇∗] implies ‖Ψ(𝑡)‖ ≤ 𝐶∗𝜇
𝑁 for all |𝑡| ≤ 𝑇∗ and we are done with the proof. ■

4 THE LEADING ORDER FPUT APPROXIMATION

In (3), if we put 𝜇 = 0 we find that the last two equations become:

𝑟 = 0 and 𝑝 = 𝑃. (22)

That is to say, as one may expect, the internal resonators are fixed at the center of their hosting
particle and their velocity 𝑝 is exactly equal to that of its host. Then we put (22) into the first two
equations of (3):

𝑅̇ = 𝛿+𝑃 and 𝑃̇ = 𝛿−[𝑉′(𝑅)]. (23)

Of course (23) is just a vanillamonatomic FPUT lattice, equivalent to (2). Thus, our approximating
system is

Φ̃𝐹𝑃𝑈𝑇 ∶= (𝑅, 𝑃, 0, 𝑃), (24)

where (𝑅, 𝑃) solves (23).
Nowwewill show that Φ̃𝐹𝑃𝑈𝑇 is a good approximator; note that it does not depend on 𝜇, though

the residuals will. An argument identical to that which led to Theorem 1 tells us that there is a
positive constant 𝜌1, such that ‖𝑅(0)‖ + ‖𝑃(0)‖ ≤ 𝜌1 implies

‖𝑅(𝑡)‖ + ‖𝑃(𝑡)‖ ≤ 2
(‖𝑅(0)‖ + ‖𝑃(0)‖) (25)

for all 𝑡 ∈ 𝐑. Thus, so long as ‖𝑅(0)‖ + ‖𝑃(0)‖ is not too big, the conditions (D2) and (D3) are
more or less automatically met and, moreover, they hold for all 𝑡 ∈ 𝐑.
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We compute directly that

Res1(Φ̃𝐹𝑃𝑈𝑇) = Res2(Φ̃𝐹𝑃𝑈𝑇) = Res3(Φ̃𝐹𝑃𝑈𝑇) = 0

and

Res4(Φ̃𝐹𝑃𝑈𝑇) = −𝜇 ̇̃𝑃 = −𝜇𝛿−[𝑉′(𝑅)].

Thus √‖Res𝜇
1
(Φ̃𝐹𝑃𝑈𝑇)‖2 + ‖Res𝜇

2
(Φ̃𝐹𝑃𝑈𝑇)‖2 + ‖Res𝜇

3
(Φ̃𝐹𝑃𝑈𝑇)‖2 + 1

𝜇
‖Res𝜇

4
(Φ̃𝐹𝑃𝑈𝑇)‖2

=
√
𝜇‖𝛿−[𝑉′(𝑅)]‖.

Standard estimates and (25) tell us that
√
𝜇‖𝛿−[𝑉′(𝑅)]‖ ≤ 𝐶0

√
𝜇 for all 𝑡 ∈ 𝐑. Thus, we have (D1)

with 𝑁 = 1∕2. We now call on Theorem 2 and get:

Corollary 1. Let 𝜅 > 0, 𝐾∗ > 0, 𝑇∗ > 0, and 𝑉 ∶ 𝐑 → 𝐑 be smooth with 𝑉(0) = 𝑉′(0) =

0 and 𝑉′′(0) =∶ 𝑘 > 0. Then there exist 𝜌∗ = 𝜌∗(𝑉) > 0, 𝜇∗ = 𝜇∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0, and 𝐶∗ =

𝐶∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0 for which we have the following when 𝜇 ∈ (0, 𝜇∗].
Suppose that (𝑅, 𝑃) solves the FPUT system (23) with

‖𝑅(0)‖ + ‖𝑃(0)‖ ≤ 𝜌∗

and (𝑅, 𝑃, 𝑟, 𝑝) solves the MiM lattice (3) with

‖(𝑅(0), 𝑃(0), 𝑟(0), 𝑝(0)) − (𝑅(0), 𝑃(0), 0, 𝑃(0))‖𝜇 ≤ 𝐾∗

√
𝜇.

Then

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡)) − (𝑅(𝑡), 𝑃(𝑡), 0, 𝑃(𝑡))‖𝜇 ≤ 𝐶∗

√
𝜇

for all 𝑡 ∈ [−𝑇∗, 𝑇∗].

