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CHOW QUOTIENTS OF GRASSMANNIANS BY DIAGONAL SUBTORI
NOAH GIANSIRACUSA* AND XIAN WU**

ABSTRACT. The literature on maximal torus orbits in the Grassmannian is vast; in this paper we
initiate a program to extend this to diagonal subtori. Our main focus is generalizing portions of
Kapranov’s seminal work on Chow quotient compactifications of these orbit spaces. This leads
naturally to discrete polymatroids, generalizing the matroidal framework underlying Kapranov’s re-
sults. By generalizing the Gelfand-MacPherson isomorphism, these Chow quotients are seen to
compactify spaces of arrangements of parameterized linear subspaces, and a generalized Gale du-
ality holds here. A special case is birational to the Chen-Gibney-Krashen moduli space of pointed
trees of projective spaces, and we show that the question of whether this birational map is an iso-
morphism is a specific instance of a much more general question that hasn’t previously appeared in
the literature, namely, whether the geometric Borel transfer principle in non-reductive GIT extends
to an isomorphism of Chow quotients.

1. INTRODUCTION

The literature on maximal torus orbits in the Grassmannian and the torus-equivariant geome-
try (cohomology, K-theory, etc.) of the Grassmannian is extensive; it is a rich field beautifully
interweaving combinatorics, representation theory, and geometry, with many applications across
these disciplines. One of the seminal works is Kapranov’s paper on Chow quotients in which he
compactifies the space of maximal torus orbit closures [Kap93]. The goal of the present paper is
to initiate a program of studying diagonal subtorus orbits in the Grassmannian; we focus here on
extending portions of Kapranov’s paper to this setting and explore some consequences.

1.1. Setup and notation. Fix a base field k. By a diagonal subtorus S we mean that coordinates
in the maximal torus 7' = (k)" acting on Gr(d,n) are allowed to coincide; that is, S = (k)" for
m < n and we have an inclusion map S — T given by a matrix whose rows are all standard basis
vectors. Up to permutation, every such subtorus is of the form

S={(t1,.. 11,1202, sy b)) | EK }CT,
——— N — ——
r rn Im

where ) r; = n. Setting r; = 1 for all i recovers Kapranov’s case of the maximal torus. In essence,
the combinatorics in Kapranov’s paper (matroids, matroid subdivisions, etc.) are generalized by
replacing the set [n] = {1,2,...,n} with the multiset

Al :={1,...,1,2,...,2,....m,...,m}

—— —— ——
n rn 'm

where i has multiplicity r;. (Matroids on multisets appear in the literature under the name discrete
polymatroids [HH02].) The hypersimplex A(d,n) C R", a polytope playing a fundamental role in

*ASSISTANT PROFESSOR OF MATHEMATICAL SCIENCES, BENTLEY UNIVERSITY
**POSTDOC, JAGIELLONIAN UNIVERSITY, POLAND
E-mail addresses: ngiansiracusa@bentley.edu, xianwu@uga.edu

1


http://arxiv.org/abs/1909.13333v1

2 CHOW QUOTIENTS OF GRASSMANNIANS BY DIAGONAL SUBTORI

Kapranov’s paper, is replaced with its projection under the linear map
ﬂ«; ‘R — R™

given by the matrix |e; -+ ej ey -+ €2 -+ ey -+ ey, the transpose of the matrix defining the
inclusion § < T'. These vague assertions will be made precise in what follows.

1.2. Results. The T-orbit closure of any k-point of Gr(d,n) C P@)-1isa polarized toric variety
whose corresponding lattice polytope is a subpolytope of the hypersimplex

A(d,n)={(a1,...,a,) | a; €[0,1] and Y a;=d} CR".

This subpolytope has its vertices and edges among those of A(d,n); subpolytopes with this prop-
erty are called matroid polytopes and are known to be in bijection with rank d matroids on [n],
with matroids representable over k identified with the polytopes of T-orbit closures in Gr(d,n)
[GGMSS87]. This perspective of matroid polytopes is a relatively recent advance in matroid theory
that has fruitfully brought the subject closer to algebraic geometry (cf. [ABD10, §1]). Via diagonal
subtori, this story extends seamlessly to discrete polymatroids:

Theorem 1.1. Rank d discrete polymatroids on the multiset [F] are in bijection with subpolytopes
of Ax(A(d,n)) C R™ whose vertices and edges are among the images of the vertices and edges of
A(d,n); moreover, this bijection identifies the discrete polymatroids representable over k with the
lattice polytopes corresponding to S-orbit closures in Gr(d,n).

Now let k = C. Kapranov’s idea for compactifying the space of maximal torus orbit closures in
Gr(d,n) is to take a sufficiently small T-invariant Zariski open locus U C Gr(d,n) such that the
T-action on U is free and there is an inclusion U /T < Chow(Gr(d,n)) sending each torus orbit to
its Zariski closure, viewed as an algebraic cycle on the Grassmannian. The closure of the image of
this embedding in the Chow variety is by definition the Chow quotient Gr(d,n)//c,T [Kap93]. We
can apply the same idea here and study the diagonal subtorus Chow quotient Gr(d,n)//c,S. We
compute some explicit examples of this Chow quotient, together with its natural closed embedding

in the toric Chow quotient p(a)-! //cnS, in §3.
Kapranov shows [Kap93, Theorem 1.6.6] that the rational maps sending a linear space to its
intersection with, and projection onto, a coordinate hyperplane induce morphisms

Gr(d7n)//ChT — Gr(d - 17” - 1)//ChT/ and Gr(d7n)//ChT — Gr(d,n - 1)//ChT/7
respectively, where T” = (k* )"~ is the maximal torus acting on these smaller Grassmannians. We

have the following extension of this to the subtorus setting:

Theorem 1.2. Fix an index 1 <i < m, let I C [n] index the r; coordinates of S corresponding to
the i'" G,,-factor, and let S; denote the rank m — 1 torus given by projecting S onto the complement
of the I-coordinates. Then intersection with, and projection onto, the codimension r; coordinate
linear space defined by x; = 0 for all j € I induce morphisms

Gl‘(d, I’l)//chS — Gl‘(d —ri,n— ri)//ChSi and Gl‘(d, I’l)//chS — Gl‘(d, n— ri)//ChSh
respectively.

