

1 **A standard calculation methodology for human doubly labeled water studies.**

2

3

4 John R. Speakman^{1-4*#}, Yosuke Yamada^{5,6*†}, Hiroyuki Sagayama^{7†}, Elena Berman⁸, Philip N.
5 Ainslie⁹, Lene F. Andersen¹⁰, Liam J. Anderson^{9,11}, Lenore Arab¹², Issaad Baddou¹³, Kweku
6 Bedu-Addo¹⁴, Ellen E. Blaak¹⁵, Stephane Blanc^{16,17}, Alberto G. Bonomi¹⁸, Carlijn V.C. Bouten¹⁹,
7 Pascal Bovet²⁰, Maciej S. Buchowski²¹, Nancy F. Butte²², Stefan G.J.A. Camps¹⁵, Graeme L.
8 Close⁹, Jamie A. Cooper¹⁶, Seth A. Creasy²³, Sai Krupa Das²⁴, Richard Cooper²⁵, Lara R.
9 Dugas²⁵, Cara B. Ebbeling²⁶, Ulf Ekelund²⁷, Sonja Entringer^{28,29}, Terrence Forrester³⁰, Barry W.
10 Fudge³¹, Annelies H Goris¹⁵, Michael Gurven³², Catherine Hambly², Asmaa El Hamdouchi¹³,
11 Marije B. Hoos¹⁵, Sumei Hu³, Noorjehan Joonas³³, Annemieke M. Joosen¹⁵, Peter
12 Katzmarzyk³⁴, Kitty P. Kempen¹⁵, Misaka Kimura⁶, William E. Kraus³⁵, Robert F. Kushner³⁶,
13 Estelle V. Lambert³⁷, William R. Leonard³⁸, Nader Lessan³⁹, David S. Ludwig²⁶, Corby K.
14 Martin³⁴, Anine C. Medin^{10,40}, Erwin P. Meijer¹⁵, James C. Morehen^{41,9}, James P. Morton⁹,
15 Marian L. Neuhouser⁴², Theresa A. Nicklas²², Robert M. Ojiambo^{43,44}, Kirsi H. Pietiläinen⁴⁵,
16 Yannis P. Pitsiladis⁴⁶, Jacob Plange-Rhule^{47**}, Guy Plasqui⁴⁸, Ross L. Prentice⁴², Roberto A.
17 Rabinovich⁴⁹, Susan B. Racette²⁴, David A. Raichlen⁵⁰, Eric Ravussin³⁴, Rebecca M. Reynolds⁵¹,
18 Susan B. Roberts²⁴, Albertine J. Schuit⁵², Anders M. Sjödin⁵³, Eric Stice⁵⁴, Samuel S. Urlacher⁵⁵,
19 Giulio Valenti¹⁵, Ludo M. Van Etten¹⁵, Edgar A. Van Mil⁵⁶, Jonathan C. K. Wells⁵⁷, George
20 Wilson⁹, Brian M. Wood^{58,59}, Jack Yanovski⁶⁰, Tsukasa Yoshida⁵, Xueying Zhang^{1,2}, Alexia J.
21 Murphy-Alford⁶¹, Cornelia U. Loechl⁶¹, Edward L. Melanson^{23,62,63}, Amy H Luke^{64†}, Herman
22 Pontzer^{65,66†}, Jennifer Rood^{34†}, Dale A. Schoeller^{67†}, Klaas R. Westerterp^{68†}, William W.
23 Wong^{22†} and the IAEA DLW database group

24

25 #Lead contact

26 †co-corresponding author

27 *equal contribution

28 ** deceased

29

30

31 1. Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced
32 Technology, Chinese Academy of Sciences, Shenzhen, China
33 2. Institute of Biological and Environmental Sciences, University of Aberdeen,
34 Aberdeen, UK
35 3. State Key Laboratory of Molecular developmental Biology, Institute of Genetics and
36 Developmental Biology, Chinese Academy of Sciences, Beijing, China
37 4. CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China.
38 5. National Institute of Health and Nutrition, National Institutes of Biomedical Innovation,
39 Health and Nutrition, Tokyo, Japan.

40 6. Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan.
41 7. Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
42 8. Berman Scientific Consulting, Mountain view, California, USA
43 9. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University,
44 Liverpool, UK.
45 10. Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317
46 Oslo, Norway.
47 11. Crewe Alexandra Football Club, Crewe, UK.
48 12. David Geffen School of Medicine, University of California, Los Angeles.
49 13. Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN- Université Ibn
50 Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA.
51 14. Department of Physiology, Kwame Nkrumah University of Science and Technology,
52 Kumasi, Ghana.
53 15. Maastricht University, Maastricht, The Netherlands.
54 16. Nutritional Sciences, University of Wisconsin, Madison, WI, USA
55 17. Institut Pluridisciplinaire Hubert Curien. CNRS Université de Strasbourg, UMR7178,
56 France.
57 18. Phillips Research, Eindhoven, The Netherlands.
58 19. Department of Biomedical Engineering and Institute for Complex Molecular Systems
59 Eindhoven University of Technology, Eindhoven, The Netherlands
60 20. Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne,
61 Switzerland.
62 21. Division of Gastroenterology, Hepatology and Nutritiion, Department of Medicine,
63 Vanderbilt University, Nashville, Tennessee, USA
64 22. Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition
65 Research Center, Houston, Texas, USA.
66 23. Division of Endocrinology, Metabolism ad Diabetes, University of Colorado Anschulz
67 Medical Campus, Aurora, CO, USA
68 24. Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave,
69 Boston, Massachusetts, USA
70 25. Department of Public Health Sciences, Parkinson School of Health Sciences and Public
71 Health, Loyola University, Maywood, IL, USA.
72 26. Boston Children's Hospital, Boston, Massachusetts, USA.
73 27. Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway.
74 28. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
75 Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of
76 Medical Psychology, Berlin, Germany.
77 29. University of California Irvine, Irvine, California, USA.
78 30. Solutions for Developing Countries, University of the West Indies, Mona, Kingston,
79 Jamaica.
80 31. University of Glasgow, Glasgow, UK.
81 32. Department of Anthropology, University of California Santa Barbara, Santa Barbara,
82 CA, USA.
83 33. Central Health Laboratory, Ministry of Health and Wellness, Mauritius.

84 34 Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
85 35 Department of Medicine, Duke University, Durham, North Carolina, USA.
86 36 Northwestern University, Chicago, IL, USA.
87 37 Research Unit for Exercise Science and Sports Medicine, University of Cape Town,
88 Cape Town, South Africa.
89 38 Department of Anthropology, Northwestern University, Evanston, IL, USA.
90 39 Imperial College London Diabetes Centre, Imperial College London.
91 40 Department of Nutrition and Public Health, Faculty of Health and Sport Sciences,
92 University of Agder, 4630 Kristiansand, Norway.
93 41 The FA Group, Burton-Upon-Trent, Staffordshire, UK.
94 42 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and
95 School of Public Health, University of Washington, Seattle, WA, USA.
96 43 Moi University, Eldoret, Kenya.
97 44 University of Global Health Equity, Rwanda.
98 45 Helsinki University Central Hospital, Helsinki, Finland.
99 46 University of Brighton, Eastbourne, UK.
100 47 Department of Physiology, Kwame Nkrumah University of Science and Technology,
101 Kumasi, Ghana
102 48 Department of Nutrition and Movement Sciences, Maastricht University, Maastricht,
103 The Netherlands.
104 49 University of Edinburgh, Edinburgh, UK.
105 50 Biological Sciences and Anthropology, University of Southern California, California,
106 USA.
107 51 Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of
108 Edinburgh, Edinburgh, UK.
109 52 University of Tilburg, Tilburg, The Netherlands

110 53 Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen,
111 Denmark.
112 54 Stanford University, Stanford CA, USA.
113 55 Department of Anthropology, Baylor University, Waco, TX, USA.
114 56 Maastricht University, Maastricht and Lifestyle Medicine Center for Children, Jeroen
115 Bosch Hospital's-Hertogenbosch, The Netherlands.
116 57 Population, Policy and Practice Research and Teaching Department, UCL Great
117 Ormond Street Institute of Child Health, London, UK.
118 58 University of California Los Angeles, Los Angeles, USA.
119 59 Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior,
120 Ecology, and Culture.
121 60 Growth and Obesity, Division of Intramural Research, NIH, Bethesda, MD, USA.
122 61 Nutritional and Health Related Environmental Studies Section, Division of Human
123 Health, International Atomic Energy Agency, Vienna, Austria.
124 62 Eastern Colorado VA Gereatric research, education and clinical center, Aurora, CO,
125 USA
126 63 Division of Gereiatrics, University of Colorado Anschutz medical Campus, Aurora, CO
127 USA
128 64 Division of Epidemiology, Department of Public Health Sciences, Loyola University
129 School of Medicine, Maywood Illinois, USA.
130 65 Evolutionary Anthropology, Duke University, Durham NC, USA

131 66 Duke Global Health Institute, Duke University, Durham, NC, USA
132 67 Biotech Center and Nutritional Sciences University of Wisconsin, Madison, Wisconsin,
133 USA.
134 68 School of Nutrition and Translational Research in Metabolism, University of
135 Maastricht, Maastricht, The Netherlands.

