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Abstract 15 

The impacts of climate change on ecosystems are manifested in how organisms respond to 16 

episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a 17 

prominent example of ecosystem state change, driven by the continuous stress of sea-level rise 18 

(press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction 19 

of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal 20 

forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away 21 

from the leading edge of soil salinization and towards freshwater sources. The length, number, 22 

and circumference of roots were consistently higher in the upslope direction than downslope 23 

direction, suggesting an active morphological adaptation to sea level rise and salinity stress. 24 

Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing 25 

wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their 26 

ability to withstand high winds. Together, these observations help explain curious observations 27 

of coastal forest resilience, and highlight an interesting non-additive response to climate change, 28 

where adaptation to press stressors increases vulnerability to pulse stressors. 29 
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Introduction 35 

Understanding the mechanisms that lead to ecosystem state change is increasingly critical 36 

as the effects of climate change challenge the stability and resilience of ecosystems around the 37 

world (Walther et al. 2002, Doney et al. 2012, Kroël-Dulay et al. 2015). Climate change 38 

jeopardizes ecosystem stability on decadal to century time scales by exerting both long-term 39 

disturbances (presses) that gradually alter environmental conditions (i.e., sea level rise, 40 

increasing temperature and CO2 concentrations, ocean acidification), and sharply-delineated, 41 

stochastic disturbances (pulses) that suddenly perturb an environmental setting (i.e., extreme 42 

climatic events) and exacerbate impacts of presses (Bender et al. 1984, Lake 2000, Harris et al. 43 

2018, Jentsch and White 2019).  44 

Though ecosystems may adapt to a climate-driven press over time or recover from a 45 

pulse event, they are generally less resilient to the simultaneous impacts of press and pulse 46 

disturbances (Harris et al. 2018). Among the most prominent examples is the conversion of 47 

upland and freshwater coastal forests along the Atlantic and Gulf coasts of the U.S. to salt marsh 48 

(Williams et al. 1999, Langston et al. 2017, Fagherazzi et al. 2019, Kirwan and Gedan 2019, 49 

Schieder and Kirwan 2019). Relict forest stands develop as the press stress of increased salinity 50 

from sea level rise exceeds the tolerance threshold of tree seedlings. Droughts and coastal storms 51 

punctuate the stress of sea level rise, causing high rates of mortality among mature trees 52 

(Williams et al. 2003, DeSantis et al. 2007, Fernandes et al. 2018). Gradually, forest stands 53 

transition to salt-tolerant shrubs, which are eventually replaced by salt marsh (Langston et al. 54 

2017). Though previous work has evaluated the separate roles of gradual sea level rise and pulse 55 

events on forest loss, the combined effects of these press and pulse disturbances on coastal forest 56 

loss remain unclear and spatially heterogeneous.  57 
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Here we aim to understand the interactive role of press (sea level rise) and pulse (episodic 58 

storms) disturbance by examining tree roots exposed during large wind events in a rapidly 59 

retreating Chesapeake Bay coastal forest.  We find that eastern red cedar (Juniperus virginiana), 60 

one of the most salt tolerant coastal tree species disproportionately distributes its roots upslope, 61 

towards potential sources of freshwater. This asymmetry results in resistance to saltwater 62 

intrusion, but may lead to greater susceptibility to windthrow during pulse storm events.  63 

    64 

Methods 65 

We measured the fall direction and root characteristics of windthrown trees along the 66 

York River, a tributary of the Chesapeake Bay (Virginia, USA). This region is part of the mid-67 

Atlantic sea level rise hotspot, with relative sea level rise rates 2-3 times the global average due 68 

to a weakening Gulf Stream and rapid land subsidence (Sallenger et al. 2012, Erdle and 69 

Heffernan 2005). The gently sloping coastal plain and high rates of relative sea level rise have 70 

led to the rapid transition of forests and agricultural fields to marsh. Since the late 19th century, 71 

more than 400 km2 of Chesapeake Bay uplands have been replaced by marshes (Schieder et al. 72 

