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Abstract: In this paper, we explore the impact of extra radiation on predictions of pp !

tt̄X, X = h/W±
/Z processes within the dimension-6 SMEFT framework. While full next-

to-leading order calculations are of course preferred, they are not always practical, and so

it is useful to be able to capture the impacts of extra radiation using leading-order matrix

elements matched to the parton shower. While a matched leading-order calculation for tt̄X is

not expected to reproduce the next-to-leading order inclusive cross section precisely, we show

that it does capture the relative impact of the EFT e↵ects by considering the ratio of matched

SMEFT inclusive cross sections to Standard Model values, �SMEFT(tt̄X+j)/�SM(tt̄X+j) ⌘ µ.

Furthermore, we compare leading order calculations with and without extra radiation and

find several cases, such as the e↵ect of the operator ('†
i
 !
Dµ')(t̄�µ

t) on tt̄h and tt̄W, for which

the relative cross section prediction increases by more than 10%—significantly larger than the

uncertainty derived by varying the input scales in the calculation, including the additional

scales required for matching. Being leading order at heart, matching has the benefit that it

can be applied to all operators and processes relevant to pp ! tt̄X, X = h/W±
/Z + jet, is

computationally fast and not susceptible to negative weights. Therefore, it is a useful approach

in tt̄X+jet studies where complete next-to-leading order results are currently unavailable or

unwieldy.
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1 Motivation

The Standard Model e↵ective field theory [1–4] (SMEFT) provides a useful, bottom-up frame-

work for new physics searches at the LHC. The SMEFT assumes that all new particles are

too heavy to produce on-shell, and encompasses their e↵ects into the coe�cients of higher

dimensional operators formed from SM fields and their derivatives. The higher dimensional
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operators generate new interactions, modify existing interactions, and alter the relationship

between Lagrangian parameters and observables.

Recently, the SMEFT approach has been applied to search for new physics in the pro-

duction of top quarks produced in association with bosons, such as tt̄h, tt̄W, and tt̄Z [5–8];

see Refs. [9–11] for experimental analyses. Such analyses rely on predictions for the size and

nature of SMEFT e↵ects usually obtained from matrix element calculations interfaced to the

parton shower, such as MadGraph [12] interfaced with Pythia [13, 14]. In such predictions,

the minimal production of tt̄X—where “X” refers to one W, Z, or h—is seen as the leading

contribution, while production with one additional jet, e.g. tt̄X+j is viewed as a higher-order

correction.

However, there are many examples of processes for which production with one additional

jet turns out to be not just a small correction. An obvious case would be single top production,

for which t-channel production dominates over s-channel production. There are also cases

for which the EFT contribution arising from the process with one extra jet is significant, or

even dominant over the process with no additional jets. One would like to incorporate these

radiation e↵ects into SMEFT analyses.

To study the impact of extra jets, the obvious solution is to go to next-to-leading order

(NLO). In fact, an NLO implementation containing all bosonic (dimension-6) operators, all

operators with two fermions, and four fermion operators with at least one top quark was

recently released [15]. However, SMEFT predictions at NLO require additional counterterms

and are a significant undertaking; see Refs. [16–20] for tt̄X specific NLO details. The practical

consequences of the counterterms are that the NLO Monte Carlo takes significantly more

CPU-time to generate events and tends to produce a substantial fraction of events with

negative weights1. These considerations can make it challenging to make use of NLO Monte

Carlo.

An additional complication arises when generating NLO samples involving dimension-6

operators and processes with electroweak vertices. Calculations in MadGraph can be done to

a fixed order in QCD coupling, QED coupling, new physics coupling, etc. At NLO, fixing

the coupling order is a must, as MadGraph is currently only capable of accounting for NLO

QCD e↵ects. Since electroweak loops cannot be included in the NLO calculation, tree-level

diagrams with QED order greater than or equal to two plus the lowest QED order tree-level

diagrams are not permitted by the code. The addition of new couplings, i.e. the SMEFT

Wilson coe�cients, introduces a potential ambiguity, as the e↵ective QED order assigned

to the new couplings can impact whether or not diagrams involving these couplings can be

included in the NLO calculation. Furthermore, the QED orders assigned to SMEFT couplings

is somewhat arbitrary and varies among UFO models in the literature. For example, let us

consider the dimension-6 SMEFT operator OtB. In some models, the coupling associated

with OtB has a QED order of 0 or 1, while in others it can be 1 or 2 [15, 21]; the way

in which OtB contributes to a process at a fixed order therefor depends on this subjective

1For a quantitative example of these di↵erences, see Appendix A.
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assignment. These coupling technicalities could potentially be overcome, but this would likely

require carefully and manually adjusting the order of each operator. Thus, while a full NLO

SMEFT treatment is ideal and available for numerous dedicated processes and operators, its

automated use may not always be practical, especially for processes with electroweak gauge

bosons.

However, studies of SMEFT in processes with additional radiation can also be carried out

at tree-level using matching [22–25]. Tree level calculations, unlike NLO, may be run without

any MadGraph restriction on the coupling order, regardless how new physics couplings are

classified (i.e. their QED or QCD order). In the matching procedure, the phase space of the

additional radiation is divided up into two regions. Harder emissions are handled by matrix

element (MadGraph, in our case) calculators with the additional parton explicitly listed in the

final state, i.e. pp ! tt̄X+j, while soft emissions are handled by the parton shower. Events

in the ‘wrong’ region, e.g. a partonic event with pT below the division, are removed to avoid

double counting. Since matching uses tree-level matrix elements only, it is less expensive than

the full NLO treatment—both in terms of CPU-time of the computation and also in terms of

the fraction of events generated with negative weights—and it avoids complications associated

with the lack of electroweak loop corrections. Certainly, matched tree-level calculations will

lack NLO precision, but for many cases, the loss of precision is a reasonable trade-o↵ in the

face of the practical di�culties of NLO Monte Carlo generation.

Matching does involve some complications. In current Monte Carlo generators, SMEFT

operators can be included in the matrix element portion of the calculation, but they cannot

be added (easily) into the parton shower. Thus, it would appear that matching with SMEFT

always causes a mismatch, as the events deleted from the matrix element are not replaced by

anything. While a reasonable worry, we will show that the impact of this mismatch is small

and, at least when focusing on tt̄X+j processes, confined to a single operator.

The goal of this paper is to show that matched calculations capture the relevant physics

of extra partons in tt̄X final states without introducing uncertainties beyond the usual ones

associated with LO compared to NLO QCD, such as the uncertainty from the choice of scales

for the matching, factorization/renormalization, and ISR/FSR. Because we know that even

in the SM case, the predicted tt̄X inclusive cross section receives non-negligible corrections

at NLO compared to LO, we will examine the ratio of the SMEFT cross section to the SM

value �SMEFT(tt̄X+j)/�SM(tt̄X+j) – the ‘relative K-factor’, which we will denote as µ. We

demonstrate the validity of this approach by showing agreement between the cross section

ratios calculated for NLO and matched LO. Looking at this ratio has the additional benefit

that to determine the overall rate in tt̄X for some set of SMEFT operator coe�cients, starting

from a LO calculation, one simply needs to multiply by the (NLO) SM cross section. Once

we have established the validity of using matched calculations, we compare the sensitivity of

tt̄h, tt̄W, tt̄Z matched inclusive cross sections to SMEFT coe�cients with and without extra

radiation. The extra radiation can come from a SM vertex, or from an additional quark/gluon
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emitted from a higher dimensional operator.2

The layout of the rest of this paper is as follows. In section 2 we describe the SMEFT

framework and the subset of operators that can have a potential impact on tt̄X and tt̄X+j

processes. Section 3 is devoted to justifying the use of matching with SMEFT for theory

calculations and Monte Carlo studies. The following section, section 4 contains our results—

plots and tables displaying the impact of SMEFT operators on inclusive tt̄X and tt̄X+j

processes. We focus on operators whose impact changes dramatically from +0 jets to +1 jet.

In several cases, the NLO calculation for the operators we examine is challenging to obtain

because too many electroweak vertices are needed. In section 5, we discuss uncertainties and

compare their size to the size of the impact from adding additional jets into the calculation.