136

137

138

139 **Abstract**

140

141 The doubly labeled water (DLW) method measures total energy expenditure (TEE) in free-
142 living subjects. Several equations are used to convert isotopic data into TEE. Using the IAEA
143 DLW database (5756 measurements of adults and children) we show considerable variability
144 is introduced by different equations. The estimated $r\text{CO}_2$ is sensitive to the dilution space
145 ratio (DSR) of the two isotopes. Based on performance in validation studies we propose a
146 new equation based on a new estimate of the mean DSR. The DSR is lower at low body
147 masses (<10 kg). Using data for 1021 babies and infants we show that the DSR varies non-
148 linearly with body mass between 0 to 10 kg. Using this relationship to predict DSR from
149 weight provides an equation for $r\text{CO}_2$ over this size range that agrees well with indirect
150 calorimetry (average difference 0.64 %, $sd = 12.2\%$). We propose adoption of these
151 equations in future studies.

152 **(150 words)**

153 **Keywords**

154 Total energy expenditure, free-living, validation, doubly labeled water

155

156

157 **Introduction**

158 The DLW method^{1,2} is an isotope-based technique for measuring rCO₂ in free-living animals
159 and humans³. The method is based on the observation that the oxygen in respiratory CO₂ is
160 in complete isotopic equilibrium with the oxygen in body water. Hence isotopically labeled
161 oxygen introduced into the body water is eliminated as both water and CO₂. In contrast, a
162 simultaneously introduced label of hydrogen (such as deuterium) will be predominantly
163 eliminated as water. The difference in elimination rates of the two isotopes (hence “doubly
164 labeled” water) gives a measure of rCO₂. If the respiratory quotient (RQ, the ratio of CO₂
165 production to O₂ consumption) or food quotient (FQ, the proportions of fat, protein, and
166 carbohydrate in the diet) is known, the rCO₂ can be converted to estimated energy
167 expenditure using standard equations.

168 The prohibitive cost of the isotopes limited early use of the method to small animals⁴.
169 Advances in mass spectrometry, which reduced the required dose, along with the declining
170 cost of the isotopes, enabled the first applications to humans in the early 1980s⁵⁻⁷. Since
171 then use of the method has grown steadily with currently approximately 100 papers
172 published using the method annually⁸. However, costs continue to keep sample sizes in most
173 studies relatively small (typically less than 50 individuals). There has been an impetus in the
174 last few years, therefore, to combine data across studies to extend or modify conclusions
175 about the main factors driving energy demands^{9,11}.

176 The simple description of the technique above belies a great deal of complexity in its
177 theoretical basis^{2,3,10,11}. For example, isotopes fractionate as they leave the body, so that
178 lighter isotopes are preferentially lost. This effect needs to be accounted for in the
179 calculation. Another issue is that the isotopes are assumed to be turning over in the body

180 water pool. The body water pool can be measured from the dilution space of the isotopic
181 doses, but the dilution space of ^{18}O (N_{O}) differs from that of deuterium (N_{d}), and both
182 differ slightly from the total body water (TBW). The oxygen dilution space is about 1% larger
183 than the TBW while the hydrogen dilution space is about 4% larger. This difference stems
184 primarily from hydrogen in body water exchanging with labile hydrogen in proteins and
185 other organic molecules in the body. The relationship between N_{d} , N_{O} , and TBW affect the
186 calculation of $r\text{CO}_2$, and thus the dilution space ratio (DSR), which is equal to $N_{\text{d}}/N_{\text{O}}$, turns
187 out to be a critical parameter in DLW studies.

188 A final complexity that must be considered is the choice of equation used to calculate
189 $r\text{CO}_2$. Although there are only four basic parameters that are derived from the isotope
190 elimination measurements (the two elimination constants for ^{18}O (k_{O}) and deuterium
191 (k_{d}) and the two isotope dilution spaces (N_{O} , N_{d}), the best approach combining these
192 parameters to estimate $r\text{CO}_2$ was a matter of considerable debate throughout the late 1980s
193 and 1990s³. These discussions never reached a broad consensus, and hence different studies
194 have subsequently combined the parameters in slightly different ways. Such differences are
195 largely irrelevant if the objective is to compare groups within a single study. However, if
196 absolute values of energy demand are required, such as might be needed if the DLW method
197 is being utilized as a validation method (for example, for measurements of habitual food
198 intake), or to compare TEE across cultures and lifestyles, or if comparisons are made to
199 previous studies, the differences in calculation could be significant. The consequences of this
200 variability have never been thoroughly evaluated, but have been assumed to be small
201 relative to the biological variation under study. In this paper we evaluate the impact of using
202 different equations, and derive new standard equations based on performance in validation

203 studies for use in future studies. We address this issue first for studies of children,
204 adolescents and adults, and then for studies of small infants and babies.

205 Children, adolescents and adults

We have compiled in the International Atomic Energy Agency (IAEA) DLW database (v3.1) (www.dlwdatabase.org) individual data from 119 DLW studies comprising a total of 6246 measurements of individuals aged 2 to 96 years⁸. For 5756 of these measurements we have access to the individual values of k_o , k_d , N_o and N_d , allowing us to recalculate rCO_2 using a single equation, and compare these to the original estimates made using a diversity of calculation methods. To choose the best equation for the common calculation we compiled data from six validation studies involving 61 adult humans, where rCO_2 by DLW has been compared with simultaneous indirect calorimetry (Table 1)¹²⁻¹⁷. This comparison yielded three equations where rCO_2 did not differ significantly from the chamber values (Table 1)^{3,18-22}. The equation with the lowest average deviation was derived from an analysis of dilution space ratios in Sagayama *et al* (2016)²⁰. Using the average dilution space ratio of 1.036 we modified the original equation A6 proposed by Schoeller *et al* (1986) and derived a new equation here, for which the average discrepancy between the DLW estimates of rCO_2 and simultaneous chamber estimates was -0.4% (sd = 7.6%) (Table 1).

220 The new equation is as follows

223 where $N = [(N_o/1.007) + (N_d/1.043)]/2$ (Eq.2)

224 N is total body water. Using the dilution spaces of both isotopes to estimate N reduces the
225 error due to analytical variation in the derivation of either isotope space alone. However, if it
226 is felt that the analytical variation stems mostly from evaluation of the deuterium dilution
227 space N_d then it is also acceptable to calculate N from the oxygen dilution space alone ($N =$
228 $N_o / 1.007$). The value 22.26 in Eq.1 is the gas constant for carbon dioxide. Note that this
229 differs from the value used previously in all DLW equations for calculation of rCO_2 of 22.4
230 which is erroneously high (by 0.7%) because CO_2 does not show ideal gas behaviour²³.

