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Abstract—As connected Internet-of-things (IoT) devices in smart
homes, smart cities, and smart industries continue to grow in size
and complexity, managing and securing them in distributed edge
networks have become daunting but crucial tasks. The recent spate
of cyber attacks exploiting the vulnerabilities and insufficient
security management of IoT devices have highlighted the urgency
and challenges for securing billions of IoT devices and applications.
As a first step towards understanding and mitigating diverse
security threats of IoT devices, this paper develops an IoT traffic
measurement framework on programmable and intelligent edge
routers to automatically collect incoming, outgoing, and internal
network traffic of IoT devices in edge networks, and to build
multidimensional behavioral profiles which characterize who,
when, what, and why on the behavioral patterns of IoT devices
based on continuously collected traffic data. To the best of our
knowledge, this paper is the first effort to shed light on the IP-
spatial, temporal, entropy, and cloud service patterns of IoT devices
in edge networks, and to explore these multidimensional behavioral
fingerprints for IoT device classification, anomaly traffic detection,
and network security monitoring for vulnerable and resource-
constrained IoT devices on the Internet.

Index Terms—Internet-of-Things, measurement, smart home,
network monitoring, anomaly traffic detection.

I. INTRODUCTION

HE rapid development and deployment of IoT devices

have introduced a wide spectrum of innovative applica-
tions and services such as industrial automation, smart homes,
and remote healthcare monitoring. However, the burgeoning
and insecure IoT devices in millions of edge networks such as
smart home networks have left backdoors for Internet attack-
ers to launch data theft, device hijacking, and distributed
denial of service attacks (DDoS), e.g., the well-known Mirai
botnet [4], [16]. Therefore, there is an urgent call for effective
techniques to detect, recognize, characterize, and address
security threats towards these devices and applications.
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In this paper, we focus on understanding and analyzing the net-
work traffic patterns of IoT devices, which is a critical step to
secure IoT devices in edge networks. Specifically, we propose an
IoT traffic measurement framework to automatically collect, pro-
cess, characterize, and profile communication patterns of IoT
devices. The key component of our design is the programmable
commercial edge router which continuously collects and finger-
prints network flow data of IoT devices in real-time. We imple-
ment the measurement and monitoring functions at the edge
routers because both incoming and outgoing traffic as well as the
internal local area network (LAN) traffic are visible at such gate-
way locations.

Our proposed measurement framework enables us to have a
delineated view of data communications and network configu-
rations of IoT devices. For example, we discovered that Chro-
mecast, a streaming media player developed by Google,
configures Google domain name system (DNS) servers for
DNS queries rather than adopting the default local DNS serv-
ers [6]. Such behaviors are very hard to discover if the mea-
surement functions are not available on edge routers.

The availability of the large volume of real world network
traffic makes it possible to develop multidimensional traffic
profiles of IoT devices for gaining an in-depth understanding of
communication patterns and traffic behaviors, and more impor-
tantly, detecting and mitigating suspicious activities and cyber
attacks towards vulnerable IoT devices. Towards this end, we
build the behavioral profile of IoT devices based on a wide spec-
trum of their traffic features from IP-spatial, temporal, cloud,
and internal traffic dimensions. The IP-spatial dimension is cen-
tered on the analysis of remote IP addresses of Internet end hosts
such as DNS servers or network time protocol (NTP) servers. In
addition, aggregating these remote IP addresses into Border
Gateway Protocol (BGP) network prefixes [24] and ASNs
allows us to analyze IP-spatial correlations of Internet end hosts
communicating with IoT devices. Our experimental results
reveal that most IoT devices engage with cloud servers from a
small set of network prefixes and ASNs due to their designs for
single-purpose applications and specific functions.

Additionally, we explore the entropy concept to gain a deeper
insight of the temporal dynamics and predictability of IoT devi-
ces. Our experimental results of measuring the sample entropy
of different IoT devices reveal interesting observations on how
IoT devices differ from each other in communication patterns
and how entropy measures fluctuate over time and correlate
with user-triggered activities. Through analysis on the cloud
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dimension, our study discovers that IoT devices typically only
engage with a small and fixed set of common applications such
as hypertext transfer protocol (HTTP), HTTP secure (HTTPS),
DNS, and NTP. At last, benefiting from the strategical location
of the programmable edge router, we are able to further investi-
gate the communication patterns of IoT traffic within the LAN
by categorizing the traffic into communication between IoT
devices and the router, communication among IoT devices, and
communication between IoT and non-IoT devices.

In light of the prevalent cybersecurity threats, we explore
the benefits of multidimensional behavioral profiles for a vari-
ety of applications including anomaly traffic detection, IoT
device detection and classification, and network security mon-
itoring. Specifically, we introduce a simple yet effective pat-
tern-based anomaly detection approach, which encodes
common network traffic patterns with short encoded length
and captures infrequent and unusual patterns with longer
encoded length. Our experimental evaluation shows that our
approach is able to uncover suspicious traffic activities with
high precision. Moreover, we leverage multidimensional pro-
files of IoT devices for recognizing and detecting new and
unknown IoT devices based on the knowledge of existing and
known IoT devices. Finally we outline how the behavioral
profiles could facilitate network security monitoring via effec-
tively capturing behavioral dynamics or deviations caused by
cyber attacks such as port scanning activities and repeated
failed login attempts.

The contributions of this paper are summarized as follows:

e We present a measurement framework for capturing
and collecting network traffic of IoT devices to charac-
terize and model behavioral fingerprint of IoT devices
in edge networks.

e We introduce a multidimensional approach to model the
IP-spatial, temporal, entropy, and cloud behaviors of
heterogeneous IoT devices, as well as the communica-
tion patterns of the internal LAN traffic.

e We explore multidimensional behavioral profiles of IoT
devices for a spectrum of applications including IoT device
classification, anomaly traffic detection, and network secu-
rity monitoring.

The remainder of this paper is organized as follows.
Section III gives a brief explanation of the research back-
ground and introduces the proposed measurement framework.
Section IV presents the multidimensional behavioral profiles
of IoT devices. In Section V, we explore behavioral profiles of
IoT devices for a variety of critical applications, such as IoT
device classification, anomaly traffic detection, and network
security monitoring. Section II discusses related work in this
research area, while Section VI concludes this paper and out-
lines our future work.

