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Abstract

We present a method of selecting quasars up to redshift ≈6 with random forests, a supervised machine-learning
method, applied to Pan-STARRS1 and WISE data. We find that, thanks to the increasing set of known quasars, we
can assemble a training set that enables supervised machine-learning algorithms to become a competitive
alternative to other methods up to this redshift. We present a candidate set for the redshift range 4.8–6.3, which
includes the region around z=5.5 where selecting quasars is difficult due to their photometric similarity to red and
brown dwarfs. We demonstrate that, under our survey restrictions, we can reach a high completeness (66%±7%
below redshift 5.6/ -

+83 %9
6 above redshift 5.6) while maintaining a high selection efficiency ( -

+78 %8
10 / -

+94 %8
5 ). Our

selection efficiency is estimated via a novel method based on the different distributions of quasars and
contaminants on the sky. The final catalog of 515 candidates includes 225 known quasars. We predict the
candidate catalog to contain additional -

+148 33
41 new quasars below redshift 5.6 and -

+45 8
5 above, and we make the

catalog publicly available. Spectroscopic follow-up observations of 37 candidates led us to discover 20 new high
redshift quasars (18 at 4.6�z�5.5, 2 z∼5.7). These observations are consistent with our predictions on
efficiency. We argue that random forests can lead to higher completeness because our candidate set contains a
number of objects that would be rejected by common color cuts, including one of the newly discovered redshift 5.7
quasars.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Quasars (1319); Supermassive black holes
(1663); High-redshift galaxies (734); Random Forests (1935); Classification (1907)

Supporting material: machine-readable tables

1. Introduction

Large samples of luminous high-redshift quasars not only allow
us to study the onset of black hole growth and supermassive black
hole formation (Volonteri 2012), they are also essential probes to
study the evolution of the intergalactic medium when the universe
was only around a billion years old. For example, measurements of
the Gunn–Peterson trough in spectra of quasars at z≈6 indicate a
rapid increase in the fraction of neutral hydrogen between redshift
5.5 and 6, putting strong constraints on the end of cosmic
reionization (Gunn & Peterson 1965; Becker et al. 2001; Fan et al.
2006; McGreer et al. 2015).

The quasar luminosity function (QLF) traces the spatial
density of quasars throughout cosmic time, and helps us to
understand the evolution of supermassive black holes
(Schmidt 1968; Boyle et al. 2000; Croom et al. 2004; Ross
et al. 2013). At high redshift, small sample sizes lead to large
uncertainties in the determination of the exact shape and
evolution of the QLF (Jiang et al. 2008; Venemans et al. 2013;
Kashikawa et al. 2015; Matsuoka et al. 2018b; Wang et al.
2019; Yang et al. 2019). Nonetheless, current results still allow
for physical conclusions: for example, quasars are likely not the
main producers of reionization photons (Willott et al. 2010;
McGreer et al. 2013). The QLF can also be used to estimate the

number of quasars future surveys will be able to find (e.g.,
Willott et al. 2010).
All of these studies rely on well-defined, spectroscopically

confirmed quasar samples. Therefore, we must be able to
identify and confirm high-redshift quasars with a well-defined
selection function, and maximize efficiency and completeness
to best use limited observational resources.
To date, around 8×105 quasars have been spectroscopi-

cally identified through a wide range of efforts (Schmidt 1963;
Hewett et al. 1995; Boyle et al. 2000; Richards et al. 2002;
Dawson et al. 2013, 2016; Lyke et al. 2020). While most of
them are found at low to intermediate redshifts, there have been
several specialized efforts to find high-redshift quasars in large-
area surveys. For this work, we define high redshift to mean
z>4.7. This class of high-redshift quasars currently has
thousands of known objects, with contributions from Fan et al.
(2000), McGreer et al. (2013), Wang et al. (2016), Bañados
et al. (2016), Jiang et al. (2016), Yang et al. (2017, 2019), and
Matsuoka et al. (2018a), among others.
At redshifts above z=4.7, the Lyα emission line is

significantly redshifted into the i band and even redder
wavelengths. Furthermore, the blueward flux is absorbed by
the intervening hydrogen, creating the so-called Lyman break
in the spectrum. It is therefore essential to use infrared
photometry to constrain the quasar continuum. Combining
infrared with optical photometry then enables one to detect the
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Lyman break, differentiating these quasars further from other
objects.

Many selection methods for high-redshift quasars make use of
the broadband colors and magnitudes of large photometric
catalogs and combine them with information about the morph-
ology, time variability, X-ray or radio detections, position, and
proper motion (McGreer et al. 2009; Assef et al. 2011; Palanque-
Delabrouille et al. 2011; Bañados et al. 2015, 2016, 2018;
Bailer-Jones et al. 2019; Kozłowski et al. 2019). Sophisticated
color cuts define selection regions in color–color space to
separate quasar and contaminant distributions (e.g., Richards
et al. 2002). This leads to well-defined selections that are easily
reproducible and can be justified with physical reasoning (e.g.,
the redshift evolution of the Lyα emission through the broadband
filters). However, color cuts might not make use of all the
available information, due to ignoring correlations in the full
high-dimensional color space. Furthermore, they represent hard
cuts, potentially missing quasars scattering out of the selection
regions, which could be remedied by a more probabilistic
approach (e.g., Mortlock et al. 2012). On the other hand, the
majority of high-redshift quasars have been found by using color
selection criteria (Bañados et al. 2016; Yang et al. 2017). Often,
simulations of high-redshift quasars were used to inform these
color cuts (McGreer et al. 2013).

Another method to exploit the photometric information of large
surveys is spectral energy distribution (SED) fitting. The best fits
to templates of appropriately redshifted quasar spectra are often
compared with best fits of their main contaminants (Reed et al.
2017). This method relies on a correct understanding of the
evolution of quasars and also the most common contaminants, but
makes effective use of the photometric information.

Machine-learning methods have been successfully employed
to select quasars up to intermediate redshift z∼4.7 (Richards
et al. 2009; Bovy et al. 2011; Jin et al. 2019; Khramtsov et al.
2019). From a range of available methods, we adopt random
forests, a supervised machine-learning approach that has been
successfully used for quasar selection (Schindler et al. 2017;
Nakoneczny et al. 2019; Yèche et al. 2020). We choose random
forests for their robustness and fast training, but expect that we
could achieve comparable results with other common
approaches. In recent comparisons for quasar searches, random
forest achieved results similar to those of Support Vector
Machines, XGBoost, and Artificial Neural Networks (Schindler
et al. 2017; Khramtsov et al. 2019; Nakoneczny et al. 2021).
Our main focus will be to demonstrate that we can successfully
extend a supervised machine-learning approach to the high-
redshift domain even though the training samples are
significantly smaller than at lower redshift.

In the following, we will demonstrate that there are enough
known objects in this class to effectively train a random forest
algorithm to select these quasars using photometric data from
the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS; Chambers et al. 2016) and the Wide-field
Infrared Survey Explorer (WISE; Wright et al. 2010) up to
redshifts of 6 while only missing objects in a relatively small
range around z≈5.4. In Section 2, we discuss the catalog data
we use and how we assemble our training set. In Section 3, we
introduce the random forest selection approach and evaluate it
via cross validation. In Section 4, we discuss a method to
predict the efficiency of our selection, and in Section 5, we
present the resulting high-z quasar selection. In Section 6, we
present the results of the observation of some of our candidates.

These include the discovery of 20 new high-z quasars. We
discuss our results and summarize our findings in Section 7.
Unless otherwise noted, all magnitudes are given in the AB

system and are already corrected for galactic extinction using
the Schlegel et al. (1998) dust map with the updated filter
corrections from Schlafly & Finkbeiner (2011).9 Furthermore,

Table 2
The Data for the Training Set Fulfilling our Photometric Restrictions

# of Stars and Quasars

Description A-K M L,T z�4.7 z>4.7

Schindler+2019 2.0E5 5.8E4 1145 1.6E5 129
Dwarfs L 34 436 L L
Additional High-redshift

Quasars
L L L 137 337

Note. The main part is adapted from Schindler et al. (2019) based on SDSS
data. The additional red and brown dwarfs are from the dwarf archive, and the
additional high-redshift quasars are an assemblage of recent surveys.

Figure 1. Dust-corrected Pan-STARRS PSF magnitude in the z band vs.
redshift for all known quasars in the training data. In gray, we show the
Schindler et al. (2019) data set with the densest part shown as density contours.
In black, we show the additional quasars from high-redshift surveys. We note
that there is an underdensity of known quasars around redshift 5.5.

Table 1
Classes Used for the Random Forest Classification: A- to T-type Stars and Four

Redshift Bins for Quasars (Redshift Ranges Given Below the Classes)

—— Stars —— ——————–Quasars ——————–

A F G K M L T vlow-z low-z mid-z high-z
(0, 1.5] (1.5, 3.5] (3.5,4.7] z>4.7

Note. The goal is to find objects in the high-z bin.

9 The filter corrections for WISE W1 and W2 are extrapolated values taken
from IRSA; see, e.g., irsa.ipac.caltech.edu/workspace/TMP_toDGRk_
31798/.
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we use a standard flat ΛCDM cosmology with ΩΛ=0.7,
Ωm=0.3, and = - -H 70 km s Mpc0

1 1.

