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APPLIED SCIENCES AND ENGINEERING

Acoustic tweezer with complex boundary-free
trapping and transport channel controlled by

shadow waveguides

Junfei Li", Chen Shen'?, Tony Jun Huang3, Steven A. Cummer'*

Acoustic tweezers use ultrasound for contact-free, bio-compatible, and precise manipulation of particles from
millimeter to submicrometer scale. In microfluidics, acoustic tweezers typically use an array of sources to create
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standing wave patterns that can trap and move objects in ways constrained by the limited complexity of
the acoustic wave field. Here, we demonstrate spatially complex particle trapping and manipulation inside a
boundary-free chamber using a single pair of sources and an engineered structure outside the chamber that we
call a shadow waveguide. The shadow waveguide creates a tightly confined, spatially complex acoustic field inside
the chamber without requiring any interior structure that would interfere with net flow or transport. Altering
the input signals to the two sources creates trapped particle motion along an arbitrary path defined by the shadow
waveguide. Particle trapping, particle manipulation and transport, and Thouless pumping are experimentally

demonstrated.

INTRODUCTION

Acoustic tweezers use ultrasound to create radiation force potential
wells that enable precise and contact-free manipulation of physical
and biological objects across a broad object size range (1-5). Itis a
fast-developing platform that finds applications in a wide range of
fields, including chemical reaction control, microrobotics, drug de-
livery, and cell and tissue engineering. For example, acoustic tweez-
ers have attracted much attention as they are capable of performing
noncontact, label-free, and precise manipulation of bioparticles in a
microfluidic chamber (2, 3, 4, 6). They have been applied to differ-
ent scenarios such as cell patterning and printing (7-12), cell sepa-
ration and sorting (13-15), tissue engineering (16-20), and isolating
extracellular vesicles (21).

To date, the vast majority of acoustic tweezers in microfluidic
chambers rely on arrays of transducers that surround the chamber
to generate standing waves that form acoustic traps in a periodic
pattern (1, 6, 7, 10, 11, 15). Such standing waves not only preclude
particle selectivity by generating a large number of stable trapping
points but also substantially constrain the overall spatial distribution
of trapping points. The ability to better control the forces inside the
chamber to form more complex or arbitrary particle trapping patterns
in a selective manner with acoustic tweezers is highly desirable.

At least three different approaches have been previously applied
to gain that additional control. The first is to create physical bound-
aries inside the trapping chamber for additional particle confinement.
These boundaries include microfluidic channels (21) or hydrogel
fibers (16) to confine the particles along narrow, predefined paths,
and then use standing waves to maneuver particles inside this chan-
nel. However, for micro- and nanoscale devices, the solid walls of
these fluid channels can limit achievable flow rates, and friction
with the walls can trap or destroy the particle. Furthermore, such

"Department of Electrical and Computer Engineering, Duke University, Durham,
NC 27708, USA. *Department of Mechanical Engineering, Rowan University,
Glassboro, NJ 08028, USA. *Department of Mechanical Engineering and Materials
Science, Duke University, Durham, NC 27708, USA.

*Corresponding author. Email: cummer@ee.duke.edu.

Lietal, Sci. Adv. 2021; 7 : eabi5502 18 August 2021

devices are prone to fouling and clogging. Sheath flow can be active-
ly generated to help avoid solid walls but requires a continuous flow
of the central liquid and the surrounding liquid (22), which adds to
system complexity and thus limits applications. The second approach
is to develop sources capable of projecting a more complex sound
field into the interior of the chamber. For example, a selective, single-
point acoustic tweezer can be achieved by projecting a focused
acoustic vortex at the focal plane in the microfluidic chamber (23)
using specially designed spiral transducers. However, this method
cannot easily create more complex trapping paths or points, and par-
ticle manipulation requires the mechanical motion of the source.