2018), with a rate that has accelerated in parallel with relative sea level rise (Schieder and 73 

Kirwan 2019).  74 

Our study site, the Catlett Islands, are a series of East-West forested ridges consisting 75 

primarily of loblolly pine (Pinus taeda) at higher elevations and red cedar at the marsh-forest 76 

boundary (37°18' N; 76°33'W, Figure 1a). Nearby coastal forests are retreating at rates up to 5 m 77 

yr-1, and have accelerated in parallel with 20th century sea level rise (Schieder and Kirwan 2019). 78 

While most retreating coastal forests are characterized by standing dead trees (i.e., ghost forests), 79 

our site was uniquely characterized by numerous windthrown trees with exposed root plates. The 80 
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abundance of uprooted trees allowed us to measure the characteristics of exposed roots in order 81 

to examine how trees may adapt to both pulse (large storm events) and press (salt water 82 

intrusion) stressors.  83 

We measured the size and fall characteristics of 143 windthrown adult eastern red cedar 84 

(Juniperus virginiana) trees. Only individuals with a portion of their root plate still buried or 85 

with large quantities of soil still attached were measured to ensure the tree fell in place and was 86 

not disturbed. We assume that these trees are indeed windthrown, and not uprooted by 87 

subsidence, erosion, or the development of highly asymmetric canopies. This interpretation is 88 

consistent with previous observations of windthrown cedar trees near the marsh-forest boundary 89 

(Williams et al., 1999), exposure to marine winds, shallow rooting, and a location away from the 90 

influence of wave erosion.   91 

Circumference at breast height, cardinal fall direction, and topographic aspect were 92 

measured for each individual windthrown tree. Aspect refers to the direction of steepest slope 93 

(i.e., the downslope, seaward, or marsh-facing direction). We compared fall directions to buoy 94 

wind data measured since 2016 at the mouth of the York River, away from obstructions from 95 

buildings and trees (NOAA, York Spit Buoy #44072). We extracted the wind speed and direction 96 

of winds >15 m s-1 from the full 15-minute dataset, which represent the strongest (~99th 97 

percentile) winds on record during the measurement period. Because sampling was done on all 98 

sides of elliptical islands, and in a relatively protected system, we assume that any bias 99 

associated with the orientation of the shoreline relative to predominant winds is minimal. We 100 

then measured the size and spatial distribution of the exposed root plates, including the length of 101 

the longest root in each direction, the number of first order roots, and the circumference of the 102 

largest root in the downslope and upslope (180º from downslope) direction (Figure 1b). Root 103 
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length was measured as the straight-line distance from the central meristem in each direction 104 

(i.e., curves were ignored). In cases where any portion of the root was buried, length was 105 

measured only to the soil surface. The circumference of the largest first order root was measured 106 

10 cm from the central meristem. Rooting characteristics were missing for 9 individuals, so all 107 

calculations of length, circumference, and number of roots have an N=134.  We did not observe 108 

any uprooted loblolly pine across the entire study site. Therefore, this study focuses entirely on 109 

the rooting characteristics of red cedar, the tree that most typically defines the seaward limit of 110 

coastal forests in the region (Brinson et al. 1995).  111 

 112 

Results  113 

Windthrown cedars fell in nearly every cardinal direction (0-360o) but a large number fell 114 

towards the Southwest (~225o) and West (~280o; Figure 2a). In contrast, high-speed wind events 115 

(>15 m s-1) in the area originate primarily from the North (Figure 2b). The direction of 116 

windthrow was strongly correlated with topographic aspect. Of the 143 trees measured, 123 fell 117 

within +/- 90 o of the upslope direction and half (70) of all trees fell within 45o of the upslope 118 

direction (Figure 2c).  119 

 The exposed root plates were highly asymmetric with roots disproportionately distributed 120 

in the upslope direction, and away from saltwater sources in the downslope, seaward direction. 121 

Upslope roots were, on average, greater in length (𝐿𝐿�𝑈𝑈 =119 ± 7.6 cm; mean ± SE), circumference 122 