2. Data Preparation

2.1. Catalog Data

The data we are mining for quasars is a cross-match between
the publicly available Pan-STARRS DR1 (described in

Chambers et al. 2016) and ALLWISE (Cutri et al. 2021)
catalogs. The ALLWISE survey is a release of the aggregated
data from WISE and its extended mission NEOWISE (Mainzer
et al. 2011) up until 2013. From Pan-STARRS, we use the five
stacked PSF magnitudes (g r i z, , ,PSF PSF PSF PSF, and yPSF),
stacked aperture magnitude in the z band (zAPERTURE), mean
position, and the objectinfoFlag. From WISE, we use the 3.4
and 4.6 μm broadband magnitudes (W1, W2), their signal-to-
noise ratio (W1 , W2s n s n), position, the active deblending flag
(na)- and the number of PSF components used for the PSF
fitting (nb).
We use the Python framework Large Survey Database

(Juric 2012) to cross-match the two catalogs, applying the
following selection criteria:

< z14 20.5 1PSF ( )

Figure 2. Summary plot highlighting the color information we use to separate stars and quasars as well as to estimate the redshift of quasar candidates. We show
color–color plots for the Pan-STARRS and WISE bands we use. All magnitudes are in AB and extinction-corrected. We show ellipses for each stellar class containing
about 95% of the training set. The T class is not shown, as its ellipse would be too large. The quasar track in black shows the redshift evolution of quasar in color
space. To find the track, we averaged quasar colors in our training set binned in steps of Δ z=0.1. Finally, as gray pluses, we show the high-z candidate set that we
publish with this paper and describe in Section 5. It contains 515 promising quasar candidates at high redshift. Candidates that are missing detections in the g, r, or i
bands are not shown.

Table 3
To Select the Features, We Run the Random Forest Classification with All

Available Flux Densities and Ratios

Feature Importance (%)

F Fg r 17

F Fy W1 17

F Fr i 14
F Fi z 9
F Fz y 9

F FW1 W2 8
Fi 4
FW2 4
Fy 4
FW1 4
Fz 4
Fr 3
Fg 3

Note. The importance is calculated as the (normalized) total reduction of the
splitting criterion brought by that feature. We decide to use all flux density
ratios as well as Fz and FW1.

Table 4
Classification Results When Using All Classes from Table 1 Compared to Only
Three Classes (High-z, Other Quasar, Star) or Binary Classes (High-z or Other)

Recall (%) Precision (%)

Classes Macro High-z Macro High-z

All 74±5 83±3 78±4 89±10
Three 93±2 79±5 96±4 88±12
Binary 87±2 74±5 94±6 88±12

Note. The macro values for precision and recall improve for fewer classes, as
expected. However, there is no benefit for the targeted high-z class, so we will
use the full set of classes.
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y is not None 2PSF ( )
- - z z0.3 0.3 3PSF APERTURE ( )

>  < - galactic latitude 20 or 20 4( )
objinfoFlag has and _ 5GOOD GOOD STACK ( )

2. 0 match in ALLWISE 6( )
W1 5 7s n ( )
W2 3 8s n ( )

= =0, 1. 9na nb ( )

The resulting catalog has around 72 million objects. The z band
is used to select the brightness range from 14 to 20.5 in
magnitude. Since the brightest quasar at z�4.7 in our training
data (see Section 2.2) has a z-band magnitude of zPSF=17.3,
there is only a remote chance to miss quasar lenses by adopting
a bright limit for our selection. We also choose a faint limiting
magnitude on the z band that is well above the detection limit,
to ensure the reliability of the photometry. The 5σ detection
limit for the Pan-STARRS survey in the stacked z band for
point sources is 22.3 mag in AB (see Table 11 of Chambers
et al. 2016). They also showed that, in the z band, the 98%

Figure 3. (a) Confusion matrix for the random forest classification on the cross-validation set. Overall, the color information given to the random forest enables it to
differentiate the classes for the majority of objects. For high-z quasars, we identify the main contaminants as M, L, and T dwarfs. The probabilities do not represent the
performance of observations, since the ratio of stars to quasars is underrepresented. (b) Cross-validation results for the photometric estimate of the redshift based on
random forest regression for quasars with z�4.5. The upper plot shows a histogram of the deviation between predicted and true redshift. The mean deviation, 0.015,
is shown as an orange line. The lower plot shows the dependence on redshift as an absolute error vs. redshift plot. The length of the line indicates the redshift bin used
for averaging, chosen so that the number of objects per bin is constant.

Figure 4. Test of the efficiency estimate for a subsample of the Richards et al.
(2002) selection with 30.5% efficiency (number of spectroscopically confirmed
quasars/number of candidates). Our estimate for this data set gives -

+29.1 %3.4
1.9

for the efficiency, showing that our method works for this test case. The plot
shows a normalized histogram of the candidates in Galactic latitude. The fit
shown in orange is the weighted combination of the M star (blue dots) and
uniform (violet dashed) distributions, weighted by the efficiency. The lower
plot shows the difference of the distributions to the candidate set. In the corner,
a sky plot shows the area covered by our test sample in galactic coordinates.
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source completeness limit is fainter than 20.5 mag on most of
the sky, especially away from the galactic plane (see Figure 17
of Chambers et al. 2016). The criteria on the z band
automatically remove all objects with a missing z-band
detection. We further require the y band not to be “None.”
However, the other bands of Pan-STARRS (g, r, and i) can be
missing because we expect the targeted high-redshift quasars to
have very little flux in these bluer bands.

We use the difference of the PSF and aperture magnitude in the
z band to actively exclude sources with extended morphologies
from our selection. The cutoff of - = z z 0.3PSF APERTURE is
informed by Figure 3 in Bañados et al. (2016), where the
magnitude difference is compared for stars, quasars, and galaxies.
This cut is designed to effectively remove galaxies from our
selection; however, it may also reduce our sensitivity to lensed
quasars. In our final candidate selection (see Section 5), there are
only a few remaining galaxies that were removed during visual
selection, so this approach is sufficient for our purpose.

We furthermore restrict our selection to Galactic latitudes of
b 20∣ ∣ , where the contamination by galactic stars decreases

significantly. We require the photometry to fulfill the GOOD and
GOOD_STACK flags in the objectinfoFlag from Pan-
STARRS. These are quality flags provided by Pan-STARRS to
indicate that the object has a good-quality measurement in the data
and a good-quality object in the stack (>1 good stack
measurement). We matched our objects with ALLWISE with a
radius of 2 0 using only the closest match. We require that W1
and W2 are detected with respective signal-to-noise ratios of 5 and
3. We exclude obviously blended sources via the active deblending
flag (na) and the number of PSF components used for the PSF
fitting (nb) from WISE. These WISE flags ensure more reliable
photometry, but we note that they reduce our sensitivity to lensed
quasars and may remove some quasars with close-by sources.
To determine which survey limits our quasar selection, we

consider the set of additional high-redshift quasars, discussed in
the next section. Of a total of 1001 quasars, 936 have a Pan-
STARRS match, and 657 fulfill conditions (1–3) mostly limited
by the brightness cut in the z band.
We contrast this with 710 objects that have an ALLWISE

match and fulfill ALLWISE photometry conditions (6, 7),
while 647 additionally fulfill condition (8). Both the Pan-
STARRS and ALLWISE photometry requirements remove a
similar fraction of known quasars, and the remaining objects
have a large overlap: 565 objects fulfill conditions (1–3 and
6–8). This shows that our requirements on both surveys are
well-balanced for our targeted class. To use fainter objects in
the Pan-STARRS data, we would also require deeper infrared
data. We note that, in Table 2, we only list additional quasars
that are not already in the other set.

2.2. Training Data

Random forests are a supervised machine-learning algorithm
and therefore heavily rely on representative training sets. It is
essential to assemble a training set consisting of spectro-
scopically identified objects representing the wide range of
different objects in our catalog data. For a reliable selection of
high-redshift quasars at z=4.7–6, we need to make sure to
construct a representative training set. This means that we need
to include all potential contaminants that populate the same color
space, like M, L, and T dwarfs. We do not include galaxies in
our training set, because we already removed extended sources
from our data set (see selection criterion 3). The training classes
used in our random forest selection are listed in Table 1.
We do not include O- and B-type stars, as they are far from

high-redshift quasars in color space. These classes are irrelevant
since they likely get assigned the label of the most similar star
class, but are not confused with our targeted quasars. We exclude
the Y-type brown dwarfs since we do not have many objects of
that class and they are also not relevant contaminants for quasars
with z∼5–6. Similarly, there are classes of objects that are
underrepresented in our training set, like low-redshift BAL
quasars, which are known contaminants for high-redshift quasars.
We built our training set with the spectroscopic training set

from Schindler et al. (2019). It is based on the spectroscopically
confirmed quasars from the Sloan Digital Sky Survey (SDSS)
DR7 and DR12 quasar catalogs as well as the spectroscopically
confirmed stars from SDSS DR 13. The SDSS data were
matched to Pan-STARRS within 3 98, using only the closest
match. For a full discussion of the data processing, see the
referenced paper. We take only the Pan-STARRS position and

Figure 5. Testing the efficiency estimate with SDSS spectroscopic data from
Richards et al. (2002). We combine samples of quasars and stars from the
spectroscopic set to create data sets with a range of true efficiencies. The plot
shows estimates for the efficiency from our method vs. the true efficiency for
these data sets. The black line indicates the correct result. The errors on the data
points are the 68% confidence intervals, which only capture the statistical error.
This plot shows that there is also a systematic error, but the method is working
overall.

