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Recent advances in metasurfaces have shown that efficient wavefront transformation can be obtained
by carefully designing the bianisotropic response of the metasurfaces. However, as will be shown in this
paper, applying such a scheme for complicated wavefront transformations will lead to nonreciprocal local
response, which is difficult to realize physically, if the field is not designed properly. In this paper, we
identify the local power conservation requirement and introduce surface waves into the scattered field to
meet such requirements. Based on such a scheme, we develop a bianisotropic metasurface design approach
for near-perfect arbitrary beam splitting and anomalous reflection. Such a passive and reciprocal design
approach enables experimental demonstration of surface-wave-enhanced wavefront transformation.
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I. INTRODUCTION

The ability to fully control the behavior of acoustic
waves has long been desired and is at present a highly
active research area. In this regard, metamaterials and
metasurfaces have served as a primary approach in recent
years [1–3]. Metasurfaces mold the wave propagation
within a thin planar or nearly flat geometry by pack-
ing phase shifts along the gradient metasurface. Many
innovative low-profile devices that manipulate the trans-
verse phase profile have been reported [4,5], showing
the immense potential of these surfaces in physics and
engineering.

While the early metasurfaces for wavefront engineer-
ing attracted considerable attention, it was soon found that
these metasurfaces suffer from limited power efficiency.
The efficiency of phase-shift devices is fundamentally
restricted by reflection and scattering into unwanted direc-
tions or modes. To achieve a high (or controlled) trans-
mission magnitude into a mode with an arbitrary trans-
mission phase, many unit cell designs have been proposed
[4,6–11]. Nevertheless, it was recently recognized that, for
both reflection-type and transmission-type metasurfaces, a
phase-constraint design scheme does not provide full con-
trol over the scattered waves [12–17]. Therefore, the power
efficiency for these metasurfaces is limited.

For reflection-type metasurfaces, rigorous analysis
shows that efficiency limits come from the interference
between the incident and the reflected fields, which causes
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intensity and power modulation along a planar surface
[13]. Such power flow redistribution could be realized with
controlled loss and gain within the unit cells, but this is
difficult to achieve in practice. For the passive realiza-
tion of a theoretically perfect wavefront transformation,
several approaches have been proposed. For example, the
power redistribution along the metasurface can be fulfilled
by engineering surface waves in electromagnetics [18], or
controlling the nonlocal effects in both electromagnetics
[15] and acoustics [19]. Another approach is to control the
shape of the metasurface so that the power does not enter
or emerge from the metasurface [20].

For ideal transmission-type metasurfaces, the phase pro-
file modulation must be accompanied by a suitable change
in the field amplitudes, due to the inevitable variation of
the wave impedance [16,17]. Thus, designing unit cells
with uniform (unity) transmission amplitude and arbi-
trary phase will not necessarily yield efficient wavefront
transformation. Recent advances have demonstrated that,
for electromagnetic waves, precise control over the phase
and suitable wave impedance matching can be achieved
simultaneously by carefully controlling the bianisotropy
of the unit cells [12,18,21]. Acoustic bianisotropy, also
known as Willis coupling [22–24], has been extended to
acoustic metasurfaces to overcome the power limits for
phase-modulation metasurfaces [16,17,25]. By defining
the desired fields on both sides of the metasurface and
calculating the required impedance matrix, beam steer-
ing devices with near-unity power efficiency have been
designed [16,17].

Then a question naturally arises: can the bian-
isotropic wave impedance approach be applied for more
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complicated wavefront transformation applications? This
question seems trivial at first glance. However, as has been
demonstrated for the electromagnetic scenario [18,26],
when the incident and transmitted waves are not single
plane waves, interference between multiple modes will
locally modulate the power flow, causing a power flow
mismatch across the unit cells, which prevents simple
implementation using passive structures. Potential lossless
solutions have been proposed in Ref. [14]; nonetheless, it
was implied that these would require nonreciprocal or non-
local elements, whose passive implementation prospects
are unclear. For electromagnetic waves, the idea of using
self-excited surface waves to redirect the power flow has
been proposed to balance the local power flow on both
sides of the metasurface [18]. However, it only deals
with equal beam splitting, and no experimental demon-
stration has been reported so far. To date, the discussion
of realizing structured surfaces with near-unity power effi-
ciency has been scarce in acoustics [16,17,19,20,25,27],
and how to design high-efficiency acoustic metasurfaces
that involve complicated functionalities remain elusive.

In this paper, we introduce self-induced surface waves
into acoustic metasurfaces as a means to meet the local
power conservation requirement and develop an approach
for designing bianisotropic metasurfaces for arbitrary
beam splitting and anomalous reflection with theoretically
100% power efficiency. The design strategy is examined
with four cases: equal splitting, wave splitting into two dif-
ferent directions with specified intensity ratio, anomalous
reflection, and simultaneous control over the reflection and
transmission. The design is verified with both simulations
and experiments.

Conventionally, designing highly efficient acoustic
metasurfaces for transmission requires designing unit cells
with high transmission amplitudes; while for reflection-
type metasurfaces, hard boundaries are preferred. How-
ever, our study shows an interesting and counterintuitive
finding: when we design transmission-type metasurfaces,
higher efficiency can be achieved by allowing controlled
reflected fields; while for reflection-type metasurfaces,
allowing a nonzero transmitted field can be the key to
achieving ideal reflection.