Kapranov’s proof directly analyzes Chow forms to demonstrate their polynomial dependence,
whereas we use polytopal subdivisions to apply a valuative criterion for regularity; thus, we obtain
in particular a new variant of Kapranov’s proof in the case of the maximal torus.
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The Gelfand-MacPherson correspondence identifies generic torus orbits in the Grassmannian
with generic general linear group orbits in a product of projective spaces, and Kapranov shows
[Kap93, Theorem 2.2.4] that this extends to an isomorphism of Chow quotients

Gr(d,n)/cnT = (P JcnGLy -

Thus, his Grassmannian Chow quotient can be viewed as compactifying the space of configurations
of points in projective space, up to projectivity, or dually, the space of hyperplane arrangements.
This has been a fruitful perspective [HKTO06, Ale15] and it generalizes to our setting as follows:

Theorem 1.3. There is an isomorphism

1

Gr(d,n)//ChS% (m IP’Hom(k”',kd)> //ChGLd
=1

where GL,; acts diagonally by left matrix multiplication.

To prove this, we adapt an argument of Thaddeus in [Tha99] and so also obtain a new proof of
Kapranov’s original result as a special case. We can view the right side of the above isomorphism as
compactifying the space of arrangements of “parameterized” linear subspaces: (Ly, 0, ..., Ly, Q)
where L; C P4~ is a linear subspace of dimension r; — 1 and o € Aut(L;) = PGL,,..

Since orthogonal complement yields a T-equivariant isomorphism Gr(d,n) = Gr(n —d,n) and
hence an isomorphism of Chow quotients Gr(d,n)//csS = Gr(n —d,n)//cpS for any diagonal
subtorus S C T, our generalized Gelfand-MacPherson isomorphism implies the following gen-
eralized Gale duality:

Corollary 1.4. There is a natural involutive isomorphism

( ] PHom (k" k¢ )) //enGLg = (
=1

1

1

PHom(k", k&=t ri)_d)> JenGLgs, ry-a
=1

In geometric terms, arrangements (up to projectivity) of m generic parameterized linear sub-
spaces L; < P?~! and their Chow limits are in natural bijection with arrangements (up to projec-
tivity) of m generic parameterized linear subspaces, of the same dimensions, in P"—4—1+Ldim(L;)
and their Chow limits.

Kapranov showed [Kap93, Theorem 4.1.8] that his Chow quotients generalize the ubiquitous
Grothendieck-Knudsen moduli spaces of stable pointed rational curves, namely

Gr(2,n)//cnGLa = Mo .
Another generalization was constructed by Chen-Gibney-Krashen in [CGK09], where a moduli
space denoted 7T, compactifying the space of n distinct points and a disjoint parameterized hy-
perplane in P4 up to projectivity was introduced and studied and shown to satisfy Tin = Moy
Essentially 7}, is the locus in the Fulton-MacPherson configuration space X[n] [FM94] where

all n points have come together at a single fixed smooth point on a d-dimensional variety X
[CGKO09, §3.1]. The space Ty , is birational to Gr(d + 1,n+d) //c;S, where

S={(t1,...,t1,t2,. .., tny1) | ;i €K7},
d

since both compactify the space of n distinct points and a disjoint parameterized hyperplane
P4=1 < P? up to projectivity. Krashen has asked, informally, whether this birational map is actu-
ally an isomorphism. While we have not been able to answer this question, we conclude this paper
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by showing that Krashen’s question is a specific instance of a much more general question that
appears not to have been asked previously in the literature—namely, whether the classical Borel
transfer principle (relating non-reductive invariants to reductive invariants) extends from GIT quo-
tients [DKO7] to Chow quotients.

Acknowledgements. We thank Gary Gordon and Felipe Rincon for drawing our attention to dis-
crete polymatroids, and we thank Valery Alexeev, Danny Krashen, and Angela Gibney for helpful
conversations on this project. This paper is part of the second author’s PhD dissertation at the Uni-
versity of Georgia, supervised by the first author. The first author was supported in part by NSF
grant DMS-1802263, NSA grant H98230-16-1-0015, and Simons Collaboration Grant 346304.

2. DISCRETE POLYMATROIDS

For a non-negative integer vector v = (vi,...,v) € Z%, the modulus is |v| = Y. v;. A discrete
polymatroid on the ground set [m] = {1,2,...,m} can be defined as a nonempty finite subset B C
7y of vectors all of the same modulus (called the rank of B) satisfying the following exchange
property: if u,v € B with u; > v; for some 1 <i < m, then there exists 1 < j <m such that u; <v;
and u—e;+e; € B[HHO2, Theorem 2.3]. This can be reformulated in terms of multisets as follows.
Given a discrete polymatroid B, let
Al:={1,...,1,2,...,2,....m,...,m}

—— —— ——
r rn Im
be the multiset where i has multiplicity r; := max,cp{v;}. Each element of B can then be viewed
as a sub-multiset of [F]. If one considers the usual basis definition of a matroid except replacing
the word “set” with “multiset” then the discrete polymatroid B is a matroid on the multiset [F], and
conversely any matroid on a multiset is a discrete polymatroid on the ground set given by the set
underlying the multiset. We will freely switch between the multiset perspective and the integer
vector perspective of discrete polymatroids.

Proof of Theorem 1.1. This can either be proven by adapting the original arguments in [GGMS87],
or it can be reduced to the results in [GGMS87] by using a multiset projection map; we present
here the latter approach.