(𝐶𝐶�̅�𝑈 = 74 ± 3.1 cm), and number (𝑁𝑁�𝑈𝑈 = 2.1 ± .07) than downslope roots (𝐿𝐿�𝐷𝐷= 77 ± 4.1 cm, 𝐶𝐶�̅�𝐷= 123 

39 ± 1.9 cm, 𝑁𝑁�𝐷𝐷 = 1.6 ± .05). Additionally, the ratios of these metrics (RL,C,N) for individual 124 

trees strongly favored the upslope roots (e.g., RL = Lu/LD for each individual tree; Figure 3a,b,c).  125 

We classified every tree with a full set of root measurements (n=134) as either upslope dominant 126 
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(Rx >1) or downslope dominant (Rx <1) for each metric. Out of 134 trees, 111 were upslope 127 

dominant in circumference (𝑅𝑅�𝐶𝐶 = 2.7), 82 trees were upslope dominant in length (average 128 

ratio, 𝑅𝑅�𝐿𝐿 = 2.3), and 70 trees were upslope dominant in number (𝑅𝑅�𝑁𝑁 = 1.5, where 56 trees had RN 129 

=1, and only 8 trees had RN < 1). Differences between upslope and along-shore root directions 130 

were more subtle. The average alongshore root was equal in length to the upslope root (117 ± 4.6 131 

cm). A majority of trees were alongshore dominant in length (n = 81), but the average ratio 132 

favored the upslope direction (𝐿𝐿𝑈𝑈/𝐿𝐿𝐴𝐴��������= 1.3). Nevertheless, since root lengths were measured to 133 

the ground surface, and many of the upslope roots were buried, upslope root lengths and their 134 

associated ratios are underestimates, resulting in a conservative measure of root asymmetry in 135 

the upslope direction.  136 

 137 

Discussion 138 

Conceptual and numerical models typically assume that sea level rise leads to passive 139 

retreat of coastal ecosystems, where forests do not actively adapt to saltwater intrusion (Brinson 140 

et al. 1995, Doyle et al. 2010, Fagherazzi et al. 2019, Kirwan and Gedan 2019). For example, 141 

marsh migration models assume that migration can be predicted on the basis of sea level rise and 142 

topography alone, and that marshes instantaneously replace forests when tidal inundation 143 

exceeds some threshold elevation ( Kirwan et al. 2016, Enwright et al. 2016). In reality, 144 

increased soil salinity and tidal flooding associated with sea level rise create heterogeneous 145 

spatial patterns of forest retreat and forest stand structure (Williams et al. 1998, 1999, DeSantis 146 

et al. 2007, Langston et al. 2017). Our work shows red cedar roots are most prominent in the 147 

upslope direction (i.e., away from the leading edge of soil salinization and towards freshwater 148 

sources; Figure 3a,b). We propose that this root asymmetry represents an active physiological 149 
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adaptation to chronic salt stress, but makes them more vulnerable to windthrow, and contributes 150 

to variable patterns of forest retreat. 151 

Root system structure is largely shaped by roots actively seeking resources required for 152 

plant growth and survival (Lynch 1995, Zanetti et al. 2014, Centenaro et al. 2018). For trees in 153 

coastal upland and freshwater forests, increased soil salinity from sea level rise compromises 154 

access to fresh groundwater, a resource fundamental to their survival that shapes rates of forest 155 

retreat (Williams et al. 1999, Saha et al. 2011). Disproportionately longer, larger, and more 156 

frequent roots in the upslope direction compared to downslope roots (Figure 3a,b,c) suggests a 157 

positive hydrotropic response by red cedar (i.e., elongated roots and growth directed towards 158 

high water potential) to reach necessary fresh groundwater (Jaffe et al. 1985, Krauss et al. 1999, 159 

Cassab et al. 2013, Dietrich 2018). Diminutive downslope roots are consistent with responses of 160 

modified root growth employed by plants to minimize damage from salt toxicity (Galvan-161 