Finally, in section 6, we conclude.

2 The SMEFT framework

The most common basis for characterizing SMEFT e↵ects is the so-called Warsaw basis [3].

At dimension-6, there are 59 operators if one assumes complete fermion flavor universality,

or 2499 for flavor anarchy [26, 27]3. A flavor symmetry assumption that interpolates between

these two extremes is to assume the SMEFT operators are invariant under flavor U(2)Q ⇥

U(2)u ⇥ U(2)d. Under this assumption, first and second generation quarks have universal

SMEFT deviations, while operators involving third generation quarks may be di↵erent. This

pattern allows the top-quark (or, potentially, the whole third generation) to have sizable

SMEFT e↵ects without running afoul of strong flavor constraints from e.g. kaon physics.

Motivated by the possibility of larger third generation e↵ects, the set of operators containing

two or more third generation fermions was compiled in Ref. [21]. In this paper, we continue

the mindset of Ref. [21], adopting the reduced set of operators and using the UFO model

dim6TopEFT for all MadGraph purposes. In the dim6TopEFT setup, dimension-6 operators

are suppressed by a scale ⇤ that is conventionally fixed to 1 TeV. This choice renders the

Wilson coe�cients dimensionless. Additionally, the CKM matrix is assumed to be a unit

matrix, the masses of u, d, s, c, e, µ fermions are set to zero, and the unitary gauge is used by

default.

While the dim6TopEFT model contains 33 operators4 we will further narrow our focus to

operators that can have potential tree-level impact on tt̄X and tt̄X+j processes with h/W±
/Z

on-shell. Our goal, after all, is to explore how well matching captures the e↵ects of additional

radiation in tt̄X process, rather than perform a complete SMEFT analysis, and a smaller set of

2There are two important aspects of the UFO model implementation in MadGraph that need to be accounted

for correctly, as outlined in section 3.
3At dimension-5, only one operator structure is allowed and it violates lepton number. Therefore, most

SMEFT analyses assume lepton number is a good symmetry, making dimension-6 the lowest mass dimension

beyond the SM.
4This counting refers to the ‘baseline’ model in Ref. [21]. Several stricter flavor symmetry assumptions are

possible, such as a ‘top-philic’ scenario. See Ref. [21] for more details.
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operators makes this more tractable. This choice limits the number of operators5 to 9, which

are listed below in Table 1. As some of the operators in Table 1 are not self-Hermitian, they

may have complex Wilson coe�cients. However as imaginary Wilson coe�cients inevitably

lead to CP violation and are therefore strongly constrained, we consider real coe�cients only.

Importantly, we include operators that impact tt̄X, tt̄X+j via both QCD and electroweak

interactions.

Table 1. The operators and corresponding Wilson coe�cients considered in this paper. Left-handed
fermion doublets are denoted by q, and right-handed fermion singlets by t and b; the Higgs doublet
is denoted by '. The antisymmetric SU(2) tensor is denoted by " ⌘ i⌧

2. Furthermore, '̃ = "'
⇤,

('†
i
 !
Dµ') ⌘ '

†(iDµ') � (iDµ'
†)', and ('†

i
 !
D

I
µ') ⌘ '

†
⌧
I(iDµ') � (iDµ'

†)⌧ I
', where ⌧

I are the
Pauli matrices. Finally, T

A
⌘ �

A
/2, where �

A are Gell-Mann matrices. The covariant derivative
is Dµ = @µ � igs

1
2�

A
G

A
µ � ig

1
2⌧

I
W

I
µ � ig

0
Y Bµ, and G

A
µ⌫ = @µG

A
⌫ � @⌫G

A
µ + gsf

ABC
G

B
µ G

C
⌫ , W

I
µ⌫ =

@µW
I
⌫ � @⌫W

I
µ + g✏IJKW

J
µ W

K
⌫ , and Bµ⌫ = @µB⌫ � @⌫Bµ are the gauge field strength tensors. The

abbreviations sW and cW denote the sine and cosine of the weak mixing angle (in the unitary gauge).
More details about the operators can be found in Ref. [21].

Operator Definition Wilson Coe�cient

Ot' q̄t'̃('†
') ct'

O
1
'q ('†

i
 !
Dµ')(q̄�µ

q) c
�
'Q + c

3
'Q

O
3
'q ('†

i
 !
D

I
µ')(q̄�µ

⌧
I
q) c

3
'Q

O't ('†
i
 !
Dµ')(t̄�µ

t) c't

O'tb ('̃†
iDµ')(t̄�µ

b) c'tb

OtW (q̄�µ⌫
⌧

I
t)'̃W

I
µ⌫ ctW

ObW (q̄�µ⌫
⌧

I
b)'W

I
µ⌫ cbW

OtB (q̄�µ⌫
t)'̃Bµ⌫ (cWctW � ctZ)/sW

OtG (q̄�µ⌫
T

A
t)'̃G

A
µ⌫ ctG

We would like to draw attention to several notational choices regarding the operators

and Wilson coe�cients outlined in Table 1. First, we note that following the convention in

Ref. [21], the c
3
'Q and ctW parameters appear in multiple Wilson coe�cients. This choice

simplifies the form of t-t-Z (and t-t-Z-h) interactions, so that contributions to t̄L�µtLZ
µ are

set by c
�
'Q alone, contributions to t̄L�µtRZ

µ⌫ are set by ctZ alone, etc. For the rest of this

paper, we will refer to each individual parameter as a Wilson coe�cient; for example, rather

than denoting c
3
'Q+c

�
'Q as the Wilson coe�cient of O

1
'q, we will refer to c

3
'Q and c

�
'Q as two

distinct Wilson coe�cients, where the Wilson coe�cient c
3
'Q is associated with both O

1
'q and

O
3
'q. Because multiple operators can involve the same Wilson coe�cient, we will describe

EFT vertices in terms of the Wilson coe�cient associated with the vertex (instead of the

operator associated with the Wilson coe�cient) to avoid potential ambiguities. Finally, to

maintain consistency, we will also use the language of Wilson coe�cients when describing the

5In particular, the requirement of an on-shell h/W±/Z removes all four fermion operators.
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e↵ects of EFT operators. For example, to discuss how the Lagrangian term c't

⇤2 O't a↵ects a

particular process, we will refer to the e↵ect of c't on the given process.

3 Jet matching/merging for EFT samples

When considering processes containing an extra parton in the final state, a matching proce-

dure is required to avoid double counting between matrix element (ME) and parton shower

(PS) descriptions of phase space. When the ME is matched to a PS, only widely-separated

radiation above a certain matching scale Q will be modeled by the ME and therefore include

the EFT e↵ects, while radiation below the scale Q is cut o↵, and not included in the ME

description. Radiation below the scale Q, namely a soft and colinear regime, are generated by

the PS which does not include the EFT vertices. Thus, one may worry that a contribution,

namely the soft and colinear contribution from EFT vertices, may be missed. If the soft and

colinear contributions from EFT vertices are small, they can safely be neglected. However, if

they are large, then the matching procedure cannot be used without adding EFT e↵ects to

the parton shower.

Although there are multiple di↵erent ways to implement matching, for these studies we

use the kT -jet version of the MLM matching scheme, an event-rejection based approach that

matches partons generated by MadGraph to jets clustered by Pythia [23]. First, the final-state

partons in the event produced by MadGraph are clustered according to the kT algorithm, where

the kT value is required to be above a specified cuto↵ scale referred to as the xqcut. The

event is then passed from MadGraph to Pythia for parton showering. After showering (but

before hadronization), Pythia clusters the final-state objects using the kT algorithm with a

cuto↵ scale called qCut; using qCut as the maximal kT distance between jets and partons, the

clustered jets are matched to the ME partons. The event is saved if all jets are successfully

matched to partons. The event is otherwise discarded, except in the highest jet multiplicity

sample, where extra jets (with kT less than the softest ME parton) are permitted since there

is no danger of double counting in these events. To avoid missing a region of phase space,

xqcut is chosen to be less than qCut.

In what follows, we explore the validity of matching applied to generation of EFT samples

from two perspectives. First, we explore the theoretical considerations that come into play as

applied to the processes and operators of interest in this paper. Then, we check the results of

applying matching to specific samples generated via MadGraph to see if any signs of missing

contributions are visible.

