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Abstract 24 

 25 

Resilience was compared for alternate states of phytoplankton pigment concentration in two 26 

multi-year whole-lake experiments designed to shift the manipulated ecosystem between 27 

alternate states. Mean exit time, the average time between threshold crossings, was calculated 28 

from automated measurements every 5 minutes during summer stratification. Alternate states 29 

were clearly identified, and equilibria showed narrow variation in bootstrap analysis of 30 

uncertainty. Mean exit times ranged from 13 to 290 hours. In the reference ecosystem, Paul 31 

Lake, mean exit time of the low-pigment state was about 100 hours longer than mean exit time of 32 

the high-pigment state. In the manipulated ecosystem, Peter Lake, mean exit time of the high-33 

pigment state exceeded that of the low-pigment state by 30 hours in the Cascade experiment. In 34 

the enrichment experiment mean exit time of the low-pigment state was longer than that of the 35 

high-pigment state by about 100 hours. Mean exit time is a useful measure of resilience for 36 

stochastic ecosystems where high-frequency measurements are made by consistent methods over 37 

the full range of ecosystem states.  38 

 39 

Scientific Significance Statement Topic 40 

 41 

A novel indicator of resilience, mean exit time, accounts for the natural variability of 42 

ecosystems. We estimated mean exit times for low- and high-pigment states of lakes in 43 

experiments that gradually shifted the ecosystems between states by two different mechanisms, 44 

trophic cascades and nutrient enrichments. Mean exit times of the manipulated lake were 45 
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substantially different from those of the unmanipulated reference lake. It is useful to account for 46 

the high variability of phytoplankton biomass as lakes shift among alternate states.  47 

 48 

Scientific Significance Statement  Outlet 49 

 50 

The paper introduces a novel indicator of resilience, mean exit time, that includes the role of 51 

randomness in resilience. We demonstrate the application of mean exit time using two whole-52 

lake experiments that were designed to investigate alternate states caused by enrichment and 53 

trophic cascades. 54 

 55 

Data Availability 56 

 57 

Data used here are downloadable from:   58 

 59 

Carpenter, S., M. Pace, J. Cole, R. Batt, C. Buelo, and J. Kurzweil. 2018. Cascade Project at 60 

North Temperate Lakes LTER High Frequency Sonde Data from Food Web Resilience 61 

Experiment 2008 - 2011 ver 1. Environmental Data Initiative. 62 

https://doi.org/10.6073/pasta/5a8c6398661fad0bc8f1f5119b1150d6 63 

 64 

Pace, M., J. Cole, and S. Carpenter. 2020. Cascade project at North Temperate Lakes LTER - 65 

High Frequency Data for Whole Lake Nutrient Additions 2013-2015 ver 2. Environmental Data 66 

Initiative. https://doi.org/10.6073/pasta/cbe19041db41e720d84970f43156c042. 67 

  68 

https://doi.org/10.6073/pasta/5a8c6398661fad0bc8f1f5119b1150d6
https://doi.org/10.6073/pasta/cbe19041db41e720d84970f43156c042
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Lake ecosystems provide diverse examples of complex dynamics, including multiple stable 69 

states and critical transitions among them (Scheffer 1998; Scheffer 2009). These include 70 

alternate states of phytoplankton biomass resulting from either trophic cascades or nutrient 71 

enrichment (Carpenter 2003).  72 

 73 

Holling (Holling 1973a) recognized that ecosystems exhibit multiple states and occasionally shift 74 

among them. Holling introduced resilience as “the persistence of relationships within a system” 75 

and “a measure of the ability of these systems to absorb changes of state variables, driving 76 

variables, and parameters, and still persist”. He distinguished resilience from stability, “the 77 

ability of a system to return to an equilibrium state after a temporary disturbance”. Unlike 78 

stability which is a local measure that treats perturbations as isolated events, resilience accounts 79 

for perturbations of large amplitudes and the ongoing tempo of sequential disturbances. A 80 

section titled “The Random World” (p 13-15 of Holling 1973) discusses the role of random 81 

fluctuations in resilience, including examples from lake eutrophication, food webs, and fisheries. 82 

Holling’s ideas of resilience imply probabilities of persistence of an ecosystem state or identity 83 

in a stochastic environment. However most research has focused on deterministic aspects of 84 

resilience and few quantitative studies have addressed resilience in a stochastic framework.  85 

 86 

Arani et al. (2021) proposed ‘exit time’ as a stochastic measure of resilience. Exit time, a 87 

stochastic variable, is the average time until a shift between states of a stochastic system is first 88 

observed. The mean exit time, or the median, can serve as a resilience measure. A familiar 89 

example is half-life of a radioisotope. Decay from the radioactive state to the daughter state is a 90 

stochastic process of single atoms. Its half-life is the median exit time, or time until half of the 91 



5 
 

radioactive atoms have decayed. In global change science, Kleinen et al. (2003) mentioned exit 92 

time from Atlantic Meridional Overturning Circulation (AMOC, the state of the ocean that 93 

brings a mild climate to Western Europe) as a measure of the expected time available for policy 94 

action to maintain resilience of Europe’s climate. Arani et al. (2021) present empirical methods 95 

for measuring exit time from ecosystem states using time series data. We apply that method here 96 

to assess resilience of experimental lakes to trophic cascades and nutrient enrichment.  97 

 98 

In 2008 we began a series of experiments designed to gradually shift lake ecosystems between 99 

alternate states. Our goal was to evaluate dynamic indicators of resilience based on statistical 100 

changes in time series as the lake shifted from one state to another (Carpenter et al. 2011; Pace et 101 

al. 2017; Scheffer et al. 2015; Wilkinson et al. 2018). Because these studies measured lake 102 

ecosystem variables frequently during both states of the ecosystem and the transition, the data 103 

are suitable for estimating exit time. Here, we determine mean exit times for two different 104 

manipulations that induced alternate states and provided high-frequency time series needed to 105 

assess exit time as a quantitative measure of resilience as described by Holling (1973).  106 

 107 

Methods 108 

 109 

Peter and Paul Lakes 110 

 111 

Paul and Peter lakes are paired lakes in Gogebic County, Michigan, USA (46°250 N, 89°500 W). 112 