II. RELATED WORK

The recent rapid development and deployment of IoT devices
in smart homes, cities, and industry 4.0 have attracted significant
interests from the system, networking, and security research com-
munities in understanding their applications, security and privacy

threats, vulnerabilities, and ecosystems [8], [9], [14], [27], [33],
[35], [36], [38]. IoT behavioral profiling and fingerprinting is one
of the crucial topics where we have witnessed a lot of recent
research efforts. The fingerprinting techniques cover nearly all
protocol layers of TCP/IP stacks such as applying wavelet trans-
form on the sequence of packet inter-arrival time (IAT) of wire-
less access points for device profiling [10], [13], [30] or
characterizing packet headers and IP payload [5], [20].

Most of the existing studies on IoT behavioral finger-
printing are centered on the protocols of physical and link
layers for the applications of device classification [10],
[13], [15], [30]. For example, [30] introduces a real-time
system that passively scans and analyzes the data commu-
nication over WiFi, Bluetooth, and Zigbee for classifying
IoT devices and detecting privacy threats, while [13] pro-
poses to extract the unique features from the link and ser-
vice layers of Bluetooth low energy (BLE) protocol stack
for generating the IoT fingerprint for authenticating devi-
ces and defensing against spoofing attacks. In addition, [15]
proposes a wireless device identification platform for dis-
tinguishing legitimate and adversarial IoT devices based
on radio frequency (RF) fingerprinting over different
ranges of signal-to-noise ratio (SNR) levels.

A few recent studies have shifted traffic data collection and
analysis to the network, transport, and application layers for
device behavioral modeling and characterization [5], [20]. For
example, [20] achieves IoT device fingerprints with 20 binary
features of protocol fields extracted from packet headers col-
lected from link, network, transport and application layers to
reflect the protocol engagement of IoT devices headers such
as ARP, IP, ICMP, TCP, UDP, NTP, DNS, DHCP, HTTP and
HTPPS, and 3 numerical features including packet size, desti-
nation IP counter, source and destination port numbers. [5]
characterizes the behavioral fingerprints of IoT devices with a
subset of binary features identified in [20], and 3 payload-
based features including the entropy of payload, TCP payload
size, and TCP window size. Complement to these studies, our
paper focuses on behavioral fingerprinting of IoT devices in
edge networks based on network flow records rather than the
raw IP data packets which raise privacy concerns of IoT users
and incur expensive computational and storage cost on
resource-constrained commodity edge routers such as off-the-
shelf home routers.

A very recent paper studying the IoT devices on home net-
works [17] provides a large-scale empirical analysis with the
ISP level network traffic data. Different from [17], our study
explores programmable edge routers to build an IoT measure-
ment framework from the perspective of edge networks and
sheds light on multidimensional traffic patterns of IoT devices
from incoming and outgoing network traffic as well as from
the local LAN traffic within edge networks.

To summarize, our paper is different with most existing
works in the way that it designs and implements an IoT traffic
measurement framework based on programmable edge
routers. To the best of our knowledge, our work is the first to
build and study multidimensional behavioral profiles of het-
erogeneous IoT devices using network traffic data.
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Fig. 1. Anexample communication flow of smart IoT platforms.

III. BACKGROUND AND TRAFFIC MEASUREMENT
A. Background

Recent advances in embedded systems have enabled the wide
deployment of IoT devices in edge networks. The major players in
IoT domains have also developed their own smart IoT platforms
such as Samsung’s SmartThings [29], Google’s Nest [11], and
Amazon’s Alexa [3] to support broad IoT compatibility and rapid
application development. These IoT platforms adopt similar sys-
tem architectures that consist of IoT devices, cloud-based servers,
and IoT applications. For example, to remotely tumn on a Philips
Smart Hue bulb in the front yard of a house at night, the user could
simply open the Philips Hue App installed on the smartphone and
send the furn-on-bulb command to a Philips Lighting server
located in Google cloud. The cloud server then communicates
with the Philips Hue bridge in the user’s home, which in turn for-
wards the furn-on-bulb command to the smart bulb in the front
yard. This communication flow is illustrated in Fig. 1.

These existing IoT platforms are primarily function-driven
and feature-driven, thus leaving security and privacy concerns
as the secondary or optional goals. As a result, today’s IoT
devices are often vulnerable to a variety of security threats
and many of them have already been compromised [17]. For
example, the insecure configuration and design flaws of IoT
devices have contributed to one of the largest botnets, the
Mirai botnet [4], [16], which commands and controls over
600,000 IoT devices at its peak. In addition, the coarse access
control policy, malicious applications, and exposures in open
wireless channels have created broad attack vectors towards
heterogeneous IoT devices [7], [9], [14], [27].

Protecting and securing millions of vulnerable IoT devices is a
complicated and challenging task. As a recent security evaluation
study [2] pointed out, IoT measurement and monitoring is an
important early step towards this goal. Specifically, the first step
of IoT security lies in the measurement, monitoring, and analysis
of communication patterns and behavioral profiles of IoT devices.
For example, what do remote hosts on the Internet talk with the
smart speakers or thermostats, at what time, for what reasons?
Answering these questions is of great importance to understanding
if, when, and how the connected IoT devices in edge networks are
targeted, compromised, and controlled by cyber attacks.

B. Traffic Measurement via Programmable Edge Routers

In this study we advocate an edge router-based IoT traffic mea-
surement and monitoring platform for continuously monitoring
the incoming and outgoing traffic between edge networks and the
Internet as well as the internal traffic within edge networks. Com-
pared with ISP-based solutions [4], [17], which are based on the
network address translation (NAT) router translated traffic, the
edge router-based platform has a more detailed and comprehen-
sive view of IoT traffic. More specifically, the edge router can see
the non-translated incoming and outgoing traffic to and from an
IoT device. The internal LAN traffic in the edge network is also
visible to the internal interface of the edge router. In addition, the
edge router-based solutions are transparent to IoT devices and
therefore there is no need for the users to install or update addi-
tional packages and applications on IoT devices. Furthermore,
the edge router is a central security checkpoint at an ideal location
for control and policy enforcement. These unique strengths moti-
vate us to develop a router-based traffic measurement platforms
to capture, store, characterize, and mine traffic patterns of IoT
devices in edge networks.