Remark 1. As we mentioned in the introduction, the article9 treats the monatomic limit of a
diatomic FPUT lattice in the case of small mass ratio. Their mass ratio is named 𝜖2 and is most
comparable to our internal mass 𝜇. Their main result, Theorem 1, gives a rigorous error bound of
(𝜖) on (1) time scales. Given the comparison 𝜖2 ∼ 𝜇, our result here is exactly the analogous
one for MiM with small internal resonators.

5 HIGHER-ORDER EXPANSIONS

The final two equations in (3) are solvable for (𝑟, 𝑝) in terms of (𝑅, 𝑃)with elementary ODE tech-
niques. In thisway,we can eliminate (𝑟, 𝑝) from the system (almost) entirely and are left withwhat
is a perturbation of FPUTwith a continuous delay term. This delay term can then be approximated
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using classical oscillatory integral methods. Then we will use Theorem 2 to justify some of these
approximations, which are of a higher order in 𝜇 than what we saw in Corollary 1.

5.1 Delay equation reformulation

Take the time derivative of the equation for 𝑟̇ in (3) and get

𝑟 = −𝜔2
𝜇𝑟 − 𝑃̇, (26)

where

𝜔𝜇 ∶=
√
𝜅∕𝜇.

We solve (26) using variation of parameters:

𝑟𝑗(𝑡) =

[
𝑟𝑗(0) cos(𝜔𝜇𝑡) +

1

𝜔𝜇
(𝑝𝑗(0) − 𝑃𝑗(0)) sin(𝜔𝜇𝑡)

]
−

1

𝜔𝜇 ∫
𝑡

0

sin(𝜔𝜇(𝑡 − 𝑡′))𝑃̇𝑗(𝑡
′)𝑑𝑡′.

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝐹𝜇[𝑟(0), 𝑝(0), 𝑃]

Though we do not use it, the equation for 𝑟̇ can be used to figure out 𝑝:

𝑝𝑗(𝑡) =
[
𝑃𝑗(𝑡) − 𝜔𝜇𝑟𝑗(0) sin(𝜔𝜇𝑡) + (𝑝𝑗(0) − 𝑃𝑗(0)) cos(𝜔𝜇𝑡)

]
− ∫

𝑡

0

cos(𝜔𝜇(𝑡 − 𝑡′))𝑃̇(𝑡′)𝑑𝑡′.

Putting the solution for 𝑟 back in the first two equations of (3) gets:

𝑅̇ = 𝛿+𝑃

𝑃̇ = 𝛿−[𝑉′(𝑅)] + 𝜅𝐹𝜇[𝑟(0), 𝑝(0), 𝑃].
(27)

This system is equivalent to (3); only the initial conditions of (𝑟, 𝑝) still play a role. Because of the
integral in 𝐹𝜇, this is a continuous delay equation.

5.2 The general strategy

Suppose we have an approximation of 𝐹𝜇:

𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] = 𝐹𝜇 + (𝜇𝑁).
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Then we can make an approximating system easily:

̇̃𝑅 = 𝛿+𝑃

̇̃𝑃 = 𝛿−[𝑉′(𝑅)] + 𝜅𝐹𝜇

̇̃𝑟 = 𝑝 − 𝑃

𝜇 ̇̃𝑝 = −𝜅𝑟̃.

(28)

For this approximating system, we have

Res
𝜇

1
(Φ̃𝜇) = Res

𝜇

3
(Φ̃𝜇) = Res

𝜇

4
(Φ̃𝜇) = 0

and

Res
𝜇

2
(Φ̃𝜇) = 𝜅𝐹𝜇[𝑟̃(0), 𝑝(0), 𝑃] − 𝜅𝐹𝜇.

Thus,modulo some details, Theorem2 tells us that the errormade by this approximation is(𝜇𝑁).
The point here is that now all we have to do is find expansions of𝐹𝜇. Note that doing so does imply
additional conditions on the initial data.

5.3 Oscillatory integral expansions

We put

𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] =

[
𝑟(0) cos(𝜔𝜇𝑡) +

1

𝜔𝜇
(𝑝(0) − 𝑃(0)) sin(𝜔𝜇𝑡)

]
+ 𝐼𝜇[𝑃̇](𝑡),

where

𝐼𝜇[𝑄](𝑡) ∶= −
1

𝜔𝜇
Im∫

𝑡

0

𝑒𝑖𝜔𝜇(𝑡−𝑡
′)𝑄(𝑡′)𝑑𝑡′.