Since 1951 the lakes have been used for whole-lake experiments with Paul as the reference lake 113 

and Peter as the manipulated lake (Elser et al. 1986). Since 1984 the lakes have been used for a 114 
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series of experiments on trophic cascades, allochthony measured by 13C addition, and 115 

eutrophication by nutrient enrichment (Carpenter and Pace 2018). 116 

 117 

Trophic Cascade Experiment 118 

 119 

At the start of the trophic cascade experiment, Peter Lake’s food web was dominated by 120 

planktivorous minnows. In 2008 and 2009, small numbers of  adult largemouth bass 121 

(Micropterus salmoides L.) were gradually added to Peter Lake (Carpenter et al. 2011). A large 122 

year class of bass resulted in 2010. Increasingly with bass additions, minnows sought refuge in 123 

shallow water and the surrounding bog (Cline et al. 2014a). The decline of minnow numbers in 124 

offshore waters was followed by expansion of large-bodied grazing zooplankton (Pace et al. 125 

2013) and decline in chlorophyll concentration (Carpenter et al. 2011). Paul Lake’s food web 126 

was dominated by largemouth bass throughout the experiment (Carpenter et al. 2011). 127 

 128 

Nutrient Enrichment Experiment 129 

 130 

Nutrients in the form of inorganic phosphorus and nitrogen were added to enrich Peter Lake in 131 

2013, 2014, and 2015. Nutrients were added daily over the summer season for the first two years 132 

and only until early warning signals were obtained in the third year (Pace et al. 2017; Wilkinson 133 

et al.  2018). Phytoplankton responded to the additions of nutrients but bloom timing and 134 

magnitude varied considerably among years (Wilkinson et al. 2018). Paul Lake, which drains 135 

into Peter Lake, did not receive added nutrients and served as an unmanipulated reference 136 

ecosystem.  137 
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 138 

High-Frequency Pigment Measurements 139 

 140 

We used automated pigment measurements during summer stratification to estimate mean exit 141 

times. Data were recorded every 5 minutes.  142 

 143 

During the Cascade experiment, each lake was monitored with two YSI multi-parameter sondes 144 

(model 6600-V2-4) equipped with optical chlorophyll a sensors (model 6025) deployed at a 145 

depth of 0.7 m at a central station (Batt et al. 2013). Chlorophyll a is reported in µg/L. We did 146 

not use phycocyanin sensors in this study because cyanobacteria were at low concentrations 147 

throughout and did not reflect the dynamics of the phytoplankton community. 148 

 149 

During the Enrichment experiment each lake was monitored with a Hydrolab DS5X sonde 150 

including a sensor for phycocyanin fluorescence (model 007291) deployed at a depth of 0.75 m 151 

(Pace et al. 2017). Chlorophyll sensors in this study were not responsive to phytoplankton 152 

blooms unlike direct manual measurements of extracted chlorophyll (SI). Unknown processes 153 

likely related to the presence of large cyanobacterial filaments resulted in low detection of 154 

chlorophyll – a phenomena observed by others (Gregor and Maršálek 2004). Phycocyanin 155 

fluorescence and extracted chlorophyll had similar dynamics consistent with limited microscopic 156 

counts indicating blooms were dominated by cyanobacteria (Wilkinson et al. 2018). Phycocyanin 157 

is reported in relative fluorescence units (RFU). Direct laboratory measurements of phycocyanin 158 

concentration (µg/L) were linearly related to RFU (Pace et al. 2017).  159 

 160 
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Estimation of Mean Exit Time 161 

 162 

Mean exit time was estimated by the following steps: (1) Standardize the pigment time series to  163 

(Arani et al. 2021b) (S.I. Dynamic Linear Models); (2) Test the Markov hypothesis for 164 

standardized time series by the Langevin method (S.I. Assessment of the Markov Property and 165 

Stationarity). (3) Test the stationarity of the standardized time series by the augmented Dickey-166 

Fuller (ADF) test (S.I. Assessment of the Markov Property and Stationarity). (4) Using the 167 

standardized time series, estimate the deterministic and stochastic components of a Langevin 168 

model (system reconstruction); (5) Calculate mean exit time for the ecosystem states of interest.  169 

 170 

The in-situ sensors detected chlorophyll for the Cascade experiment and phycocyanin for the 171 

Enrichment experiment. We  used standardized levels of pigment fluorescence (S.I. Dynamic 172 

Linear Models and Figures S-1, S-2, S-3, and S-4) as indicators of pigment concentration for 173 

both experiments.  For the standardized levels reported here, the ADF test rejected the null 174 

hypothesis of nonstationarity (p < 0.01 for each lake in each experiment) and data exhibited the 175 

Markov property (S.I. Assessment of Markov Property and Stationarity).  176 

 177 

Langevin Analysis 178 

 179 

Exit time develops from terms of the Langevin equation [1] as summarized in several works 180 

(Rinn et al. 2016; Siegert and Friedrich 2001; Siegert et al. 1998; Tabar 2019). A detailed 181 

description of exit time analysis is presented by Arani et al. (2021). We present an abbreviated 182 
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explanation here. A complete worked example (Peter Lake in the enrichment experiment) is 183 

provided as R scripts: https://github.com/SRCarpen/ExitTime_BinMethod_PeterLakeExample 184 

 185 

The time series of standardized levels bt/st  were used as state variables (xt) to estimate the drift-186 

diffusion model known as the Langevin equation  187 

𝑑𝑥 = 𝐷1(𝑥)𝑑𝑡 + √2𝐷2(𝑥) 𝑑𝑊    [1] 188 

(Carpenter and Brock 2011; Rinn et al. 2016; Tabar 2019).  The implementation in R is based on 189 

Rinn et al. (2016) and the Matlab code of Arani et al. (2021).  D1(x) is the deterministic core of 190 

the dynamics called the ‘drift’ in stochastic dynamic modeling. Its roots D1(x) = 0 are the 191 

equilibria. D2(x), called ‘diffusion’ in stochastic modeling, is a deterministic function that 192 

represents the intensity of the noise as a function of x. The noise source is dW where W stands 193 

for the Wiener process, and thus dW represents Gaussian white noise.  The fitted drift and 194 

diffusion functions are used below in calculations of  effective potential, the stationary 195 

distribution, and mean exit time.  196 

 197 

In this paper, diffusion functions are plotted using the definition   198 

 199 

𝐷2(𝑥) =
1

2
𝜎2(𝑥)      [2] 200 

 201 

Thus 𝜎(𝑥) =  √2𝐷2(𝑥) , and this conversion allows drift and diffusion to be compared in the 202 

same units, pigment standardized level / time.  203 

 204 

Potential and Effective Potential 205 

https://github.com/SRCarpen/ExitTime_BinMethod_PeterLakeExample
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 206 