231 Eqn 1 can be simplified for calculation purposes to

232 $rCO_2 = 0.4554 * N * [(1.007 * k_o) - (1.043 * k_d)] * 22.26$ (Eq.3) or

233 $rCO_2 = [N * ((0.45859 * k_o) - (0.47498 * k_d))] * 22.26$ (Eq.4)

234 where k_o and k_d are in units of d^{-1} and N_o and N_d are in mols and rCO_2 is in L/d .

235 We used the original RQ estimates from the publications to convert rCO_2 to TEE using the
236 Weir equation²⁴.

237 $TEE (MJ/d) = rCO_2 * (1.106 + (3.94 / RQ)) * (4.184 / 10^3)$ (Eq.5)

238 Figure 1a shows the estimates of rCO_2 from the original publications, plotted against
239 estimates using Eq 1. While there is a strong association between the estimates ($r^2 = 0.987$),
240 they do not yield identical rCO_2 values. Because the equation based on Sagayama *et al*
241 (2016)²⁰ was derived here, none of the studies in the database used this equation. Of the
242 5756 individual data, the rCO_2 of 1024 (17.7%) were made using the equation of Coward and
243 Prentice (1985)²², 883 (15.3%) were made using the Schoeller *et al* (1986)¹⁷ equation A6 as
244 modified in 1988¹⁹, 3770 (65.3%) were made using the Racette *et al* (1994)²¹ equation and
245 77 (1.3%) did not state the equation they used. The Racette *et al* (1994) equation produces

246 estimates very similar to those derived from Eq 1 (Table1) and the discrepancy in the sample
247 of 3770 using this equation averaged 1.1% (sd 1.2). On average the discrepancy when using
248 the Schoeller *et al* (1986) A6 equation was 1.8% (sd 1.6) and for the studies using the
249 Coward and Prentice (1985) equation it was 4.4% (sd 4.6).

250 We compared the rCO₂ values calculated using the three main equations compared
251 to Eq 1 using Bland-Altman plots²⁵ (Figs 1b-d). For all three equations there was no
252 systematic bias. However, the Coward and Prentice (1985) equation generated far more
253 variable estimates than the other two equations. This is expected because that calculation
254 utilises individual values for N_o and N_d instead of using an average N_d/N_o ratio, which is used
255 in the other two equations and Eq 1. Indeed, of the 1024 estimates using the Coward
256 equation, 103 (10.0%) differed by more than 10% from the standard, compared to 1/883
257 (0.1%) for the Schoeller *et al* equation and 12/3770 (0.3%) for the Racette equation.

258 A second source of variation can be introduced by using alternative equations to
259 convert rCO₂ to TEE. This variation occurs even when the RQ is known. To evaluate the
260 variation introduced from this source we took the original rCO₂ and converted this to TEE
261 using the Weir equation. We then compared the recalculated TEE with the published values.
262 The relationship between the recalculated and original TEE values (Fig 2a) was very good (r^2
263 = 0.99) and the average discrepancy between estimates was only 0.08 MJ/d (sd = 0.19) or
264 0.8% (sd = 0.19). The absolute discrepancy excluding the sign of the difference was 0.11 MJ
265 (1.1%) (sd = 0.17). There was no significant trend in the discrepancy with the magnitude of
266 the TEE (Fig 2b). When RQ is not known the routine procedure is to approximate the RQ
267 using the food quotient (FQ). The errors involved in this approximation are beyond the scope
268 of this paper and are not addressed here.

269 These data show that selection of the calculation method can introduce substantial
270 variation into the individual and to a lesser extent average estimates of $r\text{CO}_2$, as well as to
271 variation in conversion of $r\text{CO}_2$ to TEE. For comparisons made within studies, this
272 discrepancy is unimportant. However, it may introduce problems when comparisons are
273 attempted between studies, or when the DLW method is used to validate other techniques,
274 particularly when small sample sizes are employed. With some equations in common use,
275 more than 10% of estimates are greater than 10% divergent from the equation that
276 performs best in validation studies. Such differences between calculation methods across
277 studies might be erroneously attributed to biological factors. This potential problem is
278 compounded by the fact that some studies do not indicate the exact calculation methods
279 they employed to derive $r\text{CO}_2$ and TEE estimates. To overcome these issues we recommend
280 adoption of Eq. 1 in future studies of children, adolescents and adults to derive $r\text{CO}_2$ and use
281 of Eq. 5 to convert this to TEE.

282

283 **Small infants and babies**

284 The recommendation above refers to subjects aged ≥ 2 y. We have shown that the
285 choice of equation has a significant impact on the resultant calculation of $r\text{CO}_2$ and TEE and
286 that the major factor driving this variation is the relative dilution spaces of N_o and N_d (the
287 dilution space ratio $DSR = N_d/N_o$). There is evidence that at younger ages the DSR is below
288 the observed average of 1.036 in individuals aged > 2 ^{20,26}. In a review of 36 studies of 1131
289 young children, the weighted dilution space ratio averaged 1.031,²⁰ which means that
290 application of Eq 1 to younger individuals may yield underestimates of $r\text{CO}_2$ and TEE.

291 There is a problem, however, in choosing the best equation to use in young children,
292 and that is the limitations on performing validation experiments in this age group against gas
293 exchange measurements by indirect calorimetry (chamber respirometry). Validation studies
294 of DLW against indirect calorimetry will probably never be performed in young children
295 because it would require the child to be isolated within a respirometry chamber for a
296 protracted period lasting up to a week.

297

298 Nevertheless, a number of validation studies have been performed in preterm babies
299 and small neonates (< 2 kg) comparing continuous gas exchange with DLW²⁷⁻²⁹. The problem,
300 however, is that such very small children weighing less than 2 kg have an even lower DSR,³⁰
301 averaging around 1.019, significantly lower than in infants weighing >2 kg^{26,31}. Hence an
302 equation based on this DSR might work well for small babies weighing less than 2 kg, but it
303 might be unsuitable for infants weighing 2 to 10 kg. Fortunately, there is a single validation
304 study of babies weighing 2 to 4.2 kg³² which can assist in selection of the best equation in
305 this size range.

306

307 We compiled data from the four available validation studies in babies and used the
308 published data in these studies on isotope elimination rates of ¹⁸oxygen (k_o) and deuterium
309 (k_d) and the respective dilution spaces (N_o and N_d) to recalculate the rCO_2 using five different
310 alternative equations. We then derived two new equations in which we replaced the DSR in
311 Eq1 with either the value 1.019 or the value 1.031. These are respectively, when the DSR =
312 1.019

313

314 $rCO_2 = [(N/2.078)*(1.007*k_o - 1.026*k_d) - (0.0246*N*1.05(1.007*k_o - 1.026*k_d))]*22.26$
315 (Eq.6)

316 and when the DSR = 1.031

317

318 $rCO_2 = [(N/2.078)*(1.007*k_o - 1.038*k_d) - (0.0246*N*1.05(1.007*k_o - 1.038*k_d))]*22.26$
319 (Eq.7)

320

321 In all the above cases we used $N = N_o/1.007$ (Eq.8)

322

323 Although there have been relatively few validation studies of humans weighing less
324 than 4 kg, there have been a large number of validation studies in small mammals and birds
325 in this weight range (reviewed in Speakman, 1997³). Although such animals have dilution
326 space ratios that do not differ from adult humans (around 1.036), the best equation in
327 validation studies of such animals turns out to be based on a DSR of 1.0. This is because
328 these animals have a significant efflux of deuterium in addition to water turnover that
329 offsets the impact of the slightly different DSRs³³. Since this might also pertain in babies, we
330 added into the evaluation the most widespread equation in use for small mammals and
331 birds, which is equation 7.17 from Speakman (1997)³. Finally, we also added into the
332 evaluation the equation of Coward and Prentice (1985)²² which uses individual dilution
333 spaces rather than a population average in the calculation.