Ampudia and Testerink 2011, Rewald et al. 2012). Asymmetrical root systems, including the 162 

development of prominent upslope roots, have also been observed in many other tree species 163 

seeking fresh groundwater (Tsutsumi et al. 2004, Zanetti et al. 2014). Hence, physiological and 164 

morphological plasticity of roots across species to environmental conditions supports our 165 

interpretation that asymmetrical root structure in red cedar is an active physiological adaptation 166 

rather than simply an intolerance to saline soils. 167 

Our finding that adult red cedars have disproportionally larger root networks in the 168 

landward direction in a submerging coastal forest helps explain curious patterns of forest 169 

resilience (Kirwan et al. 2007, Field et al. 2016). For example, rates of radial growth and 170 

mortality were no higher near the marsh edge than in the forest interior in a mixed-hardwood 171 

forest in coastal Connecticut, dominated by species known to be among the most intolerant to 172 
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salt (Field et al. 2016), and the effects of sea level rise on radial growth in other tree species are 173 

inconsistent (Robichaud and Begin 1997, Kirwan et al. 2007). Moreover, mortality of adult trees 174 

tends to lag behind changes in sea level and mortality of seedlings (Williams et al. 1999, 175 

Langston et al. 2017, Kirwan et al. 2007, Fagherazzi et al. 2019). Long roots in the uphill 176 

direction of adult trees could mitigate interannual fluctuations in soil conditions directly under 177 

the tree, and facilitate tree survival in locations that would otherwise be unconducive to tree 178 

survival. In forests adjacent to steeper uplands, even slightly longer roots would enable access to 179 

water from higher elevation soils less impacted by salt. Thus, an asymmetric root network could 180 

also help explain why differences in forest retreat rates throughout the mid-Atlantic coast are not 181 

easily explained by spatial variability in relative sea level rise rate and the slope of adjacent 182 

uplands (Schieder et al. 2018, Fagherazzi et al. 2019, Schieder and Kirwan 2019). 183 

Our results also suggest that physiological adaptation to long-term salinization makes red 184 

cedar more vulnerable to episodic wind events. In the absence of salinity, red cedars develop a 185 

lateral, fibrous root system in shallow or saturated soils, with first order roots reaching lengths of 186 

up to 6 m in all directions (Lawson 1990). However, we find that roots at the marsh-forest 187 

ecotone are highly asymmetric, with root lengths in the downslope (seaward) direction typically 188 

less than 1 m (Figure 3a). The idealized root structure for withstanding high winds is a 189 

symmetrical root plate with approximately 2-3 major windward roots, and a few large, deeper 190 

leeward roots (Coutts et al. 1999, Danjon et al. 2008, Fourcaud et al. 2008). Large windward 191 

roots have been shown to provide 25% of total anchorage strength in deep rooted trees (Yang et 192 

al. 2017) and up to 75% of total anchorage strength in shallow rooted trees (Crook and Enos 193 

1996). In contrast, we find that large roots are prevalent only in the upslope direction, regardless 194 

of shoreline orientation or predominate wind direction (Figure 3a,b,c). We suggest that the lack 195 
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of windward roots makes these trees prone to windthrow, as evidenced by tree fall directions that 196 

are consistently in the upslope direction (Figure 2b).  197 

Under the conventional press-pulse framework, press-pulse disturbances are considered 198 

additive stresses that collectively perturb a system beyond its tolerance threshold (Bender et al. 199 

1984, Lake 2000, Scheffer et al. 2001, Harris et al. 2018, Jentsch and White 2019). For example, 200 

in terrestrial forests, pulse outbreaks of insect and disease exacerbate background mortality rates 201 

of stands stressed by increased temperatures and reduced resource availability (Weed et al. 2013, 202 