Stability of dynamic systems can be illustrated by potential curves, or “ball and cup” diagrams 207 

that show stable points as valleys and unstable points as hilltops. For deterministic systems, the 208 

potential curve P(x) is the integral 209 

 210 

𝑈(𝑥) = ∫ 𝐷1(𝑧)𝑑𝑧
𝑥      [3]  211 

 212 

where z is a dummy variable and the integral is computed over the relevant range of x.  213 

 214 

The potential U(x) does not account for the noise of the system. Studies of resilience should 215 

account for the possibility that random events may change the shape of the potentials  216 

(Horsthemke and Lefever 1984). Effects of noise are included in the effective potential, UE(x) 217 

(Arani et al. 2021) and we use his function here 218 

 219 

𝑈𝐸(𝑥) = − ∫
𝐷1(𝑧)

𝐷2(𝑧)
𝑑𝑧 + log (𝐷2(𝑥))

𝑥     [4] 220 

 221 

Exit Time 222 

For both lakes in both experiments, the drift function D1 describes a curve with 2 stable 223 

equilibria separated by an unstable equilibrium (main text Figs. 1-4). The expected exit times 224 

from each stable basin can be estimated by solving the backward Fokker-Planck equation with 225 

appropriate boundary conditions for each basin:  226 

𝐷1(𝑥)
𝑑𝑇

𝑑𝑥
+ 𝐷2(𝑥)

𝑑2𝑇

𝑑𝑥2 = -1  [5] 227 
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The solution of this equation, given the boundary conditions, is mean exit time T(x) if the 228 

starting state of the system is x.  For each basin, we use an absorbing boundary at the middle 229 

unstable equilibrium where small random disturbance can cause a shift between basins. For the 230 

outer boundaries (left boundary of the left basin, right boundary of the right basin) we use a 231 

reflecting boundary to indicate that no shift occurs. If the boundary is absorbing, T(x) = 0 at the 232 

boundary, i.e. the exit time is 0 at the unstable edge between basins. If the boundary is reflecting, 233 

the derivative 𝑑𝑇

𝑑𝑥
= 0 at the boundary, i.e. there is no change in T(x) at the reflecting boundary. 234 

For calculations, we chose the left reflecting boundary slightly above the lower limit of the data 235 

and the right reflecting boundary slightly below the upper limit of the data.  236 

We solved the boundary-value problem [5] with the bvpSolve() package in R using function 237 

bvptwp() (Mazzia et al. 2014).  An R script to illustrate the method using a simple ecological 238 

model is found at  https://github.com/SRCarpen/Exit_Time_R  239 

 240 

Solving for T(x) yields mean exit time as a function of x. It is useful to have a single 241 

representative value of exit time for an entire basin. We estimated a basin-wide mean exit time 242 

for the full width of each basin as the probability-weighted mean of T(x) with probabilities taken 243 

from the normalized stationary density of the Fokker-Planck equation which is computed from 244 

D1 and D2 (Arani et al. 2021; Horsthemke and Lefever 1984). For example, the mean of T(x) is 245 

p(x)T(x) where p(x) is the stationary probability that sums to 1 over all values of x. We 246 

integrated the stationary density using the hcubature() function of the cubature() package in R 247 

(https://bnaras.github.io/cubature/).  248 

 249 

Uncertainty of Exit Time 250 

https://github.com/SRCarpen/Exit_Time_R
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 251 

To assess uncertainty of exit time, we first bootstrapped the autoregressions by randomizing the 252 

errors (εt, equation S-1a) with replacement and adding them to the predicted yt to generate 253 

pseudodata (Efron and Tibshirani 1993).  The pseudodata series were fit to the DLM (equations 254 

S-1) and standardized levels were used to estimate drift and diffusion (equation 2), exit times 255 

(equation 5) and the stationary probability distribution. 100 bootstrap cycles were run, and the 256 

distribution of exit times was corrected for bias (Efron and Tibshirani 1993).  257 

 258 

Results 259 

 260 

Alternate states and resilience: Cascade experiment 261 

 262 

Chlorophyll concentration time series during summer stratification for manipulated Peter Lake 263 

and reference Paul Lake were measured during the summer stratified seasons of 2008-2011 264 

(Figs. S1 and S2).  265 

 266 

Standardized levels of chlorophyll (Fig. 1A) in Peter Lake were used to estimate components of 267 

a Langevin model (Fig. 1A). Diffusion (variability) is larger than the deterministic rate of change 268 

(drift) (Fig. 1B). We plotted sigma (equation [2]) so that both components have the same units.  269 

 270 

Chlorophyll dynamics in Peter Lake are dominated by noise. Nonetheless the drift function 271 

indicates 3 equilibria (3 crossings of the line y=0). The left and right equilibria are stable, 272 

because a small increase in chlorophyll decreases the rate of change causing chlorophyll to 273 
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decrease toward the equilibrium point, and a small decrease in chlorophyll increases the rate of 274 

change, restoring chlorophyll toward the equilibrium point. The center equilibrium is unstable 275 

because small changes of chlorophyll in either direction cause chlorophyll to shift away from the 276 

center equilibrium. Thus the center equilibrium is a threshold separating two alternate stable 277 

equilibria. The alternate equilibria represent the minnow dominated (higher chlorophyll) and 278 

bass dominated (lower chlorophyll) states.  The effective potential (equation 4) shows two 279 

distinct stability basins (Fig. 1C). 280 

 281 

 282 

  283 
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Figure 1. Resilience analysis of manipulated Peter Lake during the Cascade experiment. (A) 284 

Chlorophyll (standardized level) versus year during the experiment. Solid horizontal line denotes 285 

the unstable threshold. (B) Drift (black) and diffusion (red) functions versus chlorophyll 286 

standardized level. (C) Effective potential versus chlorophyll standardized level. (D) Exit time 287 