Fig. 2 illustrates our proposed IoT traffic measurement
framework via programmable routers at edge networks. In this
framework, the programmable edge router continuously cap-
tures, stores, and analyzes the incoming, outgoing, and internal
network traffic flow records of all IoT devices in the edge net-
work. For each flow record, we collect the well-known 5-
tuples of a network conversation or session, i.e., source IP
address (srcIP), source port number (srcPort), destination
IP address (dstIP), destination port number (dstPort), and
protocol, as well as the start and end timestamps, duration,
byte count, and packet count. We have deployed the prototype
framework in 22 real-world home edge networks across the
United States, Hong Kong SAR, and mainland China since
August 2018. These smart homes house hundreds of IoT devi-
ces for a variety of purposes, among which we have observed
20 unique models of IoT devices, as summarized in Table I.
We choose not to collect raw IP packets from IoT devices in
this study since most data packets originating from or destined
to IoT devices are encrypted, and applying MITM proxy to
bypass the TLS/SSL encryption is impractical because it
requires full root privileges of the IoT devices [21]. The stor-
age of raw data packets of IoT devices such as smart TVs or
IP cameras could also bring undesired system challenges for
resource-constrained edge routers. In fact, network flow
records are widely used for Internet traffic classification, net-
work measurement and analysis [31], [37] thanks to their
diverse and informative traffic features and marginal computa-
tional and storage resource overheads.

The availability of millions of network traffic flow data
allows us to characterize and model the multidimensional
behavioral profiles of heterogeneous IoT devices. Specifi-
cally, we explore the behavior in four dimensions: IP-spatial,
temporal, cloud, and internal traffic. The study of IP-spatial
behavior focuses on remote IP addresses engaging with IoT
devices and aggregates these IP addresses into BGP network
prefixes and ASNs for correlation analysis. The temporal
behavior focuses on the temporal dynamics and predictability
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Fig.2. AnIoT traffic measurement framework via programmable routers at edge networks.

TABLEI

HETEROGENEOUS 10T DEVICES DEPLOYED IN 22 HOMES
Device Name Device Type Connectivity
Amazon Echo Voice Assistant WiFi
Amazon Echo Dot Voice Assi WiFi
Amazon Echo Show Voice Assistant and Camera WiFi
Amcrest ProHD Camera Cloud Camera Ethernet & WiFi
Alro Ultra Camera Cloud Camera WiFi
August Smart Lock Connect Hub WiFi
August Doorbell Cam Pro Doorbell WiFi
Google Home Voice Assistant WiFi
Google Nest Camera Cloud Camera WiFi
Gosund WiFi Smart Socket Smart Plug WiFi
LG Smart TV Smart TV Ethernet & WiFi
Philips Hue Smart Bridge Hub Ethernet & WiFi
Reolink Camera Cloud Camera Ethernet & WiFi
Ring Video Doorbell Doorbell WiFi
Samsung Smarthings Hub Gateway Ethernet & WiFi
Schlage Wireless Lock Smart Lock WiFi
TCL Smart TV Smart TV Ethernet & WiFi
TP-LINK Smart Bulb LB130 | Light Bulb WiFi
TP-LINK Wi-Fi Smart Plug Smart Flug WiFi
Y1 Home Camera Cloud Camera WiFi

of traffic features of IoT devices over time. Specifically, tem-
poral dynamics studies how traffic features and behvaioral
patterns of IoT devices change over time, while temporal
predictability explores sample entropy concepts to under-
stand if IoT traffic features and patterns are predictable based
on prior observations.

By analyzing how IoT devices interact with cloud servers,
we build the profiles of their cloud behaviors. In addition to
studying the IP-spatial, temporal, and cloud behaviors based
on the incoming and outgoing network traffic between IoT
devices and end systems on the Internet, our measurement
framework also enables us to study the communication pat-
terns of IoT devices within edge networks. These multidimen-
sional behavioral profiles of IoT devices built by our proposed
IoT measurement framework effectively capture who, when,
what, and why on the behavioral patterns of IoT devices in
edge networks, and ultimately lead to a variety of practical
applications such as intrusion detection, IoT device detection
and classification, and security monitoring.

TABLEII
THE CLUSTERED PATTERNS OF IP-SPATIAL BEHAVIOR OF 10T DEVICES IN THE
SAME EDGE NETWORK DURING A 5-MINUTE TIME WINDOW

Device IoT  dstIPs  prefixes  ASNs
Amazon Echo Yes 3 3 1
Echo Dot Yes 5 1
Reolink IP Camera Yes 2 2 1
Philips Hue Yes 1 1 1
Samsung Smart Plug  Yes 3 2 1
LG Smart TV Yes 4 3 2
Android Smartphone No 37 24 13
Macbook Laptop No 172 102 39

IV. MULTIDIMENSIONAL BEHAVIORAL PROFILING
OF 10T DEVICES

In this section, we present a multidimensional approach to
characterizing the behaviors of IoT devices based on a wide
spectrum of traffic features.

A. IP-Spatial Behavior of IoT Devices

We first characterize the IP-spatial behaviors of IoT devices
by analyzing whom the IoT devices talk to. We propose to
aggregate remote IP addresses that IoT devices communicate
with into BGP network prefixes and ASNs in order to gain an
in-depth understanding of “clustered” IP-spatial behaviors for
IoT devices and make sense of the remote IP addresses. For
example, the IP address of the DNS server for Google home
smart voice assistant, 8.8.8.8, is from the BGP prefix
8.0.0.0/9 and ASN 15169 owned by Google based on the
latest snapshot of the BGP routing table [32] and the official
registry records from Internet assigned numbers authority
(IANA). Our experiments following this strategy reveal an
interesting observation. Even though most IoT devices com-
municate with a large number of remote hosts, they typically
only engage with a very small subset of BGP network prefixes
and ASNs, which are likely from the same server pool by the
same service providers for efficient load balancing and content
distributions. Table II illustrates the IP-spatial behavior
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Fig. 4. Traffic characteristics of IoT devices and non-IoT devices over one-week time-span.

patterns of 6 IoT devices and 2 non-IoT devices in a same
edge network during a 5-minute time window. As we can see
from Table II, all 6 IoT devices only communicate with serv-
ers from a very limited number of unique ASNs, but the smart-
phone and laptop engage with remote end hosts from 13 and
39 unique ASNS, respectively.