Fix an integer d > 1 and a multiset [F] with underlying set [m] = {1,2,...,m} where i has
multiplicity r; > 1. Let &y : [n] — [m] be the “projection” map sending 1,2,...,r; to 1, and r| +
l,...,r +r; to 2, etc. By a slight abuse of notation, for a subset A = {ay,...,a;} C [n] we denote
by mz(A) the multiset {wz(ay),. .., z(ay) }, in other words the multiplicity of j is the cardinality of
the fiber n{l (j)NA. Clearly my then sends a rank d matroid on [n] to a rank d discrete polymatroid
on [m], and conversely if B is a rank d discrete polymatroid on [m] then {A C [n] | mz(A) € B} is a
rank d matroid on [n]; we denote the latter matroid by 7. L(B).

Given a rank d discrete polymatroid B on the multiset [}, the rank d matroid 7. Y(B) on [n] has

basis polytope P given by the convex hull of the vectors es :=};cp¢; for A € . ! (B), and by the
classical results of [GGMS87] the vertices and edges of P are among the vertices and edges of the
hypersimplex A(d,n). It then follows trivially that the linear projection Az(P) has its vertices and
edges among the images under Ay of the vertices and edges of A(d,n). Moreover, Az(P) C R™ is
the convex hull of the basis vectors of B (where now we view B as a set of vectors in ZZ,)), and by
[HHO2, Theorem 3.4] we can recover B from this convex hull (specifically, the integral vectors in
this convex hull are the independent sets in B). This faithfully embeds the set of rank d discrete

polymatroids on [7] into the set of subpolytopes of A;(A(d,n)) whose vertices and edges are among
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the images under A; of those of A(d,n). This association is also surjective, since if Q C Ax(A(d,n))
is a subpolytope whose vertices and edges are among the images of those of A(d,n), then the
preimage of Q under A; is a subpolytope of A(d,n) whose vertices and edges are among those
of this hypersimplex, i.e., /'Lr,_l(Q) is a matroid polytope, and the multiset image under 7z of the
corresponding rank d matroid on [n] is a rank d discrete polymatroid with Q as its associated
polytope.

We now turn to the assertion about representability. Given a k-point of the Grassmannian L €

Gr(d,n)(k), the lattice polytope Ag; for the projective toric variety S-L C P@) =" is the image
of this torus orbit closure under the moment map U : P(d)=1 — R™ for . This moment map is

the composition of the moment map ur : P(d)~1 — R” for the maximal torus T with the linear
projection A; : R" — R™. Thus,

Agr = ps(S-L) = X (ur(S-L)) = Az (ur (T - L)) = Ax(A7p),

which is the polytope associated to the discrete polymatroid 7z(M (L)), where M (L) is the matroid
represented by L. But (M (L)) is also the discrete polymatroid represented by L. O

The linear projection Az : R” — R may send vertices of the hypersimplex A(d,n) to non-vertex
points of the polytope Ax(A(d,n)), and for the above theorem it is crucial that our subpolytopes
are allowed to use such points rather than just the actual vertices of Az(A(d,n)), as the following
example illustrates:

Example 2.1. Let 7 = (1,2,2), so n =5 and m = 3; the projection function 7z is 1 — 1, and
2,3+ 2, and 4,5 — 3; in coordinates, the linear projection A; : R3S — R3 is (x1,%2 +x3,%4 + X5).
Consider rank 3 matroids. The hypersimplex A(3,5) has 10 vertices, the permutations of the vector
(1,1,1,0,0); the images of these 10 vertices are (1,1,1) four times, (1,2,0) once, (1,0,2) once,
(0,1,2) twice, and (0,2, 1) twice. The polytope Az(A(3,5)) is a trapezoid, and the point (1,1,1)
is not a vertex of this trapezoid even though it is the image of vertices of the hypersimplex (see
Figure 1). The segment from, say, (1,1,1) to (1,2,0) is a discrete polymatroid even though it has
a vertex that is not a vertex of the trapezoid. On the other hand, the four vertices of the trapezoid
(1,2,0),(1,0,2),(0,1,2),(0,2,1) do not form a discrete polymatroid because the trapezoid edge
from (1,2,0) to (1,0,2) is not an edge of the projected hypersimplex, it is a union of two such
edges (and indeed the basis exchange axiom fails on these two without the presence of the midpoint

(1,1,1)).

_The interior of the Chow quotient Gr(d,n)//csS consists, by definition, of torus orbit closures
S- L (viewed as algebraic cycles) for generic linear subspaces L € Gr(d,n); taking the closure of
this interior locus in the Chow quotient adds limit points that are certain algebraic cycles

4
Z m;Z; € Chow (Gr(d,n)),
i=1

about which, following Kapranov, we can now say a bit more (cf. [Kap93, Proposition 1.2.11]):
Proposition 2.2. For each cycle Yt_,m;Z; € Gr(d,n) //cpS, the multiplicities m; are all 1 and the

irreducible cycles Z; are single orbit closures S-L;, L; € Gr(d,n). The lattice polytopes Aﬁ, for
i=1,....4 form a polyhedral decomposition of Az(A(d,n)).

Proof. The condition in Kapranov’s [Kap93, Theorem 0.3.1] is automatically satisfied here so each
Z; is a single orbit closure S - L;. Kapranov’s proof of [Kap93, Proposition 1.2.15] shows that the
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FIGURE 1. For the multiset {1,2,2,3,3} the projected polytope Az(A(3,5)) is a
trapezoid lying on a triangle. The point (1, 1,1) is not a vertex of the trapezoid even
though it is the image under the linear projection A; : R> — R3 of a vertex (in fact,
four of them) of the hypersimplex A(3,5).