Table 5
Random Forest Classification Results for the Pan-STARRS+WISE Catalog

A 144, 221 T 475
F 12, 786, 096 vlow-z 719, 129
G 1, 525, 230 low-z 973, 060
K 17, 709, 898 mid-z 1, 217, 562
M 26, 648, 920 high-z 5, 175
L 25, 835

Note. The objects are assigned a class from Table 1 based on the highest
probability. The number of quasars is likely inflated. Data artifacts and blended
sources are not yet accounted for. The Data contains about 59 million point-like
objects that represent about 45% of the sky for our brightness limits.
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classification as well as the redshift for the quasars, and reprocess
the rest of the data for internal consistency. We expand this
training set with more objects in the relevant color space region. To
increase the number of red and brown dwarfs, the Dwarf Archive10

is used. We match their positions to Pan-STARRS within 2 0.
This should be sufficient for our purposes, but we acknowledge
that a more careful cross-match considering proper motion
would increase the number of dwarfs further. To supplement
our training set with additional high-z quasars, we added a
comprehensive list of quasars known as of mid-2018. Again,
we cross-match the position to Pan-STARRS within 2 0. The

major sources are Wang et al. (2016), Bañados et al. (2016),
Jiang et al. (2016), McGreer et al. (2013), Matsuoka et al.
(2018a), Yang et al. (2017), and the preliminary results of Yang
et al. (2019) as of mid-2018.
For each of our three data sets, we download the Pan-

STARRS data from MAST using the CasJobs11 interface. We
cross-match with ALLWISE with a radius of 2 0 using IRSA12

and only using the closest match. To include as many training
objects as possible, we omit some of our photometric selection

Figure 6. Probability for the high-z redshift class vs. predicted redshift for our catalog data. The low limit is from the transition to the mid-z class, and the high limit
comes from our brightness requirement on the z band. The candidates, including known objects and artifacts, are shown in black. The majority is shown via a contour
plot with three logarithmic density levels (the normalization of the numbers is arbitrary). The remaining objects are shown as black dots. Empty orange circles show
the cross-validation quasars with which we estimate the completeness of the selection. Orange crosses show all known stars from the training set that are erroneously
still in the selection. We show our high-z candidate set (Section 5) as a blue line. The observation results are shown as blue markers (Section 6), including preliminary
ones not in the final selection.

Figure 7. The gray points show the estimated efficiency for different cutoffs on
the high-z probability. We separate the data into two ranges of predicted
redshift: 4.8<z�5.6 and 5.6<z�6.3. Our choices are cutoffs of 0.8 and
0.4, respectively, and are marked light blue. These cutoffs define the high-z
candidate set. Since our candidate set contains known quasars, we know that
the efficiency is at least as high as the fraction of known quasars. We show this
fraction of known quasars for different cutoffs as an orange line.

Figure 8. The solid orange line shows the completeness as a function of
redshift for the high-z candidate set (Section 5.2). We calculated two kde plots,
both for the targeted known cross-validation quasars: one with only the ones
still in the selection and the other for all of them. Dividing the two gives our
estimate for the completeness. For each cross-validation quasar used, we show
a black dot at its redshift at the bottom of the figure. The average completeness
of all cross-validation quasars is -

+71 %6
5 , shown as a dashed gray line with the

1σ error as a shaded box.

10 dwarfarchives.org/

11 casjobs.sdss.org/CasJobs
12 irsa.ipac.caltech.edu/applications/Gator/
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criteria used for the full catalog data. The classification
information added outweighs the downside of them not being
fully representative of the catalog data we collected. We require
conditions (2, 6, and 7) as well as a detection in the Pan-
STARRS z and WISE W2 bands, which means a value entry in
the catalog. Finally, we remove duplicates between our three
data sets based on the Pan-STARRS ObjID.

In total, the Schindler et al. (2019) data set gives us 259,240
stars and 164,318 quasars that fulfill our photometric require-
ments. In addition to the SDSS DR7 and DR12 quasars, we add
a total of 474 additional quasars from high-redshift surveys.
We also add an additional 470 dwarfs from the Dwarf Archive.

Table 2 lists the different sources and classifications for the
training set, along with the number of usable objects they add.
In Figure 1, we show a plot of the dust-corrected z-band
magnitude from Pan-STARRS versus redshift for all training
quasars. Outliers beyond magnitude 25 are cut off. At the high-
redshift end, the additional quasars from recent surveys
significantly extend the training set. We note that there is a
visible underdensity of known quasars around redshift 5.5. At
this redshift, quasars are challenging to find, as their colors in
common bands are very similar to those of M stars (Yang et al.
2019).
In Figure 2, we show color–color plots for the objects in our

training set. This highlights that the Pan-STARRS and WISE
bands contain information that will allow us to differentiate the
classes listed in Table 1. We note that this visualization
emphasizes how the average color information of quasars
differs from stars and evolves with redshift, but hides the
complexity of applying this to real data. The 5% of stars with
larger scatter than the ellipses shown far outnumber the high-z

Figure 9. The efficiency as a function of the predicted redshift for our high-z
candidate set (Section 5). The light blue data points show the median efficiency
estimates based on our new methodology (Section 4). The redshift error bar
depicts the redshift bin, and the efficiency error is the 68% confidence interval.
The orange line highlights the lower limit of the efficiency based on the known
quasars in the selection. Where the efficiency estimate is above the lower limit,
we expect to find new quasars.

Table 6
Summary for the High-z Candidate Set

Redshift range 4.8<z�5.6 5.6<z�6.3
Number of candidates 409 106
Completeness 66±7% -

+83 %9
6

Efficiency -
+78 %8
10

-
+94 %8
5

Known quasars 171 55
Predicted new quasars -

+148 33
41

-
+45 8
5

Note. The calculation of these properties is discussed in Section 5. All errors
give 68% confidence intervals.

Table 7
List of Columns of the High-z Candidate Set

Column Name Description

WISEDesignation Name in WISE catalog
RAdeg R.A. in Pan-STARRS catalog
DEdeg Decl. in Pan-STARRS catalog
zPSFStackMag z stacked PSF magnitude in Pan-STARRS
HighzProb Probability for high-z class
QsoProb Summed probability for quasar classes
MstarProb Probability for M star class
PredictedRedshift High-redshift regression result
SpectroscopicRedshift Redshift determined from spectrum
KnownQuasar Boolean whether quasar is known in literature
PhotometricFollowUp Boolean whether we obtained photometric follow up
Observed Boolean whether we took a spectrum of the object
StillToObserve Boolean whether object still has to be observed

(This table is available in its entirety in machine-readable form.)

Table 8
Results of the Photometric Follow-up Observations

Wise_designation J Band (VEGA) Promising

J124359.84+173445.3 18.59±0.06 Yes
J140531.13+735243.8 18.45±0.03 Yes
J145836.16+101249.5 18.27±0.02 Yes
J145950.96-181251.7 18.07±0.05 No
J152055.71+431652.4 19.09±0.04 Yes
J152330.66+293539.1 19.61±0.13 Yes

Note. The J-band measurements are calibrated with the 2MASS sources found
in the field of view of our observations. Five out of six objects have J-band
magnitudes consistent with high-redshift quasars, i.e., they fulfill our color cut
in Figure 10 and are therefore promising.

Figure 10. Color–color diagram for observations of six quasar candidates. The
blue dots are the candidates where we observed the J band with NOT (see
Table 8): five out of six are consistent with known quasars at this redshift
(orange triangles). In gray, we show a sample of contaminant red and brown
dwarfs. For the known objects, we only plot the brightest objects where
2MASS gives a measurement of the J band. The black line gives a reasonable
cut for a quasar selection.
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quasars, and the quasars themselves are also scattered. To
reliably classify new objects, we need the full high-dimensional
color information.

2.3. Data Preprocessing

We correct both our catalog data and training set for galactic
extinction based on the dust map of Schlegel et al. (1998),

using the sfdmap13 Python package. The Vega magnitudes in
the ALLWISE catalog are converted to AB magnitudes using
the constants - =W1 W1 2.699AB Vega and - =W2 W2AB Vega
3.339 (Sec IV 4h, Cutri et al. 2012). All magnitudes are then
converted to flux density in Jansky units. Our catalog

Figure 11. The discovery spectra of the newly identified quasars sorted by spectroscopic redshift. The dark blue, orange, and red bars denote the center positions of the
broad Lyα, Si IV, and C IV emission lines according to the spectroscopic redshift.

13 github.com/kbarbary/sfdmap
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restrictions allow objects with nondetections in the g, r, and i
bands to be considered. However, the random forest method
cannot handle null values. We work around this by replacing
the missing values with a fixed value that is fainter than the
detection limit of the catalog. This way, the resulting flux
density ratios will be close to the true values. We choose 1e
−10 Jy or a magnitude of 33.90 in the AB system as the
replacement value. We replace all missing g, r, and i band
measurements with this value.

For our analysis, we consider the flux densities Fg, Fr, Fi, Fz,
Fy, FW1, and FW2, and the flux density ratios F Fg r , F Fr i ,
F Fi z, F Fz y, F Fy W1, and F FW1 W2 as features. In Section 3.3,
we choose a subset of these based on their individual
information contribution.

3. Random Forest Selection

In this section, we present our approach of selecting
candidates with random forests, a popular method for
supervised machine learning (Ho 1995; Breiman 2001). We
first use a random forest classifier to separate our catalog data
into the classes from Table 1, and then a random forest
regressor to find a redshift estimate for the most promising
candidates. We briefly describe how the algorithm works,
introduce the common metrics to evaluate the classification/
regression, and then discuss our cross-validation results.

3.1. Introduction to Random Forests

The random forest algorithm trains a large set of binary
decision trees using a training set with a set of features and
known classes or redshift. Each binary tree makes a prediction
for the probability distribution of classes or the expected
redshift for our quasar candidates. In the scikit-learn imple-
mentation (Pedregosa et al. 2011) adopted here, the final

pseudo-probability distribution for the classes or the expected
redshift is the average of the prediction from each tree. We
decide to use the photometric information in the form of flux
density ratios as well as the two flux densities, resulting in
k=8 features.
The binary decision trees are built from the training set by

determining the best cut along one feature axis via a
minimization problem. For the classification, we minimize
the Gini impurity - åG p1 i

k
i
2( ≔ ), and for the regression, the

sum of squared errors in redshift. This cut will split the sample
in the current node of the tree into two subsamples—its
children. The remaining objects in each child give the
probabilities for each class as their percentage share of the leaf
(pi) or the redshift estimate through the average redshift of the
objects in the child. The tree will be developed until a stopping
condition is reached (e.g., a specified minimum sample size per
child node or the maximum depth of the tree). For a quasar
candidate, the prediction is based on the pi or average redshift
of the deepest child node to which it belongs.
Single decision trees are prone to overfitting the training

data. Hence, a random forest uses ensembles of randomly built
decision trees to counteract overfitting. The source of
randomization is twofold: (1) Individual bootstrap samples
from the training set are drawn to build the trees. (2) Only a
subset ( k⌊ ⌋, in our case) of all k features are considered to find
the best split for each internal node. This decreases the running
time and reduces the correlation between the individual trees
further than just training on the bootstrap samples of the
training data. Otherwise, features that are strong predictors
would be cut very similar for most trees and thereby result in
correlated trees. This was empirically demonstrated by Ho
(1998). Correlated trees are undesired since the underlying
assumption to be able to average the trees is that they are
independent.