Since 𝜔𝜇 =
√
𝜅∕𝜇, the frequency of the complex sinusoid is very high as 𝜇 → 0+ and we can use

classical oscillatory integral techniques to expand 𝐼𝜇 in (negative) powers of 𝜔𝜇. Specifically, we
use the following lemma whose proof (which we omit) is obtained by integrating by parts many,
many times:

Lemma 1. Suppose that 𝑓(𝑡) is 𝐶𝑛+1(𝐑, 𝐂) and 𝜔 ≠ 0. Then

∫
𝑡

0

𝑒𝑖𝜔(𝑡−𝑡
′)𝑓(𝑡′)𝑑𝑡′ =

𝑖

𝜔

𝑛∑
𝑗=0

(
−

𝑖

𝜔

)𝑗

𝑓(𝑗)(𝑡) −
𝑖𝑒𝑖𝜔𝑡

𝜔

𝑛∑
𝑗=0

(
−

𝑖

𝜔

)𝑗

𝑓(𝑗)(0)

+

(
−

𝑖

𝜔

)𝑛+1

∫
𝑡

0

𝑒𝑖𝜔(𝑡−𝑡
′)𝑓(𝑛+1)(𝑡′)𝑑𝑡′.

(29)
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In this lemma, the integral term and the 𝑗 = 𝑛 terms in the sums are (1∕𝜔𝑛+1) and all other
terms are lower order. Using this observation, we get the expansion

𝐼𝜇[𝑄](𝑡) = −Im

(
𝑖

𝜔2
𝜇

𝑛−1∑
𝑗=0

(
−

𝑖

𝜔𝜇

)𝑗

𝑄(𝑗)(𝑡) −
𝑖𝑒𝑖𝜔𝜇𝑡

𝜔2
𝜇

𝑛−1∑
𝑗=0

(
−

𝑖

𝜔𝜇

)𝑗

𝑄(𝑗)(0)

)
+ 𝜇

𝑛 [𝑄](𝑡), (30)

where the estimate

‖𝜇
𝑛 [𝑄](𝑡)‖ ≤ 𝐶

𝜔𝑛+2
𝜇

(‖𝑄(𝑛)(𝑡)‖ + ‖𝑄(𝑛)(0)‖ + |𝑡| sup|𝑡′|≤|𝑡| ‖𝑄(𝑛+1)(𝑡′)‖) (31)

is easily obtained. The above estimate tells us that we expect 𝜇
𝑛 = (𝜇𝑛∕2+1).

If 𝑄 is purely real (as in our application), taking the imaginary part eliminates the odd values
of 𝑗 from the first sum in the expansion of 𝐼𝜇. This, and the annoying but easily verified fact that

Im(𝑖𝑒𝑖𝜔𝑡(−𝑖)
𝑗
) =

{
(−1)

𝑗∕2
cos(𝜔𝑡), 𝑗 is even

(−1)
(𝑗−1)∕2

sin(𝜔𝑡), 𝑗 is odd

lead us to

𝐼𝜇[𝑄](𝑡) = −
1

𝜔2
𝜇

𝑛−1∑
𝑗=0,𝑒𝑣𝑒𝑛

(−1)𝑗∕2

𝜔
𝑗
𝜇

𝑄(𝑗)(𝑡)

+
1

𝜔2
𝜇

(
𝑛−1∑

𝑗=0,𝑒𝑣𝑒𝑛

(−1)𝑗∕2

𝜔
𝑗
𝜇

𝑄(𝑗)(0)

)
cos(𝜔𝜇𝑡)

+
1

𝜔2
𝜇

(
𝑛−1∑

𝑗=1,𝑜𝑑𝑑

(−1)(𝑗−1)∕2

𝜔
𝑗
𝜇

𝑄(𝑗)(0)

)
sin(𝜔𝜇𝑡)

+ 𝜇
𝑛 [𝑄](𝑡).

The first sum is over evens and so only changes for every other 𝑛. To squeeze the most out of
the above expansion, we therefore choose 𝑛 = 2𝑚 for integers𝑚. A bit of reindexing gives us

𝐼𝜇[𝑄](𝑡) = −
1

𝜔2
𝜇

𝑚−1∑
𝑘=0

(−1)𝑘

𝜔2𝑘
𝜇

𝑄(2𝑘)(𝑡)

+
1

𝜔2
𝜇

(
𝑚−1∑
𝑘=0

(−1)𝑘

𝜔2𝑘
𝜇

𝑄(2𝑘)(0)

)
cos(𝜔𝜇𝑡)

+
1

𝜔3
𝜇

(
𝑚−1∑
𝑘=0

(−1)𝑘

𝜔2𝑘
𝜇

𝑄(2𝑘+1)(0)

)
sin(𝜔𝜇𝑡)

+ 𝜇

2𝑚
[𝑄](𝑡).