index of the sub-lattice generated by the vertices of the representable matroid polytope Az inside
the lattice generated by the vertices of the hypersimplex A(d,n) is one. This index is preserved
when applying the linear map Ay, and as we noted at the end of the proof of Theorem 1.1 we have
Agr = l;(Aﬁ), so we have that the multiplicity m; of our cycle S L; is also one. The assertion
about polyhedral decompositions follows the more general result [KSZ91, Proposition 3.6], since
the torus equivariant Pliicker embedding identifies each point of the Chow quotient Gr(d,n) //ciS

with a point of the toric Chow quotient p(a) LS. O

3. EXAMPLES OF SUBTORUS CHOW QUOTIENTS

In this section we describe some diagonal subtorus Chow quotients of Gr(2,4), starting with the
case of the maximal torus that Kapranov worked out in [Kap93, Example 1.2.12] so that we can
present an explicit equational approach that generalizes to the other cases. First, let us recall the

more general setup. The Pliicker embedding Gr(d,n) C P()~" is maximal torus equivariant so
induces a closed embedding of Chow quotients

Gr(d,n) J/cnS P18

for any diagonal subtorus § C 7'. Since § acts here through the dense torus for P(g)_l, the Chow
quotient p(a)-! //ciS is a projective toric variety; the lattice polytope for it is a secondary polytope
that we now describe (see [KSZ91] and [Kap93, §0.2]).

If we denote the coordinates on IP’@*1 by x7,1 € ([Z,]) then t = (¢1,...,t,) € T acts by 1 -x; =

(ITiesti) x1- These weights are encoded by the (Z,) integer vectors ) ;cye; € Z". The weights for the
rank m diagonal subtorus § C T are then the images of these integer vectors under the linear map
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Az : R" — R™. Define the following cardinality (Z) multiset:

A= {4 (;e> VEE <[Z])}.

The lattice polytope for pla)-1 //cnS is the secondary polytope X(A). Recall that this means X(A)
is the convex hull in R of the characteristic functions ¢ : A — Z where .7 is a triangulation of
the pair (Conv(A),A)—meaning a collection of simplices, intersecting only along common faces,
whose union is Conv(A) and whose vertices lie in A—and where by definition the value of ¢ on
a € A is the sum of the volumes of all simplices in .7 for which a is a vertex (with the volume
form normalized by setting the volume of the smallest possible lattice simplex to be 1).

3.1. Gr(2,4) with the maximal torus action. Here 7 = (1,1,1,1) and A; is the identity on R*,
so A consists of the six vertices of the octahedron A(2,4), namely all permutations of the vector
(1,1,0,0). There are three triangulations here: choose two of the three pairs of non-adjacent ver-
tices and for each of these chosen pairs slice a plane through the remaining four vertices. The three
characteristic functions are then the vectors (4,4,2,2,2.2), (2,2,4,4,2,2), and (2,2,2,2,4,4).
These form an equilateral triangle whose lattice points, in addition to the three vertices, are the
midpoints of the three edges, namely (3,3,3,3,2,2), (3,3,2,2,3,3), and (2,2,3,3,3,3). This lat-
tice polytope defines the toric variety P> polarized by the line bundle ¢/(2); by labeling the lattice
points, in the order listed above, we can view this as Proj k[xz, y2, 22, Xy, Xz, vz].

The Grassmannian Gr(2,4) is a hypersurface in 3, defined by a single Pliicker relation, so the
Chow quotient Gr(2,4) //cpS C P //cpS = IP? is also a hypersurface and our next task is finding
the equation for it. If we write the coordinates for P> as (x12,X34,X13,X24,X14,X23) then the mono-
mials specified by the six lattice points described in the preceding paragraph, after dividing by the
common factor that is the product of the squares of all the variables, are the following:

2 .2 2 2 2 2
my = X1pX34, M2 = X13Xp4, M3 = X14X33, M4 = X12X34X13X24, M5 = X12X34X14X23, M = X[3X24X14X23.
Multiplying the Pliicker relation
X12X34 — X13X24 +X14%23 = 0

by x12x34 yields the relation m| — my + ms, and similarly multiplying by x13x24 yields myg —my +
mg = 0 and multiplying by x14x23 yields ms —mg + m3 = 0. These are linear relations among the
monomials m;, so they are three quadratic relations among the variables x, y, z introduced at the end
of the preceding paragraph, namely

K —xy+xz2=0, xy—y* +yz=0, and xz —yz+z* = 0.

These quadratics generate a non-saturated ideal whose saturation is the principal ideal generated by
x —y -2z = 0; this linear relation is the defining equation for the Chow quotient Gr(2,4) //c,T C P?
that we were seeking. Note that in [Kap93, Example 1.2.12] Kapranov described this as a conic
in the plane, whereas we see here more specifically it is a line in the plane together embedded by
0 (2) as a conic in the Veronese surface in IP°.

3.2. Gr(2,4) with a rank 3 diagonal subtorus. Now consider the rank 3 diagonal subtorus S C T
defined by 7= (1, 1,2), namely S = {(t1,%2,13,13) | t; € k™ }, which acts on a subspace L € Gr(2,4)
represented by a 2 x 4 matrix by rescaling the first two columns independently and rescaling the last
two columns together. Here Gr(2,4) //c;,S is a surface embedded in the toric threefold P° //;S. The
linear map Az : R* — R3 is (x1,x2,x3 +x4). The multiset A, the image under this linear projection
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of the 6 vertices of the octahedron A(2,4), is (1,1,0), (1,0,1) with multiplicity 2, (0,1,1) with
multiplicity 2, and (0,0,2). This is a square with a pair of non-adjacent vertices doubled, and there
are eight triangulations: there are two ways of subdividing with a diagonal line segment, and for
each of these there are four ways of choosing which of the doubled vertices to use in the resulting
pair of triangles. The six characteristic functions, which we shall name vy,...,v4,wy,..., wy, then
take the following form:

v =(1,2,0,2,0,1), v, =(1,2,0,0,2,1), v3 = (1,0,2,0,2,1), v4 = (1,0,2,2,0, 1),

wr =(2,1,0,1,0,2), w, = (2,1,0,0,1,2), w3 = (2,0,1,0,1,2), wa = (2,0,1,1,0,2).
The convex hull of these is a 3-dimensional polytope. The convex hull of the v; is a square and
the convex hull of the w; is a smaller square that is parallel to it, so altogether we have a truncated
square pyramid. A square is the toric polytope description of P! x P!, extending this to a square
pyramid corresponds to taking the projective cone over P! x P!, and truncating this pyramid corre-

sponds to blowing up the torus-fixed cone point corresponding to the pyramid apex. In coordinates
this can be written