Allen et al. 2015). Similarly, tree stress from decreased water flow intensified by droughts and 203 

heat waves leads to riverine forest decline (Harris et al. 2018). In our system, coastal forest 204 

retreat is traditionally explained by the additive effects of seedling mortality from sea level rise 205 

and tree mortality from coastal storms (Williams et al. 1999, 2003, Langston et al. 2017, Kirwan 206 

and Gedan 2019, Ogurcak et al. 2019). Granting that additive stresses of press-pulse disturbances 207 

jeopardize ecosystem stability, this perspective only considers ecosystem responses based on its 208 

tolerance to external stress. Generally overlooked are interactive responses by the perturbed 209 

system that may further intensify impacts from press-pulse disturbances. 210 

We posit that red cedar trees increase their resistance to sea level rise via physiological 211 

root responses that allow them to seek fresh groundwater and avoid saltwater. These responses 212 

result in an asymmetrical root morphology that in turn destabilizes standing trees, making them 213 

more vulnerable to windthrow during storm events. Thus, our work suggests a unique interactive 214 

response to press-pulse stressors, where root adaptations to long-term sea level rise increases tree 215 

mortality from episodic wind events. This scenario differs from conventional press-pulse theory 216 

in that adaptation to chronic stress (i.e., sea level rise) is increasing the vulnerability to episodic 217 

stress (storms), rather than the tolerance to two additive stressors determining system 218 
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vulnerability. Moreover, as the dominant forest species of the marsh-forest ecotone along large 219 

sections of the US Atlantic Coast (Brinson et al. 1995, Williams et al. 1999), the interactive 220 

response of red cedar is not only a species response, but also defines an ecosystem level response 221 

to press-pulse disturbances, where forest mortality results in a fundamental shift to a salt marsh 222 

ecosystem. Together, these findings help broaden conventional press-pulse theory to include 223 

non-additive effects, provide a mechanistic explanation for curious patterns of coastal forest 224 

retreat, and suggest that simple topographic projections may miss important physiological 225 

adaptations that potentially govern the response of coastal forests to sea level rise and storms.  226 
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FIGURE CAPTIONS 352 

Figure 1.  A) Aerial photograph of the Catlett Islands study site (Virginia, USA), where red 353 

circles denote measured windthrown trees in a rapidly retreating coastal forest. B) The exposed 354 

root plate of a windthrown eastern red cedar, illustrating root asymmetry in our study area. The 355 

schematic illustrates the measured roots and fall direction relative to the aspect, where the uphill 356 

direction (forest) is towards the top-right and the downhill direction (marsh) is toward the 357 

bottom-left. Downslope roots were oriented towards the salt marsh, upslope roots were oriented 358 

towards the forest, and alongshore roots were oriented parallel to the marsh-forest boundary. In 359 

the photograph, the size and length of roots are dominant in the upslope direction. 360 

Figure 2. Rose diagram of tree fall direction (a,c) and wind direction (b) in an eastern red cedar 361 

coastal forest. In panel a, tree fall directions are oriented in their cardinal direction, where the top 362 

of the rose diagram indicates a Northward fall direction. In panel b, wind directions are oriented 363 

in their cardinal direction (i.e., top = North), and represent the highest 1% of winds (>15 m/s) 364 

measured at the York Spit Buoy, Chesapeake Bay, VA. In panel c, fall directions are oriented 365 

relative to topographic aspect, where the top of the rose diagram represents downslope direction.  366 

Figure 3. Rooting characteristics of individual windthrown eastern red cedar trees in upslope 367 

(i.e. towards freshwater) and downslope (i.e. towards salt marsh) directions. Panels a-c report the 368 

length (a), largest circumference (b), and the total number of primary roots (c). Panel d reports 369 

the average root length in the upslope and along-slope directions. Datapoints represent individual 370 

trees, where points above the 1:1 line represent trees with rooting characteristics that are 371 

dominant in the upslope direction. Also shown are the average length (𝐿𝐿�𝑈𝑈, 𝐿𝐿�𝐷𝐷) and 372 

circumference (𝐶𝐶�̅�𝑈, 𝐶𝐶�̅�𝐷) of all trees in the upslope and downslope directions, and the average 373 

ratio between them for each individual tree (𝑅𝑅�𝐿𝐿, 𝑅𝑅�𝐶𝐶).  374 
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