Table 9
List of the Newly Discovered Quasars Reported in this Work

WISE Designation PS Mean R.A. PS Mean Decl. z Mag M1450 Tel/Instr Obs. Date z
(deg) (deg) (AB) (AB) (YYMMDD)

J000425.84-211054.2 1.10781106 −21.18168195 19.57820624 −26.77032395 SOAR/G HTS 180604 5.09
J001150.03-244400.1 2.9585218 −24.7333892 19.30589762 −27.45251895 SOAR/G HTS 180604 5.41
J012947.32-295235.1 22.44703224 −29.87629848 19.51007577 −26.80463644 SOAR/G HTS 180603 4.83
J013539.29-212628.4 23.9137294 −21.44122046 17.84342435 −28.21850479 SOAR/G HTS 180603 4.91
J084347.77-253155.8 130.9490235 −25.53213628 18.49298484 −27.34917379 SOAR/G HTS 180404 4.72
J085943.27-003613.2 134.9301648 −0.60363371 20.32148047 −25.7887862 SOAR/G HTS 180406 5.03
J093032.56-221207.5 142.6357036 −22.20214902 18.09687224 −27.98936448 SOAR/G HTS 180406 4.86
J094135.48-061547.0 145.39785 −6.26308714 19.29794439 −26.97598817 SOAR/G HTS 180404 5.05
J094418.13-200106.4 146.0756187 −20.01850398 19.05723975 −27.20861384 SOAR/G HTS 180604 4.93
J095139.70-274210.7 147.9153819 −27.70348097 18.39840532 −27.63989338 SOAR/G HTS 180406 4.8
J100451.83-091751.7 151.2159282 −9.29779768 19.22792522 −26.8103096 SOAR/G HTS 180604 4.91
J103020.14-042105.7 157.583914 −4.3515849 18.88467506 −27.02610394 SOAR/G HTS 180404 4.66
J105541.85-103007.6 163.9243208 −10.50207368 19.99007524 −26.51733591 SOAR/G HTS 180406 5.04
J110942.97-285521.0 167.428771944 −28.9223126129 20.035114 −26.02474743 VLT/FORS2 210404 5.01
J141359.37-212713.7 213.4974405 −21.45382469 20.30688036 −25.75043534 SOAR/G HTS 180406 4.92
J142829.63-213059.9 217.1233865 −21.51677998 20.04845089 −25.97715567 SOAR/G HTS 180406 4.87
J150542.94-071718.1 226.4290075 −7.28845091 20.16459203 −26.11565751 SOAR/G HTS 180406 4.99
J152330.66+293539.1 230.8777384 29.5943535 20.17168355 −26.446892 LBT/MODS 190611 5.73
J163752.18+024158.1 249.4674059 2.6995546 19.22674035 −27.09365806 SOAR/G HTS 180602 5.76
J232952.78-200039.1 352.4699164 −20.01088649 18.43736995 −27.82847382 SOAR/G HTS 180603 5.03

Note. The listed z-band magnitude is based on the PSF stacked magnitude from Pan-STARRS and corrected for extinction. The listed redshift is estimated from the
Lyα emission. These spectroscopic redshifts are accurate to about Δz=0.05. G HTS is short for GoodmanHTS.

(This table is available in its entirety in machine-readable form.)
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One of the main advantages of random forests is that their
training is relatively fast. They can run in parallel since the
different decision trees can be calculated independently and
they scale well. A random forest with T trees and N training
objects takesO T N Nlog( ) time to build and can be applied in
O T Nlog( ) time.

More details about the random forest algorithm used can be
found in Bishop (2006, Chapter 14) and Ivezić et al. (2014,
Chapter 9). For this work, the implementation of the random
forest classifier and regressor in scikit-learn (version 0.19.1) by
Pedregosa et al. (2011) for Python is used. The hyperpara-
meters min_sample_split, max_depth, and n_esti-
mators were optimized for the training set using scikit-learn’s
GridSearch function. All unmentioned other hyperpara-
meters are left at their default values.

3.2. Terminology

To evaluate the performance of the classification, we use the
two measures recall and precision. To evaluate them, we use
cross validation. For this, we split our training set into two
parts, train the random forest on one part, and then predict the
classes for the other part. Considering the resulting true
positives (Tp), false positives (Fp), and false negatives (Fn),
recall is defined as

+
R

T

T F
10

p

p n
≔ ( )

and precision is defined as

+
P

T

T F
. 11

p

p p
≔ ( )

We are only interested in objects in the high-z class, so we
consider the objects put into this class as the positives and all
others as the negatives. Each candidate is given a probability to
belong to the high-z class by the random forest classification.
We set a cutoff probability for the high-z class to decide
whether an object will be a valid candidate in our selection.
Changing this cutoff probability allows us to increase the
recall. However, in return, this will lower the precision of our
classification. This is why we need both parameters in order to
fully evaluate the performance of the random forest.

We interpret the recall as an estimate of the completeness of
our selection, i.e., the fraction of all high-z quasars inherent in
our photometric selection the random forest correctly classifies.
Similarly, we interpret the precision as an upper limit of the
efficiency, where the efficiency is the fraction of the final
candidates that are high-z quasars. We will use the terms
completeness and upper limit on efficiency in the following,
and give a justification for our interpretation in Section 3.5.

3.3. Feature Selection

To determine which features to use for our analysis, we run
the random forest classification with all 13 available flux
densities and flux density ratios. In Table 3, we show how
much information gain each feature gives relative to the others.
We calculate these importances as the (normalized) total
reduction of the splitting criterion. As visualized in Figure 2,
the different classes can be distinguished by their colors. We
see this reflected in the feature importances: the flux density
ratios lead to the most information gain for the random forest
(see Table 3). The flux density ratios alone, however, remove

the brightness information that would capture a luminosity
evolution for different classes. To capture the brightness
information, we choose to use one flux density per survey.
Since each flux density has approximately equal importance,
we choose the z and W1 bands, where our targeted quasars
have the most reliable detections in Pan-STARRS and
ALLWISE. Therefore, we choose to use all flux density ratios
as well as Fz and FW1.

3.4. Class Selection

Our training data is labeled with the classes given in Table 5.
It is worth investigating if reformulating the problem as a
binary problem (high-z quasar versus other) or three-class
problem (high-z quasar versus other quasar versus star) would
improve our results. For each case, we run a fivefold cross
validation with our random forest. We calculate a range of
statistics summarized in Table 4, with errors giving the
standard deviation of the five runs. Precision and recall are
calculated as defined in Section 3.2. The “macro” subcolumn is
the average over all classes weighted equally, and the “high-z”
subcolumn is the precision and recall just for our targeted class.
As we reduce the complexity of the classification problem by
using fewer classes, the macro metrics should get better
because confusion between classes that we combine gets
ignored. This is the case: for both the binary and three-class
problems, the macro statistics are significantly better. However,
the recall and precision for the high-z class are not getting
better. In fact, the recall in the binary case is actually lower
with 1.6σ. We conclude that, in our analysis, we do not see an
improvement from reducing the number of classes, so we will
use the full set of classes as defined in Table 1.

3.5. Cross Validation

Under the assumption that the training sample represents the
true distribution of objects on the sky and all sources are real,
cross validation of our training sample can predict the
performance of the algorithm. This means that, under the
assumption that our training set contains a representative set of
quasars, our definition of completeness is a reasonable measure
for the fraction of all findable quasars that our random forest
correctly identifies. However, we will overestimate the
efficiency of our algorithm if we measure it with the precision,
because the number of M stars is even more dominating on the
sky than in our training data and we are neglecting artifacts in
the Pan-STARRS+WISE data set. This is why we identify the
precision as an upper limit for the efficiency and will use a
different approach to get a more realistic estimate in Section 4.
Still, cross validation lets us evaluate the strengths and

weaknesses of the algorithm. We train the random forest
classification and regression on a random subsample of 80% of
the training set and apply it to the remaining 20%. We can then
compare the predicted class and redshift with the true ones. By
separating the data for training and testing, cross validation
avoids biased results from overfitting the data.
The random forest classification assigns each test object

probabilities for each class. Later, we can simply select our
high-z candidates by applying a threshold on the high-z
probability. First, however, we are interested in a comparison
of all classes, so the most logical choice is to assign each object
to the class with the highest probability. In Figure 3(a), we
show the results of the classification on the cross-validation set
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in the form of a confusion matrix. The matrix depicts how
many objects of the true label class on the y-axis are classified
to belong to the predicted label class on the x-axis. The
majority of objects fall into the diagonal fields, demonstrating
that our classifier assigned the correct label to them. The
confusion between different types of stars is not concerning for
our goal. Confusion between neighboring redshift bins is
largely the result of objects right at the border between them,
and therefore is also not concerning. As expected, the most
relevant contaminants for high-z quasars are M, L, and T
dwarfs, as the random forest classifies more than 15% of high-z
quasars into those classes. In this case, there is only one star
labeled as a high-z quasar, but the balance between complete-
ness and efficiency depends on how we define the cutoff
probability for a high-z classification. Therefore, the highest-
probability approach chosen here maximizes efficiency for
lower completeness. Since M, L, and T dwarfs far outnumber
the high-z quasars on the sky, the contamination will become
significant at the redshift region of the strongest overlap in
color space at around z≈5.4. Since the random forest
regression will predict these objects around the same redshift,
we will be able to exclude a large fraction of contaminants
based on the regression by excluding highly contaminated
redshift regions. A common approach to quantify the balance
between completeness and efficiency is the ROC curve, which
in our case is an almost perfect step function. The ROC score
(area under the curve) for the high-z class versus the others is
0.99993.