5 ~ .
P //cnS = Bl (Proj k[xo,x1,X2,x3,Y] / (x0x3 —x1x2) ) ,
and by computing lattice lengths one sees that the polarization is ¢'(2H — E). To find the equations
for the closed subvariety Gr(2,4)//c,S inside here, we follow the approach in the previous exam-
ple. Plugging the variables x;; into the 8 vertices of our secondary polytope yields the following
monomials:
2 2 2 2 2 2 2 2
my = X12X13X23X34, M2 = X12X13X04 X34, M3 = X12X14X04X34, M4 = X12X14X23X34,
2 2 2 2 2 2 2 2
N1 = X1pX13X23X34, N2 = X1pX13X24X34, N3 = X[pX14X24X34, N4 = X|pX14X23X34.
Multiplying the Pliicker relation by x12x13x24X34 and by x12x14X23x34 yields the relations
nz—mz-l—Hxij =0and n4—Hxl~j+m4 =0

so our Grassmannian Chow quotient here is defined in the above toric Chow quotient by the single
relation my — myq —ny —n4 = 0 in the polynomial Cox ring.

3.3. Gr(2,4) with a balanced rank two diagonal subtorus. Next, consider the diagonal subtorus
{(t1,t1,12,12) | t; € k*} defined by 7 = (2,2). The linear projection Az : R* — R? is (x| +x2,x3 +Xx4)
which sends the vertices of A(2,4) to (2,0), (1,1) four times, and (0,2). The result of course is
an interval with a single interior lattice point that has been quadrupled. There are five triangula-
tion, four from subdividing with the different midpoints and one from not subdividing at all; the
characteristic functions are:

vi =(1,2,0,0,0,1),v,=(1,0,2,0,0,1),v3=(1,0,0,2,0,1),v4=(1,0,0,0,2,1),vs=(2,0,0,0,0,2).

The convex hull of vy, ...,v4 is a tetrahedron giving the polarized toric variety (P?, &(2)), and
P3 /¢3S is the toric variety given by the convex cone over this tetrahedron with apex vs. Plugging
the variables x;; into these five vertices yields
— 2 _ 2 _ 2 _ 2 _ 2 .2
My = X12X73X34, M2 = X12X[4X34, M3 = X12X33X34, M4 = X12X34X34, M5 = X|pX3y.

The Pliicker relation can be expressed as

\/_ \/m1m4 \/m2m3
5—
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which after some elementary algebra yields the relation

m%m% + m%m% + mg —2mmpymszmy — 2m1m4m§ — 2m2m3m% =0

defining Gr(2,4) //c4S in the Cox ring of our toric variety P° //¢;,S.

4. MAPS BETWEEN CHOW QUOTIENTS

Let us start here by generalizing Kapranov’s [Kap93, Theorem 1.6.6]; while one probably could
have adapted Kapranov’s proof nearly verbatim to our setting, we instead provide a slight variant
that we feel brings out more prominently the elegant toric geometry underlying the result.

Proof of Theorem 1.2. Recall from the theorem statement that we have fixed an index i and denoted
by I the index of the r; columns acted upon nontrivially by the i G,, factor of S and by S; the
projection of S onto the coordinates outside of . So S has rank m and S; has rank m — 1. Let

a; - Gr(d,n) [|cpS --» Gr(d — ri,n—r;) [ chSi

be the rational map sending a generic torus orbit closure S- L, L € Gr(d, n), to the torus orbit closure
Si- (LN Hy), where Hy C k" is the coordinate linear subspace defined by setting all coordinates in /
equal to zero (and Gr(d — rj,n — r;) here parameterizes subspaces of H; = k"~" 7). Let

bi : Gl‘(d,n)//ChS —-=2 Gr(d,n — ri)//ChSi

be the rational map sending a generic S- L to S; - m;c(L), where mje : k" — k"' projects away the
I-coordinates.

To show that these rational maps extend to morphisms, we will use the valuative criterion
provided in [GG14, Theorem 7.3] (here for convenience we will use the analytic language of
I-parameter families, rather valuation rings, since we have restricted to the setting k = C anyway).
This means we need to show that for any 1-parameter family of cycles Z;, t € k*, in the interior
of Gr(d,n) //chS, which necessarily maps to a 1-parameter family of cycles a;(Z;) in the interior of
Gr(d —ri,n—r;) /| cuSi, the limit cycle

lirr&a,—(Z,) € Gr(d —ri,n—r;)//ciSi C Chow (Gr(d — ri,n —r;)) C Chow (P(dfi:)l)
—
depends only on the limit cycle
Zy = limZ, € Gr(d,n) /cuS € Chow (Gr(d,n)) € Chow <IP(3)_1) ,
t—

and similarly for b;. We will do this by explicitly describing lima;(Zy) and limb;(Z;) in terms of
Zy.

Following Kapranov, let G}“ C Gr(d,n) be the locus of linear subspaces containing the j™ co-
ordinate axis, and let G; C Gr(d,n) be the locus of linear subspaces contained in the hyperplane

where the j coordinate is zero. Then, as noted in [Kap93, Proposition 1.6.10],

Gr(d —1,n—1) = Gj = Gr(d,n) N1}
where H;r C P(@)~1 is the coordinate linear subspace defined by x; = 0 for J ¥ j, and

Gr(d,n—1)=G; =Gr(d,n)NII;
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where I'ij is the coordinate linear subspace defined by x; = 0 for J > j. In our setting we shall
need to consider certain intersections of these sub-Grassmannians, so let

;=11 and Gy := (G} = Gr(d,n) NIT} .
Jel jel

We claim that

lima;(Z,) = ZyNI1; and limb;(Z;) = ZoN1I; .
t—0 t—0

Verifying this claim will establish the theorem, by the aforementioned valuative criterion.