334

335 Table 1 shows the results of the different equations when compared to indirect
336 calorimetry for preterm infants (≤ 2 kg) and infants weighing (>2 kg). The data show that in
337 the size range 0 to 2 kg the best equation was based on the dilution space ratio 1.019 (Eq. 6
338 above). The average difference between the rCO_2 by indirect calorimetry and DLW using this
339 equation was 0.5%. This was much better than the equation derived for children and adults
340 (Eq 1), which gave an estimate 13.5% too low, and Eq. 7 above, which gave an estimate 8.4%
341 too low. The equation which performs best in validation studies of small mammals gave an
342 estimate 10.1% too high, clearly indicating the physiological basis for this equation, while
343 appropriate for birds and small non-human mammals, does not apply to neonatal humans
344 and young infants.

345

346 In the size range 2-4 kg, the best equation was that based on the DSR of 1.031 (Eq. 7).
347 Eq. 1 gave an estimate 8.5% too low. Eq. 6 gave an estimate 6.5% too high, while the small
348 animal equation gave an estimate 16.8% too high. These validation data therefore suggest
349 that adoption of three different equations over different size ranges corresponding to
350 different DSRs might be a possible solution to the issue of how to measure rCO_2 by DLW. For
351 individuals weighing < 2 kg, the suggested equation would be Eq. 6, for individuals weighing
352 2 to 10 kg, it would be Eq. 7, and for individuals weighing > 10 kg, it would be Eq.1.

353

354 This approach, however, is not very satisfactory because it leads to confusion at the
355 boundaries of the weight ranges. For example, for a 2 kg child, rCO_2 calculated using Eq. 6
356 differs from that calculated by Eq. 7 by about 10%. To further explore the choice of DSR in
357 the size range 0 to 10 kg we extracted data from the IAEA DLW database⁸ for individuals in
358 this size range. In fact, none of the individuals in the database weighed less than 2 kg, but
359 there were 336 records of children weighing between 2.4 and 10 kg. The DSR for these
360 individuals is plotted against the body weight in Figure 1a. The average DSR in this interval
361 was 1.032 ($sd = 0.0122$) consistent with the previous suggestion of 1.031 (Sagayama *et al*
362 2016)²⁰. This DSR was significantly lower than the ratio established for heavier individuals of
363 1.036 ($t = -5.72$, $p < .0001$) and significantly higher than the ratio of 1.019 for pre-term
364 babies and neonates³⁰ weighing less than 2 kg ($t = 22.26$, $p < .001$). There was a trend for a
365 positive association between weight and DSR through the size range (regression $r^2 = 0.9\%$, p
366 = 0.08). When we combined these data with those from the validation studies,^{27-29,32} there
367 was a significant non-linear relationship between body mass (BM: kg) and DSR. We fitted an
368 asymptotic exponential model to these data constraining the asymptote to be 1.036 using a
369 non-linear fitting function in the program MINITAB to estimate the unknown parameters.
370 The resultant equation was

371

372 $DSR = 1.036 - 0.05 * \exp(-0.5249 * BM)$ (Eq 9)

373 where BM (body mass) is in kg.

374 A different approach then is to create an equation which combines this weight
375 dependency with the standard equation, yielding

376

377 $rCO_2 = [(N/2.078) * (1.007 * k_o - (DSR * 1.007 * k_d))] - [0.0246 * N * 1.05(1.007 * k_o -$
378 $(DSR * 1.007 * k_d))] * 22.26$ (Eq. 10)

379

380 where $N = N_o$ and DSR is defined in Eq. 9 by the body mass in kg.

381

382 For calculation purposes this simplifies to

383 $rCO_2 = [0.45859 * N * (k_o - (DSR * k_d))] * 22.26$ (Eq. 11)

384

385 The results of using this equation are shown in Table 2 (Eq. 10) and a plot of the
386 predicted rCO₂ from Eq. 10 and the observed rCO₂ across all the validation studies across the
387 entire weight range in Table 2 is shown in Figure 2b. This shows a linear relationship with an
388 r² of 90.1% and a least squares fit gradient of 0.954 (reduced major axis = 1.005). The
389 average % difference across all 34 individuals in the validation studies (in Table 2) using this
390 equation was 0.64% (sd = 11.9). This combined equation based on the weight dependency of
391 the DSR in the range 0 to 10 kg therefore performs better than the individual equations for
392 the ranges 0 to 2 kg (Eq. 6) and 2 to 10 kg (Eq. 7) (Table 2).

393

394 Using the combination of Eq. 9 and 10 (or 11) eliminates the boundary discontinuities
395 of using three separate equations and provides a general equation for the estimation of rCO₂
396 from DLW studies, the adult equation (Eq 1) being a special case of this more general
397 solution where body mass is greater than 10 kg. A further benefit of this equation
398 combination is that if more refined analyses in the future result in equations that are better
399 able to predict the DSR these could be adopted by replacing equation 9 with an updated
400 prediction model.

401 We see considerable future benefits in studies using these new equations because
402 they will improve the accuracy of the derived estimates of energy expenditure. Moreover, by
403 having a single equation set that spans all body sizes it will be easier for researchers to select
404 the best calculation solution to get the most accurate outcomes. Finally, they will
405 enormously facilitate the compilation and comparison of data across different studies.
406 Indeed, we have already prepared a number of manuscripts based on these equations that
407 consider diverse aspects of energy demands including global aspects of nutrition³⁴, energy
408 demands through the lifespan³⁵, impacts of physical activity on lean body mass and energy
409 compensation strategies^{36,37} and trends in energy demands over time³⁸. To facilitate the
410 adoption of these equations we have also developed a dedicated website that is free to use
411 where users can input isotope data to derive the rCO₂ and TEE using the recommended
412 procedures (<http://dlw.som.cuanschutz.edu/>).

413

414 We suggest that future studies using the DLW method should consider adopting a standard
415 approach for calculating rCO₂ and its conversion to TEE. For this purpose, we recommend in
416 adults the equations adopted here (Eq 1 and its calculation forms in Eq 3 and 4) for

417 calculating $r\text{CO}_2$, and the Weir equation for the conversion of $r\text{CO}_2$ to TEE (Eq 5). This
418 recommendation is based on the performance of the $r\text{CO}_2$ equation in adult validation
419 studies (Table 1). In babies (< 10 kg) we suggest adoption of Eq 10 where the dilution space
420 ratio is calculated from body weight. This equation performs best in validation studies of
421 babies. Alternatively, if these standards are not adopted, then we suggest users should make
422 available in supplementary materials the values of k_o , k_d , N_o and N_d for each individual
423 subject, so that the published estimates can be easily converted to the standard, thereby
424 improving future comparisons. Moreover, we strongly advocate users to upload their DLW
425 data into the IAEA DLW database⁸ and make their standardized data widely available to the
426 scientific community.

427

428 **Limitations of study**

429 The main advantage of the doubly labeled water method is that it allows a measure
430 of free-living energy demands unencumbered by any measurement apparatus. The main
431 advantage of the chamber indirect calorimetry approach is its verified precision and
432 accuracy based on sound physiological and engineering principles. However, chamber
433 calorimetry has the disadvantage that the range of activities that individuals can engage in is
434 more limited than free-living subjects can perform. When the two techniques are brought
435 together in a validation it is expected because of the restricted activity that the energy
436 expenditure of most subjects would sit at the low end of the spectrum of free-living
437 demands and hence the validation may be biased to low levels of expenditure. However, the
438 average CO_2 production across all subjects in the validation study was 497.5 L/day (Table 1)
439 which is comparable to the expected average CO_2 production of adult free-living individuals
440 weighing 80 kg in the IAEA database of 494 L/day. Hence this is unlikely to be a serious
441 source of bias. Perhaps the biggest weakness is the fact that while on average the new
442 equations perform well at the individual level there are still considerable discrepancies at
443 the individual level. This variation limits utility of the method to measure individual levels of
444 energy expenditure. The cause of this variation remains unclear and is generally presumed
445 to reflect random errors in isotope enrichment determinations. However, the validation
446 studies have generally not recorded the diets consumed by the subjects. Since in theory
447 different dietary constituents may provide different opportunities for hydrogen isotope
448 exchange, and may stimulate different levels of de novo lipogenesis this could contribute to

449 isotope dilution spaces and fluxes that are not accounted for in the standard calculation,
450 contributing to the individual discrepancies. Further validation work with individuals
451 consuming known and quantified diets might contribute to lowering this error. As a final
452 word of caution, there are no validation studies for individuals aged >70y, and the dilution
453 space ratio may decline at older ages²⁰. We suggest Eq 1 should be used in this age group
454 with caution.

