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Abstract: Understanding the pathways whereby an intervention has an effect on an outcome is a common
scientific goal. A rich body of literature provides various decompositions of the total intervention effect into
pathway specific effects. Interventional direct and indirect effects provide one such decomposition. Existing
estimators of these effects are based on parametric models with confidence interval estimation facilitated via
the nonparametric bootstrap. We provide theory that allows for more flexible, possibly machine learning-
based, estimation techniques to be considered. In particular, we establish weak convergence results that
facilitate the construction of closed-form confidence intervals and hypothesis tests and prove multiple
robustness properties of the proposed estimators. Simulations show that inference based on large-sample
theory has adequate small-sample performance. Our work thus provides a means of leveraging modern
statistical learning techniques in estimation of interventional mediation effects.

Keywords: Mediation, Causal inference, Augmented inverse probability of treatment weighted estimator,
Targeted minimum loss estimator, Machine learning

MSC: 62G05,62G08,62G20

1 Introduction
Recent advances in causal inference have provided rich frameworks for posing interesting scientific ques-
tions pertaining to the mediation of effects through specific biologic pathways (among others, Imai et al.
[11], Naimi et al. [13], Pearl [15], Valeri and VanderWeele [20], VanderWeele and Tchetgen Tchetgen
[24], Yuan and MacKinnon [28], Zheng and van der Laan [30]). Foremost amongst these advances is the
provision of model-free definitions of mediation parameters, which enables researchers to develop robust
estimators of these quantities. A debate in this literature has emerged pertaining to the reliance of method-
ology on cross-world independence assumptions that are fundamentally untestable even in randomized
controlled experiments [7, 14, 17]. One approach to this problem is to utilize methods that attempt to
estimate bounds on effects (among others, Robins and Richardson [17], Tchetgen Tchetgen and Phiri [19]).
A second approach considers seeking alternative definitions of mediation parameters that do not require
such cross-world assumptions (among others, Rudolph et al. [18], VanderWeele et al. [25]). Rather than
considering deterministic interventions on mediators (i.e., a hypothetical intervention that fixes every every
individuals mediator to a particular value), these approaches consider stochastic interventions on mediators
(i.e., hypothetical interventions where the mediator is drawn from a particular conditional distribution).
In this class of approaches, that of Vansteelandt and Daniel [26] is particularly appealing. Building on the
prior work of VanderWeele et al. [25], the authors provide a simple decomposition of the total effect into
direct effects and pathway-specific effects via multiple mediators. Interestingly, their decompositions hold
even when the structural dependence between mediators is unknown.

Vansteelandt and Daniel [26] described two approaches to estimation of the effects using parametric
working models for relevant nuisance parameters. In both cases, the nonparametric bootstrap was rec-
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ommended for inference. A potential limitation of the proposal is that correctly specifying a parametric
working model may be difficult in many settings. In these instances, we may rely on flexible estimators
of nuisance parameters, for example, based on machine learning. When such techniques are employed, the
nonparametric bootstrap does not generally guarantee valid inference [6]. This fact motivates the present
work, where we develop nonparametric efficiency theory for the interventional mediation effect parameters.
This theory allows us to utilize frameworks for nonparametric efficient inference to develop estimators of
the quantities of interest. We propose a one-step and a targeted minimum loss-based estimator and demon-
strate that under suitable regularity conditions, both estimators are nonparametric efficient amongst the
class of regular asymptotically linear estimators. The estimators also enjoy a multiple robustness property,
which ensures consistency of effect estimates if at least some combination of nuisance parameters are con-
sistently estimated. Another benefit enjoyed by our estimators is the availability of closed-form confidence
intervals and hypothesis tests.

2 Interventional Effects
Adopting the notation of Vansteelandt and Daniel [26], suppose the observed data are represented as
n independent copies of the random variable O = (C,A,M1,M2, Y ) ∼ P , where C ∈ C is a vector of
confounders, A ∈ {a, a⋆} is a binary intervention, M1 ∈ M1 and M2 ∈ M2 are mediators, and Y ∈ Y is a
relevant outcome. Our developments pertain to both discrete and real-valued mediators, while without loss
of generality, we assume Y = (0, 1). We assume prP {0 < prP (A = a | C) < 1} = 1; that is, any subgroup
defined by covariates C that is observed with positive probability should have some chance of receiving
both interventions. We also assume that for a0 = a, a⋆, the probability distribution of (M1,M2) given
A = a0, C has density qa0,M1,M2(m1,m2 | c) with respect to some dominating measure and this density
satisfies prP {infm1,m2 qa0,M1,M2(m1,m2 | C)} > 0} = 1, where the infimum is taken over M1 × M2.
Similarly, we assume that for all supc,m1,m2 qa0,M1,M2(m1,m2 | c) < ∞. Beyond these conditions, P
encodes no assumptions about P ; however, the efficiency theory that we develop still holds under a model
that makes assumptions about prP (A | C), including the possibility that this quantity is known exactly,
as in a stratified randomized trial.

To define interventional mediation effects, notation for counterfactual random variables is required.
For a0 ∈ {a, a⋆}, and j = 1, 2, let Mj(a0) denote the counterfactual value for the j-th mediator when A is
set to a0. Similarly, let Y (a0,m1,m2) denote the counterfactual outcome under an intervention that sets
A = a0,M1 = m1, and M2 = m2. As a point of notation, when introducing quantities whose definition
depends on particular components of the random variable O, we will use lower case letters to denote the
particular value and assume that the definition at hand applies for all values in the support of that random
variable.