3.1 Theoretical justification

As mentioned above, a major concern with matching as applied to EFT samples is that

SMEFT operators are included in the matrix element, but they are not implemented in the

parton shower. In this section, we will demonstrate that the impact of this mismatch is

small, as EFT contributions for the subset of Warsaw basis operators we are interested in

(see section 2) to soft and colinear regime are generically suppressed.
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Figure 1. The tt̄h+j final state when the gluon is emitted from (a) the g-g-t-t-h and g-g-t-t vertices
generated by the OtG operator, and (b) the ordinary QCD vertex.

Extra QCD radiation requires gluons, so can only arise in operators with gluon field

strengths or derivatives of quark fields. Working within the Warsaw basis, where derivatives

have been systematically removed in favor of operators with more fields, and focusing on CP-

even operators6, our options are limited to OG = fABCG
A,⌫
µ G

B,⇢
⌫ G

C,µ
⇢ , O�G = �

†
� G

A,µ⌫
G

A
µ⌫ ,

OdG and OuG. If we limit ourselves to the operators that are particularly important for tt̄X

observables, as laid out by Ref. [8, 21], the only operator that remains is OtG
7.

ctG

⇤2
OtG =

gsctG

⇤2
(q �

µ⌫
T

a
t)�̃ G

a
µ⌫ , (3.1)

Notice the explicit factor of gs in OtG. This factor is necessary in order for MadGraph to

identify OtG as a ‘QCD-type’ operator and include it correctly.

To address the concern of omitting OtG from the parton shower, we need to understand

the circumstances under which OtG leads to a soft or colinear gluon. There are two scenarios

where we can imagine OtG may be problematic, depending on whether we extract one or two

gluons from the field strength. If we extract two gluons, we have new g-g-t-t-h and g-g-t-t

QCD vertices. Connecting one of the gluons to the initial partons, the second gluon may be

soft or colinear with a final state t or t̄. On the other hand, if we set the Higgs to its vacuum

expectation value (v) and pull one gluon out of the field strength, we are left with a new

(non-SM) three-point interaction between two top quarks and a gluon. Including this vertex

on any top quark line, we have another potential source of soft/colinear gluon radiation. In

the next two sections we explore each of these scenarios in detail.

3.1.1 g-g-t-t-h and g-g-t-t vertices: a case study on tt̄h+j final state

In this subsection, we study the g-g-t-t-h and g-g-t-t vertices within OtG. While g-g-t-t

can impact any of the tt̄X+j processes we are interested in, g-g-t-t-h is specific8 to tt̄h+j,

6CP-odd operators will not interfere with the SM and therefore have no e↵ect at 1/⇤2, so we ignore them.
7The impact of OG in matching has been addressed in the literature in Ref. [25]. The other operators, O�G

and OdG play little role in tt̄X and are better constrained by Higgs and t̄tb̄b observables respectively [8, 28].

Additionally, due to the chirality structure of OdG, it is reasonable to assume cdG / yb ⌧ 1, further suppressing

any e↵ects.
8Provided we ignore the Yukawa couplings of first and second generation quarks.
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therefore we will use on tt̄h+j as a test case; some representative Feynman diagrams for tt̄h+j

illustrating how OtG vertices can enter are shown in Fig. 1(a). As mentioned above, in the

matching procedure radiation softer than the scale Q will be cut out of the matrix element

calculation and left to the parton shower. However, as OtG e↵ects are absent in the parton

shower, the matched calculation is mis-modeling some part of the low Q phase space. To

quantify how severe an issue this mis-modeling is, we need to understand the momentum

distribution of gluons from g-g-t-t-h and g-g-t-t vertices.

Generating tt̄h+j at parton level within the dim6TopEFT model [21] using MadGraph [12],

the normalized pT spectrum of the additional gluon is shown below in Fig. 2(a) and 2(b). The

only non-zero Wilson coe�cient is ctG, the coe�cient of OtG. To focus on the e↵ects of the

g-g-t-t-h and g-g-t-t vertices of OtG, we split up the calculation into two pieces: i,) the sum of

the SM contribution and all OtG e↵ects except the g-g-t-t-h and g-g-t-t vertices (e.g from the

diagram illustrated in Fig. 1(b)), and ii.) contributions from the g-g-t-t-h and g-g-t-t vertices;

technically, we achieve this splitting by adjusting the coupling order of the vertices within

OtG. The di↵erential cross section from the SM and non-g-g-t-t-h and non-g-g-t-t parts of

OtG is shown in red, the interference of this piece with diagrams including the g-g-t-t-h and

g-g-t-t vertices is shown in blue, and the quadratic contribution from g-g-t-t-h and g-g-t-t

vertices is shown in black. The events were generated assuming 13 TeV center of mass energy

and using default parton distribution functions NNPDF2.3QED [29]. As benchmark values, we

choose ctG = 2 and ⇤ = 1 TeV.

In the left panel, Fig. 2(a), we compare the three contributions to 1
�d�/dpT,g using

minimum cut of pT > 15 GeV (solid lines) and pT > 1 GeV (dashed lines) for the radiated

gluon. For the purely EFT contribution (black line), the hard gluon is emitted with pT ranging

from tens of GeV to even hundreds of GeV. In contrast, the gluon from the SM QCD vertex

(solid red) is substantially softer with pT of a few tens of GeV. The gluon from the interference

(solid blue) between two diagrams, Figure 1(a) and 1(b), stands in the middle. In order to

quantify the relative size of each contribution, in Figure 2(c) and 2(d), pT distributions are

normalized to each individual cross section.

Comparing the red, blue, and black lines, if we lower the selection cut down to pT > 1

GeV, relatively negligible portions of the interference and purely EFT gluons show up, while

the SM piece blows up. For instance, a relative size of the interference piece in pT range of

[1, 15] GeV is only an O(10�4%) correction to the SM contribution. This numerical result

provides a support for the claim that the mismatch caused by the absence of EFT g-g-t-t-h

and g-g-t-t vertices in the soft and collinear regime is negligibly small.

3.1.2 An anomalous t-t-g coupling

Another avenue to study the EFT radiations is the anomalous t-t-g coupling induced by the

OtG operator as shown in Figure 3(b). Unlike the SM coupling (Figure 3(a)), this vertex flips

the chirality of the top quark, and can contribute to any pp ! tt̄X, X = h/W±
/Z processes

involving an extra parton. Since the parton shower does not include the anomalous t-t-g
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Figure 2. (a) Unit normalized pT distributions of a gluon with pT > 15 GeV from the EFT vertex
(solid black), the SM QCD vertex (solid red), and the interference (solid blue). The pT distributions
of a gluon with a lower minimum cut pT > 1 GeV are shown in dotted lines. (b) Normalized pT

distributions of a gluon in a lower pT range, 1 < pT < 15 GeV, from the EFT vertex (solid black),
the SM QCD vertex (solid red), and the interference (solid blue). In (c) and (d), pT distributions are
normalized to each individual cross section.

vertex, the information about the EFT below the matching scale Q is missing, resulting in

an mismatch.