II. TRANSMISSION CASE: ARBITRARY BEAM
SPLITTING

A. Origin of the power efficiency limit
We first investigate a transmission-type metasurface that

splits a normally incident wave into two plane waves
with transmitted angles θ1, θ2 and transmission coefficients
T1,2 = t1,2ej φ1,2 . Here we impose φ1 = φ2 for simplicity.
(Since the waves are propagating in different directions, we
can always find a position where φ1 = φ2 is satisfied, and
set that point as the origin.) The normally incident wave is

written as

p1 = p0e−jky , (1)

v1,y = p0

Z0
e−jky . (2)

The desired transmitted fields are

p2 = T1p0ejk sin θ1xe−jk cos θ1y + T2p0e−jk sin θ2xe−jk cos θ2y ,
(3)

v2,y = T1p0 cos θ1

Z0
ejk sin θ1xe−jk cos θ1y

+ T2p0 cos θ2

Z0
e−jk sin θ2xe−jk cos θ2y . (4)

The global power flow perpendicular to the metasurface
needs to be conserved, i.e.,

t21|p0|2 cos θ1

2Z0
+ t22|p0|2 cos θ2

2Z0
= |p0|2

2Z0
; (5)

thus,

t21 cos θ1 + t22 cos θ2 = 1. (6)

On the transmission side, the pressure and normal velocity
fields at the metasurface (y = 0) are

p20 = T1p0ejk sin θ1x + T2p0e−jk sin θ2x, (7)

v2,y0 = T1p0 cos θ1

Z0
ejk sin θ1x + T2p0 cos θ2

Z0
e−jk sin θ2x. (8)

The impedance matrix profile of a metasurface can be cal-
culated by putting the defined fields on both sides of the
metasurface into the impedance matrix definition

[
p1(x, 0)
p2(x, 0)

]
=

[
Z11 Z12
Z21 Z22

] [
n · v1(x, 0)

−n · v2(x, 0)

]
, (9)

and equating the real and imaginary parts, respectively.
Note that, for passive and lossless structures, all the com-
ponents in the impedance matrix shall be purely imaginary
[16,17].

As an illustration, we calculated the impedance matrix
in the equal splitting case, where θ1 = θ2 = 60◦, t1 = t2 =
1/

√
2 cos θ1,2, φ1 = φ2 = π/2, and the imaginary part of

the impedance matrix is plotted in Fig. 1(a). Here X =
Im[Z], denoting the reactance. From Fig. 1(a), we can
see that Z12 #= Z21. This result implies that a metasur-
face that performs such a wavefront transformation must
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FIG. 1. Impedance requirement (imaginary part) and power
distribution for an ideal beam splitting metasurface. (a) Required
impedance matrix profile along the metasurface, normalized by
Z0. Here Z12 #= Z21 implies nonreciprocity within the unit cells.
(b) Intensity profile on both sides of the metasurface, normalized
by the incident sound intensity. Such a power flow mismatch on
both sides requires energy exchange within the metasurface.

be nonreciprocal. This is extremely difficult to physically
implement in a passive acoustic system.

For further insight, we examine the intensity field I =
1
2 Re[pv∗]. The transmitted intensity field along the meta-
surface is given by

I2,y0 = |p0|2

2Z0
{1 + t1t2(cos θ1 + cos θ2)

× cos [k(sin θ1 + sin θ2)x]}. (10)

From Eq. (10) we can see that the interference between two
transmitted beams makes the transmitted intensity along
the metasurface nonuniform, as shown in Fig. 1(b). How-
ever, the incident plane wave creates a uniform intensity
profile on the incident side. Such a power flow mis-
match shares many similarities with the reflection case
[13], meaning that the metasurface needs to either embed
gain and loss to absorb the energy in some regions and
emit energy in others or provide mechanisms, such as
nonlocality, to transport power transversely across the
metasurface.

B. Power balancing with surface waves
As discussed in the previous section, the difficulty

of a theoretically perfect wavefront transformation with

p
1s

p2s

T1p0

T2p0

x
y

q1 q2

p0

FIG. 2. Illustration of the beam splitting scenario under study.
A normally incident wave is ideally split into two waves with
transmitted angles θ1 and θ2 by creating auxiliary surface waves
on the incident side.

transmission-type metasurfaces lies in that we need a
proper mechanism to carry the energy among different
regions of the metasurface. Such a requirement can also
be met by carefully designing surface waves into the scat-
tered field to carry the energy along the surface. In order
to match the intensity profile on both sides of the metasur-
face, two counterpropagating surface waves are introduced
on the incident side, as illustrated in Fig. 2. Note that the
surface waves can be added on either side of the metasur-
face and that here the incident side is chosen for simplicity.
The total pressure field on the incident side is now

p1 = p0e−jky + p1seα1yejk1x + p2seα2ye−jk2x, (11)

where k1 =
√

k2 + α2
1, k2 =

√
k2 + α2

2, p1s = a1ej β1p0 and
p2s = a2ej β2p0 are the complex amplitudes for both surface
waves, and α1 and α2 are their respective decay rates. Then

p1 = p0e−jky + a1p0eα1yej (k1x+β1) + a2p0eα2yej (−k2x+β2).
(12)