The total effect of intervening to set A = a versus A = a⋆ is ψ = E{Y (a,M1(a),M2(a))} −
E{Y (a⋆,M1(a⋆),M2(a⋆))}, where we use E to emphasize that we are taking an expectation with re-
spect to a distribution of a counterfactual random variable. The total effect describes the difference in
counterfactual outcome considering an intervention where we set A = a and allow the mediators to naturally
assume the value that they would under intervention A = a versus an intervention where we set A = a⋆ and
allow the mediators to vary accordingly. To contrast with forthcoming effects, it is useful to write the total
effect in integral form. Specifically, we use Q̄a0(m1,m2, c) to denote the covariate-conditional mean of the
counterfactual outcome Y (a0,m1,m2), QM1(a0),M2(a0)(·, · | c) to denote the covariate-conditional bivariate
cumulative distribution function of (M1(a0),M2(a0)), and QC to denote the marginal distribution of C.
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The total effect can be written as

ψ =
∫
C

{ ∫
M1×M2

Q̄a(m1,m2, c) dQM1(a),M2(a)(m1,m2 | c)

−
∫

M1×M2

Q̄a⋆(m1,m2, c) dQM1(a⋆),M2(a⋆)(m1,m2 | c)
}
dQC(c) .

The total effect can be decomposed into interventional direct and indirect effects. The interventional
direct effect is the difference in average counterfactual outcome under two population-level interventions.
The first intervention sets A = a, and subsequently for individuals with C = c draws mediators from
QM1(a⋆),M2(a⋆)(· | c). Thus, on a population level the covariate conditional distribution of mediators in
this counterfactual world is the same as it would be in a population where everyone received intervention
A = a⋆. This is an example of a stochastic intervention [12]. The second intervention sets A = a⋆, and
subsequently allows the mediators to naturally assume the value that they would under intervention A = a⋆,
so that the population level mediator distribution is again QM1(a⋆),M2(a⋆)(· | c). The interventional direct
effect compares the average outcome under these two interventions,

ψA =
∫
C

∫
M1×M2

{Q̄a(m1,m2, c) − Q̄a⋆(m1,m2, c)}dQM1(a⋆),M2(a⋆)(m1,m2 | c)dQC(c) .

For interventional indirect effects, we require definitions for the covariate-conditional distribution of
each mediator, which we denote for j = 1, 2 by QMj(a0)(· | c). The interventional indirect effect through
M1 is

ψM1 =
∫
C

[ ∫
M2

∫
M1

Q̄a(m1,m2, c){dQM1(a)(m1 | c) − dQM1(a⋆)(m1 | c)}dQM2(a⋆)(m2 | c)
]

×dQC(c) .

As with the direct effect, this effect considers two interventions. Both interventions set A = a. The first
intervention draws mediator values independently from the marginal mediator distributions QM1(a)(· | c)
and QM2(a⋆)(· | c), while the second intervention draws mediator values independently from the marginal
mediator distributions QM1(a⋆)(· | c) and QM2(a⋆)(· | c). The effect thus describes the average impact of
shifting the population level distribution of M1, while holding the population level distribution of M2 fixed.
The interventional indirect effect on the outcome through M2 is similarly defined as

ψM2 =
∫
C

[ ∫
M1

∫
M2

Q̄a(m1,m2, c)dQM1(a)(m1 | c){dQM2(a)(m2 | c) − dQM2(a⋆)(m2 | c)}
]

×dQC(c) .

Note that when defining interventional indirect effects, mediators are drawn independently from
marginal mediator distributions. The final effect in the decomposition essentially describes the impact
of drawing the mediators from marginal rather than joint distributions. Thus, we term this effect the
covariant mediator effect, defined as

ψM1,M2 =
∫
C

∫
M1×M2

Q̄a(m1,m2, c)
[
dQM1(a),M2(a)(m1,m2 | c) − dQM1(a)×M2(a)(m1,m2 | c)

− {dQM1(a⋆),M2(a⋆)(m1,m2 | c) − dQM1(a⋆)×M2(a⋆)(m1,m2 | c)}
]
dQC(c) ,

where dQM1(a0)×M2(a0)(m1,m2 | c) = dQM1(a0)(m1 | c)dQM2(a0)(m2 | c). Vansteelandt and Daniel [26]
discuss situations where these effects are of primary interest.

From the above definitions, we have the following effect decomposition ψ = ψA +ψM1 +ψM2 +ψM1,M2 .
These component effects can be identified using the observed data under the following assumptions:
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(i) the effect of A on Y is unconfounded given C, Y (a,M1(a),M2(a)) ⊥⊥ A | C;
(ii) the effect of M1 and M2 on Y is unconfounded given A and C, Y (a0,M1(a0),M2(a0)) ⊥⊥ M1,M2 |

A = a0, C;
(iii) the effect of A on M1,M2 is unconfounded given C, M1(a0),M2(a0) ⊥⊥ A | C.
Under these assumptions, the counterfactual mean Q̄a0(m1,m2, c) is identified by Q̄a0(m1,m2, c) = EP (Y |
A = a0,M1 = m1,M2 = m2, C = c), commonly referred to as the outcome regression as it may gener-
ally be estimated using mean regression of the outcome Y onto treatment, mediators, and confounders.
The cumulative distribution of (M1(a0),M2(a0)) given C = c is identified by Qa0,M1,M2(m1,m2 | c) =
prP (M1 ≤ m1,M2 ≤ m2 | A = a0, C = c). We assume the existence of a density qa0,M1,M2 for the
mediators with respect to a dominating measure and define marginal mediator densities qa0,Mi

(mi | c) =∫
mj∈Mj

dQa0,M1,M2(m1,m2 | c) for i, j = 1, 2 and i ̸= j. We subsequently refer to these objects as marginal
mediator distributions, though they are in fact conditional on A = a0 and C.