(hours) versus chlorophyll standardized level, with probability-weighted means, for the two 288 

stable basins. Vertical dotted line is the threshold between the basins. (E) Stationary probability 289 

density versus chlorophyll standardized level. Shading denotes the low-chlorophyll (blue) and 290 

high-chlorophyll (green) basins.  291 

  292 
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Figure 2. Resilience analysis of Paul Lake, reference ecosystem for the Cascade experiment. (A) 293 

Chlorophyll (standardized level) versus year during the experiment. Solid horizontal line denotes 294 

the unstable threshold. (B) Drift (black) and diffusion (red) functions versus chlorophyll 295 

standardized level. (C) Effective potential versus chlorophyll standardized level. (D) Exit time 296 

(hours) versus chlorophyll standardized level, with probability-weighted means, for the two 297 

stable basins. Vertical dotted line is the threshold between the basins. (E) Stationary probability 298 

density versus chlorophyll standardized level. Shading denotes the low-chlorophyll (blue) and 299 

high-chlorophyll (green) basins.  300 

  301 
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Exit time as a function of the initial value of chlorophyll is zero at the unstable equilibrium, 302 

because a small perturbation of chlorophyll at that point can shift the ecosystem in either 303 

direction (Fig. 1D). Exit times rise as chlorophyll moves either direction from the unstable 304 

equilibrium.  305 

 306 

To obtain an average exit time over each basin, we calculate the weighted averages where the 307 

weights are the normalized stationary densities for starting values of chlorophyll (Fig. 1D,E). 308 

The two states of the ecosystem are apparent in the stationary probability distribution. The mean 309 

exit times of the low and high chlorophyll basins are 171 hours and 196 hours, respectively.  310 

 311 

Fluctuations of chlorophyll in Paul Lake represent the baseline variability of an unmanipulated 312 

ecosystem (Fig. 2A). Although the diffusion is much larger than the drift, alternate equilibria are 313 

discernible (Fig. 2B). Mean exit times of low and high chlorophyll equilibria are 141 and 27  314 

hours, respectively (Fig. 2 D,E). 315 

 316 

Alternate states and resilience: Nutrient Enrichment experiment 317 

 318 

Phycocyanin RFU were highly variable in manipulated Peter Lake (Fig. 3) and reference Paul 319 

Lake during the Enrichment experiment (Fig. 4).  320 

 321 

Standardized levels of phycocyanin in Peter Lake suggest shifts from low to high pigment levels 322 

during each year (Fig. 3A). Diffusion (as sigma (equation 2), in the same units as drift) was 323 

notably larger than drift (Fig. 3B).  The effective potential showed two stable basins, but the 324 
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high-phycocyanin basin appears shallower than the low-phycocyanin basin (Fig. 3C). Exit times 325 

are zero at the unstable transition point between the basins, and rise to the left and right of the 326 

transition point (Fig. 3D). The two basins of attraction are evident in the stationary probability 327 

density (Fig. 3E). The probability-weighted exit times are 290 hours for the low-phycocyanin 328 

basin and 134 hours for the high-phycocyanin basin.  329 

 330 

Paul Lake also exhibited seasonal fluctuations in standardized level of phycocyanin (Fig. 4A). 331 

Diffusion was much larger than the drift (Fig. 4B) but nonetheless alternate states are evident in 332 

the effective potential (Fig. 4C) and density (Fig. 4E). Exit times are 112 hours for the low-333 

pigment basin and 13 hours for the high-pigment basin (Fig. 4D).   334 

 335 

  336 
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Figure 3. Resilience analysis of enriched Peter Lake during the Enrichment experiment. (A) 337 

Phycocyanin (standardized level) versus year during the experiment. Solid horizontal line 338 

denotes the unstable equilibrium. (B) Drift (black) and diffusion (red) functions versus 339 

phycocyanin standardized level. (C) Effective potential versus phycocyanin standardized level. 340 

(D) Exit time (hours) versus phycocyanin standardized level, with probability-weighted means, 341 

for the two stable basins. Vertical dotted line is the threshold between the basins. (E) Stationary 342 

probability density versus phycocyanin standardized level. Shading denotes the low-phycocyanin 343 

(blue) and high-phycocyanin (green) basins.  344 

 345 

  346 

 



19 
 

Figure 4. Resilience analysis of Paul Lake during the Enrichment experiment. (A) Phycocyanin 347 

(standardized level) versus year during the experiment. Solid line denotes the unstable 348 

equilibrium. (B) Drift (black) and diffusion (red) functions versus phycocyanin standardized 349 

level. (C) Effective potential versus phycocyanin standardized level. (D) Exit time (hours) versus 350 

phycocyanin standardized level, with probability-weighted means, for the two stable basins. 351 

Vertical dotted line is the threshold between the basins. (E) Stationary probability density versus 352 

phycocyanin standardized level. Shading denotes the low-phycocyanin (blue) and high-353 

phycocyanin (green) basins.  354 

 355 

  356 
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Validation of the Models 357 

 358 

For each dataset the one-step predictions of the fitted Langevin equations compared to data had a 359 

lower negative log likelihood than a hypothetical model with constant drift (S.I. Model 360 

Validation). To visualize the goodness of fit we compared one-step conditional probabilities 361 

predicted by the Langevin equations with the observed one-step changes of the data for selected 362 

initial points  quantiles in each lake in each experiment (S.I. Model Validation and Fig. S5). 363 

Predicted distributions  closely matched  observed distributions.  364 

 365 

Uncertainty of Exit Time Estimates 366 

 367 

Distributions of the deterministic equilibria (zeroes of the drift function) were estimated by 368 

bootstrapping (S.I. Figs. S6 and S7). For Peter Lake, each bootstrapped pseudo-dataset, 100 for 369 

each experiment, had three equilibria, two stable equilibria separated by an unstable threshold. 370 

The variability of estimated equilibria is relatively narrow and equilibria are well-separated on 371 

the pigment axes (Fig. S6). For Paul Lake equilibria were distinct and variability was modest   372 

(Fig. S7).   373 

 374 

Distributions of mean exit time from 100 bootstrap cycles were computed for both stable basins 375 

in both experiments (S.I. Figs. S8 and S9). Exit time includes the stochasticity of the dynamics 376 

(diffusion). Patterns of the distributions were different among experiments, lakes, and stability 377 

basins.  378 

 379 
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In manipulated Peter Lake, exit times were longer than in unmanipulated Paul Lake based on 380 

interquartile ranges (Fig. 5). Exit time from the low-pigment basin was longer than exit time 381 

from the high-pigment basin in Paul Lake. In Peter Lake for the Cascade experiment the high-382 

pigment equilibrium had longer exit time than the low-pigment equilibrium. In the Enrichment 383 

experiment this pattern was reversed with shorter exit time in the high-pigment equilibrium.  384 