The normal velocity field is

v1,y = p0

Z0
e−jky + ja1α1p0

kZ0
eα1yej (k1x+β1)

+ ja2α2p0

kZ0
eα2yej (−k2x+β2). (13)

At the position of the metasurface (y = 0), the pressure and
normal velocity fields on the incident side are

p10 = p0 + a1p0ej (k1x+β1) + a2p0ej (−k2x+β2), (14)

v1,y0 = p0

Z0
+ ja1α1p0

kZ0
ej (k1x+β1) + ja2α2p0

kZ0
ej (−k2x+β2).

(15)
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The incident intensity field [Iy = 1
2 Re(pvy

∗)] is calculated
as

I1,y0 = |p0|2

2Z0

[
1 + a1 cos (k1x + β1) − a1α1

k
sin (k1x + β1)

+ a2 cos (k2x − β2) + a2α2

k
sin (k2x − β2)

− a1a2(α1 − α2)

k
sin (k1x + β1 + k2x − β2)

]
.

(16)

To realize the local power conservation condition, I2,y0 and
I1,y0 should be equal. This equation has many solutions,
but by setting β1 = β2 = 0, a1 = a2 = a, and α1 = α2 = α
we can immediately find one of them. In this case, I1,y0
becomes

I1,y0 = |p0|2

2Z0
[1 + 2a cos (

√
k2 + α2x)]. (17)

Comparing Eqs. (10) and (17), we can see that several
conditions must be met for I1,y0 = I2,y0 that define the
amplitude and wave number of the surface waves, namely,

a = t1t2(cos θ1 + cos θ2)

2
, (18)

α = k
√

(sin θ1 + sin θ2)2 − 1. (19)

Note that there are lots of combinations of surface waves
on both sides that could do the same job, and the solu-
tion provided here is not unique. Once the field satisfies
the local power conservation requirement, the impedance
profile can be achieved with passive lossless bianisotropic
metasurface designs. The impedance matrix profile can
thus be calculated by putting the total fields, including the
two additional surface waves, into Eq. (9).

C. Verification with simulation using the three-layer
approach

In the first demonstration, we examine an equal-splitting
case where the transmitted angle is θ1 = θ2 = 60◦, t1 =
t2 = 1/

√
2 cos θ1,2 = 1, φ1 = φ2 = π/2, and the incident

pressure p0 = 1 Pa. In this case, a = 0.5, α =
√

2k. With
the pressure and normal velocity fields on both sides of the
metasurface, the impedance matrix profile within a period
can be calculated; see Fig. 3(a). We can see that, with bal-
anced local power, Z12 = Z21 confirms the reciprocity of
the unit cells. Here Z11 #= Z22 indicates that bianisotropic
unit cells are needed. For realization in the simulation, we
chose the three-layer model proposed in Ref. [16]. The
distance between adjacent layers is set as 5 mm.

The scattered fields from the theoretical calculation and
COMSOL simulation are plotted in Figs. 3(b) and 3(c),
respectively. In our case, the metasurface is discretized
into ten unit cells per period. From the figures, we can see
excellent agreement between the theoretical calculation
and simulation. Again, there is no unwanted scattering,
and all the incident power is directed to the output field,
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FIG. 3. Design and performance of the beam splitter for equal splitting. (a) Comparison between the impedance matrix requirement
along the metasurface and realized values from optimization. (b) Theoretically calculated scattered field. (c) Scattered field with the
three-layer model. (d) Scattered field with real structure. (e) Mode analysis of the output field.
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showing the effectiveness of the proposed metasurface
design.

D. Structure design and verification with simulation
and experiment

To realize the desired impedance matrix profile in exper-
iments, we adopted the four-resonator structure described
in Ref. [17]; see Fig. 9 in Appendix A for a schematic
view. The parameters of the input field and the desired
field are kept the same as described in the previous section.
In this case, the periodicity is & = 132 mm. For realiza-
tion, the metasurface is discretized into ten unit cells per
period, so the width of each unit cell is w = 13.2 mm.
The wall thickness is t = 1 mm, the neck width is s = 1.5
mm, and the cavity width is l = 11.25 mm. The impedance
matrix is controlled by tuning the channel width w1, and
the height of each cavity wa, wb, wc, and wd. The values
of these parameters are determined with two steps. They
are first optimized using the genetic algorithm (GA). The
impedance matrix in the GA optimization is analytically
calculated and the cost function is defined as

cost =
√ ∑

i,j =1,2

|Zs
ij − Zt

ij |2, (20)

where superscripts “s” and “t” stand for the impedance
matrix of the four-resonator structure and theoretical
requirement, respectively.