The third approach to control the acoustic fields inside the mi-
crofluidic chamber is to design engineered structures on or near the
chamber boundary that influence the acoustic field locally in ways
that cannot easily be done with exterior sources. One such example
controls the sound field by patterning a phononic crystal structure
on the chamber boundary, which can enable manipulation of droplets
(24), fluids (25), and particles (26-28). However, using a phononic
crystal structure also has some key limitations, namely, a narrow op-
erating frequency range, required structural uniformity over large
regions, and limited control over the configuration of trapping or
transport channels. Nevertheless, local structure can control acous-
tic fields with high precision and in ways not easily done with source
arrays, and this approach remains relatively unexplored.

This paper presents a boundary structure approach for controlling
wave fields and propagation inside an open chamber through thin,
broadband structures that are completely exterior to the chamber.
These structures act as a virtual waveguide that tightly confines the
acoustic field along a complex path inside the microfluidic cham-
ber. We call this a “shadow waveguide” since no physical boundary
is present inside the chamber, but the acoustic fields, particle trap-
ping, and particle transport closely follow the external structure.
Through the shadow waveguide, we demonstrate in both simulations
and experiments a highly selective acoustic tweezer that traps and
manipulates particles along a thin, single predefined but complex
path through the chamber. Such a waveguide design is inherently
broadband, which greatly enriches the versatility of acoustic tweezers
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by unlocking arbitrary and complex input waves that form the PDMS and the bottom plate. The PDMS-air interface acts as a soft
acoustic trap. As an example, we demonstrate precise control of the = boundary, so the water and PDMS structure (a ridge in this case)
position and velocity of trapped particles by frequency detuning together form a waveguide that supports propagating modes through
two sources to form potential wells moving at a controlled speed, multiple reflections. The effective refractive index can be controlled by
analogous to Thouless pumping (29) for quantized charge trans-  the height of the PDMS layer. Thicker PDMS results in slower effective
port. The mode shape in the shadow waveguide can be engineered  sound speed in the water chamber. Therefore, the acoustic wave field
to accommodate particles with both positive and negative acoustic  inside the chamber is guided by the PDMS structure that is fully
contrasts. The design is easy to fabricate and could find utility ina  outside the chamber. Hence, particles in the microfluidic chamber
range of biomedical and chemical applications. can be trapped and manipulated along an arbitrarily shaped and

narrow channel without any physical boundary inside the chamber.

RESULTS Simulation of the acoustic fields in the shadow waveguide

Device principle and design The acoustic field is analyzed by the full-wave eigenfrequency sim-
At the interface between two media with different refractive indices, ulation through COMSOL Multiphysics. The mode shape of the
total internal reflection occurs when the incident angle is above the =~ shadow waveguide is shown in Fig. 1B. The detailed geometric pa-
critical angle. Wave propagation can thus be confined along a narrow  rameters can be found in the Supplementary Materials. The black
channel by wrapping a high index material (the core) with alowindex curve denotes the pressure distribution along the PDMS-water in-
material (the cladding). Such a mechanism serves as the basis for  terface. We can see that the wave is tightly confined in the core and
optical fibers and silicon photonics. Our strategy relies on an acoustic ~ decays exponentially away from the center. This shadow waveguide
version of such waveguides, as shown in Fig. 1. We use structured  design traps and manipulates negative acoustic contrast particles that
polydimethylsiloxane (PDMS) and glass plates to form a quasi- are attracted to pressure maxima. The corresponding dispersion re-
two-dimensional (2D) microfluidic open chamber. PDMS is used be-  lation is shown in Fig. 1C. The linear dispersion indicates that such
cause it is a water-like material with low shear modulus and is easy ~ a shadow waveguide supports a wide range of frequencies with the
to fabricate. A designed air-PDMS structure is formed between the  same group velocity. This broadband property can be exploited for
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Fig. 1. lllustration and properties of the microfluidic chamber and shadow waveguide. (A) Glass plates and a layer of structured polydimethylsiloxane (PDMS) bound
the microfluidic chamber. The acoustic field in the microfluidic chamber is controlled through a structure from the outside that we call a shadow waveguide. The particles
in the microfluidic chamber are constrained by the shadow waveguide fields and can thus be confined and manipulated without a physical boundary. (B) Cross-sectional
view shows the mode shape of a shadow waveguide designed to trap negative acoustic contrast particles. The PDMS structure forms regions with a certain effective index
profile to guide the waves. The black line shows the pressure amplitude distribution along the water-PDMS interface. The acoustic field inside the microfluidic chamber
is controlled by structures from outside, and the mode is highly localized. (C) Linear dispersion of the shadow waveguide allows it to guide a wide range of frequencies.
(D) Different structures, such as a coupled parallel waveguide, can be designed to engineer the mode shapes for manipulating particles with positive acoustic contrast
that are trapped by local pressure minima. The inset shows the pressure distribution of the first two modes.
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the generation of complex potential profiles in both space and time,
which can, in turn, lead to sophisticated control of particles and more
capable acoustic tweezers.