 385 

Figure 5. Exit time for low- and high-pigment 386 

stable basins for both lakes during the Cascade and 387 

Enrichment experiments. Error bars show the 388 

interquartile range (25th to 75th percentile) and 389 

circle shows the median (50th percentile) of 100 390 

bootstrap samples (S.I.).   391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

Discussion 399 
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The long-term condition of both lakes is the low-pigment state. In Peter Lake the manipulations 400 

caused short-term excursions into the high-pigment state, but by different mechanisms. In the 401 

Cascade experiment, intervals of high chlorophyll were caused by fluctuations in grazing 402 

associated with  movement of planktivorous fishes between littoral and pelagic habitats (Cline et 403 

al. 2014b; Pace et al. 2013). In the Nutrient Enrichment experiment, intervals of high 404 

phycocyanin were associated with accumulation of phosphorus and nitrogen in phytoplankton 405 

(Wilkinson et al. 2018). When manipulations ended, the ecosystem returned to the low-pigment 406 

pre-manipulation state. For both experiments, phase-randomized surrogate time series did not 407 

have alternate states, suggesting that alternate states were not likely to be detected by chance 408 

(S.I. Could Alternate States be Detected by Chance?). 409 

  410 

In Paul Lake, fluctuations of pigment concentrations are due to the routine dynamics of 411 

phytoplankton in a variable physical-chemical environment, interacting with grazers in an 412 

ecosystem that was not manipulated. Note that Paul Lake lies upstream of Peter Lake, was 413 

sampled using a separate boat, and was not contaminated with added nutrients. Chlorophyll 414 

fluctuations in Paul Lake show occasional brief peaks in the epilimnion (Fig. S2) as seen in 415 

previous studies (Carpenter et al. 2001; Carpenter and Kitchell 1993). Weekly phytoplankton 416 

counts in Paul Lake from 1984-1997 showed both absence and occasional peaks of 417 

Cyanobacteria that are consistent with the patterns we observed in high-frequency phycocyanin 418 

data (Cottingham et al. 1998). These fluctuations could have appeared as alternate states in our 419 

analysis.  420 

 421 
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We were surprised to see alternate states in the high-frequency pigment data from Paul Lake. 422 

The experiments were designed initially to test dynamic indicators of resilience. In Peter Lake, 423 

several dynamic indicators provided early warnings of loss of resilience but no indications of 424 

declining resilience were detected in Paul Lake (Batt et al. 2013; Carpenter et al. 2011; Cline et 425 

al. 2014a; Pace et al. 2017; Pace et al. 2013; Wilkinson et al. 2018).  426 

 427 

We considered the possibility that cyclic fluctuations in irradiance, temperature or other 428 

variables could appear to be alternate states in sensor data. During each experiment in each lake, 429 

daily samples were taken, returned to the laboratory, and analyzed by fluorometry to measure 430 

chlorophyll a concentration (Carpenter et al. 2011; Pace et al. 2017). Drift functions of the 431 

Langevin equation [1] for daily chlorophyll time series show alternate states for the manipulated 432 

lake, Peter Lake, but not for the reference Paul Lake (Fig. S-10 and S.I. Alternate States in Daily 433 

Chlorophyll Time Series). However, the diffusion component is relatively large, consistent with 434 

the sensor data. Because of the daily time step and small sample size (about 120 daily samples 435 

per year versus 288 sensor samples per day, or about 34,560 sensor samples per year in each 436 

lake), we did not attempt to estimate exit time from the daily data. Patterns in the daily data are 437 

consistent with the alternate states we detected in Peter Lake but ambiguous with regard to the 438 

alternate states we detected in Paul Lake. Further research using high-frequency pigment 439 

measurements in a wider variety of aquatic environments is needed to improve understanding of 440 

alternate states of phytoplankton and the response of stochastic indicators such as exit time.  441 

 442 

An exit event occurs when the pigment line crosses the unstable equilibrium that separates the 443 

two basins (Figures 1A, 2A, 3A, 4A). Most of the intervals between exit events are short, and 444 
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some quick events are hidden by the width of the plotted lines. Thus the mean exit times range 445 

from about 1 to 10 days due to the dominance of short events (Fig. 5). These rather short mean 446 

exit times are another indication of the high variability of the time series.  447 

 448 

To be useful an indicator of stochastic resilience should be repeatable, comparable among 449 

ecosystems, responsive to changes in resilience, and have low-to-moderate uncertainty for real-450 

world time series. In addition, for our method the time series to be analyzed should meet the 451 

assumptions of the Langevin method. For these sensors and these lakes the standardized levels 452 

analyzed here meet these conditions. Different data standardizations may be appropriate for 453 

different ecosystems or sensors.  454 

 455 

In summary, resilience of phytoplankton biomass (as measured here by their pigments) in lake 456 

ecosystems may depend on slowly-changing variables such as watershed sources of nutrients and 457 

colored DOC, sediment release of nutrients, grazer dynamics, and apex predators. Gradual trends 458 

of such variables reduce resilience and increase the likelihood that random events can cause a 459 

regime shift (Holling 1973a; Holling 1973b; Scheffer et al. 2001). Our experiments simulated 460 

gradual forcing of Peter Lake by trophic cascades or nutrients. Pigment concentration, especially 461 

in sensor optical measurements, is highly variable and this variance strongly affects resilience 462 

measured using exit time and likely other stochastic indicators. The temporal fluctuations of 463 

chlorophyll are large enough that thresholds are crossed every few days when measured by high-464 

frequency sensors during multi-year whole-lake experiments. We suspect that a decades-long 465 

perspective of high-frequency measurements could reveal much longer exit times for past states 466 

of Peter Lake, consistent with patterns seen in paleolimnological records (Leavitt et al. 1989). 467 
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Nonetheless we have shown a pathway for comparative resilience studies of lake ecosystems 468 

using resilience measures that are consistent with Holling’s (Holling 1973a) emphasis of random 469 

fluctuations as a key element of resilience. The challenge is to build long-term highly-resolved 470 

datasets needed to measure stochastic variates that may provide a quantitative indicators for 471 

comparing resilience among aquatic ecosystems.  472 

 473 
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Dynamic Linear Models 40 

