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C onnections across commodity markets create the potential for risk to propagate and for failures to cascade as succes-
sive market agents fail. The structure of these networks is, however, often hidden and not directly observable. This

article describes methods to uncover this hidden structure and the implications that these hidden connections may have
for predicting risk propagation and cascading failures. The results are described in the context of electricity, gasoline, and
financial markets. They illustrate the potential of this methodology to help address energy and commodity policy issues
and their environmental implications.
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1. Introduction

Many different types of commodities flow from
sources to destinations across complex networks rep-
resenting a variety of modes for delivery. In many
cases, the structure of the network is not observable,
for example, in the case of US electricity markets,
due to the Critical Infrastructure Information Act of
2002 (United States Congress, 2002). In other cases,
as is the case with gasoline, the variety of modes
(e.g., pipeline, tanker, rail, and truck) and their flexi-
bility make identification difficult. Even when cur-
rent network structure is identifiable, additional
information on unobservable transaction costs may
be necessary to consider counterfactual analyses.
This study describes approaches to use observable
market information on transactions and prices to
uncover hidden network structure and perceived
transaction costs.
These investigations can be broadly seen as a

form of structural modeling to identify critical
parameters in optimization and equilibrium settings.
Optimization methods can be directly applied in
such settings (e.g., Su and Judd 2012). The optimiza-
tion literature includes many approaches to identify

parameters, particularly for linear programs (e.g.,
Zhang and Liu (1996)). Mostly those parameters are
objective or constraint right-hand side parameters,
but they may also include left-hand side constraint
coefficients that represent network structure (see
Birge et al. 2017).
This study will describe three examples of identify-

ing network structure from this inverse optimization
approach and some of the implications from this iden-
tification for policy considerations. The first example
involves electric power networks and follows the
development in Birge et al. (2017), which uses an
example in the Midcontinent Independent System
Operator (MISO) network. The second example,
which is described in more detail in Birge et al.
(2020), includes the gasoline supply chain and focuses
on the Southeastern United States portion of this sup-
ply network. The third example, which has more
detail in Birge (2021), describes a network of financial
holdings and particularly relates the discovery of net-
work decisions and the influence of regulatory actions
to the potential for cascading events. Overall, the
examples illustrate the potential of this methodology
to uncover the network structure and motivations of
market participants that can in turn inform policy
analyses, such as those focused on environmental
concerns.
The paper is organized as follows. Section 2 pre-

sents some basic material on inverse optimization and
the discovery of network structure. Section 3–5 then
describe the three commodity examples of, respec-
tively, electricity, gasoline, and financial assets. Sec-
tion 6 then presents conclusions.
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2. Inverse Optimization Basics

In this section, we consider a basic model that can rep-
resent the choices of a firm or the equilibrium for the
interactions of multiple agents assuming that a charac-
terization of equilibrium (through a set of optimality
conditions, e.g., under the conditions in Rosen (1965),
or for a single objective in the case of potential games
as in Monderer and Shapley (1996)). For ease of expo-
sition, we consider here a single convex objective, c(x),
for minimization and a set of linear constraints, Ax =
b,x ≥ 0. The basic optimization model is then:

mincðxÞ (1)

s: t: Ax¼ b, (2)

x≥ 0: (3)

The Karush–Kuhn–Tucker optimality conditions for
optimal primal solution x� and optimal dual solu-
tion π� are then:

Ax� ¼ b, x� ≥ 0, (4)

rcðx�Þ�π�A ≥ 0, (5)

ðrcðx�Þ�π�AÞx� ¼ 0, (6)

where rcðx�Þ corresponds to the gradient of the
objective function c at x�, (4) corresponds to primal
feasibility, (5) corresponds to dual feasibility, and (6)
corresponds to complementarity.
The general approach for inverse optimization is to

use observations of x� and π� to infer information
about the objective c(x) and the constraint coefficients
A and b. In some cases, the observations may be for
different instances, for example, constraint coeffi-
cients bt, t ¼ 1, . . ., T. If it is known that A (which
may correspond to the network structure) is
unchanged, then identification of the elements of A
may be possible using observations of x�t and π�t for
t = 1, . . ., T. In other cases, we may be able to identify
coefficients of particular forms of c(x) or to find ranges
of these values. The next sections illustrate these iden-
tification processes in different contexts.