455

456

457

458 **STAR METHODS**

459 **RESOURCE AVAILABILITY**

460 **Lead contact:** Further information and requests for resources and reagents should be
461 directed to and will be fulfilled by the Lead Contact. John R Speakman
462 (jspeakman@abdn.ac.uk)

463 **Materials availability:** This study did not generate new unique reagents.

464 **Data and code availability:** The data presented here pertain to the IAEA DLW database (v3.1)
465 which is a repository of almost 7000 measurements of daily energy expenditure in humans made
466 using the DLW method. Full details of the aims and scope of the database can be found in
467 reference 8.

468 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

469 The analysis here includes data for 5756 children, adolescents and adults and 1021 babies and
470 infants extracted from the IAEA database v3.1. These data have all been published
471 previously and are extracted from relevant publications for inclusion in the database by
472 authors of those papers.

473 **METHOD DETAILS**

474 This study is based on recalculation of previously published data concerning use of the DLW
475 method in free-living subjects and in experiments involving DLW and simultaneous chamber
476 indirect calorimetry. There is no standard approved protocol for the use of the DLW
477 technique and hence studies vary in the exact methods employed. In general however
478 subjects are dosed with ^{18}O xygen and deuterium in drinking water at a dose rate aiming to
479 produce an excess enrichment of ^{18}O xygen between 150 and 300 ppm above background
480 levels, and an enrichment of deuterium about half that. A background urine sample is taken
481 prior to dosing and an equilibrium sample commonly 3-4 hours afterwards (3rd void) but in
482 some protocols 10-12h later. The measurement duration can vary between 7 and 21 days
483 and during that period samples may be collected only at the start and end, or on multiple
484 occasions throughout the washout period. Measurement durations are generally shorter for
485 children and dosing can be higher than for adults. The isotope washout is normally
486 calculated from the log converted isotope enrichments above background. When multiple
487 samples are collected it may also be evaluated from a non-linear exponential model fit to
488 the data. Isotope dilution spaces may be calculated from the back extrapolated washout to
489 the dose time, or from the equilibrium samples. During free-living studies individuals
490 continue their daily routines as normal. Full details of the practical aspects of the method
491 can be found in ref 3. During chamber validation studies the subjects live continuously or
492 semi-continuously inside a room calorimeter. Semi-continuous occupancy is for 23.5h per
493 day with 30 mins allowed outside for chamber calibration and for subjects to shower. Gas
494 exchange from the chamber is measured using gas analysers and CO_2 production calculated
495 from the difference in CO_2 content between incurrent and excurrent air and the flow rate.

496 **QUANTIFICATION AND STATISTICAL ANALYSIS;**

497 Measurements using different methods were compared in a pairwise fashion using the Bland-
498 Altman methodology²⁶. Comparisons between the simultaneous DLW and chamber respirometry
499 values were made by calculating the absolute differences (precision) and summed differences
500 including the sign (accuracy) between DLW estimates of CO₂ production derived from different
501 equations and the chamber indirect calorimetry estimates.

502 **ADDITIONAL RESOURCES**

503 **Key resources table**

504

505 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Bacterial and Virus Strains		
Biological Samples		
Chemicals, Peptides, and Recombinant Proteins		
Critical Commercial Assays		
Deposited Data		

The data on which the analyses were based is available in the International Atomic Energy Agency Doubly-labelled water database.	International Atomic Energy Agency	https://www.dlwdata.org/
Experimental Models: Cell Lines		
Experimental Models: Organisms/Strains		
Oligonucleotides		
Recombinant DNA		
Software and Algorithms		
Software for calculating results of DLW experiments	University of Colorado	http://dlw.som.cuan-schutz.edu/
Other		

506

507

508

509

510

511 **Author contributions.**
512 J.R.S., Y.Y., D.A.S., H.S., W.W.W., A.L., J.R., K.R.W., H.P., C.L. and A.M.A. conceived the study.
513 J.R.S., Y.Y. and H.S performed the calculations, analysed the data and derived the equations.
514 E.B., S.C. and E.M. programmed the website to perform the calculations. All the other
515 authors contributed data to the analysis. J.R.S. wrote the first draft. All authors contributed
516 to the manuscript and assented submission.

517

518 **Consortia**

519 The IAEA DLW database consortium authorship

520 This consortia authorship contains the names of people whose data were contributed into the IAEA
521 DLW database by the analysis laboratory but they later could not be traced, or they did not respond
522 to emails to assent inclusion among the authorship. The list also includes some researchers who did
523 not assent inclusion to the main authorship because they felt their contribution was not sufficient to
524 merit authorship

525 Stefan Branth
526 Niels C. De Bruin
527 Lisa H. Colbert
528 Alice E. Dutman
529 Simon Eaton
530 Sölvé Elmståhl
531 Mikael Fogelholm
532 Tamara Harris
533 Rik Heijligenberg
534 Hans U. Jorgensen
535 Christel L. Larsson
536 Margaret McCloskey
537 Gerwin A. Meijer
538 Daphne L. Pannemans
539 Renaat M. Philippaerts
540 John J. Reilly
541 Elisabet M. Rothenberg
542 Sabine Schulz
543 Amy Subar
544 Minna Tanskanen
545 Ricardo Uauy
546 Rita Van den Berg-Emons
547 Wim G. Van Gemert
548 Erica J. Velthuis-te Wierik
549 Wilhelmine W. Verboeket-van de Venne
550 Jeanine A. Verbunt
551

552 **Acknowledgements**

553 The DLW database, which can be found at <https://www.dlwdatabase.org/>, is generously supported
554 by the IAEA, Taiyo Nippon Sanso and SERCON. We are grateful to these companies for their support
555 and especially to Takashi Oono for his tremendous efforts at fund raising on our behalf. The authors
556 also gratefully acknowledge funding from the US National Science Foundation (BCS-1824466)
557 awarded to Herman Pontzer. The funders played no role in the content of this manuscript.

558 **Conflict of interest**

559 The authors have no conflicts of interest to declare.

560 **References**

- 561
- 562 1 Lifson, N., Gordon, G. B. & McClintock, R. Measurement of total carbon dioxide production
563 by means of $D_2^{18}O$. *Journal of Applied Physiology* **7**, 704-710 (1955).
- 564 2 Lifson, N. & McClintock, R. Theory of use of the turnover rates of body water for measuring
565 energy and material balance. *Journal of Theoretical Biology* **12**, 46-74, (1966).
- 566 3 Speakman, J. R. *Doubly labelled water: theory and practice*. Chapman and Hall (1997).
- 567 4 Nagy, K. A. *The Doubly Labeled Water (3HH18O) Method: A Guide to Its Use*. Laboratory of
568 Biomedical and Environmental Sciences, University of California, (1983).
- 569 5 Schoeller, D. A. & van Santen, E. Measurement of energy-expenditure in humans by doubly
570 labeled water method. *J. Appl. Physiol.* **53**, 955-959 (1982).
- 571 6 Westerterp, K. R., Saris, W. H. M., Vanes, M. & Tenhoor, F. Use of the doubly labeled water
572 technique in humans during heavy sustained exercise. *J. Appl. Physiol.* **61**, 2162-2167 (1986).
- 573 7 Klein, P. D. *et al.* Calorimetric validation of the doubly-labelled water method for
574 determination of energy expenditure in man. *Hum Nutr Clin Nutr* **38**, 95-106 (1984).
- 575 8 Speakman, J. R. *et al.* The International Atomic Energy Agency International Doubly Labelled
576 Water Database: Aims, Scope and Procedures. *Annals of Nutrition and Metabolism* **75**, 114-
577 118, doi:10.1159/000503668 (2019).
- 578 9 Dugas, L. R. *et al.* Energy expenditure in adults living in developing compared with
579 industrialized countries: a meta-analysis of doubly labeled water studies. *Am J Clin Nutr* **93**,
580 427-441, doi:10.3945/ajcn.110.007278 (2011).
- 581 10 International Atomic Energy Agency. *IAEA Human Health Series No. 3. Assessment of Body
582 Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques*.
583 Vienna International Centre (2009).
- 584 11 Schoeller, D. A. in *Advance in the assessment of dietary intake* (eds D.A. Schoeller & M.S.
585 Westerterp-Plantenga) 185-197 CRC Press, (2017).
- 586 12 Westerterp, K. R., Brouns, F., Saris, W. H. & ten Hoor, F. Comparison of doubly labeled water
587 with respirometry at low- and high-activity levels. *J Appl Physiol* (1985) **65**, 53-56,
588 doi:10.1152/jappl.1988.65.1.53 (1988).
- 589 13 Seale, J. L., Conway, J. M. & Canary, J. J. Seven-day validation of doubly labeled water
590 method using indirect room calorimetry. *J Appl Physiol* **74**, 402-409,
591 doi:10.1152/jappl.1993.74.1.402 (1993).
- 592 14 Schoeller, D. A. & Webb, P. Five-day comparison of the doubly labeled water method with
593 respiratory gas exchange. *Am J Clin Nutr* **40**, 153-158, doi:10.1093/ajcn/40.1.153 (1984).