In the second step, the parameters obtained from the
GA are set as the initial values, and are further optimized
locally using the pattern search (PS) algorithm. During the
PS optimization, the impedance matrix of a given structure
is retrieved with COMSOL simulations. The first step uses
analytically calculated values because its computational
speed allows a fast and vast amount of random search
within a large space, while in the second step, we retrieve
the impedance from simulations to guarantee the calcu-
lation accuracy. The optimized geometric parameters are
given in Table I (Appendix A).

A comparison between the required impedance matrix
profile within a period of the metasurface and the dis-
cretized impedance matrices achieved by structure opti-
mization is given in Fig. 3(a). The required impedance
profile is closely fulfilled by the optimized structures. The
corresponding scattered field with real structure simulation
is plotted in Fig. 3(d). Excellent agreement can be found
between the real structure design, the three-membrane
model, and the theoretical fields. To quantify its power
efficiency, we calculate the integral of the normal inten-
sity on the transmission side and compare the value with
the incident intensity. In the simulation, the total transmit-
ted power efficiency reaches 99.94% and only 0.06% of
the incident power is reflected. Then we take the complex
pressure field along the metasurface on the transmission

side and perform a Fourier transform to calculate its far-
field radiation pattern. The power scattered into each mode
(normal intensity) associated with a certain wave number
kx is calculated with

In(kx) = |p(kx)|2
√

1 − (kx/k)2

∑k
−k |p(kx)|2

√
1 − (kx/k)2

, (21)

and the result is shown in Fig. 3(e). On the total transmis-
sion side, the power coupled into two desired directions
(kx/k = ±

√
3/2), 51.20% and 48.79%. The slight devi-

ation from an ideal field can be attributed to the finite
discretization and the tolerated error in the optimization
algorithms.

The sample is then fabricated and tested in a two-
dimensional waveguide. The sample is fabricated with
stereolithography 3D printing. The fabricated sample and
experimental setup are shown in Fig. 4(a). In the experi-
ment, the speaker array sends a pulse, which is Gaussian
modulated in both space and time, normally to the meta-
surface. The signal is recorded by a moving microphone,
and the field is mapped by scanning the region of inter-
est. The steady-state field is mapped by performing the
Fourier transform to the time-gated signal at each position
and taking the frequency component of interest.

The simulation and the corresponding experimentally
measured fields are shown in Figs. 4(b) and 4(c). The
fields in the experiment showed good agreement with sim-
ulations. In the experiment, the surface wave decaying
away from the metasurface can be observed. The far-field
radiation is calculated by analyzing the fields along the
transmission side of the metasurface. In the experiment,
the peak of the output radiation reaches its maximum at
−59◦ and 58◦. The ratio of the amplitudes between the two
transmitted waves is 0.9256, closely following the design
value of 1. Several sources for the small discrepancy
are the fabrication error, the loss in the air, sound speed
change due to the temperature, and humidity variation in
the environment.

E. Arbitrary beam splitting metasurface design
We now investigate a metasurface that splits the incident

wave into two different splitting angles and an arbitrary
power ratio. As an example, two transmitted angles are
chosen as θ1 = 36.87◦, θ2 = 64.16◦, φ1 = φ2 = 3π/4, so
the periodicity of the metasurface is & = 2π/(3k/10) =
381.1 mm. The reason for choosing these two angles is to
make the periodicity not infinite, so the realization is sim-
pler. According to the global power conservation condition
t21 cos θ1 + t22 cos θ2 = 1, we can realize any power distri-
bution between two transmitted waves. In this case, we
assume that t21/t21 = 2; then the amplitude of the transmis-
sion coefficients are t1 = 0.99 and t2 = 0.70, which means
that the metasurface can theoretically send 78.59% and
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FIG. 4. (a) Sample and experimental setup. (b) Simulated field
illuminated by a Gaussian beam. (c) Measured field illuminated
by a Gaussian beam.

21.41% of the incident power in the θ1 and θ2 directions,
respectively. From the above theoretical analysis, a = 0.43
and α = 1.118k in this design.

With the pressure and normal velocity field on both sides
of the metasurface, the impedance matrix profile within
a period can be calculated; see Fig. 5(a). We see that
Z12 = Z21 with the balanced local power, which confirms
the reciprocity of the unit cells. Also, bianisotropic unit
cells are needed because Z11 #= Z22. For physical realiza-
tion, the metasurface is discretized into 30 unit cells per
period, so the width of each unit cell is w = 12.7 mm. Here

a uniform displacement is added to the entire metasurface
to avoid extreme values in the impedance matrix. The scat-
tered fields in theory and in simulation with the three-layer
model are plotted in Figs. 5(b) and 5(c), respectively. We
see excellent agreement between the theoretical calcula-
tion and numerical simulation, and no unwanted scattering
occurs in the incident region.