Fig. 3[a-c] demonstrate the convergence of unique remote
IP addresses, their network prefixes, and ASNs for a variety of
IoT and non-IoT devices deployed in one edge network over a
4-month time span. This longitudinal measurement study for
the IP-spatial behavior confirms that most IoT devices engage
with a much smaller set of destination IP addresses, prefixes,
and ASNs than smartphones and laptops.

B. Temporal Behavioral Dynamics of IoT Devices

We study the temporal behavior of IoT devices by measuring
the number of distinct time slots in which IoT devices exhibit
traffic activities. We select a 5-minute time window in the exper-
iment in order to balance the computation overhead and monitor
real-time traffic activities. Fig. 4[a-c] depict the flow, packet,
and byte count of three different kinds of devices over a one-
week time span. As shown in Fig. 4, the Echo Dot, LG Smart

TV, and Macbook Laptop exhibit distinct traffic characteristics
over time. These features reflect the activities of different devi-
ces. For example, LG smart TV has high peaks in both packet
count and byte count at the very beginning, which corresponds
to the activity that this device was turned on for network stream-
ing at that time. The diversity of temporal patterns on flow,
packet and byte count inspires us to measure and quantify the
variability over the entire data collection period.

For each IoT device d in the edge network, let W;; denote
the number of time windows in which the device d is observed
with network traffic on the i-th day. Considering that the con-
nected devices are randomly added into the edge network, we
use the average time window g, for each device rather than
the total number of time windows during }tvhe entire measure-

ment period, which is derived as p; = —levh, where N is
the number of the days since device d is observed in the edge
network and 1 < i < N. So the temporal variability on time
windows, measured by coefficient of variance, can be calcu-
lated as CoV; =£4, where o, the standard deviation, is

_a,

. N
derived as o4 = \/% > ics Wai — iy
Fig. 5 is a scatter graph on the mean p and coefficient of vari-
ance CoV of time slots observed with network activities for
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different IoT and non-IoT devices. In Fig. 5, four out of the six
IoT devices exhibit traffic activities during the majority of time
windows in each and every day, and their variability on the num-
ber of time windows is much smaller compared with non-IoT
devices. One of the IoT devices, i.e., an IP camera, is only active
for a small number of time slots per day, but exhibits low vari-
ability on the time window as well. The only IoT device exhibit-
ing a high variability is a smart TV, and the main reason is that it
is often turned on and off in an unpredictable fashion. Based on
these observations, we can easily classify connected networked
devices in edge networks into three categories: always-on IoT
devices (e.g. Echo Dot), on-demand IoT devices (e.g. IP camera
and smart TV), and non-IoT devices.

The self-similarity traffic patterns of IoT devices visualized in
Fig. 4 also inspire us to analyze the autocorrelation on network
traffic generated by all connected devices in edge networks.
Autocorrelation is a metric that quantifies the correlation of the
same variable across different and lagged periods of times, thus
itis also often referred to as serial correlation and lagged correla-
tion. The autocorrelation metric, pgy, for the IoT device d,
between network traffic activity time series X;; and a k-lagged
copy of itself X ;;,; is captured by the autocorrelation function
(ACF) as follows:

E;:f(Xd‘f — ) ( Xaivr — 1) )

?

pd‘k = 02
where 1 and o are the mean and standard deviation of network
traffic activity time series X1, X 42, ..., X4, for the device d,
respectively. An autocorrelation value of 0 suggests independent
and random observations on the traffic time series of connected
devices in edge networks, while a significant autocorrelation
reveals substantial correlations among adjacent observations or
determines predictable seasonality in the time series [19], [23].
Fig. 6 illustrates the autocorrelation plots, also referred to as
correlograms, of network traffic time series for three selected
IoT and non-IoT device. These plots reflect distinct repeating
patterns of different devices. We can see noticeable peaks at

the beginning where time lag is short for both Philips Hue and
Amazon Echo. This indicates that communication patterns of
IoT devices are typically stable and predictable. On the other
hand, for Android smartphone, there is no significant peak in
the autocorrelation plot, which corresponds to our intuition
that non-IoT devices like smartphones often have messy and
random network traffic.

C. Characterizing Traffic Predictability via Sample Entropy

To further study temporal dynamics and predictability of IoT
network traffic in edge networks, we explore sample entropy,
denoted as S, to quantify the randomness, uncertainty, or deter-
minism of network traffic for IoT device over time due to the
inherent ability of the sample entropy measure in capturing the
complexity and predictability of time series data [26]. Given a
traffic feature f, our continuous data collection generates a
unique time series observation f(t1), f(t2),- .., f(tar) over M
consecutive time windows. Let Y(¢;) denote a vector of m
continuous observations at time #;, ie., {f(&), f(tis1),---
f(tizm—1)}. For 1 <i< M —m+1, B"(r) represents the
number of Y(¢;) such that D[Y (¢;),Y (¢;)] < r (j # i), where
DY(t), Y(t)]= max|fi(t) — f(te)| where fi(ts) €
Y(t;), fi(tx) € Y(t;), and r specifies how much two sequences
are expected to exhibit strong similarity, which is usually set as
proportional to the standard deviation of the original time series.

The sample entropy S€ is defined as

SE = —In(®"(r) /D™ (7)), (2

where ®™(r) is the mean average value of BM(r), ie.,
®"(r) = (M —m+1)"" M Br(r). In other words,
the sample entropy reflects the conditional probability for two
subsequences of f(t1), f(t2),--., f(tar) that are similar along
m consecutive observations continue to share similarity for
m + 1 observations.

Applying the sliding window approach, we can estimate the
entropy values for all traffic features of IoT devices in edge
networks. In our experiments, we set each observation time
window as 10 minutes and the overall time period as 4 hours,
and then calculate the sample entropy of the time series traffic
data collected in the past four hours to balance the computa-
tional overhead and real-time responses to traffic fluctuations.