3. Electric Power Networks

This section follows the development in Birge et al.
(2017), which considers identification of the MISO
transmission network. In this case, MISO explicitly
solves a model of the form in Equations (1)–(3), which
is known as the economic dispatch problem, for each
time interval (typically 5 minutes for the real-time or
spot markets and 1 hour for a forward market known
as the day-ahead market). The objective c(x) is also
released in the form of a piecewise linear bid (within

a feasible interval) or offer from each market partici-
pant. MISO also releases information on xt� in the
form of generation and consumption at different loca-
tions and πt� in terms of locational marginal prices
(LMPs) at generation and consumption nodes and
congestion prices on binding constraints.
To specify the relationships in Equations (1)–(3), we

suppose generation and consumption bids are
described by a supply function cj defined over a feasi-
ble interval ½‘ j, uj�, where cjðxjÞ is the announced total
cost to participant j of producing xj MWh. To allow
for both generation and consumption, we will now
allow xj to become negative (i.e., ‘ j < 0). We also
allow for multiple participants j ∈ z(i) at each loca-
tion i and let bi ¼ ∑ j∈zðiÞxj. We then re-write the con-
straints in terms of the net generation at each location
and arrive at the following formulation:

min
x, b

∑
j∈Q

cjðxjÞ (7)

s:t:bi ¼ ∑
j∈zðiÞ

xj 8i∈L, (8)

∑
i∈L

ð1�δiÞbi ¼ 0, (9)

Db ≤ d, (10)

x≥ ‘, (11)

x≤ u: (12)

We assume a set xt� of observations of the genera-
tion and production quantities and ðπt�, ρt�Þ for obser-
vations of dual variables associated with constraints
(9) and (10) at instances t = 1, . . ., T. Since the pricing
results are identifiable relative to a given reference
location r, we suppose that location r is fixed. To
accommodate transmission losses δi in Equation (9),
we suppose a relative productivity level, qi ¼ 1�δi

1�δr
, for

each location i relative to r. We can then replace (9) by

∑
i∈L

qibi ¼ 0: (13)

and obtain the following result (Theorem 1 in Birge
et al. 2017) which establishes a condition for the
identifiability of the network structure parameters q,
D and d.

THEOREM 1. For an arbitrarily selected reference location
r and a set of T samples of market outcomes
fðxt�, πt�, ρt�Þt¼1;...;Tg, consider equations:

∑
k∈K

Dkiρ
t�
k ¼ qiπ

t�
r �πt�i , 8i∈L, t¼ 1, . . ., T, (14)

∑
p∈zðiÞ

xt�p ¼ bt�i , 8i∈L, t¼ 1, . . ., T, (15)
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∑
i∈L

qib
t�
i ¼ 0; (16)

then, D and q are identified if the above system of equa-
tions has rank ðjKj þ 1ÞjLj. The remaining unknown
parameters of the primal program, d, may be recovered
from Dkb

t� ¼ dk.

The results in Birge et al. (2017) use data from
MISO to predict LMP (π) and allocation decisions (x)
using the structure found from (14). On this basis,
across a range of cases from 2010 and 2011, the
results indicated a 92% correlation between the pre-
dictions and actual LMPs. These values can then be
used to determine market reactions to external
sources of supply and demand, changes in the trans-
mission configuration, and other relevant issues for
policy makers.