 41 

Dynamic linear models are forecasting models updated sequentially from observations by Bayes’ 42 

formula (West and Harrison 1989). We applied dynamic linear models or DLMs to high-43 

frequency time series from each experiment to standardize the data prior to Langevin analysis. 44 

The time varying-models separate the pigment fluctuations into components corresponding to 45 

time-varying level, autocorrelated change, errors of each model component, and observation 46 

error (Carpenter et al. 2020; Pole et al. 1994; West and Harrison 1989).  47 

 48 

In the DLM for a time-varying autoregression, the intercept bt and autocorrelation coefficients ϕt 49 

vary over time, according to independent random walks. For a lag-1 autoregressive process, the 50 

data or observation equation is  51 

𝑦𝑡+1 = 𝑏𝑡 + 𝜙𝑡𝑦𝑡 + 𝜀𝑡 [S-1a] 52 

where y is the observed time series of pigment concentrations, bt is the time series of the  53 

intercept or level parameter, ϕt is the time series of the autoregressive parameter, and εt is the 54 

time series of observation errors. The evolution of parameters over time follows the system 55 

equations, one for each parameter 56 

𝑏𝑡 = 𝑏𝑡−1 + 𝜔𝑏,𝑡−1  [S-1b] 57 

𝜙𝑡 = 𝜙𝑡−1 + 𝜔𝜙,𝑡−1  [S-1c] 58 

Where ωb,t-1 is the time series of process errors in the level bt, and ωφ,t-1 is the time series of 59 

process errors in the autoregression coefficient ϕ. The observation errors and the two process 60 

errors are Normal processes independent of each other and over time.  By choosing prior 61 

distributions for initial values, the full model was estimated sequentially from the data by 62 

Bayesian updating (West and Harrison 1989). 63 

Time series of bt, ϕt,  their time-varying standard errors sbt and sϕ,t,, one-step predictions ỹt and 64 

the observation standard error sε,t  result from fits of [S1] to the time series xt.  We used the 65 

AR(1) model because it had lower AIC than AR(2) or AR(3) models. Equations [S-1] were 66 

estimated using the Bayesian updating algorithm in Table 3.2 of Pole et al. (1994). A sample R 67 

script is included as Step1 of the worked example posted on 68 

https://github.com/SRCarpen/ExitTime_BinMethod_PeterLakeExample  69 

The time series bt tracks  changes in the level of the data and its standard error is sb,t the time-70 

varying error of the level. The standardized intercept bt/sb,t combines the time-varying level of 71 

pigment concentration scaled by its time-varying noise. We used time series of  the standardized 72 

intercept, or level, bt/sb,t as the index of time-varying pigment concentration for subsequent 73 

analyses. Simulations show that the standardized level correctly identifies alternate states when 74 

they are present, and does not suggest alternate states if they are absent (Box S1). 75 

 76 

  77 
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Box S1. Simulation results for a model with one stable equilibrium and a model with alternate 78 

states. Each figure shows a simulated time series of 100,000 steps, the standardized level from a 79 

DLM fit to the data, and drift and diffusion curves estimated from the standardized level.  80 

The 1-root model represents dynamics of a conservative solute, such as chloride, in a lake. 81 

Dynamics follow 82 

dx = (a – bx)dt + c dW  [B-1] 83 

where input a = 5, loss coefficient b = 1,  and the standard deviation of environmental noise c = 84 

1. There is a single stable equilibrium at a/b. The model was solved by the Euler-Maruyama 85 

method. The resulting time series and the standardized level have one equilibrium (Fig. B-1). 86 

 87 

 88 

 89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

Figure B1. Results of the simulation model with one root: State 

variable (upper), standardized level (middle), drift and sigma 

calculated from standardized level (lower). 
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The model from May (1977) of an exploited population was discretized following Ives and 109 

Dakos (Ives and Dakos 2012) as  110 

x1 = x0 exp(f(x0) + Z0 – s2/2)     [B2] 111 

f(x) = rx(1 – (x/K)) – axq/(xq + hq))    [B3] 112 

with intrinsic growth rate r = 1, carrying capacity K = 10, curvature of the functional response q 113 

= 2, maximum loss rate a = 2.2, predation half-saturation h = 1, normally-distributed 114 

environmental noise Z0, and standard deviation of the noise s = 0.4.  The resulting time series 115 

has 3 equilibria, as does the standardized level time series (Figure B2).  116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

END BOX S1 --------------------------------------------------------------------------------------  134 

 135 

 136 

 137 

 138 

 139 

Figure B-2. Results of simulating the model with multiple 

states: State variable (upper), standardized level (middle), drift 

and sigma  calculated from standardized level (lower).  
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Results of dynamic linear models for the manipulated ecosystem, Peter Lake, and reference 140 

ecosystem, Paul Lake, in both the Cascade and Enrichment experiments are presented in Figures 141 

S1 – S4. Chlorophyll in Peter Lake shows great variability from point to point but nonetheless 142 

broad fluctuations are discernible (Fig.S-1A). The time series of the level, bt, reflects the broad 143 

patterns of chlorophyll but also some outliers (Fig. S-1B). The time series of standard error of the 144 

level, sb,t shows that some of the outliers have high error (Fig. S-1C). The standardized level, or 145 

ratio of level to its standard error bt/sb,t retains the broad pattern of the chlorophyll time series 146 

(Fig. S-1D). Point-to-point variability is large, as seen in the chlorophyll data, and appears 147 

consistent throughout the time series.  148 

 149 

The same sequence of steps is presented for Paul Lake in the Cascade experiment (Fig. S-2) and 150 

both lakes in the Enrichment experiment, Peter (Fig. S-3) and Paul (Fig. S-4). Standardized 151 

levels were used for subsequent estimates of exit time.  152 
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Figure S-1. Cascade experiment:  (A) 153 

chlorophyll a (µg L-1) measured 154 

every 5 minutes in Peter Lake during 155 

the summer stratification periods of 156 

2008-2011; (B) Level bt (intercept of 157 

time-varying autoregression) (µg L-158 
1); (C) standard error of level sb,t (µg 159 

L-1); (D) standardized level (bt / sb,t), 160 

dimensionless).  161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

  169 
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Figure S-2. Paul Lake, reference ecosystem for the cascade experiment:                                    170 