To scrutinize the properties of gluons from the EFT (Figure 3(b)) vertex, we can analyt-

ically compute the q ! q + g splitting function [30–33]; Feynman rules for the t-t-g couplings

are summarized in Appendix B. We consider the case where two final particles are almost
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Figure 3. The splitting of gluon from the (a) SM t-t-g vertex, and (b) anomalous t-t-g vertex generated
by the OtG operator.

collinear, with a small relative transverse momentum pT . We choose the coordinate such that

the initial top quark is aligned to the z-axis, and all particles are on-shell. The four-momenta

of three particles can be written as:

p =
�

E, 0, 0, p
�
,

q =
�

zE, pT , 0,

q
z2E2 � p2

T

�
, (3.2)

k =
�

(1� z)E,�pT , 0,

q
(1� z)2E2 �m2

t � p2
T

�
,

where z = Eq/Ep is a dimensionless energy-sharing variable, and mt = 173 GeV is the top

quark mass. The splitting function is defined as

dP

dzdp2
T

=
zz̄

16⇡2p̃4
T

⇣1

2

1

3

X
|M|

2
⌘
, (3.3)

where p̃
2
T ⌘ p

2
T + z

2
m

2 and z̄ ⌘ 1� z, and M denotes a splitting amplitude shown in Figure

3. The sum inside the bracket runs over all polarizations, spins, and colors. The squared

amplitude is averaged over initial helicities and colors9. Summing the e↵ect of the SM and

OtG vertices and taking the limit E � pT , mt, the splitting functions are:

dPSM

dzdp2
T

=
2↵s

3⇡

⇣
p
2
T

p̃4
T

⌘(1 + z̄
2)

z
+

2↵s

3⇡

⇣
m

2
t

p̃4
T

⌘
z
3
, (3.4)

dPlinear

dzdp2
T

=
4
p

2↵sctG

3⇡

⇣
p
2
T vmt

p̃4
T ⇤2

⌘
z +

4
p

2↵sctG

3⇡

⇣
vm

3
t

p̃4
T ⇤2

⌘
z
3
, (3.5)

dPquadratic

dzdp2
T

=
8↵sc

2
tG

3⇡

⇣
p
2
T v

2
m

2
t

p̃4
T ⇤4

⌘
z +

4↵sc
2
tG

3⇡

⇣
v

2
m

4
t

p̃4
T ⇤4

⌘
z
3
, (3.6)

where we have separated the result into the SM piece, the interference term, and the term

quadratic in ctG.

9For the detailed expressions of spinors and polarization vectors, see the Refs.[30, 34].
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Figure 4. Splitting functions for the SM, the interference, and the quadratic EFT pieces in
Eq.(3.4,3.5,3.6) respectively. We show the components of each splitting function in terms of (a) pT

with fixed z = 0.2 and (c) z with fixed pT = mt/2. To see the mass e↵ect, the SM splitting function
is shown with and without including the mass, in terms of (b) pT with fixed z = 0.2 and (d) z with
fixed pT = 50 GeV.

The first term of the SM splitting function in Eq.(3.4) scales like O(p2
T /p̃

4
T ) and is rela-

tively enhanced at high pT with respect to the second term which scales like O(v2
/p̃

4
T ). The

second term, however, is more enhanced at small pT , and hence named as the ultra-collinear

splitting [30, 35]. This can be seen in Figure 4(a) that at small pT the ultra-collinear term

(dashed red) is enhanced, whereas the first term (solid red) is relatively suppressed. At high

pT , on the other hand, the first term dominates over a wide range of pT . Note that the

mass-dependent factor p̃
4
T in the denominator regulates a collinear divergence at small pT .

As shown in Figure 4(b), in the massless limit (mt = 0), the SM splitting function (dashed

red) diverges as pT ! 0 with fixed value of z = 0.2. On the other hand, if we include the

mass term, the splitting function (solid red) is regulated at the infrared region.

The splitting function for the interference piece in Eq.(3.5) receives an overall suppression
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Figure 5. Splitting functions for the SM, the interference, and the quadratic EFT pieces in Figure
3. The splitting functions in terms of z variable for fixed (a) pT = mt/2 and (b) pT = mt/8. The
splitting functions in terms of pT for fixed (c) z = 0.2 and (d) z = 0.8. As benchmark values, we
choose ctG = 2 and ⇤ = 1 TeV.

factor of O(v2
/⇤2). The first term (solid blue) scales as O(p2

T v
2
/(p̃4

T ⇤2)), and dominates over

the second term at high pT as shown in Figure 4(a). The second term (dashed blue) is of

an order of O(v4
/(p̃4

T ⇤2)) that shows the similar ultra-collinear behavior as it is enhanced at

small pT . Although the SM and interference splitting functions behave similarly in terms of

pT up to the overall suppression factor, there is a clear disparity between them in terms of

z. Note that the first terms of Eq.(3.4) and Eq.(3.5) have a di↵erent z-dependence. Their

distinctive z-dependences are plotted in Figure 4(c) where the interference piece (solid blue)

is highly suppressed as z ! 0 while the SM term (solid red) is dramatically enhanced. The

splitting function for the pure EFT piece in Eq.(3.6) is qualitatively similar to the interference

one, up to the overall suppression factor of O(v4
/⇤4), and hence highly suppressed.

Figure 5 shows total splitting functions for the SM, the interference, and the quadratic
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EFT terms. As can be seen in the upper panels, the amount of the interference and the pure

EFT contribution is highly suppressed near the z = 0 region, while the SM contribution is

much more enhanced. For z = 0.05, the size of the SM splitting function is ⇠1200 (4200)

times larger than the size of the interference (pure EFT) splitting function. This means that it

is less likely that the soft gluon is emitted due to the interference and the pure EFT portions,

while a majority of soft gluon is generated from the SM vertex. As we move away from the

z = 0 region, the both interference and the pure EFT splitting functions rapidly grow, closing

a wide gap with the SM. For z = 0.8, the SM splitting function is only ⇠2 (10) times larger

than the interference (pure EFT) one.

3.2 Monte Carlo validation of matching

The prior section demonstrated that the impact of neglecting EFT contributions in the parton

shower, at least for the processes of interest in this study, is small. To quantify the impact

of applying matching, we look at the concrete case of specific physics processes generated

with non-zero values for the Wilson coe�cients. We will use the di↵erential jet rate (DJR)

to characterize whether the matching has introduced any discontinuities [24, 36]. For the

kT algorithm, the DJR histogram represents the distribution of kT values for which an n

jet event transitions to an n + 1 jet event. A smooth transition between the n and n + 1

curves indicates that the chosen matching scales have allowed MadGraph and Pythia to work

together to smoothly populate the overlapping region of phase space.

The matched samples used in this section are generated with a model based on the one

described in Ref. [21], with an extra factor of gs applied to the ctG vertices, as described in

section 3.1. The five-flavor scheme is used, so the mass of the b quark is set to zero. We use

the PDF set NNPDF3.1 [37] and the default dynamical scale choice for the renormalization

and factorization scales; we do not make any parton level cuts. The samples are generated

with an xqcut of 10 and a qCut of 19.

Figure 6 shows DJR plots for the three processes considered in this study. For each

process, the transition from the 0 parton line to the 1 parton line is smooth, indicating that

the matching is being handled appropriately. If the xqcut and qCut are varied around their

nominal values of xqcut = 10, qCut = 19, the DJR plots should also remain smooth. Figure

7 and Figure 8 show that the tt̄h DJR plots remain consistently smooth as we vary the qCut

and xqcut, respectively.

In addition to being useful for identifying problems associated with matching and val-

idating matching parameters, DJR plots can also be useful for discovering problems with

simulated samples that are unrelated to matching. For example, when we began this study,

we were using an older version of the model described in Ref. [21] that did not include five

particle vertices. This is important for tt̄h, since the OtG operator gives rise to a five par-

ticle vertex involving two top quarks, two gluons, and a Higgs boson. Before the inclusion

of this missing vertex, the tt̄h DJR plot showed a significant discontinuity when ctG was

set to non-zero values. In fact, this discontinuity is what initially alerted us to the fact the

five-particle ctG vertex was missing from the model file. After the missing ctG five-particle

– 14 –



0.5− 0 0.5 1 1.5 2 2.5 3
1→DJR 0

3−10

2−10

1−10

1

10

210

310

410 0 partons
1 parton
Total

0.5− 0 0.5 1 1.5 2 2.5 3
1→DJR 0

3−10

2−10

1−10

1

10

210

310 0 partons
1 parton
Total

0.5− 0 0.5 1 1.5 2 2.5 3
1→DJR 0

3−10

2−10

1−10

1

10

210

310
0 partons
1 parton
Total

Figure 6. DJR plots for xqcut = 10, qCut = 19 for tt̄h (left), tt̄W (middle) and tt̄Z (right). Here,
all 9 Wilson coe�cients considered in this study are set to non-SM values. The x axis shows the log
base 10 of the scale at which an n jet event transitions into an n+1 jet event. The line labeled “0
partons” refers to the contribution from the parton shower, while the line labeled “1 parton” refers to
the contribution from the matrix element. The line labeled “Total” is the sum of the two contributions.
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Figure 7. tt̄h DJR plots for xqcut = 10, qCut = 15 (left), 19 (middle) and 25 (right). Here all Wilson
coe�cients are set to non-SM values. The x axis and the lines in the plots are the same as described
in Figure 6.
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Figure 8. tt̄h DJR plots for qCut = 19, xqcut = 5 (left), 10 (middle) and 15 (right). Here all Wilson
coe�cients are set to non-SM values. The x axis and the lines in the plots are the same as described
in Figure 6.

vertex was added to the model, the tt̄h DJR plots were found to be smooth even when ctG

was set to non-zero values. The DJR plots produced with and without the five-particle ctG
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vertex included in the model are show in Figure 9.
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Figure 9. DJR plots for tt̄h with the g-g-t-t-h vertex missing (left) and with the vertex included
(right). In both plots, the value of ctG is set to 2, and all other Wilson coe�cients are set to 0. The
x axis and the lines in the plots are the same as described in Figure 6.