The identifying formula for each effect can now be written as a statistical functional of the observed
data distribution by substituting the outcome regression for Q̄a0(m1,m2, c) and the observed-data mediator
distributions for the respective counterfactual distributions in the integral expressions above.

We note that the above assumptions preclude the existence of treatment-induced confounding of the
mediator-outcome association. In the Web Supplement, we provide relevant extensions to this setting.

3 Methods

3.1 Efficiency theory

In this section, we develop efficiency theory for nonparametric estimation of interventional effects. This
theory centers around the efficient influence function of each parameter. The efficient influence function is
important for several reasons. First, it allows us to utilize of two existing estimation frameworks, one-step
estimation [2, 10] and targeted minimum loss-based estimation [22, 23], to generate estimators that are
nonparametric efficient. That is, under suitable regularity conditions, they achieve the smallest asymptotic
variance amongst all regular estimators that, when scaled by n1/2, have an asymptotic Normal distribution.
We discuss how these estimators can be implemented in section 3.2. The second important feature of the
efficient influence function is that its variance equals the variance of the limit distribution of the scaled
estimators. Thus, an estimate of the variance of the efficient influence function is a natural standard error
estimate, which affords closed-form Wald-style confidence intervals and hypothesis tests (Section 3.3).
Finally, the efficient influence function also characterizes robustness properties of our proposed estimators
(Section 3.4).

To introduce the efficient influence function, several additional definitions are required. For a given
distribution P ′ ∈ P, we define g′

a0(c) = prP ′(A = a0 | C = c), commonly referred to as a propensity
score. For i, j = 1, 2 and i ̸= j, we introduce the following partially marginalized outcome regressions,
Q̃a,M⋆

i
(mj , c) =

∫
Q̄a(m1,m2, c)dQa,Mi

(mi | c). We also introduce notation for the indicator function
1a : {a, a⋆} → {0, 1} defined by 1a(ã) = 1 if ã = a and zero otherwise. 1a⋆ is similarly defined.

Theorem 1. Under sampling from P ′ ∈ P, the efficient influence function evaluated on a given observation
õ for the total effect is

D∗(P ′)(õ) = 1a(ã)
g′

a(c̃) {ỹ − Q̃′
a,M1,M2

(c̃)} − 1a⋆(ã)
g′

a⋆(c̃) {ỹ − Q̃′
a⋆,M⋆

1 ,M⋆
2

(c̃)}

+ Q̃′
a,M1,M2

(c̃) − Q̃′
a⋆,M⋆

1 ,M⋆
2

(c̃) − ψ′ .

The efficient influence function for the interventional direct effect is

D∗
A(P ′)(õ) = 1a(ã)

g′
a(c̃)

q′
a⋆,M1,M2

(m̃1, m̃2 | c̃)
q′

a,M1,M2
(m̃1, m̃2 | c̃) {ỹ − Q̄′

a(m̃1, m̃2, c̃)}
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− 1a⋆(ã)
g′

a⋆(c̃) {ỹ − Q̄′
a⋆(m̃1, m̃2, c̃)}

+ 1a⋆(ã)
g′

a⋆(c̃)

[
Q̄′

a(m̃1, m̃2, c̃) − Q̄′
a⋆(m̃1, m̃2, c̃) − {Q̃′

a,M⋆
1 ,M⋆

2
(c̃) − Q̃′

a⋆,M⋆
1 ,M⋆

2
(c̃)}

]
+ Q̃′

a,M⋆
1 ,M⋆

2
(c̃) − Q̃′

a⋆,M⋆
1 ,M⋆

2
(c̃) − ψ′

A .

The efficient influence function for the interventional indirect effect through M1 is

D∗
M1

(P ′)(õ) = 1a(ã)
g′

a(c̃)
{q′

a,M1
(m̃1 | c̃) − q′

a⋆,M1
(m̃1 | c̃)}q′

a⋆,M2
(m̃2 | c̃)

q′
a,M1,M2

(m̃1, m̃2 | c̃) {ỹ − Q̄′
a(m̃1, m̃2, c̃)}

+ 1a(ã)
g′

a(c̃) {Q̃′
a,M⋆

2
(m̃1, c̃) − Q̃′

a,M1×M⋆
2

(c̃)}

− 1a⋆(ã)
g′

a⋆(c̃) {Q̃′
a,M⋆

2
(m̃1, c̃) − Q̃′

a,M⋆
1 ×M⋆

2
(c̃)}

+ 1a⋆(ã)
g′

a⋆(c̃)

[
Q̃′

a,M1
(m̃2, c̃) − Q̃′

a,M⋆
1

(m̃2, c̃) − {Q̃′
a,M1×M⋆

2
(c̃) − Q̃′

a,M⋆
1 ×M⋆

2
(c̃)}

]
+ Q̃′

a,M1×M⋆
2

(c̃) − Q̃′
a,M⋆

1 ×M⋆
2

(c̃) − ψ′
M1

.

The efficient influence function for the interventional indirect effect through M2 is

D∗
M2

(P ′)(õ) = 1a(ã)
g′

a(c̃)
{q′

a,M2
(m̃2 | c̃) − q′

a⋆,M2
(m̃2 | c̃)}q′

a,M1
(m̃1 | c̃)

q′
a,M1,M2

(m̃1, m̃2 | c̃) {ỹ − Q̄′
a(m̃1, m̃2, c̃)}

+ 1a(ã)
g′

a(c̃) {Q̃′
a,M1

(m̃2, c̃) − Q̃′
a,M1×M2

(c̃)}

− 1a⋆(ã)
g′

a⋆(c̃) {Q̃′
a,M1

(m̃2, c̃) − Q̃′
a,M1×M⋆

2
(c̃)}

+ 1a(ã)
g′

a(c̃)

[
Q̃′

a,M2
(m̃1, c̃) − Q̃′

a,M⋆
2

(m̃1, c̃) − {Q̃′
a,M1×M2

(c̃) − Q̃′
a,M1×M⋆

2
(c̃)}

]
+ Q̃′

a,M1×M2
(c̃) − Q̃′

a,M1×M⋆
2

(c̃) − ψ′
M2

.