(A) chlorophyll a (µg L-1) measured every 5 minutes during the summer stratification periods of 171 

2008-2011; (B) Level bt (intercept of time-varying autoregression) (µg L-1); (C) standard error of 172 

level sb,t (µg L-1); (D) standardized level (bt / sb,t., dimensionless).  173 

 174 

  175 
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Figure S-3. Enrichment experiment results in Peter Lake:  (A) phycocyanin (RFU) measured 176 

every 5 minutes in Peter Lake during the summer stratification periods of 2013-2015; (B) Level 177 

bt (intercept of time-varying autoregression) (RFU); (C) standard error of level sb,t (RFU); (D) 178 

standardized level (bt / sb,t, dimensionless).  179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 
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Figure S-4. Paul Lake, reference lake for the enrichment experiment:  (A) phycocyanin (RFU) 206 

measured every 5 minutes during the summer stratification periods of 2013-2015; (B) Level bt 207 

(intercept of time-varying autoregression) (RFU); (C) standard error of level sb.t (RFU); (D) 208 

standardized level (bt / sb,t, dimensionless).  209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 
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 224 
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 230 
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 234 

 235 

 236 

 



10 
 

Assessment of the Markov Property and Stationarity 237 

The Langevin approach requires time series with frequent observations and long enough duration 238 

to include state transitions (Arani et al. 2021). The dynamics should be represented by the first 239 

two moments (i.e. D4 < D2) (Arani et al. 2021; Friedrich et al. 2011). The  standardized levels 240 

analyzed in this paper met these assumptions.  241 

We assessed stationarity of the data using the augmented Dickey-Fuller (ADF) test (adf.test() in 242 

the tseries() library of R) (https://cran.r-project.org/web/packages/tseries/). The null hypothesis 243 

of the ADF is that the data are non-stationary. For both lakes in both experiments this hypothesis 244 

was rejected (p < 0.01). We infer that the data are approximately stationary as expected for 245 

Langevin analysis.  246 

In addition the input data for the Langevin analysis should have the Markov property, i.e. each 247 

observation depends only on the previous observation and be stationary, i.e. the statistical 248 

properties are approximately constant over time (Arani et al. 2021). We tested the Markov 249 

hypothesis for each time series of standard level using the Box-Ljung and Rank tests in the R 250 

library spgs()  available at https://rdrr.io/cran/spgs/man/spgs-package.html.  In all cases the 251 

Markov property could not be rejected (p > 0.01).  252 

As a further test of the Markov property we calculated the so-called ‘Markov-Einstein time (ME) 253 

scale’  using the Chapman-Kolmogorov equation (Arani et al. 2021; Tabar 2019). The ME time 254 

scale is determined as a time lag where a 𝜒2 distance (equation 16.12 of Tabar 2019) is minimal 255 

between 𝑝(𝑥3, 𝑡3|𝑥1, 𝑡1) calculated directly from data versus from the Chapman-Kolmogorov 256 

equation. Note that data are Markov if the ME time scale equals one. For our time series the ME 257 

time scale is 3 to 6 steps (Figure S5).  Although our data are near-Markov we still follow the 258 

Langevin approach since it is safer to do so rather than trying to follow more advanced 259 

reconstruction schemes designed to account for systems driven by colored noise (Hassanibesheli 260 

et al. 2020). 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

https://rdrr.io/cran/spgs/man/spgs-package.html


11 
 

Figure S5. Chi-square distance between the data and the Chapman-Kolmogorov equation versus 274 

time lag for Peter Lake in the (A) Cascade and (B) Enrichment experiments, and for Paul Lake in 275 

the (C) Cascade and (D) Enrichment experiments 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

As further illustration that our data conform to the Markov property we compared the data to 296 

Chapman-Kolmogorov equation (Fig. S6).  A stochastic process 𝑥𝑘 sampled at times 𝑡𝑘 is said to 297 

be Markovian if  298 

𝑝(𝑥𝑘 , 𝑡𝑘|𝑥𝑘−1, 𝑡𝑘−1, … , 𝑥1, 𝑡1) = 𝑝(𝑥𝑘, 𝑡𝑘|𝑥𝑘−1, 𝑡𝑘−1) [S2] 299 

This equation means that the process at any time depends on its previous state only and has no 300 

dependency to the remaining past states. There are several ways to assess the Markov property 301 

(Tabar 2019). We compared the data to the Chapman-Kolmogorov (CK) equation  302 

𝑝(𝑥3, 𝑡3|𝑥1, 𝑡1) = ∫ 𝑝(𝑥3, 𝑡3|𝑥2, 𝑡2) 𝑝(𝑥2, 𝑡2|𝑥1, 𝑡1) 𝑑𝑥2 [S3] 303 

which is valid for all Markov processes. The conditional probability 𝑝(𝑥3, 𝑡3|𝑥1, 𝑡1) is calculated 304 

in two ways: directly by the data and by the right side of CK equation via two smaller steps at all 305 
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intermediate times 𝑡2 (𝑡1 < 𝑡2 < 𝑡3) (Figure S5). This process is suitable because the 306 

standardized level time series are approximately stationary (Tabar 2019). The data closely adhere 307 

to the Chapman-Kolmogorov equation indicating consistency with the Markov property.  308 

Figure S6. Validation of the Chapman Kolmogorov (CK) equation for a time lag of 1, i.e., the 309 

time scale of data, where a close match is observed between 𝑃(𝑥3|𝑥1) being calculated directly 310 

by data (black) and by the right side of eq S3, showing that all datasets are a good approximation 311 

of the Markov property. In 𝑃(𝑥3|𝑥1), 𝑥1 is the initial state which is treated a bin-wise manner so 312 

that each peak in the figures represent a particular value of 𝑥1.  313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