We further analyze how accurately the random forest
regression predicts the redshift for a cross-validation set of
20%. We will differentiate two versions of the random forest
regression. First, the full regression, where we train on quasars
from the full range and can predict the redshift of any quasar.
Second, the high-redshift regression, where we only train with
z>4.5 quasars and use it to predict the redshift of objects with
class high-z. While the former covers a larger redshift range,
the latter provides more accurate redshift estimates for the high-
z class candidates, because low-redshift outliers in the full
regression training set can skew the result to lower redshifts.

The top of Figure 3(b) shows the distribution of the
difference between the predicted and true redshifts for the
high-redshift regression when applied to the 20% test set of the
training data. Ninety percent of objects have predictions within
0.2 of the true redshift. Since the algorithm can only find new
quasars that look similar in color space to the training set, it is
to be expected that this represents the performance of
observations. As we will see in Section 6, this accuracy is
consistent with test observations. It should be noted that the
accuracy of our redshift estimate is a strong function of the
redshift. This is highlighted in the bottom of Figure 3(b). Here,
we show the absolute error of the prediction versus the true
redshift. For this, we ran the prediction multiple times with
different training set splits, and then averaged the error over
bins with equal amounts of objects. One outlier around redshift
4.7 was removed. We expected this increase of error with
redshift because (1) there are fewer training objects at higher
redshift and (2) higher-redshift quasars appear fainter and thus
have higher photometric uncertainties. We also note that,
especially toward the high-redshift end, the number of training
and test objects becomes very small, so overfitting and redshift

gaps in the training set can lead to significant additional
inaccuracy in the redshift estimate when applying it to new data
that is not captured in our cross validation. The total training set
for the high-redshift regression has 695 objects, only 50 of
which are above redshift 6. The full regression applied to the
same cross-validation set of z�4.5 quasars gives similar
results, but with a bias toward lower redshifts. In this case, only
69% of cross-validation objects have predicted redshifts within
0.2 of the true redshift. In addition, the mean of the predicted
redshifts is too low by δz=−0.24, because some objects are
incorrectly predicted to be very low-redshift quasars. There-
fore, we decided to use the high-redshift regression for our
candidate selection.

4. Estimating the Selection Efficiency

While the random forest approach returns a reasonable
estimate for the completeness, the efficiency is overestimated
due to the underrepresentation of contaminants in the training
set. One way to deal with class imbalance is to use priors for
the different classes—as done in Bailer-Jones et al. (2019), for
example. However, the random forest approach we use here
does not necessarily produce reliable probabilities, even for the
case of balanced classes, which would be necessary (Olson &
Wyner 2018).
Therefore, we turn to a different approach to independently

estimate the efficiency by exploiting the position information of
our candidates that we have not used for the random forest.
When averaging over large enough scales, the distribution of
stars on the sky is a function of galactic latitude, with more
stars near the galactic plane. Quasars are more uniformly
distributed over the sky, at least when averaging relatively large
areas, so small-scale clustering averages out. Therefore, the
idea is to estimate the distribution of target quasars and the
dominant contaminants along the galactic latitude. This then
allows us to estimate the efficiency by determining which
combination of the two best recovers the distribution of our
candidate set.
Any model of the stellar distribution on the sky will be

dependent on the sensitivity limit of the survey and the stellar
type. Therefore, we refrain from building a model of the stellar
sky distribution, but instead extract the distribution from our
catalog data. The dominant contaminants for our targeted high-
z quasars are M stars (see Figure 3(a)). To have enough objects,
we make use of our random forest classification by taking one
million objects that are predicted to be M stars (i.e., the M-star
class has the highest probability). We note that this sample is
not perfect and likely contains some artifacts, such as residual
galaxies that were missed by our morphology cut and
misclassified quasars. Our cross validation in Section 3.5 has
shown, however, that the M-star classification is quite reliable,
making this adequate for our purposes. This allows us to
estimate the distribution of contaminants of our selection
(STARS). We model the quasar distribution (QUASARS) by
uniformly sampling sources on a sphere, applying the same
restrictions on the sky area.
We now calculate normalized histograms (h) as a function of

galactic latitude for the candidate sample (CAND), the uniform
distribution (QUASARS), and the M stars (STARS) using the
same bins in galactic latitude. Now we assume that the
distribution of quasar candidates can be modeled as a linear
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combination of the uniform distribution and the M stars:

a a= + -h h h1 . 12i i iCAND, QUASARS, STARS,( ) ( )

The suffix i indicates the galactic latitude bins, and α is the
ratio of quasars to stars in our candidate set. The efficiency of
our candidate set is equivalent to the fraction of quasars to stars
in our candidate set. Therefore, determining α provides a direct
estimate of the efficiency of our candidate set.

To do this, we perform a minimization algorithm to find α.
In particular, we minimize the sum of the absolute differences
between the left- and right-hand sides. Figure 4 shows an
example from our test of the method. For very large bin sizes,
there is no information content left, since any slope gets
averaged out. For very small bin sizes, the quasars start to show
measurable clustering, many bins of candidates are empty, and
the local depth variations in the survey do not average out
anymore.

We sample a range of different bin sizes, randomly
distributed between 20 and 100 bins and determine α for each
realization. We quote the median of all determined quasar-to-
star ratios and the 16th and 84th percentiles as the error. We
implicitly assume that the estimates are independent of each
other. For our test with SDSS data below, we did not observe
any concerning correlation. Still, this error only quantifies the
statistical error.

Our assumptions on the distribution of quasars and
contaminants may introduce systematic errors. We assume that
the contaminants are mainly M stars, neglecting L and T
dwarfs, which might have slightly different distributions in our
data set. By construction, this method estimates the fraction of
uniformly distributed objects, so it does not differentiate
between quasars in our targeted redshift range and outside of it.
Since we saw in Section 3.5 that lower-redshift quasars can be
contaminants for our high-z selection, this has to be kept in
mind. Furthermore, regions of high Galactic dust extinction
may attenuate the quasar flux beyond our brightness require-
ments, making our quasar distribution dependent on dust and
thereby dependent on galactic latitude. To minimize this effect,
we apply a cutoff in E(B–V ) for all selections as discussed
below.

We test our approach by showing that we can recover the
efficiency of a set of quasar candidates where we have
spectroscopic follow up and therefore know the true efficiency.
For this test, we use the original high-redshift quasar selection
from SDSS described in Richards et al. (2002). This survey
works well for our purposes because it was spectroscopically
observed completely in a well-defined area. We simplify the
footprint to 140<R.A.<240 and 0<decl.<60, where
there is complete coverage. We also remove a suspicious
region with a large overdensity of objects (09h 00m 49s +47d

15m 34s with a radius of 5°) and apply a dust cutoff of E(B–
V )<0.1. We take the objects classified as stars and the objects
classified as quasars with z>0.5. This gives 15,706 stars as
well as 6889 quasars. Therefore, the true efficiency of this test
data set is »

+
30.5%6889

6889 15706
. We note that this number is

different from the published results because we applied a
redshift cut for the quasars, ignored galaxies, and only use a
part of the observed area. Now we take this test data set and
apply our efficiency estimation to it. As described above, we
compare the distribution of candidates versus galactic latitude
with a uniform distribution and the distribution of our M-star
sample. The best fit to the data gives an efficiency of

-
+29.1 %3.4
1.9 , with errors indicating the 68% confidence interval.

This shows that our method can recover the efficiency of the
test data set. The approach is visualized in Figure 4 by showing
the distributions for the candidates, M stars, a sample of
uniformly sampled objects and our best fit. Since we are using
a large number of sources, the statistical error we give is
relatively small. We note that using the M-star distribution that
we extracted from Pan-STARRS data to estimate the distribu-
tion of contaminants in the SDSS candidate set is a strong
assumption, and it is therefore quite surprising that the
estimated efficiency matches the true value so well. This might
indicate that our method can still give realistic results for the
efficiency even when our modeling of the distribution of
contaminants is quite rough.
To further test if our method also works for higher and lower

efficiencies, we take the SDSS test data set from above and
artificially create candidate sets with different ratios of quasars
to stars. Specifically, we remove stars/quasars to increase/
decrease the true efficiency of the test data set, creating
efficiencies between 10% and 100%. Then, for each of these,
we apply our estimate of the efficiency and compare it to the
true value. Figure 5 shows the results. Between true efficiencies
of 10% and 50%, our estimate is reasonably consistent with the
correct value. For high efficiencies, a systematic underestima-
tion of the true efficiency is apparent. The accuracy at low
efficiencies indicates that our star distribution is sufficiently
similar to the stars in the selection. The deviation at high
efficiencies indicates that the distribution of quasars in the
selection is not quite consistent with our assumption of a
uniform distribution. We identify two likely explanations for
this behavior. It could be a physical difference—for example,
small-scale clustering of the quasars disturbing our result. The
other possibility is that the selection was not made completely
uniform. Spatial differences in the depth of the photometric
survey data during the selection or in the follow-up observa-
tions may introduce these kinds of effects. For our analysis in
this work, we are using a relatively conservative faint
magnitude limit on the z band. This should ensure that the
detection limit over the entire survey region is fainter than our
requirement, giving relatively uniform coverage and thereby
mitigating this issue.
In summary, this method of estimating the efficiency of a

quasar candidate selection is sensitive to any overdensities in
the selection, as well as to nonuniformity, e.g., introduced by
large-scale variations in the survey depth. To avoid this when
using the method on our high-z candidate set below, we check
for and remove strong overdensities of candidates and make
sure our targeted sky area is well-defined. Under these
conditions, our test with the SDSS test data set indicates that
the method can predict the efficiency of a quasar candidate
setup to a systematic error of less than 15% between
efficiencies of 20% and 80%.