The efficient influence function for the covariant interventional effect is D∗
M1,M2

= D∗ −D∗
A −D∗

M1
−D∗

M2
.

A proof of Theorem 1 is provided in the web supplement.

3.2 Estimators

We propose estimators of each interventional effect using one-step and targeted minimum loss-based esti-
mation. Both techniques develop along a similar path. We first obtain estimates of the propensity score,
outcome regression, and joint mediator distribution; we collectively refer to these quantities as nuisance
parameters. With estimated nuisance parameters in hand, we subsequently apply a correction based on the
efficient influence function to the nuisance estimates.

To estimate the propensity score, we can use any suitable technique for mean regression of the binary
outcome A onto confounders C. Working logistic regression models are commonly used for this purpose,
though semi- and nonparametric alternatives would be more in line with our choice of model. We denote
by gn,a0(c) the chosen estimate of ga0(c). Similarly, the outcome regression can be estimated using mean
regression of the outcome Y onto A,M1,M2, and C. For example, if the study outcome is binary, logistic
regression could again be used, though more flexible regression estimators may be preferred. As above,
we denote by Q̄n,a0 the estimated outcome regression evaluated under A = a0, with Q̄n,a0(m1,m2, c)
providing an estimate of EP (Y | A = a0,M1 = m1,M2 = m2, C = c). To estimate the marginal cumulative
distribution of C, we will use the empirical cumulative distribution function, which we denote by Qn,C .

Estimation of the conditional joint distribution of the mediators is a more challenging proposition, as
fewer tools are available for flexible estimation of conditional multivariate distribution functions. We hence
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focus our developments on the development of approaches for discrete-valued mediators. The approach we
adopt could be extended to continuous-valued mediators by considering a fine partitioning of the mediator
values. We examine this approach via simulation in Section 4. To develop our density estimators, we use
the approach of Dìaz Muñoz and van der Laan [9], which considers estimation of a conditional density via
estimation of discrete conditional hazards. Briefly, consider estimation of the distribution of M2 given A

and C, and, for simplicity, suppose that the support of M2 is {1, 2, 3}. We create a long-form data set,
where the number of rows contributed by each individual contribute is equal to their observed value of
M2. An example is illustrated in Table 1. We see that the long-form data set includes an integer-valued
column named “bin” that indicates to which value of M2 each row corresponds, as well as a binary column
1bin(M2) indicating whether the observed value of M2 corresponds to each bin. These long-form data can
be used to fit a regression of the binary outcome 1bin(M2) onto C, A, and bin. This naturally estimates
λb(a0, c) = P (M2 = b | M2 > b− 1, A = a0, C = c), the conditional discrete hazard of M2 given A and C.
Let λn,· denote the estimated hazard obtained from fitting this regression. An estimate of the density at
m2 ∈ M2 is

qn,a0,M2(m2 | c) =
λn,m2(a0, c)

m2−1∏
b=1

{1 − λn,b(a0, c)}

∑
m∈M2

[
λn,m(a0, c)

m−1∏
b=1

{1 − λn,b(a0, c)}
] .

Similarly, an estimate qn,a0,M1(· | m2, c) of the conditional distribution of M1 given A = a0,M2 =
m2, C = c can be obtained. An estimate of the joint conditional density is implied by these estimates,
qn,a0,M1,M2(m1,m2 | c) = qn,a0,M1(m1 | m2, c)qn,a0,M2(m2 | c), while an estimate of the marginal distri-
bution of M1 is qn,a0,M1(m1, | c) =

∑
m2∈M2

qn,a0,M1,M2(m1,m2 | c).
In principle, one could reverse the roles of M1 and M2 in the above procedure. That is, we could

instead estimate the distribution of M1 given A = a0, C and of M2 given A = a0, C,M1. Cross-validation
could be used to pick between the two potential estimators of the joint distribution. Other approaches to
conditional density estimation are permitted by our procedure as well. For example, approaches based on
working copula models may be particularly appealing in this context, as they allow separate specification
of marginal vs. joint distributions of the mediators.

ID C A M2

1 1 0 1
2 0 1 3
...

...
...

...
n 0 1 2

ID C A bin 1bin(M2)

1 1 0 1 1
2 0 1 1 0
2 0 1 2 0
2 0 1 3 1
...

...
...

...
...

n 0 1 1 0
n 0 1 2 1

Table 1. An illustration of how to make a long form data set suitable for estimating mediator distributions. An ID is
uniquely assigned to each independent data unit and a single confounder C is included in the mock data set.

Given estimates of nuisance parameters, we now illustrate one-step estimation for the interventional
direct effect. One-step estimators of other effects can be generated similarly. A plug-in estimate of the
conditional interventional direct effect given C = c is the difference between

Q̃n,a,M⋆
1 ,M⋆

2
(c) =

∫
M1×M2

Q̄n,a(m1,m2, c)dQn,a⋆,M1,M2(m1,m2 | c) and

Q̃n,a⋆,M⋆
1 ,M⋆

2
(c) =

∫
M1×M2

Q̄n,a⋆(m1,m2, c)dQn,a⋆,M1,M2(m1,m2 | c) .
(1)
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To obtain a plug-in estimate ψn,A of ψA, we standardize the conditional effect estimate with respect to
Qn,C , the empirical distribution of C. Thus, the plug-in estimator of ψA is ψn,A =

∫
C{Q̃n,a,M⋆

1 ,M⋆
2

(c) −
Q̃n,a⋆,M⋆

1 ,M⋆
2

(c)}dQn,C(c).
The one-step estimator is constructed by adding an efficient influence function-based correction to

an initial plug-in estimate. Suppose we are given estimates of all relevant nuisance quantities and let P ′
n

denote any probability distribution in P that is compatible with these estimates. The efficient influence
function for ψA under sampling from P ′

n is D∗
A(P ′

n), and the one-step estimator is ψn,A,+ = ψn,A +
n−1 ∑n

i=1 D
∗
A(P ′

n)(Oi). All other effect estimates are generated in this vein: estimated nuisance parameters
are plugged in to the efficient influence function, the resultant function is evaluated on each observation,
and the empirical average of this quantity is added to the plug-in estimator.