The argument in Kapranov’s [Kap93, Lemma 1.6.13] applies equally well for diagonal subtori
and shows that for r # 0 we have a;(Z;) = Z; N H;“ and b;(Z;) = Z; NI, , and from this it immedi-
ately follows from elementary topology that

(1) lima;(Z;) C ZyNII} and limb;(Z,) C ZoN 1T, ,
t—0 t—0

We claim that in both cases the intersection on the right has the same dimension as the limit on
the left, namely m — 2 (the diagonal G, where all torus coordinates are equal acts trivially so a
full-dimensional orbit has dimension one less than the rank of the torus). To see, first note that
by Proposition 2.2 we can write Zy = Z§:1 S-L; for linear subspaces L; whose S-orbits have full
dimension m — 1. Then

/4
ZonI; =Y (S-L;nIy).
j=1

If the dimension of this intersection were not equal to m — 2 it would have to be dimension m — 1,
the dimension of Zj, which means for at least one j we would have L; C Hf, But this would mean
that the S-orbit of this L; is not full-dimensional, contradicting our assumption on it. Indeed, if
L; CTIf then the rank one subtorus of S where all G,, factors except for the i are trivial is in
the stabilizer of L}, since this G,, subtorus rescales equally by ¢ the Pliicker coordinates x; where
J 2O I and by definition of H;“ all remaining Pliicker coordinates are zero; similarly, if L; C IT; then
this same G, factor is in the stabilizer of L;, since here it acts trivially on the Pliicker coordinates
x; where JNI = & and by definition of II;  all remaining Pliicker coordinates are zero.

For each of the containments in Equation (1), since the dimensions of both sides are equal, to
prove that the containment is an equality it suffices to prove that the degrees of both sides are
equal. Now, lim,_,0a;(Z;) is a limit of generic S;-orbit closures so it has the same degree as a
generic orbit closure S;-L, L € Gr(d — ri,n — r,—)o. But S;-L is a toric variety so its degree is
the volume of the lattice polytope Ag7, and since L here is generic this lattice polytope is the

full linearly projected hypersimplex ;Lﬂ'[m]\, (A(d —ri,n—r;)), where lﬁ[m]\i; : R — R™~ 1 js the
linear projection map corresponding to the diagonal subtorus S; of the maximal torus acting on
Gr(d — ri,n —r;). On the other hand, by Proposition 2.2 for the limit cycle Zy = Z§:1 S-L; the
lattice polytopes Agz, . .., Az, form a polyhedral decomposition of A7 (A(d,n)). Then the lattice
polytopes Agr-N (T} ),..., Agr N Ax(T}) form a polyhedral decomposition of the face Ax(I}")
of Ax(A(d,n)), where '} :=n jeIF;r and F}“ is the face of A(d,n) that Kapranov identified in
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[Kap93, Proposition 1.6.10] as the image under the moment map ur of G;r C Gr(d,n). We claim

l {
deg(ZoNIT}) < Z (SI;NT) = Y vol (Mg NI ) = vol (A(I)
= =1 ‘

= vol (A,,[m]\ﬁ (A(d — riyn— r,-))) .

Indeed, the inequality here allows for the possibility that some of these intersected orbit closures
are not full-dimensional, the first equality is Kapranov’s observation in [Kap93, Proposition 1.6.10]
about the interplay between the moment map and the sub-Grassmannians G;’, the second equality
is due to the above observation about having a polyhedral decomposition, and the final equality
follows from the observation that the moment map g restricted to the sub-Grassmannian 1“;“ =
Gr(d — ri,n—r;) is identified by this isomorphism with the moment map s, = /’Lﬂ[m]\i; o Uy where
T’ is the maximal torus acting on Gr(d — r;,n — r;). This concludes the argument for g;, and the
volume calculation for b; is entirely analogous. U

5. GENERALIZED GELFAND-MACPHERSON CORRESPONDENCE AND GALE DUALITY

In [Tha99] Thaddeus studies an interesting classical geometric situation related to the configura-
tion spaces studied by Kapranov in [Kap93], and while doing so he proves a handful of results that
are in close analogy with results in Kapranov’s paper—but in almost all cases, the proofs Thad-
deus provides are new, not merely adaptations of Kapranov’s. In particular, when studying Chow
quotients Thaddeus avails himself of the functorial machinery developed by Kollar in [Kol96],
obviating the need to rely on the analytic methods for working with Chow varieties that were the
only option for Kapranov at the time his paper was written. We adapt here one particular proof of
Thaddeus (and a particularly clever one at that) which in our setting yields the generalized Gelfand-
MacPherson isomorphism Theorem 1.3 stated in the introduction. Note that by specializing to the
maximal torus this yields an explicit Thaddeus-esque proof of Kapranov’s original Chow-theoretic
Gelfand-MacPherson isomorphism [Kap93, Theorem 2.2.4].

Proof of Theorem 1.3. The basic idea is, quite like the usual Gelfand-MacPherson correspondence,
to observe that the GL;-action on the affine space of n x d matrices (we have taken a transpose
here to work with sub rather than quotient objects, but that is immaterial and just to ease notation)
commutes with the torus action; taking the GL; quotient first yields the Grassmannian Gr(d,n),
whereas taking the S-quotient first projectivizes the size r; X d matrix blocks, i = 1,...,m, of this
space of matrices resulting in a product of projective spaces. In fact, this already shows that the
two sides of the claimed isomorphism are birational, so the work is to extend this birational map
to an isomorphism. To do this, we follow and mildly adapt the argument of Thaddeus in his proof
in [Tha99, §6.3]. The main insight in Thaddeus’ proof, translated to our situation, is that the two
rational quotient maps