Coupled waveguide design for positive contrast particles

In biomedical applications, many particles, such as cells, have a pos-
itive acoustic contrast and thus are attracted to pressure minima.
The shadow waveguide design can be modified to accommodate
these particles by creating local pressure minima through mode shape
engineering. Here, we present a design composed of two coupled
waveguides with two degenerate modes with local pressure minima:
symmetric and antisymmetric modes. The geometry, simulated
mode shapes, and corresponding pressure distributions are shown
in the inset of Fig. 1D. By controlling the geometrical parameters,
the mode shape can thus be engineered to create a local minimum
with controlled width and depth, where particles with positive con-
trast can be trapped and manipulated.

Experimental demonstration

Experiments validate the capabilities of the shadow waveguide
acoustic tweezer. The setup and photograph of samples are shown
in Fig. 2 (A and D). Two lead zirconate titanate (PZT) transducers
(15 mm by 20 mm by 2.1 mm; resonant frequency, 1 MHz) serve as
sources. In the first case, single-frequency waves are generated by
both transducers with a function generator (RIGOL DG4102) and
amplified by power amplifiers. PDMS lenses focus and couple the
incident waves into the waveguide. Details about the lens design can

be found in the Supplementary Materials. The PDMS layer is tapered
at both ends to enhance the coupling into a guided mode. A standing
wave pattern is created along the path of the shadow waveguide.
Colored PDMS particles with sizes smaller than 150 um are fabricated
and dispensed in the chamber. In the experiment, the input power
for both sources is 2.69 W, consistent with previous literature. When
the source is turned on, the particles are rapidly concentrated to the
pressure antinodes (movie S1). To calculate the trapping stiffness,
we simulated the field distribution inside the microfluidic chamber
with the measured power input and then calculated the radiation
forces with the Gor’kov theory (30). The trapping stiffness is then
calculated by taking the derivative of the forces in the transverse (x)
direction and propagation (y) direction, reaching k, = 0.0243 N/m
and k, = 0.3793 N/m, respectively. The shadow waveguide works
for both straight and curved thin channels, as demonstrated in
Fig. 2 (B and E). Figure 2 (C and F) shows the corresponding simu-
lated pressure amplitude distributions at the same length scale. The
correspondence between acoustic field and particle positions can be
clearly seen. By adjusting the relative phase between two transducers,
a standing wave inside the shadow waveguide can trap and move the
particles along a predefined path in the open microfluidic chamber
without a solid boundary (movie S2).

The experimental demonstration of a coupled waveguide system
for manipulating particles with positive acoustic contrast is shown
in Fig. 2 (G to I). In this case, we used polyamide particles with a
diameter of 60 um. An interesting result is that the particles not
only are trapped along the center of the waveguide but also aligned