(32)
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5.4 The FPUT approximation revisited

Now that we have our oscillatory integral expansions (32), we get back to approximating solutions
of (3). Applying (32) with𝑚 = 0 to 𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] yields

𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] =

[
𝑟(0) cos(𝜔𝜇𝑡) +

1

𝜔𝜇
(𝑝(0) − 𝑃(0)) sin(𝜔𝜇𝑡)

]
+ 𝜇

0
[𝑃̇](𝑡). (33)

Our computations above indicate that 𝜇

0
is (𝜇) and we can make the other terms above small

by restrictions on the initial conditions. Thus, we put

𝐹𝜇 = 0.

In which case the approximating system (28) consists of a standard FPUT

̇̃𝑅 = 𝛿+𝑃

̇̃𝑃 = 𝛿−[𝑉′(𝑅)]

(34)

whose solution drives a simple harmonic oscillator

̇̃𝑟 = 𝑝 − 𝑃

𝜇 ̇̃𝑝 = −𝜅𝑟̃.
(35)

This is very similar to the approximation from Section 4. The key difference is that instead of 𝑟̃ = 0
and 𝑝 = 𝑃 as in Corollary 1, the internal oscillators solve their equations of motion exactly with
the caveat that they are driven by what is now an approximate version of 𝑃.
As described in Section 5.2, all the residuals apart from the second are zero,which isRes𝜇

2
(Φ̃𝜇) =

𝜅𝐹𝜇[𝑟̃(0), 𝑝(0), 𝑃]. Using (31) and (33), we have:

‖Res𝜇
2
(Φ̃𝜇(𝑡))‖ ≤ 𝐶

(‖𝑟̃(0)‖ +√
𝜇‖𝑝(0) − 𝑃(0)‖)

+ 𝐶𝜇

(‖𝑃̇(𝑡)‖ + ‖𝑃̇(0)‖ + |𝑡| sup|𝑡|≤𝑇∗ ‖ ̈̃𝑃(𝑡)‖
)
.

Because it is part of the solution of FPUT, 𝑃 satisfies a global in time estimate like (25). A routine
bootstrap argument can be used to get global in time control of all higher-order time derivatives of
𝑃 aswell. Therefore, the final term above is genuinely(𝜇) for |𝑡| ≤ 𝑇∗. If we additionally demand
that ‖𝑟̃(0)‖ +√

𝜇‖𝑝(0) − 𝑃(0)‖ ≤ 𝐶𝜇 then we have ‖Res𝜇
2
(Φ̃𝜇)‖ ≤ 𝐶𝜇 on [−𝑇∗, 𝑇∗]. Theorem 2

tell us the error of the approximation (34)-(35) is(𝜇), a half power of 𝜇 better than in Corollary 1.
Here is the rigorous result:

Corollary 2. Let 𝜅 > 0, 𝐾∗ > 0, 𝑇∗ > 0, and 𝑉 ∶ 𝐑 → 𝐑 be smooth with 𝑉(0) = 𝑉′(0) =

0 and 𝑉′′(0) =∶ 𝑘 > 0. Then there exists 𝜌∗ = 𝜌∗(𝑉) > 0, 𝜇∗ = 𝜇∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0, and 𝐶∗ =

𝐶∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0 for which we have the following when 𝜇 ∈ (0, 𝜇∗].
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Suppose that (𝑅, 𝑃) solves the FPUT system (34) with

‖𝑅(0)‖ + ‖𝑃(0)‖ ≤ 𝜌∗

and (𝑟̃, 𝑝) solve the driven simple harmonic oscillator (35) with

‖𝑟̃(0)‖ +√
𝜇‖𝑝(0) − 𝑃(0)‖ ≤ 𝐾∗𝜇.

Furthermore, suppose that (𝑅, 𝑃, 𝑟, 𝑝) solves the MiM lattice (3) with

‖(𝑅(0), 𝑃(0), 𝑟(0), 𝑝(0)) − (𝑅(0), 𝑃(0), 𝑟̃(0), 𝑃(0))‖𝜇 ≤ 𝜇.