4 Results

Having established that including extra partons with matching in an LO calculation provides a

valid approach to approximating the impact of higher-order QCD corrections for the operators

considered here, we will now look at the results obtained with a matched LO calculation. In

particular, we are interested in evaluating whether there are any cases where a matched

LO calculation produces di↵erent results from an LO calculation that does not include an

additional parton. After all, if the matched calculation is always essentially equivalent to

the simple LO calculation, then it might not be advantageous to introduce the complexities

of the matching procedure. On the other hand, if including an additional parton results in

significant di↵erences in some of the EFT predictions, then it will be important to ensure

that these contribution are always included.

The LO matched samples used in this section are the same as those described in sec-

tion 3.2, and the samples produced without an additional parton are generated similarly, but

with the matching turned o↵. We will also look at a few selected processes and operators at

NLO. The NLO samples are generated with the SMEFT NLO model [15]; consistent with the

LO samples, we use the PDF set NNPDF3.1 [37], the default dynamical scale choice for the

renormalization and factorization scales, and we do not make any parton level cuts.

The range over which each Wilson coe�cient is varied is taken from the marginalized

limits presented in Ref. [8]. We make this choice to ensure that we focus on di↵erences in

the predictions in an experimentally relevant range for the Wilson coe�cients. We choose to

consider the marginalized limits rather than the individual ones—which tend to be signifi-

cantly more narrow—because extracting marginalized limits requires that the dependence of

the cross section on the Wilson coe�cients over that entire range is well modeled.

In our calculations, we consider diagrams involving a single EFT vertex only. As such,

the amplitudes will depend linearly (at most) on the Wilson coe�cients, and the cross section
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will depend quadratically:

�(ci) = s0 + s1ci + s2c
2
i , (4.1)

where ci is a Wilson coe�cient, s0 is the standard model contribution, s1 represents the

interference between the EFT and the standard model, and s2 is the pure EFT contribution.

In principle, s2 can contain the e↵ects of interference between two di↵erent EFT operators.

However, in this study we will turn on only one Wilson coe�cient at a time, so the EFT cross

section is a quadratic function of a single ci.10

4.1 Comparison methodology

As we examine these results, it is important to define carefully what quantities are interesting

to consider. For example, it is well known that the overall normalization obtained from LO

calculations, even including the contributions from extra partons with matching, falls short

of the NLO value, resulting in the standard practice of applying “K-factors” to correct the

normalization of LO samples, for example, when comparing to experimental data. As we look

at the impacts of including extra partons with matching compared to LO without matching or

NLO calculations, we do not want these known inclusive normalization di↵erences to obscure

more relevant di↵erences in how the various samples model the dependence of the cross section

on the Wilson coe�cients. Therefore, in this paper, we will always look at the value of the

inclusive cross section at a given Wilson coe�cient relative to the SM cross section value,

calculated with the same method; for example, the LO matched samples will be normalized

to the SM value predicted by the LO matched calculation. This ratio can be thought of as

a “relative K-factor” in that it can be converted into a physical cross section by multiplying

by the SM cross section. We will denote this “relative K-factor” with the symbol µ. An

added benefit to this approach is that sources of uncertainties that just impact the overall

normalization, even in the SM case, cancel out, so we can directly visualize the impact of

uncertainties on the EFT dependence.

As a starting point, we use the methodology described above to compare a set of matched

LO calculations to full NLO calculations. The primary motivation for this is to highlight how

our method of comparison is insensitive to the overall normalization, while making clear the

comparison in inclusive cross section dependence on the Wilson coe�cients between di↵erent

calculations. Due to the challenges described in section 1 associated with including higher-

order QED e↵ects in MadGraph NLO calculations, we will focus on Wilson coe�cients that

can enter the processes we consider at the lowest QED order. For example, the e↵ect of ctG

on tt̄h falls into this category, as ctG vertices can enter into the tt̄h process when the QED

order is constrained to be less than or equal to 1; an example of a tt̄h diagram where QED=1

10Strictly adhering to EFT power counting, keeping the c2i terms in the cross section requires we keep the

c2i terms in the amplitude and add the e↵ects from dimension-8 operators interfering with the SM. As the

number of dimension-8 operators is large [27, 38], a consistent O(c2i ) result is unwieldy, especially as our goal

in this work is to show the e↵ects of matching. We will therefore use Eq. (4.1) with the understanding that

the EFT e↵ects it models do not fully describe the complete SMEFT calculation.
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that involves a ctG vertex is shown in Figure 10. Combinations of operators and processes

where the operator cannot contribute to the process at the lowest QED order are not the

focus of this section due to the complications associated with modeling these e↵ects at NLO.

g

g

t̄

g

t

h

t̄

g

q

Z

t̄

h

q

t̄

t

Figure 10. Example diagrams that contribute to tt̄h. The EFT vertex in the diagram on the left
is a ctG vertex, and the QED order of the diagram is 1; we can therefore take this contribution into
account at NLO. For comparison, the diagram on the right contains a c't vertex, and the QED order
of the diagram is 3; we therefore cannot easily take this contribution into account at NLO.

The results of matched LO predictions compared with NLO predictions are shown in

Figure 11. As mentioned above, we plot the ratio of the inclusive cross section at a given

Wilson coe�cient value (�) to the cross section predicted by the same calculation for the SM

point (�SM), and refer to this ratio as µ. Therefore, the y axis indicates the relative scaling

of the cross section with respect to the SM as we vary the given Wilson coe�cient. For the

matched LO calculation, the results are shown as curves generated by fitting a quadratic

function to inclusive cross sections calculated at a number of di↵erent Wilson coe�cient

values. The MC statistics are su�ciently large such that the statistical error on the fitted

curves is negligible. Since generating NLO MC samples is significantly more computationally

expensive (as discussed in Appendix A), we calculate the NLO cross section at just three

distinct points (always including the SM as one of the points) and plot those points (scaled

to the NLO SM point) with the statistical uncertainty for each point indicated with an error

bar.

In general, Figure 11 shows that the dependence of the inclusive cross section on the

Wilson coe�cients, relative to the SM prediction, are in good agreement between the matched

LO and NLO calculations for the processes and operators shown here. Of course, one should

remember that the overall normalization of the two calculations is di↵erent, but by comparing

ratios, that di↵erence drops out. Therefore, any di↵erences visible in the plot of µ represent

a di↵erence in the quadratic dependence of the cross section on the Wilson coe�cient. The

largest discrepancies between matched LO and NLO are associated with the dependence of

tt̄h on ct', and are 7% or less for the range of NLO points calculated. This amount of

discrepancy is reasonable given that the matched LO calculation includes only additional

radiation contribution to the corrections, but not the loop contributions.

The fact that the NLO and matched LO calculations agree reasonably well in terms of the

inclusive cross section as a function of the Wilson coe�cient relative to the SM expectation

is perhaps not surprising; it is also known [19, 20] that the relative dependence of the cross
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Figure 11. Example quadratic cross section plots showing the LO samples (produced with an addi-
tional parton) compared with the NLO samples. The y axis shows the ratio of the cross section to the
SM cross section; the LO fit is scaled by the LO SM prediction, and the NLO points are scaled by the
value of the SM NLO point. As described in the text, the range for each Wilson coe�cient is taken
from the marginalized limits presented in Ref. [8].

section for tt̄h and tt̄Z on these operators calculated at LO without matching is in reasonable

agreement with the NLO calculation as well. As mentioned above, this is essentially equivalent

to saying that the NLO K-factor is roughly the same for the SM, EFT, and interference

contributions.