4. Gasoline Supply Network

In this section, we consider the identification of criti-
cal elements of the gasoline supply network using the
model presented in Birge et al. (2020). In this case, we
divide the variables in x into xd, d ∈D to represent
demand nodes and xs, s∈ S to represent supply
nodes. we then consider �cdðxdÞ to represent the util-
ity of consumption at d and csðxsÞ to represent the cost
of supply at s. In addition to xd and xs, we also con-
sider a set of flow decisions xij for all edges ij ⊂ E that
connect nodes i and j in the supply network. We
assume these are subject to a constant marginal cost
cij and constraints 0 ≤ xij ≤ uij (where reverse flow
from j to i would be represented as xji and could have
the same or potentially different constraints).
The network yields a set of paths Pði;jÞ that link i to j

with a cost p
q
ij equal to the sum of the transportation

costs along a path q∈Pði;jÞ from i to j. Between any
pair of nodes i and j, we can let P�

ði;jÞ be the set of
minimum-cost paths with cost p�ij. Finally, for a specific
demand node d∈D, we let the set SðdÞ ⊆ S denote the
set of supply nodes with a directed path to d.
If we assume that this market is competitive, result-

ing in a welfare-maximizing allocation, then we have
the following version of (1)–(3):

min
x

� ∑
d∈D

cdðxdÞþ ∑
ði, jÞ∈E

cijxijþ ∑
s∈S

csðxsÞ

s:t: �xdþ ∑
id∈E

xid� ∑
dj∈E

fdj ¼ 0, 8d∈D,

xsþ ∑
is∈E

f is� ∑
sj∈E

fsj ¼ 0, 8s∈S,

0 ≤ xij ≤ uij, 8ði, jÞ∈E,

xd ≥ 0, 8d∈D,

xs ≥ 0, 8s∈S:

(17)

Equilibrium prices π associated with the equality
constraints in (17), ρ ≥ 0 associated with non-
negativity of xd and xs, and σ ¼ σþ�σ� (σþ ≥ 0
and σ� ≥ 0) associated with the bounds on xij can
be found from the optimality conditions as follows:

πd ¼�c0dðxdÞþρd, 8d∈D, (18a)

πs ¼ c0kðbkÞ�ρs, 8s∈S, (18b)

π j�πi ¼ cij�σþij þσ�ij , 8ði, jÞ∈E, (18c)

σþij xij ¼ 0, 8ði, jÞ∈E, (18d)

σ�ij ðuij�xijÞ¼ 0, 8ði, jÞ∈E, (18e)

ρdxd ¼ 0, 8d∈D, (18f)

ρsxs ¼ 0, 8s∈S, (18g)

where c0d and c0k correspond to the first derivatives of
cd and ck, respectively.
If we sum equation (18c) over a path q from node n1

to n2 that traverses links in a set Eq, this results in

πn2 �πn1 ¼ ∑
ði, jÞ∈Eq

cij� ∑
ði, jÞ∈Eq

σþij þ ∑
ði, jÞ∈Eq

σ�ij

¼ p
q
n1n2 � ∑

ði, jÞ∈Eq

σþij þν
q
n1n2 ,

(19)

where p
q
n1n2 ¼ ∑ði;jÞ∈Eq

cij represents the transporta-
tion cost from n1 to n2 along path q and ν

q
n1n2 ¼

∑ði;jÞ∈Eq
σ�ij denotes the sum of shadow prices along

path q. From the optimality conditions, we then
have:

πn2 �πn1 ≤ pqn1n2 þν
q
n1n2 , 8q∈Pðn1, n2Þ, (20)

πn2 �πn1 ¼ pqn1n2 þν
q
n1n2 , 8q∈Pþðn1, n2Þ, (21)

where Pþðn1, n2Þ is the set of paths from n1 to n2 for
which there exists positive flow in the optimal mar-
ket allocation.
Equations (20) and (21) imply that prices between

any two locations differ by at most the transportation
costs between those two locations if none of the links
used for transportation between those two locations
are at capacity (i.e., so that ν

q
n1n2 ¼ 0 for any path q

with flow). The result is then that we can describe
prices πts at any location s and time t as a function of
current market conditions (which we denote as ηt),
the transportation cost for serving a location in an
efficient allocation (given as ρs), the capacity of that
transportation service (represented as an interval
[−α(s), α(s)]), and surcharges (denoted wt

s) that arise
from congestion. These conditions are formalized in
the following proposition (Proposition 3 in Birge et
al. (2020)).
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PROPOSITION 1. The set of equilibrium prices for nodes
s ∈ S over a market with a fixed network structure
and link costs can be expressed as

πts ¼ ηtþρsþ εtsþwt
s, 8s∈S, t∈T, (22)

where εts∈ ½�αs, αs� and wt
s ≥ 0 for some values ηt which

depends on the market conditions at time t, ρs and αs
which depend on the network structure.