The four-resonator structure is also adopted to real-
ize the desired impedance matrix profile. The impedance
matrix is controlled by tuning the channel width w1, and
the height of each cavity wa, wb, wc, and wd. These param-
eters are determined with the GA optimization and PS
optimization, and the optimized geometric parameters are
given in Table II (Appendix A). In Fig. 5(a) we show
the required impedance matrix profile and the discretized
impedance matrices achieved by structure optimization,
which indicates that the required impedance profile is
closely fulfilled by the optimized structures. The scat-
tered field with real structure simulation is shown in Fig.
5(d). We find excellent agreement between the real struc-
ture design, the three-membrane model, and the theoretical
fields. The slight reflection in the simulation with real
structure can be attributed to the finite discretization and
the tolerated error in the optimization algorithms. We then
performed a Fourier transform of the complex pressure
field along the metasurface on the transmission side and
calculated the power scattered into each mode associ-
ated with a certain kx; the result is shown in Fig. 5(e).
On the transmission side, the power coupled into two
desired directions, 76.74% and 21.29%. The total trans-
mitted power efficiency reaches 98.03%, only 1.97% of the
incident power is scattered into unwanted modes.

III. REFLECTION CASE: REDIRECTING THE
SOUND

A. Designing the field with balanced power
In this case, we aim at fully coupling a plane wave with

incident angle θi to a plane wave reflected towards θr with
100% power efficiency, as illustrated in Fig. 6. Denote the
reflection coefficient by R = rej φ . The pressure field below
the metasurface can thus be written as

p1 = p0e−jk sin θixe−jk cos θiy + Rp0e−jk sin θrxejk cos θry . (22)

The normal power conservation requires r =
√

cos θi/cos θr.
The pressure and normal velocity fields at the position of
the metasurface (y = 0) are

p1 = p0e−jk sin θix + rej φp0e−jk sin θrx, (23)

v1,y = p0 cos θi

Z0
e−jk sin θix − rej φ p0 cos θr

Z0
e−jk sin θrx. (24)
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FIG. 5. Design and performance of the beam splitter with different splitting angles and an arbitrary power flow ratio. (a) Comparison
between the impedance matrix requirement along the metasurface and realized values from optimization. (b) Theoretically calculated
scattered field. (c) Scattered field with the three-layer model. (d) Scattered field with real structure. (e) Mode analysis of the output
field.

The intensity field [Iy = 1
2 Re(pv∗

y)] along the metasurface
is calculated as

I1,y = |p0|2r(cos θi − cos θr)

2Z0
cos[k(sin θi − sin θr)x + φ].

(25)

We can see that this intensity profile requires an exchange
of energy across regions of the metasurface. Now we intro-
duce two auxiliary surface-wave fields on the transmission
side of the metasurface. The interference of these two
surface waves can provide the mechanism of energy redis-
tribution, but they do not radiate into the far field, enabling
ideal power conversion of the incident wave to the desired
reflected wave. The total pressure field on the transmission
side is defined as

p2 = p1se−α1ye−jk1x + p2se−α2ye−jk2x, (26)

where k1 =
√

k2 + α2
1, k2 =

√
k2 + α2

2, p1s = a1ej β1p0,
and p2s = a2ej β2p0. Thus,

p2 = a1p0e−α1yej (β1−k1x) + a2p0e−α2yej (β2−k2x). (27)

The normal velocity field is

v2,y = − ja1α1p0

kZ0
e−α1yej (β1−k1x) − ja2α2p0

kZ0
e−α2yej (β2−k2x).

(28)

The pressure and normal velocity fields at the metasurface
(y = 0) are thus

p20 = a1p0ej (β1−k1x) + a2p0ej (β2−k2x), (29)

v2,y0 = − ja1α1p0

kZ0
ej (β1−k1x) − ja2α2p0

kZ0
ej (β2−k2x). (30)

The normal intensity field is

I2,y = |p0|2a1a2(α2 − α1)

2kZ0
cos

[
(k1 − k2)x + β2 −β1 + π

2

]
.

(31)

p1s p2s

Rp0

x
y q i

q t
p0

FIG. 6. Illustration of the reflective metasurface under study.
A plane incident wave is ideally reflected to an angle θr by
creating surface waves on the transmission side.
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FIG. 7. Design and performance of the reflective metasurface. (a) The imaginary part of the impedance matrix along the metasurface
within a period. (b) The imaginary part of the impedances for the three layers. (c) Theoretically calculated scattered field. (d) The
scattered field in the simulation, showing good agreement with the theory.

Comparing Eq. (31) with Eq. (25), we see that, in order
for them to be matched, we need

β2 − β1 + π

2
= φ, (32)

k1 − k2 = k(sin θi − sin θr), (33)

a1a2 = kr(cos θi − cos θr)

α2 − α1
, (34)

where a1, β1, k1, and φ can be arbitrary.
Once the local power conservation condition is met,

we can design the bianisotropic metasurface with purely
passive structures.

B. Verification with simulation
To verify this scheme, we follow the procedure out-

lined in the last chapter to design a perfect reflector
that couples a normal plane incident wave θi = 0 to a
plane wave reflected with angle θr = 70◦. In Fig. 7(a)
we show the impedance matrix profile within a period
& = 2π/[k(sin θr − sin θi)]. In this case, we set p0 = 1,
|p1s| = 1, φ = π/2, and k1 = 3k(sin θr − sin θi). From the
figure, we see that Z12 = Z21, confirming that the designed
field satisfies the local power requirement. The fact that
Z11 #= Z22 indicates such a metasurface needs bianisotropic
unit cells.