While one-step estimators are appealing in their simplicity, the estimators may not obey bounds on
the parameter space in finite samples. For example, if the study outcome is binary, then the interventional
effects each represent a difference in two probabilities and thus are bounded between -1 and 1. However,
one-step estimators may fall outside of this range. This motivates estimation of these quantities using
targeted minimum loss-based estimation, a framework for generating plug-in estimators. The implemen-
tation of such estimators is generally more involved than that of one-step estimators. In this approach, a
second-stage model fitting is used to ensure that nuisance parameter estimates satisfy efficient influence
function estimating equations. The approach for this second-stage fitting is dependent on the specific effect
parameter considered and the procedure differs subtly for the various effect measures presented here. The
web supplement includes a detailed exposition of how such estimators can be implemented.

3.3 Large sample inference

We now present a theorem establishing the joint weak convergence of the proposed estimators to a random
variable with a multivariate normal distribution. Because the asymptotic behavior of the one-step and
targeted minimum loss estimators are equivalent, we present a single theorem. A discussion of the differences
in regularity conditions required to prove the theorem for one-step versus targeted minimum loss estimation
is provided in the web supplement. Let ψn,· denote the vector of (one-step or targeted minimum loss)
estimates of ψ· = (ψA, ψM1 , ψM2 , ψM1,M2)⊤ and let D∗

· (P ′) denote the vector of efficient influence functions
defined by

õ ↦→ (D∗
A(P ′)(õ), D∗

M1
(P ′)(õ), D∗

M2
(P ′)(õ), D∗

M1,M2
(P ′)(õ))⊤ .

In the theorem, we use || · || to denote the L2(P )-norm, define for any P -measurable f as ||f ||2 =∫
f(o)dP (o).

Theorem 2. Under sampling from P ∈ P, if for a0 = a, a⋆,

(i) supc|gn,a0(c) − ga0(c)| → 0 in probability as n → ∞,
(ii) supm1,m2,c|qn,a0,M1,M2(m1,m2 | c) − qa0,M1,M2(m1,m2 | c)| → 0 in probability as n → ∞,

(iii) ||gn,a0 − gn,a0 || = op(n−1/4),
(iv) ||Q̄n,a0 − Q̄a0 || = op(n−1/4),
(v) ||qn,a0,M1,M2 − qa0,M1,M2 || = op(n−1/4),

(vi) ||qn,a0,M1qn,a0,M2 − qa0,M1qa0,M2 || = op(n−1/4),
(vii) ||qn,a0,M1 − qa0,M1 || = op(n−1/4), ||qn,a0,M2 − qa0,M2 || = op(n−1/4), and

(viii)
∫

{D∗
· (P ′

n)(o) −D∗
· (P )(o)}2dP (o) → 0 in probability as n → ∞ and D∗

· (P ′
n) falls in a P -Donsker class

with probability tending to 1,

then n1/2(ψn,· − ψ·) →d Normal(0,Σ), where Σ =
∫
D∗

· (P )(o)D∗
· (P )(o)⊤dP (o).
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The regularity conditions required for Theorem 2 are typical of many problems in semiparametric efficiency
theory. We provide conditions in terms of L2(P )-norm convergence, as this is typical of this literature;
however, alternative and potentially weaker conditions are possible to derive. For further discussion, see
the supplementary material. As with any nonparametric procedure, there is a concern relating to the
dimensionality C, particularly in situations with real-valued mediators. Minimum loss estimators (MLE)
in certain function classes can attain the requisite convergence rates. For example, an MLE in the class of
functions that are right-continuous with left limits (i.e., càdlàg) with variation norm bounded by a constant
achieves an L2(P ) convergence rate faster than n−1/4 irrespective of the dimension of the conditioning set
[1]. However, this may not allay all concerns pertaining to the curse of dimensionality due to the fact
that in moderately high dimensions, these function classes can be restrictive and thus the true function
may fall outside this class. Nevertheless, we suggest (and our simulations show) that in spite of concerns
pertaining to the curse of dimensionality our procedure will enjoy reasonable finite-sample performance in
many settings.

The covariance matrix Σ may be estimated by the empirical covariance matrix of the vector D∗(P ′
n)

applied to the observed data, where P ′
n is any distribution in the model that is compatible with the

estimated nuisance parameters. With the estimated covariance matrix, it is straightforward to construct
Wald confidence intervals and hypothesis tests about the individual interventional effects or comparisons
between them. For example, a straightforward application of the delta method would allow for a test of
the null hypothesis that ψM1 = ψM2 .

3.4 Robustness properties

As with many problems in causal inference, consistent estimation of interventional effects requires consistent
estimation only of certain combinations of nuisance parameters. To determine these combinations, we may
study the stochastic properties of the efficient influence function. In particular, consider a parameter whose
value under P is ψ̃ and whose efficient influence function under sample from P ′ can be written D̃∗(P ′, ψ̃′),
where ψ̃′ is the value of the parameter of interest under P ′. Then we may study the circumstances under
which

∫
D̃∗(P ′, ψ̃)dP (o) = 0. This generally entails understanding which parameters of P ′ must align with

those parameters of P to ensure that the influence function D̃∗(P ′, ψ̃) has mean zero under sampling from
P . We present the results of this analysis in a theorem below and refer readers to the web supplement for
the proof.