Then

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡)) − (𝑅(𝑡), 𝑃(𝑡), 𝑟̃(𝑡), 𝑃(𝑡))‖𝜇 ≤ 𝐶∗𝜇

for all 𝑡 ∈ [−𝑇∗, 𝑇∗].

5.5 The higher-order FPUT approximation

Going to next order of the approximation has a surprising outcome: the approximation remains
an FPUT approximation. Applying (32) with𝑚 = 1 to 𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] gets us, after some algebra,

𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] = −
1

𝜔2
𝜇

𝑃̇

+

(
𝑟(0) +

1

𝜔2
𝜇

𝑃̇(0)

)
cos(𝜔𝜇𝑡)

+
1

𝜔𝜇

(
𝑝(0) − 𝑃(0) +

1

𝜔2
𝜇

𝑃̈(0)

)
sin(𝜔𝜇𝑡)

+ 𝜇

2
[𝑃̇](𝑡).

(36)

We can make the second two lines as small as we please by imposing restrictions on the initial
data and the last line is expected to be (𝜇2). Thus we are lead to the choice of

𝐹𝜇 = −
1

𝜔2
𝜇

𝑃̇ = −
𝜇

𝜅
𝑃̇.

With, this (and some really easy algebra) we form an approximating system from (28). The vari-
ables (𝑅, 𝑃) solve

̇̃𝑅 = 𝛿+𝑃

̇̃𝑃 =
1

1 + 𝜇
𝛿−[𝑉′(𝑅)]

(37)
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and the variables (𝑟̃, 𝑝) solve

̇̃𝑟 = 𝑝 − 𝑃

𝜇 ̇̃𝑝 = −𝜅𝑟̃.
(38)

These are, again barely different that the FPUT approximations (28) or (34)-(35). The (𝑅, 𝑃) system
(37) is once more FPUT, but the potential function is slightly modified by the factor 1∕(1 + 𝜇), a
roughly (𝜇) change.
To wit, we compute the residuals. As we saw above in Section 5.2, onlyRes2(Φ̃𝜇) is nonzero and

in this setting is given by

Res2(Φ̃
𝜇) = 𝜅

(
𝑟̃(0) +

1

𝜔2
𝜇

̇̃𝑃(0)

)
cos(𝜔𝜇𝑡)

+
√
𝜇

(
𝑝(0) − 𝑃(0) +

1

𝜔2
𝜇

̈̃𝑃(0)

)
sin(𝜔𝜇𝑡)

+ 𝜅𝜇

2
[ ̇̃𝑃](𝑡).

(39)

Since (𝑅, 𝑃) satisfy an FPUT system, we get global in time estimates for them as in (25); that there
is a mild 𝜇 dependence in the equations for (𝑅, 𝑃) does not effect this estimate in any way, so long
as 𝜇 is not too big. And, as in the previous section, it is elementary to bootstrap and get 𝜇-uniform
estimates on ̇̃𝑃, ̈̃𝑃, and so on. Thus if we apply (31) we find

‖𝜇

2
[ ̇̃𝑃](𝑡)‖ ≤ 𝐶𝜔−𝑛−2

𝜇

(‖𝑃(4)(𝑡)‖ + ‖𝑃(4)(0)‖ + |𝑇∗| sup
𝑡′≤|𝑡| ‖𝑃(5)(𝑡′)‖) ≤ 𝐶𝜇2.

Then we demand

‖‖‖‖‖𝑟̃(0) + 1

𝜔2
𝜇

̇̃𝑃(0)
‖‖‖‖‖ +

√
𝜇
‖‖‖‖‖𝑝(0) − 𝑃(0) +

1

𝜔2
𝜇

̈̃𝑃(0)
‖‖‖‖‖ ≤ 𝐶𝜇2.

In which case we now have ‖Res2(Φ̃𝜇)‖ ≤ 𝐶𝜇2. Since ̇̃𝑃 = (1 + 𝜇)−1𝛿−[𝑉′(𝑅)]we can rewrite the
above condition in a slightly more functional way as

‖‖‖‖𝑟̃(0) + 𝜇

𝜅(1 + 𝜇)
𝛿−[𝑉′(𝑅(0))]

‖‖‖‖ +√
𝜇
‖‖‖‖𝑝(0) − 𝑃(0) +

𝜇

𝜅(1 + 𝜇)
𝛿−[𝑉′′(𝑅(0))𝛿+𝑃(0)]

‖‖‖‖ ≤ 𝐶𝜇2.