The scheme is verified with simulation in COMSOL.
The three-membrane approach is adopted to realize the
designed impedance matrix profile. The distance between
adjacent membranes is set as 5 mm. The calculated
impedances for the three membranes are plotted in Fig.
7(b). In realization, the metasurface is discretized into n =
60 unit cells per period. The scattered fields from the the-
oretical calculation and the simulation are plotted in Figs.
7(c) and 7(d). From the figures, we see excellent agreement
between the theoretical calculation and simulation. There
is no unwanted scattering, showing the effectiveness of the
proposed metasurface design.

IV. SIMULTANEOUS ARBITRARY
TRANSMISSION AND REFLECTION CONTROL

In this case, simultaneously arbitrary control of trans-
mission and reflection will be demonstrated with the help
of self-excited surface waves. The incident, reflection,
and transmitted angles are θi, θr, and θt, and the reflec-
tion and transmission coefficients are R = rej φr and T =
tej φt , respectively. Here T and R follow the global power
conservation condition

cos θi − r2 cos θr = t2 cos θt. (35)

Since the intensity variation is determined by the inter-
ference between waves, a simple way to design surface
waves is to make sure both sides have the same num-
ber of wave components, so that the resulting interference
contains the same number of components for matching.
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p1s

Rp0
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p2s

p3s

Tp0

FIG. 8. Illustration of the metasurface for simultaneously arbi-
trary control of transmission and reflection.

In this case, two surfaces waves on the transmission side
and one surface wave on the incident side is assumed, as
shown in Fig. 8. The amplitudes of the surface waves are
p1s = a1ej β1p0, p2s = a2ej β2p0, and p3s = a3ej β3p0, and
their decay rates are α1, α2, and α3. Hence, the wave
numbers along the metasurface for these surface waves
are k1 =

√
k2 + α2

1, k2 =
√

k2 + α2
2, and k3 =

√
k2 + α2

3,
respectively. The pressure field on the incident side is

p1 = p0e−jk sin θixe−jk cos θiy + Rp0e−jk sin θrxejk cos θry

+ p3seα3ye−jk3x. (36)

The pressure and normal velocity fields on the incident side
along the metasurface (y = 0) are thus

p10 = p0e−jk sin θix + rej φrp0e−jk sin θrx + p3se−jk3x, (37)

v1,y0 = p0 cos θi

Z0
e−jk sin θix − rej φr

p0 cos θr

Z0
e−jk sin θrx

+ ja3α3p0

kZ0
e−j (k3x−β3). (38)

Therefore, the intensity field on the incident side along the
metasurface is

I1,y = |p0|2

2Z0
cos θi − |p0|2

2Z0
r2 cos θr

+ |p0|2

2Z0
r(cos θi − cos θr)

× cos[k(sin θi − sin θr)x + φr]

+ |p0|2

2Z0
a3

√

cos2 θi +
α2

3

k2

× cos[(k3 − k sin θi)x − β3 + γ1]

− |p0|2

2Z0
ra3

√

cos2 θr +
α2

3

k2

× cos[(k3 − k sin θr)x + φr − β3 + γ2], (39)

where tan γ1 = −α3/k cos θi and tan γ2 = α3/k cos θr.

On the transmission side, the pressure field is

p2 = Tp0e−jk sin θtxe−jk cos θty + p1se−α1ye−jk1x

+ p2se−α2ye−jk2x. (40)

The pressure and normal velocity fields along the metasur-
face on the transmission side are thus

p20 = tej φtp0e−jk sin θtx + p1se−jk1x + p2se−jk2x, (41)

v2,y0 = p0 cos θt

Z0
tej φt e−jk sin θtx − ja1α1p0

kZ0
e−j (k1x−β1)

− ja2α2p0

kZ0
e−j (k2x−β2). (42)

Therefore, the intensity field on the transmission side of
the metasurface can be calculated as

I2,y = |p0|2

2Z0
t2 cos θt + |p0|2

2Z0
ta1

√

cos2 θt + α2
1

k2

× cos[(k1 − k sin θt)x + φt − β1 + γ3]

+ |p0|2

2Z0
ta2

√

cos2 θt + α2
2

k2

× cos[(k2 − k sin θt)x + φt − β2 + γ4]

+ |p0|2

2Z0

a1a2(α2 − α1)

k

× cos
[
(k1 − k2)x + β2 − β1 + π

2

]
, (43)

where tan γ3 = α1/k cos θt and tan γ4 = α2/k cos θt.
Comparing Eqs. (39) and (43) and using the global

power conservation condition in Eq. (35), we find a con-
dition to match the power on both sides by setting

k1 = k2 + k(sin θi − sin θr), (44)

k3 = k2 + k(sin θi − sin θt), (45)

where k2 can be arbitrary as long as the resulting k1, k2,
k3 are all greater than k in magnitude. Once the arbitrary
k2 is chosen, α1, α2, α3, γ1, γ2, γ3, γ4 are all fixed. The
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remaining conditions for matching the power are thus

a1a2(α2 − α1)

k
= r(cos θi − cos θr), (46a)

φr = β2 − β1 + π

2
, (46b)

ta2

√

cos2 θt + α2
2

k2 = a3

√

cos2 θi +
α2

3

k2 , (46c)