5. High-z Candidate Selection

5.1. Defining the Selection

We now apply the random forest classification and
regression algorithms to our full Pan-STARRS+WISE photo-
metric catalog data. To evaluate the completeness of our
selection, we again split our training data into two parts: one for
training and one for evaluating the completeness. We decide to
use the objects within two stripes (R.A.�60° or R.A.�300)
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as well as (−1.26�decl.�1.26) for the evaluation. This
includes the Stripe 82 area, which has been carefully surveyed
for high-redshift quasars and thus makes our completeness
estimate more reliable (McGreer et al. 2013). Overall, we use
about ∼22% of the training set for evaluation and the rest to
train the algorithm.

Our selection picks up larger numbers of candidates in
regions of high Galactic extinction and near Andromeda.
Therefore, we decide to apply additional restrictions on our
photometric catalog data. We require a separation of at least
30° from the galactic center and a separation of 5° from
Andromeda (0h 42m 44s +41d 16m 9s), and apply a dust
extinction cut of EB–V<0.1.

After we removed the described areas, our final photometric
catalog includes around 59 million objects, covering 45% of
the sky.14 Table 5 shows the results of our random forest
classification when assigning the class of the highest
probability to the source. As expected, the predicted M stars
far outnumber our predicted quasars in the high-z class.
However, our training set overrepresents high-z quasars,
therefore we expect the number of good high-z quasar
candidates to be even lower. Similarly, since our training set
underrepresents L and T dwarfs in comparison to high-z
quasars, the number of predicted brown dwarfs is much less
than high-z quasars, even though we know from observations
that it is the other way around.

The random forest classification algorithm provides us with a
pseudo-probability for each class. So far, we have simply
assigned the class of highest probability, but now we instead
look directly at the high-z quasar class probability. Putting a
cutoff on this pseudo-probability lets us make a candidate
selection where the cutoff can be tuned to our choice of
efficiency versus completeness. While these pseudo-probabil-
ities provided by the random forest depend on the input training
set and cannot be trusted to represent an absolute measure, a
greater high-z class probability makes for a better quasar
candidate. Therefore, we can improve the efficiency of our
selection by increasing the cutoff on the high-z class
probability. At the same time, an increase in the cutoff will
reduce the completeness because we are excluding more
objects.

Figure 6 shows the probability for the high-z class versus the
predicted redshift using the high-redshift regression. We show
the majority of candidates with a contour plot to visualize
where the density of candidates is highest. To estimate the
probability density, we use a Gaussian kernel density
estimation applied to all candidates with high-z probabilities
above 15%. We then show the probability density contours for
three arbitrary density levels that are increasing by factors of
10. This way, we can directly see that there is a large
overdensity of candidates around redshift 5.4 and high-z
probabilities around 20%. All candidates outside of the lowest
probability contour are directly plotted as black dots. At the
low-redshift edge, the number of objects with large high-z
probability drops off due to the transition from the high-z to the
mid-z class. We also find only a few high-z candidates beyond
redshift 6.2. This is expected, as only one of our known
z�6.3 quasars passes our photometric requirements on the
Pan-STARRS+WISE catalog data. In general, we expect a
monotonous decrease in candidates with redshift, since they are

fainter. We identify an overdensity of high-z quasar candidates
at z∼5.4. There, the trend of monotonous decrease in
candidates is interrupted, and toward low high-z probability,
the number of candidates goes up much faster than at lower or
higher redshift. There is no physical reason to expect many
more quasars at that redshift, therefore we are likely seeing
significant contamination from stars with similar colors. This is
consistent with our evaluation of the cross validation of the
random forest classification (Section 3.5): around z∼5.4, the
contamination fraction rises because of the photometric
similarity between M stars and quasars at this redshift.
For the quasar candidate selection presented here, we have

chosen to divide all candidates into two separate redshift ranges
and treat them separately: 4.8<z�5.6 and 5.6<z�6.3.
Our choice is motivated by the sharp drop of candidate density
around z=5.6. In our final selection, no cross-validation
quasar is predicted to be in the wrong redshift range, allowing
us to calculate the completeness for both sections separately.
We decide on the cutoff for the high-z probability for each

range by evaluating the efficiencies for a range of cutoffs. For
our method of estimating the efficiency based on the sky
distribution discussed in Section 4, we need to first remove
remaining artifacts and blended or extended sources. For this,
we visually inspect image cutouts of the Pan-STARRS and
WISE photometry for a manageable amount of objects. We
inspect the objects with high-z probability above 0.6/0.4 for
the lower/higher redshift range. We remove an object if one of
its Pan-STARRS images has an artifact interfering with the
observation. We consider a nearby Pan-STARRS source
detected in the z or y band as blended if it is within the 1σ
radius of the PSF fit to the WISE source. We also remove all
objects that are clearly extended in multiple bands of the Pan-
STARRS imaging.
Then, we calculate the efficiency for a range of values to

choose an optimum probability cutoff. The efficiency calcul-
ation follows Section 4 and uses the sky area of our Pan-
STARRS+WISE catalog data. It covers about 45% of the sky
and is defined by:

1. Decl.>−30 deg;
2. b 20 deg∣ ∣ ;
3. >30° angular distance from the galactic center;
4. >5° angular distance from Andromeda;
5. EB–V<0.1.

The efficiency estimates for different cutoffs on the high-z class
probability are shown in Figure 7. The uncertainties on the
efficiency reflect the 50% confidence interval. We expect lower
values for the probability cutoff to include more contaminants,
resulting in a lower selection efficiency.
This is exactly what we see in the lower redshift range

(4.8<z�5.6) of our selection. The lower the probability
cutoff is, the lower is our estimated efficiency. In this redshift
range, the efficiency declines steeply for efficiency cutoffs
below ∼80%. Therefore, we choose 80% as our lower cutoff,
as indicated by the blue line in Figure 7.
In the higher redshift range (5.6<z�6.3), much lower

cutoffs still are predicted to have high efficiency. We choose
the minimum lower limit tested: 40%. We note that, at first
glance, it seems like the efficiency drops for higher cutoffs,
which is not expected. However, we argue that this just reflects
the increase in uncertainty for higher cutoffs, since very few

14 Sky coverage is measured as the fraction of a set of objects sampled
uniformly on the sky that fulfill our restrictions on area and dust content.
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objects remain. The full interval for each efficiency prediction
in the higher redshift range is consistent with 1.

The lower limit on the high-z class probability is also
indicated by the blue line in Figure 6. We retrieve a total of 617
candidates, of which we removed 102 during the visual
inspection above (35 image artifacts, 42 blended sources, 25
extended sources). A total of seven known quasars are removed
in that process. However, we do not relax our criteria on the
visual inspection process, to only select candidates with highly
reliable WISE photometry. Of the seven known quasars we
removed during visual inspection, six were removed because
they are blended in WISE. The seven known quasars removed
during visual inspection represent 3.0% of the known quasars
in the candidate set, while overall 16% of the candidate set is
removed. We interpret this as an indication that the processing
step is indeed reducing the fraction of contaminants in the final
selection.

In the end, we select a total of 515 promising quasar
candidates, which we call the high-z candidate set. Of these,
226 (or ∼43%) are already known quasars, demonstrating the
success of our selection method.

5.2. Completeness and Efficiency Estimate

For this sample of 515 quasar candidates, we now estimate
the completeness and the efficiency. We estimate the
completeness with the known quasars that we withheld from
the training set. In particular, we define the completeness as the
fraction of these known quasars that are in our final candidate
set. The quoted uncertainties represent the 1σ confidence
interval.

Since we are dealing with small sample sizes, we use the
Wilson interval to estimate the confidence interval for this
binomial distribution, following the recommendation of Brown
et al. (2001). For large enough data sets, this converges back to
the usual standard deviation of a Gaussian. For small data sets,
it better captures the asymmetry in the error while retaining that
the 1σ range captures 68.27% of data points. We calculate a
completeness of 66%±7% for the redshift range of
4.8<z�5.6, and a completeness of -

+83 %9
6 for the higher

redshift range ( < z5.6 6.3).
We show the completeness as a function of redshift in

Figure 8. To calculate this, we applied a kernel-density estimate
(kde) to both the targeted known cross-validation quasars
remaining in the selection and in total. The ratio then gives our
completeness estimate. For the kde, we used Gaussian kernels
with equal weights for all points and bandwidths chosen with
Scott’s rule (Scott 1992). Below redshifts of z≈5.6, the
completeness is nearly constant around a value of ∼67%.
Above z≈5.6, it rises to peak around 88% at z≈5.9. This
behavior simply reflects that, above predicted redshift z=5.6,
we accept candidates with a lower high-z class probability.

Above redshift 6, however, the completeness declines
sharply. While this behavior is estimated based on only three
cross-validation quasars with z�6, it signals that our method
stops being effective at z�6. Potentially, the small number of
z�6 quasars in our training set (52 total) might not allow for
proper classification using the random forest method.

We have fine-tuned our selection, in particular the lower
limit on the high-z class probability, to ensure high selection
efficiencies. Indeed, our selection efficiency in the lower
redshift range (4.8<z�5.6) is on average -

+78 %8
10 , and for

redshift of < z5.6 6.3 we reach -
+94 %8
5 (Figure 7). The

quoted uncertainties correspond to the 68% confidence interval.
It is a good check for consistency that our method predicts
efficiencies that are at least as high as the fraction of known
quasars in our selection: The fraction of known quasars in the
final set is 42% in the lower redshift range and 50% in the
higher redshift range, respectively.
Next, we estimate the redshift dependence of the efficiency

of our candidate set. The efficiency is the fraction of our
candidates that are actually quasars. To estimate this, we again
use our method from Section 4. We calculate the efficiency for
bins with a width of 0.1 in redshift. Figure 9 shows our
selection efficiency as a function of redshift. Part of our
candidate set consists of known quasars, which tells us that the
efficiency of the selection is at least as large as the fraction of
known quasars in that bin. We show this minimum efficiency
in orange. Whenever the lower efficiency limit and our
estimated efficiency agree, we do not expect to find new
quasars in that redshift bin. When the estimated efficiency is
larger, we do expect the candidate set to contain quasars that
are not yet known. In the redshift bin of z=5.4–5.5, we see
the selection efficiency drop to the lowest value in our entire
redshift range. This is likely the result of the significant overlap
in color space of quasars with M stars at z≈5.4, as we
discussed in Section 3.5. Based on our efficiency estimate, we
expect to find the highest-redshift quasars with this selection
around 5.5<z<5.8, where our predicted selection efficiency
is above the lower limit. At z�5.8, the efficiency prediction
and the lower limit are consistent with each other. Therefore,
we expect to find few new quasars at z�5.8. Finally, at the
low end of our targeted redshift range, we also expect new
quasars, since the efficiency estimate is well above the lower
limit.
Based on the estimate of the efficiency we can predict that

our high-z candidate sample contains -
+319 33
41 quasars at

4.8<z�5.6 and -
+100 8
5 at 5.6<z�6.3. Subtracting the

known quasars, we expect that our candidate set contains
-
+148 33
41 and -

+45 8
5 new quasars in the lower and higher redshift

ranges, respectively, where the error is a 68% confidence
interval. Table 6 summarizes our predictions for the selection.
We deliver the paper with a data file containing the full high-z
candidate set. Table 7 describes the columns of the data file.