Theorem 3. Locally efficient estimators of the total effect and the intervention direct, indirect, and co-
variant effects are consistent for their respective target parameters if the following combinations of nuisance
parameters are consistently estimated:

Total effect: (Q̄a, Q̄a⋆ , Qa,M1,M2 , Qa⋆,M1,M2) or (ga, ga⋆)

Interventional direct effect: (Q̄a, Q̄a⋆ , ga⋆) or (Q̄a, Q̄a⋆ , Qa,M1,M2 , Qa⋆,M1,M2) or (Qa,M1,M2 , Qa⋆,M1,M2 ,

ga⋆ , ga);

Inverventional indirect effect through M1: (Q̄a, Qa,M1 , Qa⋆,M1 , Qa⋆,M2) or (ga, Qa,M1,M2 , Qa⋆,M1 , Qa⋆,M2)
or (Q̄a, ga, ga⋆ , Qa⋆,M2) or (Q̄a, ga, ga⋆ , Qa,M1);

Inverventional indirect effect through M2: (Q̄a, Qa,M2 , Qa⋆,M2 , Qa,M1) or (ga, Qa,M1,M2 , Qa⋆,M2) or (Q̄a,

ga, ga⋆ , Qa,M1) or (Q̄a, ga, ga⋆ , Qa,M2);

Interventional covariant effect: (Q̄a, Q̄a⋆ , Qa,M1,M2 , Qa⋆,M1,M2) or (ga, g
⋆
a, Q̄a, Q̄a⋆ , Qa,M1 , Qa⋆,M2) or

(ga, ga⋆ , Qa,M1,M2 , Qa⋆,M1 , Qa⋆,M2).

The most interesting robustness result is perhaps that pertaining to the indirect effects. The first condition
for consistent estimation is expected, as the propensity score plays no role in the definition of the indirect
effect. The second condition shows that the joint mediator distribution and propensity score together can
compensate for inconsistent estimation of the outcome regression, while the relevant marginal mediator
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distributions are required to properly marginalize the resultant quantity. The third and fourth conditions
show that inconsistent estimation of the marginal distribution one, but not both, of the mediators can be
corrected for via the propensity score.

We note that Theorem 3 provides sufficient, but not necessary, conditions for consistent estimation
of each effect. For example, a consistent estimate of the total effect is implied by a consistent estimate of
Q̃a,M1,M2 and Q̃a⋆,M⋆

1 ,M⋆
2

, a condition that is generally weaker than requiring consistent estimation of the
outcome regression and joint mediator distribution. Because our estimation strategy relies on estimation
of the joint mediator distribution, we have described robustness properties in terms of the large sample
behavior of estimators of those quantities.

3.5 Extensions

In the Web Supplement, we provide relevant extensions to the setting where the mediator-outcome rela-
tionship is confounded by measured covariates whose distributions are affected by the treatment. In this
case, both the effects of interest and their efficient influence functions involve the conditional distribu-
tion of the confounding covariates. We discuss the relevant modifications to the estimation procedures to
accommodate this setting in the supplement.

Generalization to other effect scales requires only minor modifications. First, we determine the portions
of the efficient influence function that pertain to each component of the additive effect. For example,
considering ψM1 , we identify the portions of the efficient influence function that pertain to the mean
counterfactual under draws of M1 from qa,M1(· | C) and of M2 from qa⋆,M2(· | C) versus those portions
that pertain to the mean counterfactual under draws of M1 from qa⋆,M1(· | C) and of M2 from qa⋆,M2(· | C).
We then develop a one-step or targeted minimum loss estimator for each of these components separately.
Finally, we use the delta method to derive the resulting influence function. In the web supplement, we
illustrate an extension to a multiplicative scale.

Our results can also be extended to estimation of interventional effects for more than two mediators. As
discussed in Vansteelandt and Daniel [26], when there are more than two mediators, say M1, . . . ,Mt, there
are many possible path-specific effects. However, our scientific interest is usually restricted to learning effects
that are mediated through each of the mediators, rather than all possible path-specific effects. Moreover,
strong untestable assumptions are required to infer all path-specific effects, including assumptions about
the direction of the causal effects between mediators. Therefore, it may be of greatest interest to evaluate
direct effects such as

ψt,A =
∫
C

∫
M1×···×Mt

{Q̄a(m1, . . . ,mt, c) − Q̄a⋆(m1, . . . ,mt, c)}

× dQM1(a⋆),...,Mt(a⋆)(m1, . . . ,mt | c)dQC(c) ,

which describes the effect of setting A = a versus A = a⋆, while drawing all mediators from the joint
conditional distribution given A = a⋆, C, and for s = 1, . . . , t, indirect effects such as

ψt,Ms
=

∫
C

⎡⎣ ∫
M1×···×Mt

Q̄a(m1,m2, c){dQMs(a)(ms | c) − dQMs(a⋆)(ms | c)}

×
s−1∏
u=1

dQMu(a)(mu | c)
t∏

v=s+1
dQMv(a⋆)(mv | c)

]
dQC(c) ,

which describes the effect of setting Ms to the value it would assume under A = a versus A = a⋆ while draw-
ing M1, . . . ,Ms−1 from their respective marginal distributions given A = a,C and drawing Ms+1, . . . ,Mt

from their marginal distribution given A = a⋆, C. We provide relevant efficiency theory for these parameters
in the web supplement.
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Figure 1. Joint distribution of mediators used in the simulation.