We set the parameters m as 2 and r as 0.2 times the stan-
dard deviation of time series f(t1), f(t2),-.., f(tar) [25).
Based on our experimental results, such parameter settings
will best estimate the time series entropy and depict the traffic
and activity patterns of IoT devices, which confirms the find-
ings in [25]. Fig. 7 illustrates the distinct sample entropy
measures on packet count of four different IoT devices in the
same edge network. Specifically, the entropy of Echo Dot
exhibits a spike at 9AM due to the music playing on Spotify
and a preconfigured weather forecast service during this time
period, while Philips Hue communicates with the cloud server
actively during the daytime and remains only the heart-beat
communications with servers at night. Compared with Echo
Dot and Philips Hue, Google Home and SmartThings Hub
have more stable entropy over time, as our in-depth analysis
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TABLE Il
THE DOMINANT APPLICATIONS USED BY 10T DEVICES IN EDGE NETWORKS

Application Service ~ Echo ~ Camera Echo  Philips Smart  IoT

Dot Hue vV Hub
443TCP HTTPS Y Y Y Y Y Y
B0/TCP HTTP Y Y Y Y Y
53/UDP DNS Y Y Y Y
123/UDP NTP Y Y Y Y
4070/TCP  Spotify Y

reveals that most of their network traffic are predicable short-
term connections with NTP, DNS, and cloud servers. In other
words, the simple yet effective sample entropy measure is
able to capture, characterize, and distinguish the temporal
dynamics and predictability of network traffic for IoT devices,
thus potentially could help develop new event detection and
intrusion prevention algorithms for monitoring and securing
IoT devices in edge networks.

D. Cloud Behavior of IoT Devices

The objective of cloud behavior analysis is to understand why
and how IoT devices communicate with remote cloud servers.
Specifically, we profile cloud behaviors of IoT devices based on
the dominant applications or services observed from dst Port
and protocol of their outgoing network traffic flows. Table III
demonstrates all the observed 5 applications for the 6 IoT devi-
ces deployed in one edge network during a 24-hour time
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Fig. 8. The convergence of applications for IoT and non-IoT devices.

window. These 5 applications are HTTP, HTTPS, DNS, NTP,
and Spotify music streaming. As a comparison, the Andriod
Smartphone and the Macbook laptop in the same edge network
engage with 11 and 15 distinct applications, respectively, during
the same time period.

The limited and consistent set of common applications used
by IoT devices again confirms that IoT devices are typically
designed for very specific functions and dedicated utilities.
Fig. 8 illustrates the convergence of cloud applications for IoT

Authorized licensed use limited to: ASU Library. Downloaded on July 05,2021 at 17:50:27 UTC from IEEE Xplore. Restrictions apply.



96 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

TABLEIV
THE ENTROPY OF DESTINATION IP ADDRESSES, PREFIXES AND ASNS I0T
DEVICES HAVE SENT HTTPS REQUESTS WITHIN A 24-HOUR TIME WINDOW

Fanout Normalized Entropy
Device Flows jig Prefix | ASN P Prefix ASN
Echo 148 20 6 1 0.5529 | 0.3158 | 0.0000
IP Camera 32 12 9 2 06023 | 05422 | 01792
Echo Dot 228 40 10 2 0.6197 | 03365 | 0.0051
Philips Hue 96 4 2 1 0.2163 | 0.0221 0.0000
LG Smart TV 429 109 39 7 0.6574 | 0.2968 | 0.1733
IoT Hub 258 3 2 1 0.1969 | 0.1115 | 0.0000
Laptop 3831 832 340 90 0.6782 | 05191 0.3064
Smartphone 1497 353 131 21 0.6274 | 04964 | 03077

and non-IoT devices, where the number of applications for
IoT devices converges rapidly.

We continue to characterize the remote servers and their
aggregated network prefixes or ASNs via analyzing the fanouts,
i.e. unique numbers of destination IP address, BGP prefixes, and
ASNS, for each application. In addition, we measure the distribu-
tion of network traffic across these remote servers, prefixes and
ASNs by calculating the entropy and standardized entropy of
these fanouts. For a given application a of an IoT device d, let F/
and R denote the number of network traffic flows and the unique
numbers of the remote servers represented as sy, S2, - - ., Sg. The
probability of each remote server P, is calculated as P, = (;P’ii-,
where C,, denotes the number of flows between d and s;. Clearly

:.11 C,, = F. The normalized entropy on the remote servers
for application a of device d is then derived as N&;, =
—(k)g R)_l ;‘R=1 P'is x log P'is'

The normalized entropy is in the range of [0, 1], revealing
the degree of uncertainty, randomness, or variations on the
remote servers which communicate with IoT devices in edge
networks. Clearly, a M€, value of 0 or near 0 indicates the
uniformity on the remote servers, which means that this device
only communicates with one or few servers on application a.
While a V€4, value of 1 or near 1 means the high randomness
on the remote servers. Following a similar process, we could
also calculate the entropies and normalized entropies for their
aggregated network prefixes or ASNs of remote servers.
Table IV illustrates the entropy values of destination IP
addresses, prefixes and ASNs of the hosts which IoT devices
have sent HTTPS requests to within a 24-hour time window.
As shown in Table IV, all IoT devices exhibit some uncer-
tainty on network prefixes and ASNs for their HTTPS traffic,
while the laptop and smartphones exhibit much higher varia-
tions on the remote prefixes and ASNs for HTTPS traffic.
These observations could potentially provide critical insights
for detecting traffic anomalies or classifying the newly added
IoT devices in edge networks.

E. IoT Traffic Behaviors Within Edge Networks

To gain a comprehensive understanding of traffic behaviors
of IoT devices, we further investigate the internal LAN traffic
within edge networks which originates from IoT devices and
destines to other IoT devices or non-IoT systems in the same
edge network or vice versa. Based on the end systems
involved in the traffic, we classify IoT traffic within edge net-
works into three categories: /) communication between IoT
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Fig.9. The correlation of intemal DNS traffic and incoming WAN data traf-
fic for an Amazon Echo device.

devices and edge routers, 2) communication among IoT devi-
ces, and 3) communication between [oT and Non-IoT devices.

1) Communication Between loT Devices and Edge Routers:
Based on our longitudinal measurement study of 22 edge net-
works, we have observed two dominant applications in this cat-
egory - dynamic host configuration protocol (DHCP) and DNS.
All of the IoT devices exchange the DHCP information with
their respective edge routers periodically via UDP ports 67 and
68. This observation is consistent with the common DHCP con-
figurations on today’s home routers, which act as DHCP servers
and automatically assign the IP address to all of the devices in
edge networks. After the lease time is over, home edge routers
will renew it if the IoT device is still active. It is interesting to
note that all of the IoT devices in our study have their IP
addresses renewed every 12 hours by exchanging DHCP pack-
ets with the edge routers, which indicates that the DHCP lease
time is set as 12 hours on the router side.