6. Observations

During the development of our selection process, we have
followed up some of our quasar candidates with photometry (6)
and spectroscopy (37).
Photometric follow-up observations have been performed

with the Nordic Optical Telescope (NOT) using the NOT near-
infrared Camera and spectrograph (NOTCam; Abbott et al.
2000). The observations were taken on 2019 May 17–20. We
used the OB generator for scripting. For our observations in the
J band, we used nine-point dithering. We read out the detector
in ramp-sampling mode with 9 s between readouts, a total of 10
times. This gives us an effective exposure time of 90 s for each
of the 9 pointings. Depending on the seeing and brightness of
the object, we executed this 1, 2, or 3 times to get enough
signal-to-noise to measure the magnitude.
Additionally, we were able to secure optical spectroscopy

with the Goodman High Throughput Spectrograph (HTS;
Clemens et al. 2004) on the Southern Astrophysical Research
Telescope (SOAR), with MODS on the Large Binocular
Telescope (LBT; Pogge et al. 2010), with the Magellan Baade
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telescope’s Folded port InfraRed Echellette (FIRE; Simcoe
et al. 2013), and with FORS2 on the Very Large Tele-
scope (VLT).

Spectra with Goodman HTS on SOAR were taken using the
400 g mm−1 grating with a central wavelength of 7300Å,
resulting in spectra with a wavelength coverage of
∼5300–9300Å (GG-495 blocking filter). All observations
used the red camera in 2×2 spectral binning mode. For the
∼5300–9300Å “red” spectrum, we exposed for 900 s using the
1 0 slit, which provides a resolution of R≈830. The spectra
were reduced with IRAF. We took FIRE high-throughput prism
spectra using the 1 00 slit over the spectral range of
∼8250–25200Åwith a resolution of R=300–500. For the
LBT, we used MODS in the red-channel-only mode. We use
the G670L grating with blocking filter GG495, a slitwidth of
1 20, and an exposure time of 1200 s. Spectra with FORS2 on
the VLT were taken using the GRIS_600z+23 grism with the
OG590+32 filter, a slitwidth of 1 30, and an exposure time
of 900 s.

We present 20 newly discovered high-redshift quasars and
discuss them in the context of the high-z candidate set
presented in Section 5. However, some candidates were
selected before we finalized our candidate selection methodol-
ogy. We provide information on their original selection where
appropriate.

6.1. z>5.6 High-z Candidate Follow Up

We select a subset of our final high-z candidate catalog and
require all candidates to have prediction redshifts of >z 5.6RF
in both the full regression, using training quasars at all
redshifts, and the high-redshift regression, using training
quasars at z>4.5. We retain 59 promising quasar candidates,
which nominally have a selection efficiency of -

+86 %34
11 as

estimated by our new method (see Section 4). At the time of
our selection, 32 of the candidates were already known quasars,
leaving 27 unknown objects. From our efficiency estimate, we
expect through error propagation that, for these 27 objects, our
success rate to find quasars should be -

+69 %52
24 , with the 68%

confidence interval as the error. We can compare this to a naive
estimate based on Equation (11), which would lead us to
predict 100% for the efficiency because there is no known star
from our test set in our final selection (see Figure 6).

One of these candidates, J112143.62-071839.4, was recently
identified by Yang et al. (2019) as a z=5.71 quasar.
The J-band is very effective in differentiating the classes

because red and brown dwarfs tend to have more flux in their
spectrum for this band than otherwise similar-looking quasars.
We followed up on six candidates with J-band photometry
using NOTCam. The results are summarized in Table 8.

Figure 10 shows the zJ–JW2 color–color diagram combing
the Pan-STARRS magnitudes with the J band from our
NOTCam follow-up observations (blue dots). As a point of
comparison, we also plot our known objects for which J-band
information from 2MASS is available (Skrutskie et al. 2006).15

We note that 2MASS is shallower than our follow-up
observations. The known quasars and stars have mean J-band
AB magnitudes of 17.6 and 16.5, while our six follow-up
observations have a mean of 19.6. However, to first order,
quasars at the same redshift have similar colors with only minor

luminosity evolution. Promising quasar candidates can be
separated from likely dwarf stars with a color cut shown in
black ( - <z J 1.9 and - > -J W2 0.1, both in AB mag).
Five out of our six observed objects make the color cut. A
close-by source is evident in the J-band photometry of our only
nonpromising candidate, J145950.96-181251.7. Therefore, it is
likely blended in WISE, which could explain the false
classification. Overall, our NOT photometric follow-up obser-
vations indicate that our candidate set does contain promising
candidates.
Furthermore, we were able to obtain five follow-up spectra

of our selection. These objects were not prioritized by the high-
z probability; we observed the objects in the candidate set with
the best visibility at the observatories. We identified three
objects as contaminants and two as quasars at z∼5.7.
Counting the Yang et al. (2019) quasar and the likely quasar

at lower redshift, the selection efficiency would be three out of
six (or 50%). Since we did not observe the sixth object, a more
conservative counting would be two new quasars in the
targeted redshift range out of five observed, or a selection
efficiency of 40%. From a naive approach, we would have
expected an efficiency of 100%, while our method for
estimating efficiency predicted -

+69 %52
24 . While our very small

sample size does not allow conclusions about the accuracy of
our approach, we do argue that our method gives more realistic
results that are consistent with our small test observation.
In the following, we discuss the two newly discovered

quasars individually. We note that we observed a sixth object:
J032615.68-061358.2. The continuum looks like a power law;
however, we do not see a Lyα break in our spectral range. This
indicates that it likely is a quasar but at z<5.4 where the Lyα
line moves out of our spectral range. The predicted redshift of
z=5.62 was too high. We do not consider it for our efficiency
test here, because we cannot confirm the classification. In
Figure 6, we show the object with a cross.

6.1.1. J152330.66+293539.1—z=5.73

J152330.66+293539.1 is a newly discovered quasar at
redshift 5.73 based on Lyα emission. The predicted redshift
was 5.72 and the high-z probability was 0.83. The object was
part of our NOT photometric follow-up observations, where we
measured the J-band magnitude. The obtained colors where
- =J W2 0.80 and - = -z J 0.32 in AB, which are

consistent with quasars at this redshift as seen in Figure 10.
We observed this object with the MODS spectrograph on the
LBT, and we present the spectrum in Figure 11 together with
the other discovered quasars.
This object has a relatively blue color of - =i z 1.84, so it

would not be part of a typical color cut selection like Bañados
et al. (2016), where candidates were cut at - >i z 2. This
indicates that our method can find quasars that are missed by
traditional color cuts even if our random forest is trained with
objects largely from these selections. Our full high-z candidate
set that we publish with this work contains a further 37
candidates with predicted redshift above 5.6 that do not fulfill
this color cut. There are only seven known quasars above
redshift 5.6 that do not fulfill the color cut.

6.1.2. J163752.18+024158.1—z=5.76

J163752.18+024158.1 is a newly discovered redshift 5.76
quasar based on the Lyα emission.

15 We obtained the ALLWISE data from IRSA (see Section 2.2), where it is
already cross-matched with 2MASS.
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The redshift prediction in our high-z candidate catalog
z=5.80 (high redshift regression) is very close to the observed
redshift, and the high-z probability was 0.57. We observed this
object with the GoodmanHTS on the SOAR telescope.

6.2. z=4.6–5.4 High-z Candidate Follow Up

We have tested our random forest selection method with
pilot observations during the development process. We used a
preliminary version of the algorithm to make a selection
targeted at redshift 4.8–5.4 and obtained 31 optical spectra, out
of which we successfully identified 17 new quasars. Eight of
these quasars are retained within our final high-z candidate set,
but none of the contaminant objects are selected anymore. This
indicates that our selection improved in robustness. The newly
discovered quasars, which did not make it into our final
selection (a total of nine), are either at lower redshift than our
targeted selection (three have observed z<=4.8) or are very
close to the redshift boundary. A total of eight have observed
redshifts below z=4.92 and hence their classification shifted
toward the mid-z class. Another newly discovered quasar at
z=5.03 just barely missed the 80% cutoff on the high-z
probability (79.6%) and thus was excluded from our final
candidate list.

These preliminary observations were already very success-
ful, with 55% of observed candidates being newly discovered
quasars. With the improvements to our selection discussed
above, the final selection is expected to be even better in this
redshift range around »z 5.

Furthermore, we were able to obtain follow-up observations
for one additional object in the lower redshift range of our final
high-z candidate set using FORS2. We identify the object,
J110942.97-285521.0, as a quasar at z=5.01. The predicted
redshift was 5.09. In the following, we discuss the discovered
quasars.