3.6

4 Simulations

4.1 Discrete mediators

We evaluated the small sample performance of our estimators via Monte Carlo simulation. Data were gen-
erated as follows. We simulated C = (C1, . . . , C5) by drawing C1, C2, C3 independently from Uniform(0,1)
distributions, and C4, C5 independently from Bernoulli distributions with success probability of 0.25 and
0.5, respectively. The treatment variable A was, given C = c, was drawn from a Bernoulli distribution with
ga(c) = logit−1(−1 + 0.125c1 + 0.25c2) and ga⋆(c) = 1 − ga(c). Here, we consider a = 1 and a⋆ = 0. Given
C = c, A = a0, the first mediator M1 was generated by taking draws from a geometric distribution with
success probability logit−1(−1.1 + 0.45c1 + 0.125a0). Any draw of six or greater was set equal to six. The
second mediator was generated from a similarly truncated geometric distribution with success probability
logit−1(−1.1+0.15c1 +0.2c2 −0.2a0). Given C = c, A = a0,M1 = m1,M2 = m2, the outcome Y was drawn
from a Bernoulli distribution with success probability logit−1(−1 + c1 − c2 + 0.25m1 + 0.25m2 + 0.25a0).
The mediator distribution is visualized for combinations of c and a0 in Figure 1. The true total effect is
approximately 0.06, which decomposes into a direct effect of 0.05, an indirect effect through M1 of -0.01,
an indirect effect through M2 of 0.02 and a covariant effect of 0.

The nuisance parameters were estimated using regression stacking [3, 27], also known as super learning
[21] using the SuperLearner package for the R language [16]. We used this package to generate an ensemble
of a main-terms logistic regression (as implemented in the SL.glm function in SuperLearner), polynomial
multivariate adaptive regression splines (SL.earth), and a random forest (SL.ranger). The ensemble was
built by selecting the convex combination of these three estimators that minimized ten-fold cross-validated
deviance.

We evaluated our proposed estimators under this data generating process at sample sizes of 250, 500, 1000,
and 2000. At each sample size, we simulated 1,000 data sets. Point estimates were compared in terms
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of their Monte Carlo bias, standard deviation, mean squared error. We evaluated weak convergence by
visualizing the sampling distribution of the estimators after centering at the true parameter value and
scaling by an oracle standard error, computed as the Monte Carlo standard deviation of the estimates, as
well as scaling by an estimated standard error based on the estimated variance of the efficient influence
function. Similarly, we evaluated the coverage probability of a nominal 95% Wald-style confidence interval
based on the oracle and estimated standard errors.

In terms of estimation, one-step and targeted minimum loss estimators behave as expected in large
samples (Figure 2). The estimators are approximately unbiased in large samples and have mean squared
error appropriately decreasing with sample size. Comparing the two estimation strategies, we see that one-
step and targeted minimum loss estimators had comparable performance for the interventional direct effect,
while the targeted minimum loss esitmator had better performance for the indirect effects. However, the
one-step was uniformly better for estimating the covariant effect owing to large variability of the targeted
minimum loss estimator of this quantity. Further examination of the results revealed that the second-stage
model fitting required by the targeted minimum loss approach was could be unstable in small samples,
leading to extreme results in several data sets.

The sampling distribution of the centered and scaled estimators were approximately a standard normal
distribution (Figures 3 and 4), excepting the targeted minimum loss estimator scaled by an estimated
standard error. Confidence intervals based on an oracle standard error came close to nominal coverage in
all sample sizes, while those based on an estimated standard error tended to have under-coverage in small
samples.

4.2 Continuous mediators

We examined the impact of discretization of the mediator distributions when in fact the mediators are
continuous valued. To that end, we simulated data as follows. Covariates were simulated as above. The
treatment variable A given C = c was drawn from a Bernoulli distribution with ga(c) = logit−1(−1 +
0.25c1 − 0.5c1c2). Given C = c, A = a0, M1 and M2 were respectively drawn from Normal distributions
with unit variance and means c1 − 0.5a0c1 and c2 − c2a0. As above, Super Learner was used to estimate
all nuisance parameters. To accommodate appropriate modeling of the interactions, we replaced the main
terms GLM (SL.glm) with a forward stepwise GLM algorithm that included all two way interactions
(SL.step.interaction). The true effect sizes were approximately the same as in the first simulation. We
evaluated discretization of each continuous mediator distribution into 5 and 10 evenly spaced bins. For the
sake of space, we focus results on the one-step estimator; results for targeted minimum loss estimator are
included in the supplement.

Overall, discretization of the continuous mediator distribution had a greater impact on the perfor-
mance of indirect effect estimators compared to direct effects (Figures 5 and 6). For the latter effects,
oracle confidence intervals for both levels of discretization achieved nominal coverage for all sample sizes
considered. For the indirect effects, we found that there was non-negligible bias in the estimates due to the
discretization. The impacts in terms of confidence interval coverage were minimal in small sample sizes, but
lead to under-coverage in larger sample sizes. Including more bins generally lead to better performance,
but these estimates still exhibited bias in the largest sample sizes that impacted coverage. Nevertheless
the performance of the indirect effect estimators was reasonable with oracle coverage > 90% for all sample
sizes.