Similar to many non-IoT devices such as laptops and smart-
phones, the majority of IoT devices leave the choice of DNS sev-
ers to the edge routers for the considerations of short DNS query
and reply latency. Routers usually set themselves as the DNS
server and adding their IP addresses in the “DNS servers” field
of the DHCP Offer packets. Among the 20 types of IoT devices
in our study, Google Home is the only device that prefers exter-
nal DNS services, i.e., Google’s own public IPv4 DNS servers
8.8.8.8and 8.8. 4.4 over the edge router-based DNS serv-
ices. As DNS traffic is often triggered by many IoT applications
such as HTTPS and NTP for retrieving IP addresses of the cloud
servers, there tends to exist strong correlations between the inter-
nal DNS traffic of IoT devices and the actual incoming wide area
networks (WAN) network traffic of these devices. Fig. 9 illus-
trates the byte count of DNS query/reply packets between Ama-
zon Echo Dot and the home router (the top plot) as well as the
total number of bytes exchanged between the Echo Dot and
cloud servers (the bottom plot) over a 2-hour time window. As
shown in Fig. 9, the two traffic measures exhibit strong temporal
and structural correlations. This observation confirms the impor-
tance of hardening the security of edge routers that act as DNS
servers as well as all other non-IoT devices, since the IoT
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StartTime Duration SrcIP DstIP
18:09:50.223 0.059s 192.168.1.216 192.168.
18:09:50.223 0.059s 192.168.1.195 192.168.
18:09:50.226 0.075s 192.168.1.216 192.168.
18:09:50.226 0.075s 192.168.1.195 192.168.
18:09:50.404 0.065s 192.168.1.216 192.168.
18:09:50.404 0.065s 192.168.1.195 192.168.
Fig. 10. First 6 network flows captured when sending an

exact dates are removed for privacy concerns.

devices will be vulnerable to the DNS spoofing attack in edge
networks [39] if these edge routers or non-IoT devices are
compromised.

2) Communication Among loT Devices: The data commu-
nication among IoT devices happens primarily during the
operation stage between paired IoT devices in the same edge
network such as an Amazon Echo and a Philips Hue bridge.
Due to the improved network latency and simplified manage-
ment and operations, different IoT devices in the same edge
network can be “paired” with each other for better communi-
cation and cooperation. We notice that during the initial pair-
ing stage, all IoT devices contact their respective vendors’
cloud servers for authentication and registration. After a
paired relationship is established, many of the paired devices
continue to rely on the cloud servers as a proxy to communi-
cate with each other for security and trust considerations.

We also noticed one pair of IoT devices, Amazon Echo Dot
and Philips Hue bridge, directly talking with each other using
the HTTP protocol, as illustrated in Fig. 10, after the Philips Hue
bridge is added into the trusted device list on the Amazon Echo
Dot. These packets are captured by the router when we press the
“open” button in the Amazon Alexa App. The direct internal
communication significantly improves the efficiency and latency
of operating the Philips Hue bulbs via controlling Amazon Echo
Dot in the same edge network, since the commands are not
required to transfer through the long-latency path from mobile
Apps on smartphones, cloud servers, the Philips Hue bridge, to
the light bulbs. On the other hand, the direct communication
using the insecure HTTP protocol could potentially leave both
IoT devices vulnerable to attacks. Therefore, whether retaining
the cloud servers as a communication proxy is a system design
trade-off between security and efficiency.

3) Communication Between IoT and Non-IoT Devices: We
discover three communication protocols, multicast DNS
(mDNS), simple service discovery protocol (SSDP), and HTTP/
HTTPS in this category. Many Apple devices, Linux-based net-
worked systems, and Windows computers with Apple iTunes
all periodically broadcast multicast DNS (mDNS) packets to
identify and resolve the IP addresses of other devices in the
same edge network. In our study, Philips Hue bridge is the only
IoT device leveraging mDNS protocol to identify itself via
replying mDNS queries but many IoT devices broadcast mDNS
packets in order to find other devices.

The SSDP protocol is designed for the advertisement and
discovery of network services and device existence. Many IoT
devices adopt SSDP protocol to bootstrap the device discovery
services. For example, Samsung SmartThings hub broadcasts
SSDP messages whenever a user tries to pair a new IoT device

SrcPort DstPort Protocol PacketSize
1.185 59337 80 HTTP 678
1.216 80 59337 HTTP 2634
1.195 59338 80 HTTP 574
1.216 80 59338 HTTP 2542
1.185 59339 80 HTTP 750
1.216 80 59339 HTTP 1650

“open” command from Amazon Echo Dot (192.168.1.216) to Philips Hue Bridge (192.168.1.195). The

1 |M-SEARCH = HTTP/1.1

2 |HOST: 239.255.255.250:1900
3 |MAN: "ssdp:discover"

4 |MX: 4

5

ST: urn:schemas-upnp-org:device:basic:1

Fig. 11. Anexample of SSDP requests sent by SmartThings Hub.

to the hub using the SmartThings App on a smartphone.
Fig. 11 shows an SSDP message sent from the Samsung
SmartThings hub when the hub is requested to pair with a Phi-
lips Hue bridge. The Mandatory Extensions in HTTP (MAN)
in Fig. 11 defines the scope of the extension and carries the
value of “ssdp:discover” to indicate a device search request,
and the maximum wait time in seconds (MX) is used for load
balance when the hub processes the SSDP responses. Search
target (ST) is in the format of urn : schemas-upnp-org:
device:DeviceType:version in the case of searching
for a particular device, specified by the device type and
version.

The corresponding device type and version of Philips Hue
bridge is basic and 1,respectively, as included in the SSDP
response messages. However we notice that the Samsung
SmartThings hub is actually enumerating all the device types
and versions by sending out different SSDP requests, which
explain why our IoT measurement framework captures a large
number of SSDP network flows during every device paring
process. These SSDP requests also flood in the Wi-Fi net-
works even if the selected device pairs with the hub using
other wireless communication protocols such as ZigBee and
Z-Wave. In other words, the drive-by attackers, if receiving
the broadcast SSDP packets sent by the hub, could pair with
and potentially compromise the corresponding IoT devices.
These findings confirm the design flaws in the paring stage of
these wireless protocols reported in the prior research in [22],
[27], [28], [40]. Our study also discovers an interesting behav-
ior of Philips Hue bridge which proactively sends out the
SSDP packets targeting a Windows PC in the same edge net-
work every two minutes. Such unique traffic pattern could
help effectively detect and distinguish this type of IoT devices.