The implications of this proposition are that prices
remain in a neutral band relative to one another (given
by αs) except in cases of network congestion in which
the surcharges wt

s may separate a given location’s
price from the neutral band. Birge et al. (2020) pro-
vides a procedure to estimate these quantities using
the following optimization model:

minimize
ηt, ρs, ε

t
s, w

t
s, αs

∑
s∈S

αs (23a)

s:t: λts ¼ ηtþρsþ εtsþwt
s, 8s∈S, t∈T, (23b)

jεtsj≤ αs, 8s∈S, t∈T, (23c)

wt
s∈Wt

s, 8s∈S, t∈T, (23d)

where Wt
s is assumed to be {0} for most periods (i.e.,

assumes that transportation capacity is mostly non-
binding) and then can be unbounded in others. An
additional set of constraints represented with integer
variables then provides an overall mixed integer linear
optimization model that identifies surcharges assum-
ing a given fraction of time that surcharges occur.
The results in Birge et al. (2020) describe the appli-

cation of this model to identify surcharge periods
within the Southeastern United States. The results
show that generally prices between any pair of loca-
tions remain within the neutral band but that certain
events, such as the Colonial Pipeline disruption in
2016 and hurricanes during 2017, resulted in tempo-
rary surcharges for those locations that were most
affected by the reductions in transportation capacity
caused by these events. The results are of interest par-
ticularly for identifying locations for which the extent
of alternative (non-pipeline) resources, such as ship,
rail, and truck terminals for gasoline and the overall
capacity of these resources, might not be as readily
identified as with pipeline flows. For example, in the
Colonial Pipeline disruption in 2016, while Nashville
and Atlanta had significant and lasting surcharges
according to the model, northern North Carolina and
Virginia locations had little impact, a potential indica-
tion of alternative resources (e.g., the Plantation Pipe-
line and combinations of ship, rail, and truck
transportation) that can serve these locations. In the
case of the 2017 hurricanes, the impact of Hurricane
Harvey, which made landfall in Texas, was most

severely felt with significant surcharges along the
Colonial Pipeline between central Mississippi and
central North Carolina, indicating their relative
dependence on this resource compared to locations
closer to ports and alternative resources. For Hurri-
cane Irma, which made landfall in Florida that year,
while Florida cities experienced surcharges, they
were relatively minor and short-lived compared to
the effects of Hurricane Harvey, suggesting that the
resources (mostly tanker ship terminals) in this area
are quite substantial and resilient to such events.

5. Global Financial Network

The network of global financial institutions creates a
complex form of commodity network (with convert-
ible currency as the commodity). In examining these
networks, a key question is how much do institutions
from each country hold of assets in other countries
and how might the investments from these countries
respond to changes in regulations that govern them
and how might those responses impact the overall
stability and resilience of the global financial network.
Acharya (2009) and other note that regulatory mea-
sures should consider the institutions’ endogenous
response to requirements, but these reactions may be
correlated and lead to a cascade of reactions. Birge
(2021) provides a model for determining how institu-
tions in different countries may react to regulatory
changes by inferring their relative risk preferences
and effective transaction costs for foreign investment,
using their current cross-country investment level,
building on the network model of Elliott et al. (2014)
and using inverse optimization to identify institu-
tional preferences and perceived costs for their invest-
ment. To identify the perceived risk preferences and
costs for transacting in other locations, the approach
follows the inverse optimization models given above.
Formally, the model assumes n institutions,