Max

spnyjdwe ainssald

o

Fig. 2. Experimental setup and particle manipulation with shadow waveguide acoustic tweezers. (A) Photograph of the fabricated device. A PDMS lens is designed
to couple the plane wave generated by the piezoelectric ceramic into the microfluidic chamber. (B) Negative contrast (PDMS) particle concentration and manipulation
along a straight shadow waveguide (see movies S1 and S2). (C) The corresponding simulated pressure amplitude at the PDMS-water interface. (D to F) Photograph, exper-
imental particle image, and simulated pressure distribution of a shadow waveguide to manipulate particles along a curved path. (G to I) Coupled shadow waveguide for
manipulating polyamide particles with positive acoustic contrast. The anisotropic potential well can not only trap and move particles but also align them within the trap.
By controlling the standing wave ratio, the anisotropic potential well can be tuned. We emphasize that while the shadow waveguide structure can be seen in the images
(B, E, and H) through the transparent glass and water, that structure is completely outside the chamber (see Fig. 1, Aand B). Photo credit: Junfei Li, Duke University.
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themselves inside each potential well. This is achieved by controlling
the standing wave ratio and the depth of local minima in the funda-
mental mode, so that the particles experience an anisotropic radia-
tion force, where the pressure gradient in the transverse direction is
smaller than that in the propagation direction. The ratio between
these two forces can be further tuned by adjusting the input stand-
ing wave ratio, as we show in the Supplementary Materials.

Thouless pump for particles

A Thouless pump (29, 31) enables the robust transport of charge
through an adiabatic cyclic evolution of the underlying Hamiltonian,
which has attracted tremendous attention in the quantum world
(31-34). We show that such a concept can also be realized in acous-
tic tweezers to achieve robust, continuous transport of particles at a
controlled speed. For theoretical simplicity, we first consider a 1D
system with no dispersion. When two counter-propagating waves
have slightly different frequencies, w12 = @y £ d® (3w <K ), the
resulting total field becomes

.,+6u) ]

(wo—dw)t+

(0o+80) 22422 wordo) ]
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Here, the two waves have the same amplitude. Similar results
can be found when the two waves have different amplitudes (see the
Supplementary Materials for details). The resulting field shows a
fast oscillating wave modulated by a slowly moving envelope. Such
an envelope travels at a speed of cdw/mp, much slower than the
speed of sound in the medium, as demonstrated in Fig. 3A. The re-
sulting Gor’kov potential (30) thus behaves like a Thouless pump
that transports particles along the shadow waveguide path with a
controlled and adjustable speed, as shown in movies S3 and S4 for
the straight channel and U-shaped channel cases, respectively. Fig-
ure 3B shows the corresponding experimental image sequence in
time, in good agreement with theoretical predictions. The speed of
the propagating potential can be precisely controlled by tuning the
amount of frequency detuning. Figure 3C shows the particle veloc-
ity under frequency detuning through both theoretical prediction
and experimental measurements. At center frequency f, = 1 MHz,
the phase speed in the waveguide calculated from simulation is w/k =

|p|? o cos 2(Swt — %"x)

1304 mm/s. Experimental results show excellent agreement with
the theoretical calculation, featuring a linear relationship between
the pumping speed and amount of detuning. The small discrepancy
can be attributed to the fabrication error and imperfect clock in the
function generator.

DISCUSSION

In summary, we have demonstrated an acoustic tweezer capable of
generating a highly confined and selective trapping path of almost
arbitrary spatial complexity inside an open chamber without any
interior structure. The spatial pattern of the acoustic field is con-
trolled by shadow waveguide structure completely exterior to the
chamber and creates a trapping and transport geometry that would
be exceedingly difficult to generate only through sources on the
chamber boundary. By engineering the mode shape inside the shadow
waveguide, manipulation of particles with both positive and neg-
ative contrasts along predefined narrow and complex paths is
demonstrated experimentally.

The shadow waveguide approach brings some advantages and
possibilities to acoustic tweezers. Compared with conventional
acoustic tweezers that use an array of sources to create standing
wave patterns along Cartesian or cylindrical coordinates, shadow
waveguides guide acoustic waves in more versatile and selective
spatial distributions and thereby achieve 2D and quasi-3D particle
manipulation along complicated paths with only one pair of
transducers. Although a predefined path limits the capability of
free-form manipulation of objects, reconfigurable devices can be
designed by introducing active elements to the shadow structure. In
addition, the particles can be confined to a single thin path without
the existence of a physical boundary. A shadow waveguide thus cir-
cumvents some of the drawbacks of physical microfluidic channels
such as limited flow rates for a given pressure drop and the need for
sheath flow to prevent particle jamming. Such a feature can poten-
tially be used for nondestructive cell sorting and transport at high
throughput. The lack of physical boundary with the shadow wave-
guide approach also allows interaction and information exchange
between the trapped particles, such as cells and bacteria, and their
environment. In addition, compared with previous efforts to control
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Fig. 3. Experimental demonstration of a Thouless pump in a microfluidic chamber. (
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A) A Thouless pump uses a potential that changes in both space and time to