4.3 Additional simulations

In the web supplement we include several additional simulations studying the impact of the number of
levels of the discrete mediator, as well as the impact of inconsistent estimation of the various nuisance
parameters. For the former, we found that the results of the simulation were robust to number of mediator
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Figure 2. Comparison of one-step and targeted minimum loss estimators (TMLE) in terms of their Monte Carlo-estimated
bias, standard deviation, and mean squared-error for the interventional direct (ψA), indirect (ψM1
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Figure 3. Illustration of weak convergence and Wald-style confidence intervals based on the one-step estimator. The left
two columns show the kernel density estimate of the sampling distribution of the centered estimates of interventional ef-
fects scaled by the oracle standard error (left) and by their estimated standard error (middle). In each case, the asymptotic
distribution is shown in black. The right panel shows coverage probability of a nominal 95% Wald-style confidence interval
based on an oracle standard error (solid triangle) and an estimated standard error (open triangle).
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Figure 4. Illustration of weak convergence and Wald-style confidence intervals based on the targeted minimum loss esti-
mator. The left two columns show the kernel density estimate of the sampling distribution of the centered estimates of
interventional effects scaled by the oracle standard error (left) and by their estimated standard error (middle). In each case,
the asymptotic distribution is shown in black. The right panel shows coverage probability of a nominal 95% Wald-style
confidence interval based on an oracle standard error (solid circle) and an estimated standard error (open circle).
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Figure 5. Illustration of weak convergence and Wald-style confidence intervals based on the one-step estimator that dis-
cretized mediator distributions into five bins. The left two columns show the kernel density estimate of the sampling distri-
bution of the centered estimates of interventional effects scaled by the oracle standard error (left) and by their estimated
standard error (middle). In each case, the asymptotic distribution is shown in black. The right panel shows coverage prob-
ability of a nominal 95% Wald-style confidence interval based on an oracle standard error (solid triangle) and an estimated
standard error (open triangle).
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Figure 6. Illustration of weak convergence and Wald-style confidence intervals based on the one-step estimator that dis-
cretized mediator distributions into ten bins. The left two columns show the kernel density estimate of the sampling distri-
bution of the centered estimates of interventional effects scaled by the oracle standard error (left) and by their estimated
standard error (middle). In each case, the asymptotic distribution is shown in black. The right panel shows coverage prob-
ability of a nominal 95% Wald-style confidence interval based on an oracle standard error (solid triangle) and an estimated
standard error (open triangle).
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levels in the setting considered. For the latter, we confirmed the multiple robustness properties of the
indirect effect estimators by studying the bias and standard deviation of the estimators in large sample
sizes under the various patterns of misspecification given in our theorem.

5 Discussion
Our simulations demonstrate adequate performance of the proposed nonparametric estimators of inter-
ventional mediation effects in settings with relatively low-dimensional covariates (five, in our simulation).
In certain settings, it may only be necessary to adjust for a limited number of covariates to adequately
control confounding. For example, in the study of the mediating mechanisms of preventive vaccines using
data from randomized trials, we need only adjust for confounders of the mediator/outcome relationship,
since other forms of confounding are addressed by the randomized design. Generally, there are few known
factors that are likely to impact vaccine-induced immune responses and so nonparametric analyses may
be quite feasible in this case. For example, Cowling et al. [5] studied mediating effects of influenza vac-
cines, adjusting only for age. Thus, we suggest that interventional mediation estimands and nonparametric
estimators thereof may be of interest for studying mediating pathways of vaccines. However, in other scenar-
ios, it may be necessary to adjust for a high-dimensional set of confounders. For example, in observational
studies of treatments (e.g., through an electronic health records system), we may require control for a
high-dimensional set of putative confounders of treatment and outcome. This may raise concerns related
to the curse-of-dimensionality when utilizing nonparametric estimators. Studying tradeoffs between the
selection of various estimation strategies in this context will be an important area for future research.

We have developed an R package intermed with implementations of the proposed methods that is
included in the web supplementary material. The package focuses on implementations for discrete media-
tors. However, our simulations demonstrate a clear need to extend the software to accommodate adaptive
selection of the number of bins in the mediator density estimation procedure for continuous mediators. In
small sample sizes, we found that course binning leads to adequate results, but as sample size increased,
unsurprisingly there was a need for finer partitioning to reduce bias. In future versions of the software, we
will include such adaptive binning strategies, as well as other methods for estimating continuous mediator
densities.

The behavior of the targeted minimum loss estimator of the covariant effect in the simulation is
surprising as generally we see comparable or better performance of such estimators relative to one-step
estimators. This can likely be attributed to the fact that the targeted minimum loss procedure does not
yield a compatible plug-in estimator of the vector ψ·, in the sense that there is likely no distribution
P ′

n that is compatible with all of the various nuisance estimators after the second-stage model fitting. A
more parsimonious approach could consider either an iterative targeting procedure or a uniformly least
favorable submodel that simultaneously targets the joint mediator density and outcome regression. The
former is implemented in a concurrent proposal [8], where one-step and targeted minimum loss estimators of
interventional effects are developed for a single mediator when the mediator-outcome relationship is subject
to treatment-induced confounding. In their set up, if one can treat the treatment-induced confounder as
a second mediator, then their proposal results in an estimate of one component of our indirect effect. In
their simulations, they find superior finite-sample performance of the targeted minimum loss estimator
relative to the one step, suggesting that targeting the mediator densities may be a more robust approach.
However, their simulation involved only binary-valued mediators, so further comparison of these approaches
is warranted in settings similar to our simulation, where mediators can take many values. We leave these
developments to future work.

The Donsker class assumptions of our theorem could be removed by considering cross-validated nuisance
parameter estimates (also known as cross-fitting) [4, 29]. This technique is implemented in our R package,
but we leave to future research the examination of its impact of estimation and inference. We hypothesize
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that this approach will generally improve the anti-conservative confidence intervals in small samples, but
will have little impact on performance of point estimates in terms of bias and variance.

6 Author’s statements
D Benkeser was funded by National Institutes of Health award R01AHL137808 and National Science Foun-
dation award 2015540. Code to reproduce simulation results is available at https://github.com/benkeser/
intermed/tree/master/simulations.
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