−β3 + γ1 = φt − β2 + γ4, (46d)

ta1

√

cos2 θt + α2
1

k2 = −ra3

√

cos2 θr +
α2

3

k2 , (46e)

φr − β3 + γ2 = φt − β1 + γ3. (46f)

Hence, the amplitude and phase of the required surface
waves can be solved as

a1 = −r
t

√
cos2 θr + α2

3/k2

cos2 θt + α2
1/k2

a3,

a2 = 1
t

√
cos2 θi + α2

3/k2

cos2 θt + α2
2/k2

a3,

a3 =

√
t2k(cos θi − cos θr)

α1 − α2

×
[

(cos2 θt + α2
1/k2)(cos2 θt + α2

2/k2)

(cos2 θi + α2
3/k2)(cos2 θr + α2

3/k2)

]1/4

,

β1 = β3 + φt − φr + γ3 − γ2,

β2 = β3 + φt + γ4 − γ1.

Here β3 can be chosen arbitrarily, and we set φr = 1
2 (γ1 −

γ2 + γ3 − γ4 + π/2) in order to find a consistent solu-
tion. We note that in most applications the reflection phase
is not as important as the splitting power and direction.
If we need an arbitrary reflection phase as well, k2 can
be carefully selected by solving the above equation to fit
this requirement. By simply setting t = 0, the problem is
reduced to the anomalous reflection case, and from Eqs.
(46) we can immediately get the conditions discussed in
the previous section.

Once the power profiles on both sides of the metasurface
are matched, a purely passive bianisotropic metasurface
can be designed, as stated in the previous sections. Here

the detailed design is omitted for brevity. We note that if
|sin θi + sin θt − sin θr| > 1 then one surface wave on the
transmission side would be enough to match the intensity
profile. The detailed derivation is straightforward and is
thus omitted.

V. DISCUSSION AND CONCLUSION

With the addition of evanescent surface waves, we have
shown that local power balance on both sides of an acous-
tic metasurface can be achieved, enabling wavefront con-
version with a theoretical power efficiency that can reach
100%. In this paper, we have analyzed the power of such
a scheme in both transmission-type and reflection-type
metasurfaces. We use two arbitrary beam splitting cases, a
perfect reflection case and a simultaneous transmission and
reflection control case, to demonstrate the highly efficient
wavefront transformation with bianisotropic metasurfaces.
For the equal splitting case, the design is verified with
both simulation and experiment. In simulations with ten
unit cells per period, the power coupled into two desired
directions, 51.20% and 48.79%, and the overall power
efficiency reaches 99.94%. The experiment showed good
agreement with the simulation. The output beams are con-
centrated in −59◦ and −58◦, with an amplitude ratio of
0.9256. We have also designed a device to split the waves
into different directions with a designed intensity ratio. The
simulation shows a power efficiency of over 99%. The
scheme is also applied to the reflection-type metasurface
for the case of anomalous reflection, verified with simu-
lations. In the fourth case, we demonstrate the design of
a metasurface that split in an arbitrary way the transmit-
ted and reflected fields at the same time. Note that such
an approach is not limited to the control of plane waves.
More complex functionalities can be achieved as long as
the surface waves are properly designed. Such a feature
distinguishes the metasurfaces from other approaches such
as metagratings [28–30].

An interesting and counterintuitive finding is that, con-
ventionally, while designing transmission-type metasur-
faces we tend to seek unit cells with minimized reflec-
tion coefficients, whereas, for reflection-type metasurfaces,
hard walls are typically used to eliminate any transmis-
sion. However, in this work, we see that, for the meta-
surface to achieve high power efficiency, we need to
allow reflection for the transmission-type metasurfaces
and allow controlled transmission for the reflection-type
metasurface.

There are a few limitations to this approach. First, it can
be easily adapted for simple and periodic wavefront trans-
formations, while for nonperiodic cases, such as focusing
or even holograms, the surface waves required to redis-
tribute energy locally can be complicated, and designing
them might involve sophisticated optimization tools. Sec-
ond, in some cases, the wave number for the surface waves

044012-10



BIANISOTROPIC ACOUSTIC METASURFACE... PHYS. REV. APPLIED 14, 044012 (2020)

p0
wa wb

wc wd w

s w1

l

t

FIG. 9. Schematic view of the four-resonator structure.

can be large, and the required impedance profile fluctuates
on very small spatial scales, as we can see in the perfect
reflection case. This creates challenges in the experimental
realization of such metasurfaces. However, we note that
the combinations of surface waves in this paper are cho-
sen to guarantee a reasonable periodicity. In practice, there
is nonuniqueness in the selection of the surface waves that
can reduce the complexity of the impedance matrix profile.
Despite this complexity, we have shown that surface waves
dramatically expand the types of wavefront transforma-
tions that can be efficiently implemented using acoustic
metasurfaces.
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APPENDIX A: GEOMETRIC PARAMETERS FOR
THE METASURFACES

The optimized geometric parameters for the metasur-
faces described in this paper are discussed in Fig. 9,
Tables I and II.