4.2 The EFT e↵ects of including an extra parton in the LO calculation

In this section, we will compare the LO samples produced with and without matching in

order to determine if there are any combinations of operators and processes for which the

inclusion of an additional jet with matching changes the observed dependence of the inclusive

cross section on the Wilson coe�cient. This can be viewed as an interesting way to probe

when an NLO K-factor applied to a LO calculation might not be a suitable way to model

the EFT dependence. Furthermore, because matched LO calculations are computationally

easier to obtain, especially when higher-order QED corrections are involved, we can use these

calculations to explore cases that are not currently feasible at NLO.

To avoid preconceptions, we check each of the operators of interest for the tt̄h, tt̄W,

and tt̄Z processes over the ranges from Ref. [8], as described above. For each combination of
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operator and process considered, we compare the dependence on the inclusive cross section

normalized to the SM expectation as a function of the operator’s Wilson coe�cient. The cross

section for the matched sample (�tt̄X+j) scaled by that sample’s SM expectation is referred

to as µtt̄X+j. The cross section for the sample calculated without an extra parton (�tt̄X)

normalized to that sample’s SM prediction is referred to as µtt̄X. Since these samples are all

generated at LO, we place no limits on the QED or QCD order of the diagrams included by

MadGraph. Using each processes’ quadratic parameterizations, we find the normalized cross

section at the positive and negative limits of the ranges from Ref. [8], and if µtt̄X+j is more

than 10 percent di↵erent than µtt̄X, we classify the combination of process and coe�cient as

being significant impacted by the inclusion on an additional parton.

The processes showing large di↵erences for each operator are summarized in Table 2.

Note that in the case of OtB, while for tt̄h both ctW and ctZ show a significant impact, for

tt̄Z, only ctZ shows a large di↵erence according to the criteria defined above; additionally,

we note that for O
1
'q, only c

3
'Q has a large impact on ttW according to the criteria above.

Section 4.3 provides a discussion of these di↵erences.

Table 2. List of operators and corresponding Wilson coe�cients considered in this paper indicating
for which of the processes we observe a large µtt̄X+j/µtt̄X ratio as described in the text. For operators
that are associated with two coe�cients, if the dependence on either of the coe�cients is significantly
impacted by the inclusion of an additional parton, the process is listed.

Operator Definition Wilson Coe�cient Processes with large µtt̄X+j/µtt̄X

Ot' q̄t'̃('†
') ct' tt̄W

O
1
'q ('†

i
 !
Dµ')(q̄�µ

q) c
�
'Q + c

3
'Q tt̄W

O
3
'q ('†

i
 !
D

I
µ')(q̄�µ

⌧
I
q) c

3
'Q tt̄W

O't ('†
i
 !
Dµ')(t̄�µ

t) c't tt̄h, tt̄W

O'tb ('̃†
iDµ')(t̄�µ

b) c'tb -

OtW (q̄�µ⌫
⌧

I
t)'̃W

I
µ⌫ ctW tt̄h

ObW (q̄�µ⌫
⌧

I
b)'W

I
µ⌫ cbW -

OtB (q̄�µ⌫
t)'̃Bµ⌫ (cWctW � ctZ)/sW tt̄h, tt̄Z

OtG (q̄�µ⌫
T

A
t)'̃G

A
µ⌫ ctG -

Plots of the inclusive cross section relative to the SM as a function of the relevant Wilson

coe�cient for these seven combinations of operator and process are shown in Figure 12.

Within the ranges of Wilson coe�cient values considered, the largest µtt̄X+j/µtt̄X ratios are

seen in the e↵ect of ctZ on tt̄h and the e↵ect of c't on tt̄W. Tables 3 lists the µtt̄X+j/µtt̄X

ratios (evaluated at the upper and lower limits identified in Ref. [8]) for each of the seven

combinations of processes and coe�cients for which the inclusion of an additional parton

significantly changes the dependence of the process on the given coe�cient. The coe�cients

for the tt̄X and tt̄X+j quadratic fits for all of the Wilson coe�cients considered in this paper
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are shown in Appendix C.
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Figure 12. Inclusive cross section for tt̄h, tt̄W, and tt̄Z (with and without an additional parton) as
a function of the Wilson coe�cient. The y axis shows the ratio of the EFT prediction to the SM. The
quadratic parameterizations are generated by fitting a quadratic function to inclusive cross sections
calculated at a number of di↵erent Wilson coe�cient values; the MC statistics are su�ciently large
such that the statistical error on the fitted curves is negligible. The ratio plots show the µtt̄X+j/µtt̄X

ratios. As described in the text, the range for each Wilson coe�cient is taken from the marginalized
limits presented in Ref. [8].
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Table 3. Comparison of µtt̄X+j and µtt̄X at the limits identified in [8] for tt̄h, tt̄W, and tt̄Z. Wilson
coe�cients whose µtt̄X+j/µtt̄X ratio is greater than 1.10 at either the lower or upper limit are included
in the table.

Process WC Limits from [8] µtt̄X+j/µtt̄X at limits

tt̄h c't [-13, 18] 1.09, 1.19

tt̄h ctW [-1.8, 0.9] 1.14, 1.05

tt̄h ctZ [-2.1, 4.0] 1.15, 1.41

tt̄W c
3
'Q [-5.5, 5.8] 1.09, 1.16

tt̄W c't [-13, 18] 1.13, 1.36

tt̄W ct' [-60, 10] 1.15, 1.00

tt̄Z ctZ [-2.1, 4.0] 1.06, 1.14

4.3 Discussion

In Section 4.2, we performed a comparison between the LO samples produced with and with-

out matching, finding that the ratio µtt̄X+j/µtt̄X is large for several of the Wilson coe�cients

and processes considered in this paper. In this section, we will discuss some of the factors

that may contribute to how large of an impact the inclusion of an additional parton has on

the dependence of a particular process’ cross section for a given Wilson coe�cient.

The first factor we consider is how the parton distribution functions (PDFs) in the pro-

cesses involving an additional parton compare to the PDFs in processes that do not involve an

additional parton. Without an additional parton, only gluon-gluon and quark-anti-quark ini-

tial states are possible for the tt̄X processes we consider. At the relevant LHC energy ranges,

contributions from gluon-gluon initiated processes are significantly larger than quark-anti-

quark initiated processes. The inclusion of an additional parton allows for new quark-gluon

initiated EFT diagrams. This can lead to a large µtt̄X+j/µtt̄X ratio, especially in cases where

there are no gluon-gluon initiated EFT diagrams available before the additional parton is

included.

Another potential contribution to the di↵erences between µtt̄X+j and µtt̄X is related to

the energy scaling of the EFT operators. Since all dimension-six coe�cients are suppressed by

1/⇤2, a quantity with units of energy squared is required in the numerator to keep the coupling

dimensionless; these powers of energy can either come from the Higgs vacuum expectation

value (v), or from the energy flowing through the vertex (⇠
p

ŝ). Numerators containing
p

ŝ

will scale with the energy of the process, and numerators proportional to ŝ will depend even

more strongly on the energy of the process, so at high energies, the contributions from these

types of vertices will be enhanced with respect to contributions proportional to v
2. The

inclusion of an additional parton allows us to put more energy into the system, i.e. a tt̄X

system can now recoil against an ISR jet, so we may expect to observe larger µtt̄X+j/µtt̄X

ratios for contributions involving a stronger dependence on the energy scale of the process. To

determine the energy scale dependence of a particular vertex, we should examine the structure
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of the operator that gives rise to the vertex of interest. For example, we note that both ctZ

and c't have a t-t-Z-h vertex, but the operator associated with ctZ contains one Higgs field,

while the operator associated with c't contains two. Because of this, the ctZ t-t-Z-h vertex

does not contain a v, and thus scales as ŝ/⇤2. On the other hand, for the c't t-t-Z-h vertex,

one of the Higgs fields is set to its vev, and the vertex thus scales as v
p

ŝ/⇤2. Since the ctZ

contribution scales like ŝ, it will grow faster with increasing energy than the c't contribution,

and we may potentially see a larger impact from the inclusion of an additional parton.