594 15 Ravussin, E., Harper, I. T., Rising, R. & Bogardus, C. Energy expenditure by doubly labeled
 595 water: validation in lean and obese subjects. *Am J Physiol* **261**, E402-409,
 596 doi:10.1152/ajpendo.1991.261.3.E402 (1991).

597 16 Melanson, E. L. *et al.* Validation of the doubly labeled water method using off-axis integrated
 598 cavity output spectroscopy and isotope ratio mass spectrometry. *Am J Physiol Endocrinol
 599 Metab* **314**, E124-e130, doi:10.1152/ajpendo.00241.2017 (2018).

600 17 Schoeller, D. A. *et al.* Energy expenditure by doubly labeled water: validation in humans and
 601 proposed calculation. *Am J Physiol Regul Integr Comp Physiol* **250**, R823-830 (1986).

602 18 Speakman, J. R., Nair, K. S. & Goran, M. I. Revised equations for calculating CO₂ production
 603 from doubly labeled water in humans. *Am J Physiol* **264**, E912-917,
 604 doi:10.1152/ajpendo.1993.264.6.E912 (1993).

605 19 Schoeller, D. A. Measurement of energy expenditure in free-living humans by using doubly
 606 labeled water. *J Nutr* **118**, 1278-1289 (1988).

607 20 Sagayama, H., Yamada, Y., Racine, N. M., Shriver, T. C. & Schoeller, D. A. Dilution space ratio
 608 of 2H and 18O of doubly labeled water method in humans. *J Appl Physiol* **120**, 1349-1354,
 609 doi:10.1152/japplphysiol.01037.2015 (2016).

610 21 Racette, S. B. *et al.* Relative dilution spaces of 2H- and 18O-labeled water in humans. *Am J
 611 Physiol Endocrinol Metab* **267**, E585-590 (1994).

612 22 Coward, W. A. & Prentice, A. M. Isotope method for the measurement of carbon dioxide
 613 production rate in man. *Am J Clin Nutr* **41**, 659-663, doi:10.1093/ajcn/41.3.659 (1985).

614 23 Shanthini, R. (2006) Working with ideal gas. Chapter 5. p35-68. In Thermodynamics for
 615 beginners with worked examples. Peradeniya Science publication number 26. Science
 616 education unit, Peradeniya University, Peradeniya Sri Lanka.

617 24 Weir, J. B. New methods for calculating metabolic rate with special reference to protein
 618 metabolism. *J Physiol* **109**, 1-9 (1949).

619 25 Bland, J. M. & Altman, D. G. Statistical-methods for assessing agreement between 2 methods
 620 of clinical measurement. *Lancet* **1**, 307-310 (1986).

621 26. Wells, J.C., Ritz, P., Davies, P.S. and Coward, W.A. (1998) Factors affecting the 2H to 18O
 622 dilution space ratio in infants. *Pediatric Res.* 43: 467-471 (1998).

623 27 Roberts, S. B., Coward, W. A., Schlingenseipen, K. H., Nohria, V. & Lucas, A. Comparison of
 624 the doubly labeled water (2H₂(18)O) method with indirect calorimetry and a nutrient-
 625 balance study for simultaneous determination of energy expenditure, water intake, and
 626 metabolizable energy intake in preterm infants. *Am J Clin Nutr* **44**, 315-322 (1986).

627 28 Westerterp, K. R., Lafeber, H. N., Sulkers, E. J. & Sauer, P. J. J. Comparison of Short Term
 628 Indirect Calorimetry and Doubly Labeled Water Method for the Assessment of Energy
 629 Expenditure in Preterm Infants. *Neonatology* **60**, 75-82, doi:10.1159/000243391 (1991).

630 29 Jensen, C. L., Butte, N. F., Wong, W. W. & Moon, J. K. Determining energy expenditure in
 631 preterm infants: comparison of 2H(2)18O method and indirect calorimetry. *Am J Physiol* **263**,
 632 R685-692 (1992).

633 30 Ritz, P., Johnson, P. G. & Coward, W. A. Measurements of ²H and ¹⁸O in body water: analytical
 634 considerations and physiological implications. *Br J Nutr* **72**, 3-12, doi:10.1079/bjn19940004
 635 (1994).

636 31 de Bruin, N. C. *et al.* Energy utilization and growth in breast-fed and formula-fed infants
 637 measured prospectively during the first year of life. *Am J Clin Nutr* **67**, 885-896,
 638 doi:10.1093/ajcn/67.5.885 (1998).

639 32 Jones, PJH, Winthrop, AL., Schoeller, DA. *et al* (1987) validation of doubly labeled water for
 640 assessing energy expenditure in infants. *Pediatric research* **21**: 242-246.

641 33 Speakman, J.R. How should we calculate CO₂ production in doubly labeled water studies of
 642 animals? *Functional Ecology* 7: 746-750 (1993).

643 34 Luke, A. *et al* (2020: in review) Total energy expenditure and body composition in populations
 644 across the socio-economic spectrum

645 35 Pontzer, H. *et al* (2020: in review) Daily energy expenditure through the human life course.

646 36. Careau, V. et al (2020: in review) Energy compensation, adiposity and aging in humans.
647 37. Westerterp, K.R. et al (2020: in review) Physical activity ad fat-free mass during growth and in
648 later life.
649 38. Speakman, J.R. et al (2020: in review) Total energy expenditure has declined over the last 4
650 decades due to declining basal expenditure not reduced activity expenditure.

651
652
653
654

655 **Figure legends**

656
657

658 **Figure 1: Comparison of published CO₂ production by doubly-labelled water to that by**
659 **standard method** a) Relationship between CO₂ production (L/d) for 5756 individuals
660 extracted from the original studies and the recalculated estimates using Eq 1. Bland-Altman
661 plots²⁵ comparing the published rCO₂ for studies using (b) the Coward and Prentice (1985)²²
662 equation, (c) the Schoeller *et al* (1986)¹⁷ A6 equation and (d) the Racette *et al* (1994)²¹
663 compared with the standard Eq 1 derived from Sagayama *et al* (2016)²⁰. In all plots dotted
664 line is average difference, solid blue lines are plus and minus 2 sds. The red lines define the
665 boundary for plus and minus 10% difference between methods. Data refer to 5756 adult
666 individuals uploaded into the IAEA DLW database (v3.1).

667

668 **Figure 2: Comparison of published energy expenditure by DLW to that calculated by**
669 **standard method** a) Relationship between the TEE (MJ/d) for 4571 individual adults
670 extracted from the original studies and the recalculated TEE using the Weir equation. b)
671 Bland-Altman plot²⁵ comparing the published TEE with those generated using the
672 recommended equation. Dotted line is average difference. Data refer to data for 4571 adult
673 individuals uploaded into the IAEA DLW database (v3.1). The sample size is lower than in
674 figure 1 because for some individuals estimates of RQ or FQ were not available.