) PHom(k? k") --» Gr(d,n)
and
(3) PHom(k, k") --> [ [PHom (k" k")

i=1
have different base loci, and by resolving both it is easier to compare cycles by using pullback and
pushforward properties of the Chow variety. We now go through these details in earnest.
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The rational GL4-quotient map in (2) sends an injective linear map ¢ : k% < k" to [@(k%)] €
Gr(d,n), the point in the Grassmannian corresponding to the image of this linear map; the base
locus is the set of linear maps k¢ — k" with nontrivial kernel. Let Z4n — Gr(d,n) denote the
universal sub-bundle over the Grassmannian. Then the rational GL,-quotient map is resolved by
the space PHom(k9, Fin):

IP’Hom(kd, yd,n)

T

PHom(k? k") — = = — = — = = — — — — - ~ Gr(d,n)

Indeed, the fiber over a point ¢ : k% — k" of PHom(k“, k") is a single point of PHom(k,.%, ) if ¢
is injective, namely ¢ viewed as a map from k¢ to its image @ (k%) C k", whereas if dim (k%) < d
then the fiber in PHom (k, 4 ) is in bijection with all d-dimensional subspaces L C k" containing
@ (k%) C k", since for each such L D ¢(k?) we have the element of the fiber given by viewing ¢
as a map from k9 to L. In fact, PHom(k%,.#} ) is the iterated blow-up of PHom(k? k") along
the locus of non-full rank maps, ordered in increasing order of rank. Note that the morphism to
Gr(d,n) is a sz’l—bundle; in particular, it is flat.

On the other hand, the rational S-quotient map (3) is resolved by the "~ !-bundle given by the
projectivization of the total space the direct sum of the dual line bundles to the tautological bundles:

PHom(k? k") = = = = = = — = — — — = >~ 17, PHom(k“, k%)

Here 0 (e;) denotes the pull-back of ¢'(1) along the j1 projection

m
HIPHom(kd,k”) — PHom(k?, k"7) = P41,
i=1

One can see this as follows. The base locus for this map consists of matrices where any of the r; X d
blocks (corresponding to the diagonal subtorus action) are entirely zero, so to resolve this map we
need to blow up this locus. Since it is a union of linear subspaces meeting transversely, this can be
done one subspace at a time, in any order, and we thus reduce to the standard observation that the
total space of ¢(1) on any projective space P is the blow-up of A*! at the origin.
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Putting this together, we get the following commutative diagram:

P(@PL, O(ei)) PHom(k? Tdn)
IP’Hom(kd k”
[T, PHom(k4, k") Gr(d,n)
| |
| |
\ A
([T~ PHom(k4,k"%)) //cn GLy Gr(d,n) ffcaS

Here the vertical morphisms are both projective space bundles, the diagonal morphisms are bira-
tional, and the dashed arrows are all rational quotient maps—on the left by the torus first then GL,
and on the right by GL; first then the torus.

The rest of Thaddeus’ argument now goes through essentially verbatim. The universal family
of cycles on Gr(d,n) over the Chow quotient Gr(d,n)//c,S C Chow (Gr(d,n)) pulls back along
the flat morphism to a family of cycles on PHom(k?,.%; ,) over Gr(d,n)//c,S with general fiber
a (GLy xS)-orbit closure. This family pushes forward along the birational morphism to an S-
invariant family of cycles on PHom(k“, k). The restriction of the cycles in this family to the com-
plement of the base locus of the torus quotient map (3) pushes forward along this quotient map, a
geometric quotient, and yields a family of cycles on [T, PHom(k?, k") over Gr(d,n) //c;,S. Since
Gr(d,n)//cyS is reduced and the cycles over it in this last family all have the expected dimension,
there is an induced morphism

m
Gr(d,n) //ciS — Chow (HIP’Hom(kd : k’f))
i=1
by [Kol96, Theorem 3.21]. A general point of this Chow quotient gets sent to a GL;-orbit closure,
so the image of this morphism is contained in the Chow quotient ([T, PHom(k? k1)) //c4 GL4.
On the other hand, the same argument applied symmetrically to other side of the above big commu-
tative diagram yields a morphism between these Chow quotients in the other direction. Since these
Chow quotients are separated varieties, to show that these morphisms are inverse to each other, and
hence that the two Chow quotients are isomorphic, it suffices to show that they are inverse on open
dense loci. For this we apply the naive argument discussed at the beginning of this proof, regarding
commuting group actions, to see that indeed these maps identify generic orbit closures. U

An immediate corollary of this is the generalized Gale duality Corollary 1.4 stated in the in-
troduction. Indeed, the orthogonal complement isomorphism Gr(d,n) = Gr(n — d,n) is torus-
equivariant so descends to an isomorphism Gr(d,n)//c;S = Gr(n —d,n)//cpS of Chow quotients
for any subtorus S, and applying our generalized Gelfand-MacPherson isomorphisms to both sides
of this isomorphism provides our generalized Gale duality isomorphism.

Remark 5.1. For parameters m,d,dy,...,d, such that

m
2d—m=)_d;,
i=1



14 CHOW QUOTIENTS OF GRASSMANNIANS BY DIAGONAL SUBTORI

our generalized Gale duality sends configurations of m parameterized linear subspaces of di-
mensions dy,...,d, in P to configurations of m parameterized linear subspaces of dimensions
di,...,dyinP?, so in this situation one could study “self-associated” configurations, generalizing
the maximal torus case studied by Kapranov in [Kap93, Paragraph (2.3.9)] (see also [EP0O, §II]
for another setting for self-association).

6. THE BOREL TRANSFER PRINCIPLE AND THE CHEN-GIBNEY-KRASHEN MODULI SPACE

Consider a connected unipotent group H, and suppose G is a reductive group containing H as a
closed subgroup. The quotient G/H, where H acts on the right, is a quasi-affine variety (and if H
is positive-dimensional then it is not affine); it admits a natural embedding in the affinization

(G/H)*" := Spec O /u(G/H) = Spec O6(G)H

which is a scheme possibly of infinite type since the ring of invariants of a non-reductive group
need not be finitely generated.