An additional consideration is the color structure of the final state fermions. Except for

ctG, the operators considered in this paper contain EW bosons, so the tt̄ pairs produced by

these operators are color singlets. These final states cannot interfere with color octet pairs,

such as those produced by gluon splitting. However, when we account for additional radiation

in the final state, we have the potential for more complex color structure, which may open

up interference with some SM contributions and lead to a larger µtt̄X+j compared to µtt̄X.

The final consideration we will discuss is the chirality of the final state fermions. In

SM tt̄h production, the top quarks are of opposite chirality (i.e. one top quark is a tR

while the other is a tL). For SM tt̄W and tt̄Z processes, the top quarks are of the same

chirality. However, the processes involving EFT vertices contain both same-chirality and

opposite-chirality contributions, so in the cases where the chirality does not agree with the

SM chirality, interference with the SM will be suppressed. Since these contributions enter

proportional to the mass of the given particle, the suppression will be less significant for

interactions involving top quarks of the wrong chirality, and more significant for interactions

involving bottom quarks of the wrong chirality.

In this section, we will step through each of the three processes and discuss how the

factors outlined above may a↵ect the cross section’s dependence on the relevant Wilson co-

e�cients when an additional parton is included in the process. We note that this discussion

does not represent a definitive explanation for the µtt̄X+j/µtt̄X ratios; due to the competing

influences of the multifarious e↵ects described above, it is challenging to determine which

combinations of processes and coe�cients will be strongly impacted by the inclusion of an

additional parton. However, since we have shown that the extra parton can a↵ect the pre-

dicted EFT dependence in many cases, we argue that one should consider accounting for

the additional parton whenever possible to avoid inadvertently neglecting significant EFT

contributions.

4.3.1 Discussion of tt̄h

In section 4.2 we found that the three Wilson coe�cients whose e↵ects on tt̄h significantly

change when an additional parton is included are ctW, ctZ, and c't. For all three of these cases,

the EFT diagrams involving an additional parton can have quark-gluon initial states, which

is not possible without an additional parton; furthermore, there are no gluon-gluon initiated

diagrams available for the sample produced without an extra parton for these coe�cients.

We therefore posit that these new quark-gluon initial states are largely responsible for the
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significant di↵erence in EFT dependence observed. However, there are several subtitles to

this argument that should be addressed.

Since the operators associated with c
3
'Q and c

�
'Q are structurally very similar to the

operator associated with c't, we might initially expect to see a corresponding increase in

the cross section’s dependence on these coe�cients when considering an additional parton,

but no such increase is reported in section 4.2. For c
3
'Q, the apparent discrepancy can be

explained by the fact that the quark in the new quark-gluon initiated diagrams must be a b

quark, so the e↵ect is suppressed. However, this is not the case for c
�
'Q, as the quarks in the

quark-gluon initial states are not required to be b quarks; the apparent discrepancy is instead

resolved by noting that the limits on c
�
'Q are much tighter than the limits on c't. When

we consider a comparable range of values for the coe�cients, we see a comparable di↵erence

between the tt̄h and tt̄h+j curves, and there is thus no discrepancy between the e↵ects we

observe for c
�
'Q and c't.

4.3.2 Discussion of tt̄Z

In section 4.2 we found that the only Wilson coe�cient whose e↵ect on tt̄Z significantly

changed with the inclusion of an additional parton is ctZ. To understand why this is the case,

we begin by considering the initial states that become available when an additional parton

is included. For ctZ, the additional parton allows new quark-gluon initiated diagrams (where

the quark does not have to be a bottom quark). However, there are gluon-gluon initiated

tt̄Z diagrams involving ctZ already available without an additional parton, so we may expect

the impact of including an additional parton to be smaller than those reported for tt̄h. It

should be noted that ctZ is not the only coe�cient for which the inclusion of an additional

parton opens up new quark-gluon initiated diagrams where the quark does not have to be a

bottom quark; ctG, ctW, c't, c
�
'Q, and ct' all share this feature. Furthermore, for ctW and ct',

there are no gluon-gluon contributions involving these coe�cients when an extra parton is

not included, so we may expect the e↵ect of the additional parton to be even more significant

than for ctZ.

To understand the cause of these apparent discrepancies, we will first consider the limits

on the relevant coe�cients. The limits on ctG and ctW are indeed tighter than the ctZ limits,

and when comparable ranges are considered, the µtt̄X+j/µtt̄X ratio are in fact comparable to

(or even larger than) the ctZ ratio as we would expect. However, the limits on c't, c
�
'Q, and

ct' are comparable to or looser than the ctZ limits, so a di↵erent explanation is required. For

c't and c
�
'Q, let us consider the energy dependence. As discussed previously, the operators

associated with c't and c
�
'Q involve two Higgs fields, while the operator associated with

ctZ only contains one; though all three coe�cients are associated with a t-t-Z vertex, the

ctZ vertex will scale more strongly with energy, so we may expect to see larger impact for

ctZ when including an additional parton. The final coe�cient to discuss is ct', which has

essentially no impact on tt̄Z before the inclusion of an additional parton and very little e↵ect

after. One factor that may explain this observation is that t-t-h is the only ct' vertex that
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contributes to tt̄Z, which we would not expect to have a large e↵ect on tt̄Z due to the Yukawa

couplings required.

4.3.3 Discussion of tt̄W

For tt̄W, we note that the inclusion of an additional parton leads to new quark-gluon initiated

diagrams (where the quark does not have to be a bottom quark) for all nine of the coe�cients

considered in this paper; furthermore, since tt̄W does not involve any gluon-gluon initiated

contributions, we might expect that the inclusion of an additional parton should have a large

impact for all of the Wilson coe�cients we consider. In section 4.2, we noted that within the

limits identified in Ref. [8], the additional parton indeed leads to a significant change in the

dependence of tt̄W on c
3
'Q, c't, and ct'. It should be noted that ctW is also strongly a↵ected,

but the comparatively tight limits on the coe�cient yield a µtt̄X+j/µtt̄X ratio that does not

meet the 10% cuto↵ used in section 4.2 when we evaluate the ratio at these tight upper and

lower limits.

The dependence of tt̄W on the other coe�cients is also impacted to varying degrees.

Factors that may contribute to the relative sizes of these e↵ects include the energy scaling

of the vertices and the chirality and color structure of the final state fermions. In general,

the fact that many coe�cients are a↵ected is consistent with what we expect based on the

quark-gluon initial states that become available at when one additional parton is included.

However, we should note that there are two coe�cients that are notably not impacted by

the additional parton; namely, both cbW and c'tb do not have an a↵ect on tt̄W either before

or after the inclusion of the additional parton. This is likely due to the fact that the t-b-W

vertices associated with these coe�cients are unique in that they involve right-handed bottom

quarks, so the interference with SM tt̄W production is suppressed.

5 Matching systematics

In the previous section, we examined the e↵ect of including an extra parton in the tt̄h,

tt̄W, and tt̄Z processes, finding relatively large di↵erences from the LO without matching

in several cases. However, it is fair to ask how the size of these di↵erences compares with

the uncertainties on the LO prediction. If these e↵ects are not significantly larger than the

uncertainties, then it would still be safe to ignore them. Conversely, if the di↵erences observed

when adding an extra parton with matching are large compared to the uncertainties, then

these contributions should not be ignored.

In this section, we will explore the size of systematic uncertainties associated with the

matched samples. As we did in prior sections, we will focus on µ = �/�SM. This will allow

us to focus on uncertainties that change the quadratic shape of the inclusive cross section’s

dependence on the Wilson coe�cients without becoming distracted by e↵ects impacting only

the overall normalization, even in the SM. The following uncertainties are included:

• We varied the nominal matching scale (i.e. qCut = 19 GeV) between 15 GeV and 25

GeV.
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• We varied the renormalization (µR) and factorization scale (µF ) scales of the hard

process. Each scale was varied independently up or down by a factor of two and an

envelope was constructed from the various combinations of up/down variations of the

two scales.