The third type of communication protocol between IoT and
non-IoT devices is HTTP/HTTPS, which is used by smart-
phones to directly communicate with a variety of IoT devices
in the same edge network. Many IoT devices are controlled,
configured and monitored by smartphone-based apps on
Android or Apple iOS platforms, and these devices e.g. Philips
Hue Bridge, Google Home and Reolink Camera, often allow
the smartphones to directly communicate with them for
reduced network latency using HTTP and HTTPS protocols if
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and only if the device has been registered in the corresponding
application on the smartphone and the IoT device and smart-
phone are in the same edge network. On the other hand, some
IoT devices such as Echo Dot, SmartThings Hub, and Ring
Video Doorbell strictly require that all data packets of com-
mand and control must first go through the trusted cloud serv-
ers and then be forwarded to the devices for security reasons.

V. EXPLORING THE APPLICATIONS OF MULTIDIMENSIONAL
BEHAVIORAL PROFILING

In this section, we demonstrate that the benefits of multidi-
mensional behavioral profiles of IoT devices could lead to a
variety of applications including anomaly traffic detection,
IoT device detection and classification, and network security
monitoring.

A. Anomaly Traffic Detection for IoT Devices

Security and privacy are two key challenges faced by
today’s wide deployment of IoT devices in edge networks due
to inadequate built-in security features, flawed authorization
and authentication processes, and weak password manage-
ment. As cyber attacks exploring the weakly protected IoT
devices often leave substantial traffic footprints in edge net-
works, it is intuitive to explore multidimensional behavioral
profiles to detect anomaly traffic and security threats.

In this study, we adopt an anomaly detection method based on
minimum description length (MDL) principle because of its
data-driven approach and parameter-free feature [1], [12], [18].
The intuition and novelty of the MDL principle lie in the pat-
tern-based compression and encoding techniques which exploit
coding tables to capture the underlying data distributions. In
other words, this technique encodes a frequent and common pat-
tern with a short encoded length, while a long encoded length
reflects anomalies and irregularities in the original data [1]. The
MDL principle essentially is a model selection framework for
performing lossless compression and encoding on data with cat-
egorical features and attributes. The main process is to search
and identify the best model e which minimizes the overall
encoding size for the entire data, i.e.,

arg min L(e) + L(u | e), (3)
ec
where £ is the model set and L(e), L(u | €) are the bit length
describing the specific model e and the bit length of describing
the data u with the model e, respectively.

In the context of network flow traffic of IoT devices in edge
networks, we consider all network flow data collected during
a given time period as the data-set D consisting of [ flow
records, each of which has w categorical features, ie., F =
{h1,.-.,hy}. To encode the data with a code table, CT', we
first extract all the patterns P in the data, and represent each
pattern with a code c in the encoding set C. For a given pattern
p € P encoded as c¢(p), we define its frequency, i.e., freq(p)
as the number of flow records in D containing the pattern p.
Thus based on the entropy theory, the optimal coding length
for the pattern p is
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Fig. 12. The distribution of anomaly scores for all observed network traffic
flows during a 24-hour time window for a smart voice assistant.
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In addition, the overall number of bits required to encode the
entire data-set D is derived as:

L(D|CT)=> L(u|CT)
uweD

-3 Y 16w | T 5)

ueD peN (u)

where N (u) is the set of features which are used when encod-
ing u. As shown in Eq. (6), the bitlength of encoding the over-
all data is then calculated as:

L(CT) = ) Llc(p) | CT) = Y oJog(a),  (6)

peCT veV

where V is the set of all unique categorical attributes appear-
ing in the patterns of the code table; o, is the the occurrence
count of the category value v € V; g, equals to o, divided by
the total length of all the patterns in the code table. Combining
the entire feature set together, we can build multiple code
tables to further reduce the overall encoding cost considering
there may be correlation between different features.

This simple yet effective pattern-based anomaly detection
approach allows us to identify unusual or anomalous traffic
flows from network traffic originating from or destined to IoT
devices in edge networks. Our encoding process leverages the
following multidimensional traffic features extracted from net-
work flow records: flow duration, srcIP, srcPort, dstIP,
dstPort, protocol, packet count, byte count, dst IP’s net-
work prefix, and dst IP’s ASN. The MDL principle intends
to encode unusual patterns with longer encoded lengths, thus
we simply consider the encoding length L(u | CT') for a net-
work flow record u as the anomaly score.

Fig. 12 illustrates the distribution of anomaly scores for all
the observed network traffic flows originating from a Google
Home smart voice assistant during a 24-hour time window.
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TABLE V
AN IN-DEPTH ANALYSIS OF NETWORK TRAFFIC
FLOWS HIGH ANOMALY SCORES

Protocols Root cause analysis Flows
HTTPS long secure web sessions with cloud servers 489
ICMP ping traffic 13
mDNS multicast DNS query 3
DHCP DHCF requests 9
DNS Unusual number of Packets 2
8009/TCP  Optimized HTTP service running on the device. 2
5228/TCP  long TCP connections with Google play services 8

Based on the widely used elbow principle, we determine the
anomaly score of 9 as the threshold for traffic anomalies for
IoT devices in edge networks. To evaluate the quality of the
anomaly detection, we manually validate all 526 network
flows with an anomaly score of 9 or above.

Table V summarizes our in-depth analysis of all 526 net-
work flows with high anomaly scores. As shown in Table V,
most of these network flows with high anomaly scores are
long HTTPS connections between the smart voice assistant
with Google cloud servers. Thousands of normal network traf-
fic flows for the smart speaker are mostly periodical DNS
queries and responses as well as short TCP/UDP data trans-
fers. In addition, a small number of network flows are related
to ICMP, mDNS, and DHCP protocols, which are correspond-
ing to the network management and broadcast/multicast traf-
fic. Although all of these network activities are benign in
nature, our validation results confirm the ability and potential
of our proposed pattern-based anomaly detection approach for
discovering unusual and anomaly behaviors based on the mul-
tidimensional behavioral profiles of IoT devices.