Model Validation  330 

For each lake in each experiment we compared the observed Langevin model to a hypothetical 331 

model with constant drift (the mean of the observed drift) using the negative log likelihoods 332 

calculated from the one-step model predictions and observations. In all cases the differences in 333 

negative log likelihood (observed model – constant drift model) were negative, indicating a 334 

better for the observed model. Differences in negative log likelihood for Peter Lake were -17.55 335 

in the Cascade experiment and -6.8 in the Enrichment experiment. In Paul Lake the differences 336 

in negative log likelihood were -5.3 in the Cascade experiment and -0.5 in the Enrichment 337 

experiment. 338 

To illustrate the correspondence of predictions to observations, we compared the one-step-ahead 339 

predicted distributions p(x(t+1)|x(t)) from the Langevin equation with the observed one-step 340 
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ahead dynamics of the pigments. Here x(t) is the standardized level of pigment at one point in 341 

time. Comparisons were made for each lake in each experiment at 9 quantiles of the frequency 342 

distribution of pigment standardized levels.  343 

For the data, we found the corresponding bin for each quartile and then found all pigment values 344 

x(t) within this bin. For each x(t) we also found the corresponding observation in the next time 345 

step, x(t+1). From these we calculated the distribution of next time step points x(t+1), which is 346 

the observed density of next time step points x(t+1) conditioned on the current time step points 347 

x(t), i.e., P(x_{t+1}|x_{t}). Using the model, we calculated P(x_{t+1}|x_{t}) from the Langevin 348 

equation with terms estimated from the data. 349 

Comparison of the observed and modeled one-step distributions are presented in Fig. S-7. 350 

Predicted distributions tightly overlapped with observed distributions.  351 

 352 

Figure S-7. Observed (black) and predicted (blue) one-step probability distributions for 9  353 

quartiles of pigment standard level in each lake in each experiment.  354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

  371 
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Bootstrapped Uncertainties for the Equilibria 372 

Figure S-6. Bootstrap estimates of uncertainties for the 3 equilibria in Peter Lake for the Cascade 373 

experiment (top row, standardized level of chlorophyll a) and enrichment experiment (bottom 374 

row, standardized level of phycocyanin). Vertical dashed lines show equilibria of the original 375 

data.  376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

  389 
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Figure S-7. Bootstrap estimates of uncertainties for the 3 equilibria in Paul Lake for the Cascade 390 

experiment (top row, standardized level of chlorophyll a) and enrichment experiment (bottom 391 

row, standardized level of phycocyanin). Vertical dashed lines show equilibria of the original 392 

data.  393 

 394 
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Bootstrapped Uncertainties for Exit Time 421 

Figure S-8. Bootstrap estimates of uncertainty of exit time of Peter Lake for the Cascade (top 422 

row) and Eutrophication (bottom row) experiments, for the low-pigment (left column) and high-423 

pigment (right column) basins observed in each experiment. Vertical dashed line shows the 424 

estimate from the original data.  425 

 426 
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Figure S-9. Bootstrap estimates of uncertainty of exit time in the reference ecosystem, Paul Lake, 451 

for the Cascade (top row) and Eutrophication (bottom row) experiments, for the low-pigment 452 

(left column) and high-pigment (right column) basins observed in each experiment. Vertical 453 

dashed line shows the estimate from the original data.  454 

 455 
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Could Alternate States be Detected by Chance? 482 

We generated phase randomized surrogate time series to show whether we can get alternative 483 

stable states by chance. When our time series are randomized using the Ebisuzaki method using 484 

the surrogates() function in the R library “astrochron”  we always get  a model with a linear drift 485 

function D1 (implying one stable state) and additive noise (i.e. D2 has no apparent change or 486 

trend with state) (Figure S10). This is not useful for  bootstrapped estimates of uncertainty of the 487 

mean exit time, but it does show that we are not likely to see alternate states by chance. 488 

 489 

Figure S10.  D1 and D2 from 100 pseudodata series from Peter Lake, Enrichment experiment,  490 

bootstrapped by the Ebisuzaki method. In each plot, solid line is the median of the 100 bootstraps 491 

for each state value and the dotted lines are the 10th and 90th quantiles. 492 

 493 

  494 
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Alternate States in Daily Chlorophyll Time Series 495 

We considered the possibility that alternate states in Paul Lake were related to variability of 496 

sonde data or events of short duration. To check this possibility we analyzed daily chlorophyll 497 

samples collected from both lakes on each day of the Cascade and Enrichment experiments. 498 

Chlorophyll sampling was conducted throughout the period of summer stratification each year. 499 

Water samples from a depth of 0.5 m were collected over the deepest point in the lake each day. 500 

During the enrichment experiment water was collected before nutrient additions. The water was 501 

filtered through Whatman 47 mm GF/F filters and extracts from the filters were analyzed 502 

fluorometrically for chlorophyll a concentration corrected for pheopigments (Holm-Hanson 503 

1978).  504 

Daily chlorophyll time series were fitted to time-varying autoregressions (eq. S-1) and the level 505 

time series bt (chlorophyll a in µg/L) was used to estimate drift and diffusion. Because of the 506 

long time step (1 day) and small sample size (460 intervals), we did not test the effects of longer 507 

time lags.  508 

Chlorophyll time series in Paul Lake have only one equilibrium, the single root of the drift 509 

function (Fig. S9). In the enrichment experiment, the drift function comes close to the zero line 510 

at high chlorophyll levels but does not cross the zero line.  511 

Chlorophyll time series from both experiments in Peter Lake have three equilibria, indicating 512 

two alternate states separated by an unstable threshold (Fig. S10).  513 

Figure S11. Drift (blue 514 

solid line) and diffusion 515 

(red dashed line) 516 

functions versus 517 

chlorophyll a level 518 

(µg/L) in Paul Lake, 519 

Cascade and 520 

Enrichment 521 

experiments. Dotted 522 

horizontal line at zero. 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532  
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The daily datasets and metadata are available online:  533 

Carpenter, S.R., M. Pace, J. Cole, J.F. Kitchell, and J. Hodgson. 2019. Cascade project at North 534 

Temperate Lakes LTER - Daily data for key variables in whole lake experiments on early 535 

warnings of critical transitions, Paul and Peter Lakes, 2008-2011 ver 1. Environmental Data 536 

Initiative. https://doi.org/10.6073/pasta/b0448233e215a969eb5623434fcd4494. Accessed 2021-537 

01-01.  538 

Pace, M., J. Cole, and S. Carpenter. 2020. Cascade project at North Temperate Lakes LTER - 539 

Daily Chlorophyll Data for Whole Lake Nutrient Additions 2013-2015 ver 2. Environmental 540 

Data Initiative. https://doi.org/10.6073/pasta/d480f53082da7ea53e349183a0c8a714. Accessed 541 

2021-01-01.   542 

 543 
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