i = 1, . . ., n, with cross-holdings cij (forming the
matrix C) that represent the fraction of institution j
owned by i (where cij ≥ 0, cii ¼ 0, and∑n

i¼1cij ≤ 1). The
institutions also have holdings outside the network
given as Ĉ, a diagonal matrix such that
ĉii ¼ 1�∑n

j¼1ĉji and ĉij ¼ 0 for j ≠ i, m primitive assets
with prices pk, k ¼ 1, . . ., m, that are held by k accord-
ing to a matrix D with elements dik for the fraction of
asset k owned by i.
With these assumptions, the vector w of values of

each institution satisfies:

w¼DpþCw, (24)

which is solved (assuming I−C is invertible) as

w¼ðI�CÞ�1Dp: (25)
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In Elliott et al. (2014) and Birge (2021), the market
value vi of each organization i held by external
investors is given as v ¼ Ĉw or

v¼ ĈðI�CÞ�1Dp, (26)

or, for A ¼ ĈðI�CÞ�1, v = ADp.
The procedure in Elliott et al. (2014) allows for cas-

cades of defaults. The cascades result if the value vi of
any organization i falls below a critical value �vi, so
that the value of the primitive assets decreases by a
fraction 0< βi < 1 resulting in a loss biðv, pÞ ¼
βiðpÞ1vi < �vi . The equilibrium values including such
potential losses then are given by:

v¼ ĈðI�CÞ�1ðDp�bðp, vÞÞ, (27)

which, as Elliott et al. (2014) observes, has possibly
many solutions, although a simple algorithm which
iteratively updates b(p, v) for each subsequent fail-
ures can achieve the best-case equilibrium in which
the fewest number of organizations fail.
In Birge (2021), C is assumed to result from

incentive-compatible choices of the institutions,
which may change depending on the relative values
of the assets and in reaction to requirements, such as
capital requirements α. Writing C explicitly in terms
of α, p, and v, yields the following updated version of
(27):

v¼ Ĉðα, p, vÞðI�Cðα, p, vÞÞ�1ðDp� bðp, vÞÞ, (28)

for which the sequential algorithm of updating
values for each subsequent default while simulta-
neously updating C(α, p, v) can obtain an equilib-
rium.
To determine how C(α, p, v) may change in

response to requirements and values requires a
model of the objectives (and constraints) of each
institution so that their investment decisions are
incentive compatible. This requires identifying how
each organization responds to risk and what costs
they perceive in placing investments with different
organizations. The assumption used in Birge (2021)
is that each institution maximizes a mean-variance
utility function subject to constraints, such as capital
requirements. The formulation includes their risk
tolerance, given as a parameter γi for institution i,
as well as perceived costs τij for institution i to
invest in j. Normalizing their assets to have unit
value, i then determines amounts xij in each j (with
xi representing the vector ðxi1, . . ., xinÞ) with
expected returns r ¼ ðr1, . . ., rnÞ, covariance matrix
Σ, equity Ei with rate ei, non-core liabilities (or
short-term debt) Si with rate ni, and assuming
deposits Di with rate di to obtain the following opti-
mization model:

max
xi, Ei, Si

ðr� τiÞTxi� γi
2
xTi Σxi�diDi� eiEi�niSi

s: t:1Txi ¼ 1;
1Txi�Ei�Si ¼ Di;
Ei ≥ αi;
xi, Si ≥ 0:

(29)

If the capital constraint is binding, Ei ¼ αi1
Txi, the

optimality conditions for (29) can be written with
μi ≥ 0:

ðr� τiÞ�ðγiΣþαiei1
TÞxiþμi ¼ 0, (30)

μTi xi ¼ 0, (31)

where x can be scaled to ensure 1Txi ¼ 1.
As shown in Birge (2021), the optimality conditions,

now allow for identification of γi and τi assuming that
Σi, xi, ri, αi, and ei can be observed by