B. IoT Device Detection and Classification

Our detailed analysis of IoT devices’ behaviors also pro-
vides unique and valuable features for detecting and classify-
ing newly added devices to the network. Let 7 and j denote
two IoT devices in the data-set. For each traffic feature in
behavioral profiles over a given time window, we can quantify
and measure the similarities and correlations of this feature
between ¢ and j during the same time period. Assuming fea-
ture z is the remote destination IP addresses (dstIPs) that
IoT devices communicate with. Let A; . and A, . represent the
unique sets of dst IPs observed for IoT devices 7 and j dur-
ing the time window, respectively. The similarity on the
dstIP feature,ie., S; ;.. is calculated as

Sige = (20 Azl ™
|4z U Az

Thus repeating the same process on all available features

extracted from network flow data could lead to a similarity

vector for any two IoT devices in the same or different edge

networks. This similarity matrix enables us to identify and

cluster devices with similar behavioral fingerprints, and more

importantly detect new suspicious IoT devices in the same
edge network.

Fig. 13 illustrates the distributions of similarity scores on

three IP-spatial features including dst IP, destination prefixes
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Fig. 13. The scatter plot of similarity score on IP-spatial features.

and ASNs between IoT devices in two different edge net-
works. Each point represents one pair of IoT devices from the
two networks. As shown in Fig. 13, most pairs of IoT devices
exhibit low similarities, suggesting that IoT devices communi-
cate with diverse servers on the Internet. However, the high
similarities between two pairs of IoT devices from two differ-
ent edge networks are apparently worth in-depth investiga-
tions. Our further analysis discovers that two pairs of IoT
devices are exactly the same IoT products, i.e., Amazon Echo
Dot and Samsung SmartThings Hub, which happen to be
deployed in both edge networks. In addition to the similarity
scores on IP-spatial features, we also compare the scores on
temporal and cloud dimensions. After ranking the average
similarity score over all features, we find that the top pairs of
IoT devices with the highest similarity scores, i.e., 0.65 and
0.47, are exactly the same two pairs of devices. We believe
that the discovery of high similarity scores on behavioral fea-
tures among similar IoT devices could help identify newly
added or unknown IoT devices by monitoring and learning
their behavioral fingerprints during the early phrase after they
join the edge networks.

Several recent studies have explored machine learning tech-
niques for IoT device detection and classification [13], [20].
But the multidimensional behavioral profiles we build from
real world data could still provide additional features and
unique insights for improving the quality and performance of
these machine learning-based IoT device detection and
classification.

C. Network Security Monitoring

In order to tackle the prevalent cyber attacks and exploits
towards vulnerable IoT devices, it is crucial to develop effec-
tive techniques for monitoring traffic activities of IoT devices
to enhance the security. Similar to a network telescope, our
proposed measurement framework based on programmable
edge routers can build fine-grained and multi-dimensional
behavioral profiles of IoT devices, and provide critical insights
of potential attacks towards IoT devices in real-time.
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To demonstrate the feasibility of our network security mon-
itoring application, we simulate all the critical steps of Mirai
botnet [4], [16] for infiltrating, infecting, and operating weakly
protected IP cameras in a controlled edge network environ-
ment. We demonstrate that the behavioral fingerprints left by
Mirai botnet reveals many unusual traffic patterns or substan-
tial behavioral deviations that could raise anomalous alerts
and security alarms.

During the infiltration step, Mirai first employs a port scan
strategy for identifying open ports such as 22, 23, and 2323. If
successful, Mirai subsequently attempts to launch a dictionary
attack to attempt the logins with 62 weak and widely used cre-
dentials (e.g. root:admin). Obviously the scanning activity and
dictionary attack trigger substantial behavioral footprint devi-
ations on the IP-spatial and application dimensions, since the
IP address of the remote attacker is from an unusual network
prefix and ASN, and the remote ports used in the scanning are
rarely used in general. This infection stage also leaves unique
behavioral fingerprints from IP-spatial, data volume, and
application dimensions, as the loader, which could be different
from the initial scanner, has to transfer the malware image to
the compromised IP camera.

After being compromised, the IP camera now becomes a part
of the IoT botnet and exhibits very unusual attacking behaviors.
This compromised device starts to perform the aforementioned
port scanning operations in order to infect more devices, and
the device has to periodically communicate with control and
command (C2) servers of the botnet. Eventually the device is
directed to launch coordinated distributed denial-of-service
attacks (DDoS) towards targets such as Dyn DNS infrastruc-
ture [4] with commands from C2. All of these malicious net-
work activities generated by the IP camera leaves significant
deviations on the behavioral fingerprints, thus our proposed
multidimensional behavioral profiling framework for IoT devi-
ces could effectively detect, mitigate, and stop such attacks.

VI. CONCLUSIONS AND FUTURE WORK

As the wide adoption of IoT devices continues to accelerate
in smart homes, cities, and industries, it becomes increasingly
urgent to design and implement Internet traffic measurement
platforms to effectively monitor, characterize, and profile
communications patterns of IoT devices with remote end hosts
on the Internet and local systems on the same edge networks.
Towards this end, this paper develops a systematic measure-
ment framework for establishing multidimensional behavioral
profiles of connected IoT devices based on a wide spectrum of
traffic features from IP-spatial, temporal, entropy, and cloud
dimensions. We also leverage the benefits of our programma-
ble router based scheme to take a deep look into the LAN net-
work patterns of different IoT devices.

Based on real network traffic data collected from 22 edge net-
works over one-year time span, we have discovered a number
of important and interesting findings. We notice that IoT
devices typically communicate with cloud servers from a very
small number of prefixes and ASNs, which belong to IoT manu-
factures, the cloud service providers, NTP service providers, and

public DNS service providers. IoT devices also often exhibit
repeated and predictable traffic activities over time due to heart-
beat signals between IoT devices and cloud servers. Unlike lap-
tops, desktops, or smartphones, IoT devices often engage with a
limited and common number of applications such as DNS,
HTTPS, HTTP, and NTP. These behavioral fingerprints not only
characterize communication patterns of IoT devices with end
systems on the Internet, but also benefit a range of security appli-
cations for IoT devices such as anomaly traffic detection, IoT
detection and classification, and network security monitoring.

Our future work will be centered on exploring the traffic fin-
gerprints at the link layer, i.e., studying wireless communica-
tions between IoT hubs and IoT sensors via Bluetooth,
ZigBee, Z-Wave, and Wi-Fi. The link layer fingerprint could
complement the current behavioral fingerprinting framework
based on traffic features collected from network, transport,
and application layers, which could collectively provide criti-
cal input for designing next-generation IoT security monitor-
ing and threat prevention systems.
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