And the geometric series tells us that the above is implied by

‖‖‖‖𝑟̃(0) + 𝜇

𝜅
𝛿−[𝑉′(𝑅(0))]

‖‖‖‖ +√
𝜇
‖‖‖‖𝑝(0) − 𝑃(0) +

𝜇

𝜅
𝛿−[𝑉′′(𝑅(0))𝛿+𝑃(0)]

‖‖‖‖ ≤ 𝐾∗𝜇
2.

With all of the above considerations, we can invoke Theorem 2:
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Corollary 3. Let 𝜅 > 0, 𝐾∗ > 0, 𝑇∗ > 0, and 𝑉 ∶ 𝐑 → 𝐑 be smooth with 𝑉(0) = 𝑉′(0) =

0 and 𝑉′′(0) =∶ 𝑘 > 0. Then there exists 𝜌∗ = 𝜌∗(𝑉) > 0, 𝜇∗ = 𝜇∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0, and 𝐶∗ =

𝐶∗(𝐾∗, 𝑇∗, 𝜅, 𝑉) > 0 for which we have the following when 𝜇 ∈ (0, 𝜇∗].
Suppose that (𝑅, 𝑃) solves the FPUT system (37) with

‖𝑅(0)‖ + ‖𝑃(0)‖ ≤ 𝜌∗

and (𝑟̃, 𝑝) solve the driven simple harmonic oscillator (38) subject to

‖‖‖‖𝑟̃(0) + 𝜇

𝜅
𝛿−[𝑉′(𝑅(0))]

‖‖‖‖ +√
𝜇
‖‖‖‖𝑝(0) − 𝑃(0) +

𝜇

𝜅
𝛿−[𝑉′′(𝑅(0))𝛿+𝑃(0)]

‖‖‖‖ ≤ 𝐾∗𝜇
2.

Furthermore, suppose that (𝑅, 𝑃, 𝑟, 𝑝) solves the MiM lattice (3) with

‖(𝑅(0), 𝑃(0), 𝑟(0), 𝑝(0)) − (𝑅(0), 𝑃(0), 𝑟̃(0), 𝑃(0))‖𝜇 ≤ 𝐾∗𝜇
2.

Then

‖(𝑅(𝑡), 𝑃(𝑡), 𝑟(𝑡), 𝑝(𝑡)) − (𝑅(𝑡), 𝑃(𝑡), 𝑟̃(𝑡), 𝑃(𝑡))‖𝜇 ≤ 𝐶∗𝜇
2

for all 𝑡 ∈ [−𝑇∗, 𝑇∗].

5.6 Challenges at the next order

Does this strategy always yield an FPUT systemwhose solutions drive the internal oscillators? Put
𝑚 = 2 into (32).

𝐹𝜇[𝑟(0), 𝑝(0), 𝑃] = −
1

𝜔2
𝜇

𝑃̇ +
1

𝜔4
𝜇

𝜕3𝑡 𝑃

+

(
𝑟(0) +

1

𝜔2
𝜇

𝑃̇(0) −
1

𝜔4
𝜇

𝜕3𝑡 𝑃(0)

)
cos(𝜔𝜇𝑡)

+
1

𝜔𝜇

(
𝑝(0) − 𝑃(0) +

1

𝜔2
𝜇

𝑃̈(0) −
1

𝜔4
𝜇

𝜕4𝑡 𝑃(0)

)
sin(𝜔𝜇𝑡)

+ 𝜇

2
[𝑃̇](𝑡).

(40)

If we followed the earlier strategy, we would truncate after the first line and use initial data
restriction and (31) to control errors from the last two. Imagine that we do this now, then our
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approximating system reads:

̇̃𝑅 = 𝛿+𝑃

−
𝜇2

𝜅
𝜕3𝑡 𝑃 + (1 + 𝜇) ̇̃𝑃 = 𝛿−[𝑉′(𝑅)]

̇̃𝑟 = 𝑝 − 𝑃

𝜇 ̇̃𝑝 = −𝜅𝑟̃.

(41)

Again the first two lines are self-contained, but are not an FPUT system—they are a singularly
perturbed FPUT equation. It is not at all obvious that such an approximation is useful, since the
approximating system is now as complex as the original. We go no further.
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