APPENDIX B: PURELY IMAGINARY
IMPEDANCE MATRIX FOR RECIPROCAL AND

LOSSLESS ACOUSTIC SYSTEMS

For a reciprocal multiport network, the passive and
lossless condition will lead to a purely imaginary
impedance matrix. Such a condition is well-established
for microwaves and multiport circuits [31]. Following the
results for the multiport circuits, an acoustic version can
be derived. Consider a reciprocal lossless N-port acoustic
device. If the device is lossless, the net real power deliv-
ered to the device must be zero for any boundary condition
applied at each port. Thus, Re[I ] = 0, where

I = 1
2 [p]T[v]∗

= 1
2 ([Z][v])T[v]∗

= 1
2 [v]T[Z][v]∗

= 1
2 (v1Z11v

∗
1 + v1Z12v

∗
2 + v2Z21v

∗
1 + · · · )

= 1
2

N∑

n=1

N∑

m=1

vmZmnv
∗
n . (B1)

If we apply hard boundary at every port except for the nth
port, we immediately have

Re[vnZnnv
∗
n ] = |vn|2Re[Znn] = 0. (B2)

Therefore, the diagonal terms in the impedance matrix Znn
shall be purely imaginary. Now apply a hard boundary to
all ports except for the mth and nth ports. Since Znm = Zmn
for reciprocal devices, we obtain

Re[(vnv
∗
m + vmv∗

n)Zmn] = 0. (B3)

Because (vnv
∗
m + vmv∗

n) is purely real and, in general,
nonzero, we must have Re[Zmn] = 0 for any m and n.
Hence, any reciprocal and lossless N-port acoustic system
will have a purely imaginary impedance matrix.

TABLE I. Design parameters of the individual resonators of the scattering-free bianisotropic metasurface to split a normally incident
wave into ±60◦ waves, implemented with ten cells within one period.

Cell Cost w w1 wa wb wc wd

1 0.10 13.2 3.24 5.77 5.68 7.51 1.65
2 0.04 13.2 4.31 6.77 5.84 6.63 3.68
3 2.39 13.2 1.33 6.29 9.18 7.77 5.61
4 1.81 13.2 1.62 5.33 0.01 9.38 5.63
5 0.07 13.2 1.81 7.04 7.58 6.39 6.63
6 56.79 13.2 1.38 4.24 7.82 5.48 9.74
7 0.18 13.2 1.37 5.12 4.73 5.86 7.22
8 1.23 13.2 1.71 5.52 0.01 9.47 5.79
9 0.74 13.2 1.24 6.00 9.04 7.48 5.39
10 0.05 13.2 4.10 6.35 4.93 6.54 4.71
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TABLE II. Design parameters of the individual resonators of the scattering-free bianisotropic metasurface to split a normally incident
wave into two waves with transmitted angles θ1 = 36.87◦, θ2 = 64.16◦ and transmission coefficients t1 = 0.99, t2 = 0.70, implemented
with 30 cells within one period.

Cell Cost w w1 wa wb wc wd

1 0.02 12.7 3.67 4.61 0.32 3.09 6.75
2 0.02 12.7 4.94 4.80 2.04 3.54 5.36
3 0.15 12.7 1.49 6.58 8.42 5.89 7.87
4 85.68 12.7 1.57 5.34 0 9.13 6.74
5 0.16 12.7 1.35 6.96 6.31 0 4.68
6 0.08 12.7 1.84 6.43 6.87 6.74 7.77
7 0.09 12.7 1.49 6.46 7.62 4.90 5.05
8 1.10 12.7 1.59 7.29 6.09 2.98 6.30
9 0.19 12.7 1.89 4.59 4.05 8.63 6.05
10 0.95 12.7 1.40 6.63 9.30 7.97 7.16
11 0.02 12.7 2.87 4.88 3.72 1.46 7.15
12 14.62 12.7 2.79 5.16 7.20 6.73 2.37
13 6.76 12.7 2.62 7.35 6.88 3.94 1.97
14 0.09 12.7 2.87 6.91 3.40 4.62 3.71
15 10.63 12.7 3.35 6.98 0.01 0 6.01
16 0.05 12.7 1.05 5.53 7.45 4.01 4.68
17 0.05 12.7 1.46 7.75 6.74 6.87 5.07
18 127.02 12.7 5.77 3.91 0.10 0.51 2.27
19 119.2 12.7 6.22 4.34 0 0 2.68
20 352.22 12.7 9.70 0.14 1.01 0 0
21 0.29 12.7 1.71 6.13 0 7.19 8.13
22 27.36 12.7 1.63 5.28 0 9.08 5.99
23 0.73 12.7 1.79 3.61 4.13 8.14 5.52
24 0.17 12.7 1.99 6.99 8.23 3.34 4.59
25 5.95 12.7 2.23 5.64 0 7.48 8.31
26 0.32 12.7 1.42 5.38 6.90 3.43 2.58
27 0.02 12.7 2.02 5.26 0.53 1.05 7.76
28 215.09 12.7 3.14 7.52 0.05 0.01 6.12
29 3.02 12.7 3.58 6.75 0 0.06 3.87
30 0.01 12.7 3.78 4.94 1.18 2.60 6.08
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