manipulate particles captured in it. The speed can be precisely controlled by synthesizing the desired potential field. (B) A time series of experimental photographs show-
ing how particles are pumped in one cycle. (C) The pumping speed is linearly proportional to the frequency detuning of the input fields. Experimental particle velocity

shows good agreement with the theoretical prediction.
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sound propagation in microfluidic chambers using phononic crystals,
shadow waveguides allow a much wider range of guided mode shapes
with little dispersion, unlocking the possibility of more advanced
particle manipulation. As a demonstration of this, a coupled parallel
shadow waveguide with a mode shape designed for manipulating
particles with positive acoustic contrast was shown. We would also
like to note here that our device is more closely aligned with bulk
wave acoustic tweezers (35). Such a technique potentially enables
large and cost-effective piezo elements to be used for high-precision
manipulation as the sound is directed to exactly where it is needed.
The concept of wave manipulation with shadow structures is also
expected to benefit surface acoustic wave devices.

Broadband shadow waveguides also enable the creation of com-
plex time-varying acoustic actuation. As an example, we demon-
strated a Thouless pump along a prescribed channel in a completely
open chamber using two counter-propagating waves at different
frequencies. The resulting time-varying potential wells can pump
particles at a precisely controlled speed, which is expected to enable
precisely controlled cell transport, counting, and controlled chemi-
cal syntheses. Designing more complex time-varying functionalities
by synthesizing the potential input fields is possible with a system-
atic approach to synthesize arbitrary time-dependent potential wells
for acoustic tweezers. Also, the mode shape engineering demon-
strated in this work represents a small fraction of what is possible.
By designing the effective index profile in the shadow structure,
other forms of wave manipulation devices can potentially be created,
enabling more versatile functionalities such as cell sorting, concen-
tration, and centrifugation. Nevertheless, the shadow waveguide
approach for designing acoustic tweezer functionality presented in
this work provides advantages over existing systems and opens up
new possibilities for designing advanced acoustic tweezers for a
range of biomedical and chemical applications.

MATERIALS AND METHODS

Device fabrication and setup

The PDMS layer is fabricated with the standard PDMS molding
process. A negative mold was fabricated with stereolithography 3D
printing and treated with trichloro (Sigma-Aldrich) vapor in a vac-
uum chamber for 1 hour. Parts A and B of PDMS (QSIL 216) are
mixed thoroughly by a 10:1 weight ratio, degassed in a vacuum
chamber, and then poured into the mold. The mold is degassed and
then baked in an oven at 120°C for an hour for the silicone to cure
(36). The PDMS is then separated from the mold and attached to
the glass plate to form the shadow waveguide.

PDMS microparticle fabrication

We fabricated microparticles of PDMS (QSIL 216) inspired by the
procedure in (37). PDMS base (premixed with blue ink) and curing
agent are mixed thoroughly by a 10:1 weight ratio and added to a
water bath with 1 weight % nonionic surfactant poly(ethylene
glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)
(Sigma-Aldrich). The emulsion was heated at 70°C and continuously
agitated using a mixer for an hour. The cooled mixture then passes
through a 100-mesh sieve to keep particles smaller than 150 um.

Numerical simulations
The mode shape is analyzed through eigenfrequency simulation in
COMSOL Multiphysics, Pressure Acoustics module. Perfect matching

Lietal, Sci. Adv. 2021; 7 : eabi5502 18 August 2021

layers are used on the left and right sides of the simulation domain.
An out-of-plane wave number is assigned and then the eigenmodes
are solved by finding the eigenfrequency around an estimated value.
Then, we swept the out-of-plane wave number to calculate the @ —
k diagram.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabi5502/DC1
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