Example 6.1. Let

G := Speck[x11,X12,%21,%22, (X11%22 — x12%21) '] =2 GL;
be the affine group variety of 2 x 2 invertible matrices, and let H := Speck|s] = G, be the subgroup
of unipotent matrices of the form < L ) . The quotient G/H is the quasi-affine variety A%\ {0},

0 1
because the affinization is

(G/H)™ = Speck[x;1,x12, %21, %2, (x11X20 — x12%21) '] = Speck[x;,x21] = A?

but the image of the quotient morphism G — (G/H)™T does not include the origin since a matrix
where x| and x| are both zero is not invertible. In this case the affinization is of finite type.

Continue to let G and H be a reductive group and unipotent subgroup as above, and suppose
now that X is an affine variety with an H-action that extends to a G-action. The classical Borel
transfer principle states, in the language of (non-reductive) GIT, that there is an isomorphism

X1 = ((G/H)™xX) /G,

where G acts diagonally on this product, with the G-action on (G/H)*" induced by left-multiplication
of G on itself, and the symbol ““//”” simply means to take Spec of the ring of invariants [DK07, §5.1].
This allows one to replace a non-reductive invariant ring with a reductive invariant ring, though in
the process one replaces the k-algebra being acted upon with one that need not be finitely gener-
ated. This is often a useful tradeoff as it means instead of studying the H-action of X, it suffices to
study the typically simpler H-action on G together with the (again, typically simpler) G-action on
X. This geometric formulation of the Borel transfer principle has been globalized to the case that
X is projective in [DKO07, §5.1].

The definition of a Chow quotient is perfectly valid for any algebraic group, not just reductive
groups, so a natural question, which seems not to have appeared in the literature previously, is
whether this global Borel transfer principle for GIT quotients extends to Chow quotients:

Question 6.2. Let G be a reductive group containing a connected unipotent closed subgroup H, let
G/H be a projective completion of the quotient, and let X be a projective variety with a G-action.
Is there an isomorphism

X /fcnH ~ (G/—H XX) /cnG,
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or at least are there reasonable hypotheses guaranteeing such an isomorphism?

The projective completion here is needed since Chow varieties are only defined for projective
varieties. In what follows we show that a specific instance of this question is an open question
about a Grassmannian Chow quotient first asked (in casual conversation) by Krashen.

Consider the diagonal subtorus action on Gr(d,n) defined by 7= (d —1,1,...,1), so that S is the
rank n — d + 2 torus that acts by rescaling the first d — 1 columns of a matrix together and the last
n—d + 1 columns individually. By our generalized Gelfand-MacPherson isomorphism (Theorem
1.3) we have

“) Gr(d,n) fcnS = (PHom(k*~" k) x (P11 1 L,

a compactification of the configuration space of n —d + 1 points and a parameterized hyperplane
in P?~1. On the other hand, the Chen-Gibney-Krashen moduli space Ty_1 ;441 1S @ compacti-
fication of the same configuration space [CGKO09], and Krashen’s question is whether these are
isomorphic. In [GG18] it is shown that T;_1 ,_441 is isomorphic to the normalization of the Chow
quotient (P4=1=d+1 /. H where H = G2, x G¢~! is the non-reductive subgroup of GL, fixing
a hyperplane pointwise. Since this H-action extends to the standard GL;-action, we can apply
Question 6.2 and ask whether this non-reductive Chow quotient is isomorphic to the reductive

Chow quotient (GLd JH X (Pd_l)”_d“) /] GL,. The following lemma describes GL,; /H and the

induced group actions and implies that this reductive Chow quotient is precisely the one appearing
in our generalized Gelfand-MacPherson correspondence, the right side of Equation (4), and hence
as claimed that the Krashen question is a specific instance of Question 6.2:

9

Tdfl,nfd+l . Gr(d,n)//ChS

(P11 ey —— (GLy [H x (P41)"4+1) J GL,

The left vertical equality (up to normalization) here is [GG18], the right vertical equality is the
following lemma together with the Gelfand-MacPherson isomorphism, the top horizontal equality
is the Krashen question, and the bottom horizontal equality is a special instance of Question 6.2.

Lemma 6.3. For the right-multiplication action of H on GLy, the quotient GL, /H is isomorphic
to the open subvariety of IP)Hom(kd_1 , kd) consisting of projective equivalence classes of full rank
d x (d — 1) matrices. The left-multiplication action of GL, on itself descends to an action on this
quotient corresponding, via this isomorphism, to left matrix multiplication.

Certainly the most natural projective completion to take for the space of full rank matrices is its
Zariski closure in the space of all matrices, hence GL, /H = PHom(k4~ 1, k%).

Proof. If we choose coordinates so that the fixed hyperplane is defined by the vanishing of the first
coordinate, then H = G2, x G¢~! consists of matrices of the form

1 0O --- 0
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fors; € kandt; € k*.
Since the additive action is normalized by the torus action, we can compute the quotient in
stages:

GLy/H = (GLy /G4 ') /Gy,
We claim GL; /G2~ is the space of full rank d x (d — 1) matrices. Indeed, by viewing

GL, C Hom(k?,k9) =2 A®

as the affine open complement of the hypersurface det = 0, the ring of invariants for the G¢~!-
action is generated by all entries of the matrix except for those of the first column. Thus the
categorical quotient, in the category of affine varieties, is

GLy /G4~ =~ Hom(k4~! k) = Al4=1

However, similar to the situation in Example 6.1, since this is a non-reductive quotient the quotient
morphism need not be surjective, and indeed in the present situation its image is manifestly the set
of full rank matrices.

The residual G2 -action on this space of full rank d x (d — 1) matrices has the G,, factor corre-
sponding to #; acting trivially and the G, factor corresponding to #, acting by rescaling all entries
equally, so the quotient by G2, is simply the projectivization. The assertion about the induced
left-multiplication action of GL; on this space of matrices follows immediately from our explicit
description of the quotient in terms of invariants as the rightmost d — 1 columns of a square d x d
matrix of indeterminates. U
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