γi ¼ ðri�αieiÞ=Σixi, (32)

and

τij ¼ rj�αiei� γiΣ jxi: (33)

These values can then be used for counterfactual
analyses, such as changing capital ratio require-
ments and threshold levels �v, to iteratively solve for
the equilibria in (28). Birge (2021) uses country
cross-holding, similar to that in Elliott et al. (2014),
for nine countries plus Japan, the United Kingdom,
and the United States, using data from Bank of
International Settlements (2015). The results in
Table 1 show the sequence of defaults as �v ¼ θv0
for a given baseline value v0 (2008 GDP) is
increased from 0.68 to 1.14. The table lists the first
set of institutions to default followed by subsequent
cascades at a second level and in some cases a
third level.
In these initial tests, the institutions were assumed

to have their original capital ratios with no increase in
capital requirements. A counterfactual exercise,
assuming that the institutions maintain their per-
ceived risk tolerance and costs to transact in other
locations, can now be done by increasing capital
requirements, for example, to α1 where
α1ðiÞ ¼ maxð0:06, α0ðiÞ, i ¼ 1, . . . , 9Þ, which would
entail additional equity holdings in France, Germany,
Italy, Japan, and the United Kingdom. Birge (2021)
provides the results for this case reproduced in
Table 2. The results illustrate the contrasting effect of
endogenous investment choices relative to fixed
investments in Table 1. Now, instead of Portugal
being the second market to suffer losses, Italy, Ger-
many, and Japan fail before Portugal. The reaction of
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investors from these countries has been to alter invest-
ments (in fact to make them riskier) in reaction to the
requirement to hold more capital. The end result is
that these institutions are then more exposed to
default, an unintended consequence of the tighter
capital restrictions.

6. Conclusions

The pricing, production, and consumption of com-
modities depends strongly on the structure of the net-
work that transports these goods from sources to
destinations and of the preferences of consumers and
costs for producers and intermediaries. While many
components of these systems are directly observable,
many others are only revealed through the choices of
participants or are hidden from direct observation.
Inverse optimization or structural estimation using
the conditions for optimality and equilibrium within
these markets can be used to uncover unobserved
preferences and network structure. This article has
described the application of this approach in three sit-
uations: an electric power network with unobserved
transmission connections, a gasoline network with
unobserved transportation capacity, and a financial
network with unobserved risk preferences and costs
for inter-regional investments. In each case, using
optimality conditions from the resulting equilibria
lead to identification of critical parameters that can in
turn be used to conduct counter-factual analyses as in
the financial example that considers the effect of tight-
ening capital requirements.
These examples indicate that a wide range of analy-

ses within commodity networks may be considered

using this framework. One topic of immediate rele-
vance is the evaluation and control of storage
resources such as batteries for electric power net-
works. Making these decisions requires understand-
ing the characteristics of the network, the potential
actions of competitors, and the choices of participants,
all of which might be uncovered through this identifi-
cation approach. Many other such examples can bene-
fit from these approaches. With these insights, we can
hope to enable more informed decisions from policy
makers who will determine the future evolution of
commodity networks.
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Second — PT IT ES FR FR JP DE US
Third — — — — — JP DE GB —

Table 2 Failure Cascades for Increasing Failure Threshold Values θ with the Level of the Failures for the case of Capital Ratios
α1ðiÞ ¼ maxðα0ðiÞ, 0:06Þ, i ¼ 1, . . ., 9, for France (FR), Germany (DE), Greece (GR), Italy (IT), Japan (JP), Portugal (PT), Spain (ES), United
Kingdom (GB), and United States (US)

Levels:

Critical Threshold Values θ

0.65 0.74 0.80 1.00 1.01 1.04 1.08 1.11 1.14

First GR GR GR, IT DE, GR, IT DE, GR, IT DE, GR, IT, JP, PT DE, GR, IT, JP, PT, ES DE, GR, IT, JP, PT, ES DE, GR, IT, JP, PT, ES
Second — IT DE JP JP ES FR FR FR, GB
Third — — — — PT — — GB US
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