675

676 **Figure 3: Dilution space ratio as a function of body mass and performance of new equation**
677 **against indirect calorimetry.** a) Dilution space ratios (the hydrogen dilution space N_d divided
678 by the oxygen dilution space N_o) of 332 babies weighing <10 kg from the IAEA DLW database
679 v 3.1 (open circles) combined with data from validation studies in preterm and full term
680 babies (grey circles). For the sample from the database there was a linear relationship (blue
681 dotted line which marginally failed to reach significance p =0.08). We fitted an asymptotic

682 exponential to the combined dataset (red line) ($r^2 = 6.4\%$ $p < .03$). b) The results of validation
683 studies of the DLW method in babies comparing the DLW estimates of CO_2 production ($r\text{CO}_2$)
684 derived from a combination of equations 9 and 10 presented here and $r\text{CO}_2$ measured by
685 indirect calorimetry. There was a strong linear relationship fitted by least squares regression
686 – dotted blue line, with $r^2 = 0.90$.

687
688

689 **Table legends**

690 **Table 1**

691 Validation results for carbon dioxide production ($r\text{CO}_2$) for 61 individuals measured using the
692 doubly labeled water method simultaneous to chamber calorimetry. Source is the reference
693 where the original validation data were published. ID is the ID from the original study. BM is
694 the mean body mass of the individual in kg. $r\text{CO}_2$ IC is the indirect calorimetry estimate of
695 CO_2 production in Litres per day. For each DLW equation the original data were used to
696 calculate $r\text{CO}_2$ and the % difference between these estimates and the chamber CO_2
697 production is calculated. At the bottom of the table the summary statistics across all 61
698 individuals are shown. Schoeller 1988 refers to equation A6 in Schoeller *et al* (1986)¹⁷ as
699 modified in Schoeller 1988¹⁹. Racette 1994 refers to equation A6 in Schoeller *et al* (1986)
700 with the revised dilution space constant provided by Racette *et al* (1994)²¹. Sagayama 2016
701 refers to equation A6 in Schoeller *et al*. (1986) with the revised dilution space constant
702 provided by Sagayama *et al* (2016)²⁰ and detailed here as Eq 1. Speakman 1997 refers to
703 equation 17.41 in Speakman (1997)³. Speakman 1993 refers to equation 3 in Speakman *et al*
704 (1993)¹⁸ and Coward 1985 refers to the two-pool equation in Coward and Prentice (1985)²².
705 For some of the studies N_d was not available from the original validations. Since the
706 equations by Speakman 1997 and Coward 1985 require individual estimates of N_d , a
707 comparison was not possible for these subjects, and the total statistics are based on $n = 35$.
708 The t and p-values refer to the difference of the mean difference from an expectation of 0
709 (single sample t-test). Three equations produced estimates that were not significantly
710 different to the chamber calorimetry data.

711

712 **Table two**

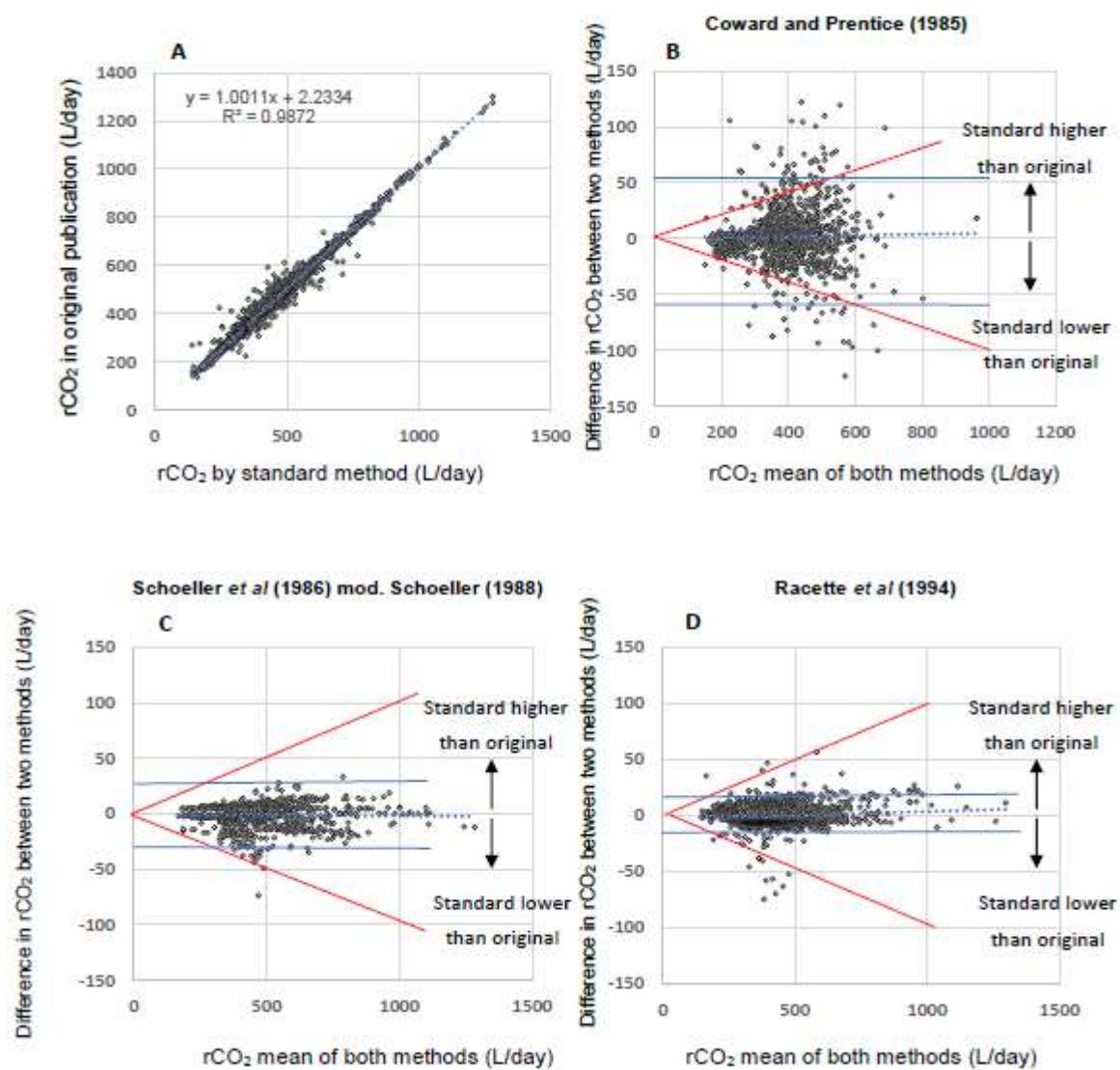
713 Validation results for carbon dioxide production (rCO₂) for 34 pre-term and neonatal babies
714 measured using the doubly-labeled water method simultaneous to chamber calorimetry.
715 The top half of the table refers to children weighing less than 2 kg (n = 24) and the bottom
716 half those weighing more than 2 kg (n = 10). Study is the reference where the original
717 validation data were published. A is Jensen *et al* (1991)²⁸, B is Westerterp *et al* (1991)²⁷, C is
718 Jones *et al* (1987)³², and D is Roberts *et al* (1986)²⁶. ID is the ID from the original study. BM is
719 the mean body mass of the individual in g. rCO₂ IC is the indirect calorimetry estimate of CO₂
720 production in Litres per day. For each DLW equation, the original data were used to calculate
721 rCO₂ and the % difference between these estimates and the chamber CO₂ production. At the
722 bottom of each part of the table the summary statistics across all individuals in each sub-
723 group are shown. The summary statistics for Eq 10 refer to the whole sample of n = 34. Eq 1,
724 Eq 6, Eq 7 and Eq 10 refer to the equations derived in the text here. Coward 1985 refers to
725 the two-pool equation in Coward and Prentice (1985)²². Speakman 7.17 refers to equation
726 7.17 in Speakman 1997³, which is the most widely adopted and validated equation for use in
727 small mammals and birds. For some of the studies, N_d was not available from the original
728 validations. Since the equation Coward 1985 requires individual estimates of N_d, a
729 comparison was not possible for these subjects.