6.2.1. J001150.03-244400.1—z=5.41

We discovered J001150.03-244400.1 at redshift z=5.41.
While we selected and observed this object based on the
preliminary selection described above, this quasar is also part
of our final high-z candidate set. This quasar was observed with
the GoodmanHTS spectrograph. We show the discovery
spectrum in Figure 11 and list the object information in
Table 9. The random forest regression predicted a redshift of
z=5.16, significantly lower than its real redshift. The high-z
probability was 0.95. Interestingly, the spectrum shows a
strong absorption through in the Lyα forest at observed
wavelengths of 6300–6500Å.

6.2.2. Seventeen New Quasars at 4.6�z�5.1

The spectra of the remaining 17 newly discovered quasars at
z=4.6–5.1 are also presented in Figure 11. Further informa-
tion on the individual objects is listed in Table 9. These quasars
were selected at the low end of our targeted redshift range. One
spectrum was obtained with the FORS2 spectrograph on the
VLT, and all others were obtained with the GoodmanHTS
spectrograph on the SOAR telescope. As discussed above, not
all of them are in our final high-z candidate set.

7. Conclusions

The next generation of deep photometric surveys, including
the Vera C. Rubin Observatory’s Legacy Survey of Space and
Time (LSST) and the Euclid Wide Survey, will vastly expand
the amount of available data in this field. Quasar selection at
z≈5–7 will transition from catalogs of a few hundred objects
to large sets that increasingly enable statistical evaluation. This
will constrain the statistical properties of quasars and their host
galaxies at the time of reionization, but it requires robust
selection methods that make optimal use of the available data
and our evolving understanding of these quasars.
The increase of newly discovered high-redshift quasars

(z>4.7) over recent years has paved the way to explore high-
redshift quasar selection based on supervised machine learning.
With this work, we demonstrate that large enough training

samples for quasars and contaminant stars now exist to select
and discover high-redshift quasars based on machine learning.
In particular, we applied a random forest classification and
regression to Pan-STARRS and WISE data. While the need for
reasonably sized, spectroscopically confirmed training sets
stops this method from finding new quasars at the highest
redshift end currently possible, it does show promise to
increase the efficiency of the selection up to redshifts of about
6. This can enable the discovery of more quasars per valuable
observing time.
Our method also shows promise in finding quasars that

would be missed by traditional approaches like color cuts.
One of our newly discovered z=5.7 quasars (J152330.66
+293539.1) would be rejected by a common cut on the i−z
color for z>5.6 quasars (see Section 6.1). Our high-z
candidate set contains more promising candidates that would
be rejected by that cut. Therefore, our random forest approach
shows promise to reach higher completeness and is relevant for
future quasar luminosity estimates.
Carefully applied supervised machine-learning methods to

select high-z quasars will be crucial to successfully exploit the
combination of future wide-area optical (LSST) and NIR
(Euclid) surveys. To fully assess the potential of machine-
learning quasar selection for LSST and Euclid, applying the
same methodology as in this paper to combinations of existing
optical and near-infrared surveys (e.g., DES+VHS or KiDS
+VIKING) would be an important step, once appropriate
training sets are constructed.
In cases where spectroscopic follow up is no longer viable,

supervised machine-learning methods make it possible to
create reliable catalogs of likely quasars. These could be used
to put tight constraints on the QLF at medium to high redshift
in future work.
Nevertheless, our approach presented here has several

caveats. The presented random forest approach does not take
into account magnitude errors or make use of the variability
information from multi-epoch Pan-STARRS observations. This
should be considered in future research. Additionally, the used
implementation of random forest cannot handle missing values
in the data. We work around this by replacing missing values
with a lower flux limit. While forced photometry likely would
be able to extract additional information, it is beyond the scope
of this paper to perform this for all 59 million objects in our
Pan-STARRS+WISE catalog data. Our approach also requires
the use of large-area surveys to ensure enough known quasars
are in the survey and can be used to train the random forest.
Using simulated quasar photometry, the approach could be
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applied to deeper but smaller area surveys in future research.
Furthermore, while the efficiency of our test observations is
consistent with our estimate, the sample size is quite small. A
better confirmation of the novel method to estimate the
efficiency could be achieved with more spectroscopic follow-
up observations in future work.

We summarize our main conclusions from this work below:

1. Using supervised machine-learning algorithms like ran-
dom forests to photometrically select high-redshift
quasars is a data-driven method that is starting to be
competitive with other approaches by making effective
use of the rapidly expanding catalogs of spectroscopically
confirmed objects.

2. The main challenges for using random forests or other
supervised machine-learning approaches are creating a
representative training set, getting reliable efficiency
estimates, and avoiding regions of color space with
strong stellar overlap.

3. We present a new method for estimating the selection
efficiency based on the sky distribution of the candidates
that can give more realistic estimates, consistent with our
test observations.

4. We showed the effectiveness of our approach through test
observations from which we presented 20 new high-
redshift quasars (17 at 4.6�z�5.5, 2 at z∼5.7).

The Python code for this project is available at github.com/
lukaswenzl/High-Redshift-Quasars-with-Random-Forests.

The Pan-STARRS1 Surveys (PS1) and the PS1 public science
archive have been made possible through contributions by the
Institute for Astronomy, the University of Hawaii, the Pan-
STARRS Project Office, the Max-Planck Society and its
participating institutes, the Max Planck Institute for Astronomy,
Heidelberg and the Max Planck Institute for Extraterrestrial
Physics, Garching, The Johns Hopkins University, Durham
University, the University of Edinburgh, the Queen’s University
Belfast, the Harvard-Smithsonian Center for Astrophysics, the
Las Cumbres Observatory Global Telescope Network Incorpo-
rated, the National Central University of Taiwan, the Space
Telescope Science Institute, the National Aeronautics and Space
Administration under grant No. NNX08AR22G issued through
the Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation grant No. AST-
1238877, the University of Maryland, Eotvos Lorand University
(ELTE), the Los Alamos National Laboratory, and the Gordon
and Betty Moore Foundation.

This publication makes use of data products from the Wide-
field Infrared Survey Explorer, which is a joint project of the
University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, and NEO-
WISE, which is a project of the Jet Propulsion Laboratory/
California Institute of Technology. WISE and NEOWISE are
funded by the National Aeronautics and Space Administration.

Some of the data presented in this paper were obtained from
the Mikulski Archive for Space Telescopes (MAST). STScI is
operated by the Association of Universities for Research in
Astronomy, Inc., under NASA contract NAS5-26555.

This research has made use of the NASA/IPAC Infrared
Science Archive, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.

Based on observations obtained at the Southern Astrophy-
sical Research (SOAR) telescope, which is a joint project of the
Ministério da Ciência, Tecnologia, Inovações e Comunicações
(MCTIC) do Brasil, the U.S. National Optical Astronomy
Observatory (NOAO), the University of North Carolina at
Chapel Hill (UNC), and Michigan State University (MSU).
Funding for SDSS-III and SDSS-IV has been provided by the

Alfred P. Sloan Foundation, the Participating Institutions, the
National Science Foundation, and the U.S. Department of
Energy Office of Science. SDSS-IV acknowledges support and
resources from the Center for High Performance Computing at
the University of Utah. The SDSS-III website is http://www.
sdss3.org/. The SDSS website is www.sdss.org.
SDSS-III is managed by the Astrophysical Research

Consortium for the Participating Institutions of the SDSS-III
Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Labora-
tory, Carnegie Mellon University, University of Florida, the
French Participation Group, the German Participation Group,
Harvard University, the Instituto de Astrofisica de Canarias, the
Michigan State/Notre Dame/JINA Participation Group, Johns
Hopkins University, Lawrence Berkeley National Laboratory,
Max Planck Institute for Astrophysics, Max Planck Institute for
Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State
University, University of Portsmouth, Princeton University, the
Spanish Participation Group, University of Tokyo, University
of Utah, Vanderbilt University, University of Virginia,
University of Washington, and Yale University.
SDSS-IV is managed by the Astrophysical Research

Consortium for the Participating Institutions of the SDSS
Collaboration including the Brazilian Participation Group, the
Carnegie Institution for Science, Carnegie Mellon University,
the Chilean Participation Group, the French Participation Group,
Harvard-Smithsonian Center for Astrophysics, Instituto de
Astrofísica de Canarias, The Johns Hopkins University, Kavli
Institute for the Physics and Mathematics of the Universe
(IPMU) / University of Tokyo, the Korean Participation Group,
Lawrence Berkeley National Laboratory, Leibniz Institut für
Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie
(MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA
Garching), Max-Planck-Institut für Extraterrestrische Physik
(MPE), National Astronomical Observatories of China, New
Mexico State University, New York University, University of
Notre Dame, Observatário Nacional / MCTI, The Ohio State
University, Pennsylvania State University, Shanghai Astronom-
ical Observatory, United Kingdom Participation Group, Uni-
versidad Nacional Autónoma de México, University of Arizona,
University of Colorado Boulder, University of Oxford, Uni-
versity of Portsmouth, University of Utah, University of
Virginia, University of Washington, University of Wisconsin,
Vanderbilt University, and Yale University.
This research has made use of the SVO Filter Profile Service

(http://svo2.cab.inta-csic.es/theory/fps/) supported from the
Spanish MINECO through grant AyA2014-55216.
This work is based on observations collected at the European

Southern Observatory under ESO program 105.204A.001.
Facilities: SOAR (GOODMAN), MMT (Red Channel),

LBT (MODS), Magellan (FIRE), NOT (NOTCAM), WISE,
Pan-STARRS, SDSS.
Software:sklearn (Pedregosa et al. 2011), astropy

(Astropy Collaboration et al. 2013, 2018), python3
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(Van Rossum & Drake 2009), pandas (McKinney 2010),
numpy (van der Walt et al. 2011; Harris et al. 2020),
scipy (Jones et al. 2001; Virtanen et al. 2020), matplotlib
(Hunter 2007), astroML (VanderPlas et al. 2012, 2014),
astroquery (Ginsburg et al. 2019), sfdmap,16 IRAF
(Tody 1986, 1993), MAST,17 IRSA/GATOR,18 LSD.19
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