730

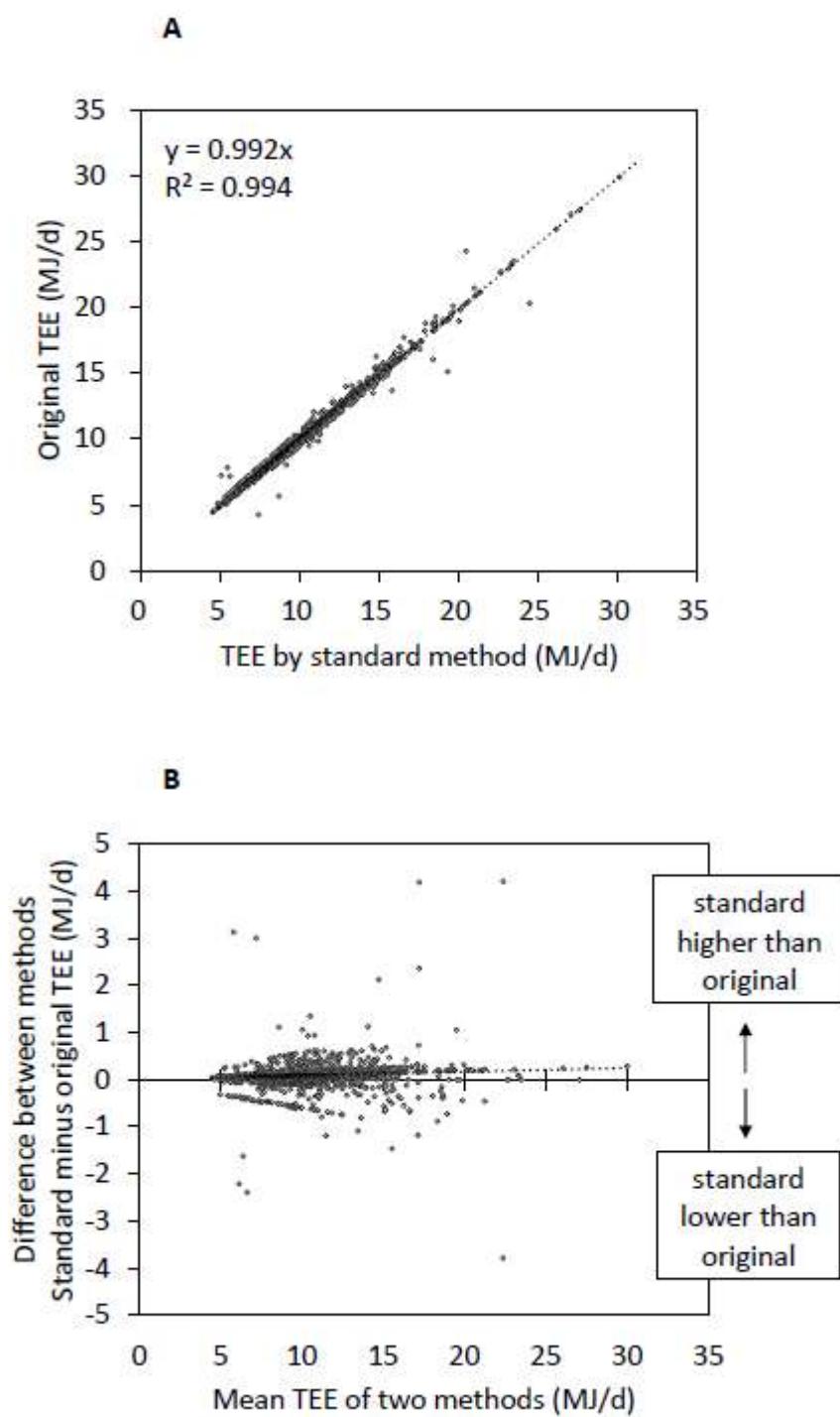
731

732

733

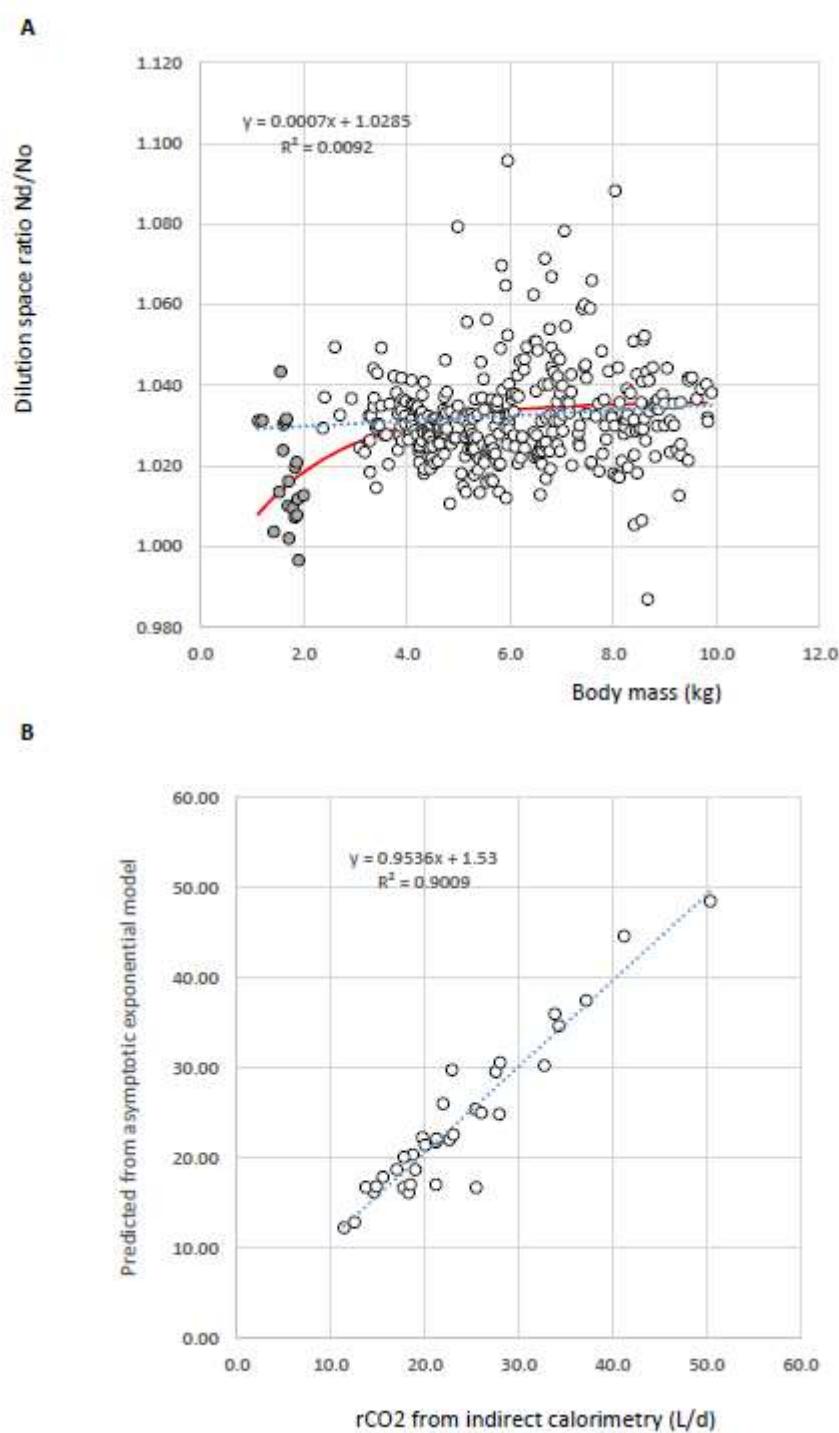

734

735


736

737

738 **Figure 1.**


740 **Figure 2.**

741

742

743 **Figure 3.**

744

745