• We varied the initial and final state radiation (ISR and FSR, respectively) scales in the

parton shower up and down by a factor of
p

2.

• We use the PDF set NNPDF3.1, so the uncertainties are computed with eigenvector

PDF members using the LHAPDF tools as described in Ref. [39].

We will consider how these uncertainties a↵ect several example combinations of processes and

Wilson coe�cients, as a function of the Wilson coe�cient.

Three combinations of Wilson coe�cients and operators are chosen for this study. For

tt̄h, we select c't as an example of a Wilson coe�cient whose e↵ect on tt̄h is significantly

di↵erent when an extra parton is included. As an example of a Wilson coe�cient whose

e↵ect on the process does not significantly change when an additional parton is included in

the process, we also study the e↵ect of ctG on tt̄h. It is also interesting to consider ctG because

it is connected with the only operator among the subset under consideration whose vertices

involve gluons. To broaden the study by including a process besides tt̄h, we also examine the

e↵ect of c
3
'Q on tt̄W as an example of an operator that a↵ects tt̄W significantly di↵erently

when an extra parton is included in the calculation.

For each of these three representative combinations of processes and Wilson coe�cients,

we vary the systematic uncertainties listed above for a range of Wilson coe�cient values.

Fitting a quadratic to the points, we can determine how the uncertainties scale with the

Wilson coe�cient; the e↵ects of the systematics are combined in quadrature and shown as an

error bands on the quadratic curves in Figure 13. Normalized to the SM, these plots show

how the e↵ects of the systematic uncertainties evolve as we move away from the SM; sources

of uncertainties that just impact the overall normalization cancel out.

Within the range of values considered for each Wilson coe�cient (taken from the marginal-

ized limits presented in Ref. [8]) the combined e↵ects of the systematic uncertainties are small,

on the order of one percent. The relative size of each systematic is shown in Table 4.

Recall that in section 4.2, we found that including an additional parton can have a

sizeable e↵ect, with a µtt̄X+j/µtt̄X ratio of 10% or larger for several combinations of processes

and Wilson coe�cients. As seen in Table 4, the size of the systematic uncertainties for the

tt̄X+j processes (relative to the SM) are less than 2%. This is much smaller than the e↵ects

described section 4.2. In Figure 14, we plot both the tt̄X and tt̄X+j curves together with the

uncertainty bands on both predictions. It is easy to see that the size of e↵ect of including an

extra parton is much larger than the size of the associated systematic uncertainties.
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Table 4. Examples of the relative sizes of the systematic uncertainties considered in this section.
For each Wilson coe�cient shown, the symmetrized fractional uncertainty for each systematic at the
limits from [8] is listed.

Process WC value µR µF PDF ISR FSR qCut Total

tt̄h c't = 18 0.5% 0.6% 0.1% 0.2% 0.5% 1.0%

tt̄h c't = -13 0.4% 0.4% 0.1% 0.1% 0.2% 0.8%

tt̄h ctG = 0.4 0.8% 0.1% <0.1% <0.1% 0.3% 0.9%

tt̄h ctG = -0.4 1.1% 0.2% 0.1% 0.3% 0.5% 1.3%

tt̄W c
3
'Q = 5.8 1.0% 0.2% 0.1% 0.2% 0.1% 1.0%

tt̄W c
3
'Q = -5.5 0.7% <0.1% 0.1% 0.2% <0.1% 0.6%
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Figure 13. Systematic uncertainties on the inclusive tt̄h cross sections for c't and ctG, and on the
inclusive tt̄W cross section for c

3
'Q. The cross sections are normalized to the SM, as discussed in

the text. Additionally, the range for each Wilson coe�cient is taken from the marginalized limits
presented in Ref. [8].

6 Conclusion

In this paper we have motivated the use of leading order calculations plus matching for

SMEFT tt̄X+j, X = h/W/Z studies. Being leading order, the numerical calculations are

fast, have no issue with negative event weights, and can be done without restriction on the

coupling order, thereby avoiding any model-dependence or subtlety of the QED or QCD

order associated to SMEFT couplings. As LO plus matching is only an approximation of

higher order e↵ects, we do not expect it to correctly determine the overall normalization.

However, it does capture the relative SMEFT vs. SM cross section. Matching introduces new

uncertainties in the form of the phase space boundary where the calculation is split between

the matrix element and parton shower; however, we find that the uncertainty introduced

by varying this boundary is less than 2% in the cases we have considered. The impact of

including an additional parton can be much larger than this. For example, the systematic

uncertainties related to matching for tt̄h c't are approximately 1%, while the inclusion of an
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Figure 14. Systematic uncertainties on the inclusive tt̄h and tt̄h+j cross sections for c't and the
inclusive tt̄W and tt̄W+j cross section for c

3
'Q. Both tt̄X and tt̄X+j curves are normalized to the SM

as discussed in the text, and both curves include the uncertainty band, but the uncertainties on the
tt̄X curve are too small to be seen on this plot. We note that the size of the uncertainties are much
smaller than the size of the e↵ect of including an extra parton. As described in the text, the range for
each Wilson coe�cient is taken from the marginalized limits presented in Ref. [8].

additional parton has a 19% e↵ect at the upper limit for c't identified in Ref. [8].

As SMEFT vertices cannot be added easily to the parton shower, one may worry that

certain regions of phase space are being inappropriately treated. While a valid concern, we

find that, if we focus on operators that are most strongly constrained by tt̄X processes, the

only operator missing from the parton shower is OtG. Studying the impact of this operator

in soft and collinear regions of phase space, we find that its impact is minimal due to the

chirality and momentum structure of the operator. This conclusion is similar to what Ref. [25]

found regarding OG. Monte Carlo studies, in the form of DJR plots, back up our analytical

results, provided we make sure to include all relevant five-point vertices in the SMEFT UFO.

To characterize the benefits of adding one additional parton with matching, we compared

LO with no extra partons (tt̄X) to the matched LO with an extra parton (tt̄X+j). For many of

the operators considered for these tt̄X processes, NLO calculations are di�cult to obtain due

to complications involving the QED order assigned to the EFT vertices, so the matched LO

result provides a particularly interesting estimate of the impact of higher-order corrections

on the cross section dependence (relative to the SM) on the Wilson coe�cients. We find

several cases in which the dependence on Wilson coe�cient is significantly modified by the

addition of an extra parton. The dominant factor accounting for this change is that when

including diagrams containing an additional parton, diagrams with quark-gluon initial states

are able to contribute, while the diagrams without extra partons are limited only to quark-

quark initiated diagrams. Factors such as the range of Wilson coe�cient considered, as well

as the derivative, chiral and color structure of the operator under consideration also play an

important role.

In closing, while there is no doubt that when practical, NLO calculations provide more
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accurate predictions, matched LO calculations do provide a computationally a↵ordable al-

ternative. Matched LO calculations are preferable to strictly LO calculations without extra

partons, because contributions from diagrams with an extra parton can provide important

modifications to the dependence of the cross section on the Wilson coe�cient. Given that

matched LO calculations evade complications connected to the QED order assigned to var-

ious EFT vertices, they can even be seen to provide a useful cross check on the full NLO

predictions.
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A Comparison of CPU and negative weights for NLO vs LO calculations

While it is clear that NLO MC are superior in terms of precision and accuracy of modeling

QCD e↵ects, there are reasons why matched tree-level calculations might be more practical.

For example, the matched tree-level calculations typically require far less CPU-time for event

generation. Another consideration is the fact that the NLO calculation produces negatively

weighted events, which can a↵ect the statistical power of the samples generated at NLO. Below

we quantify some of these di↵erences for a representative example calculation, MadGraph which

can produce both tree-level matched and NLO results.

A.1 CPU comparison

In this section, we will investigate the di↵erences in CPU required to generate events with

both the NLO and LO models. For this comparison, we used MadGraph to produce tt̄X

gridpacks with both the SMEFT NLO model and our LO model. The LO gridpacks were

produced with QED=1, QCD=3 order constraints for consistency with the NLO gridpacks.

For each process (tt̄h, tt̄W, and tt̄Z), we generated a set number of events from both the

NLO and LO gridpacks and recorded the CPU time required. Repeating this procedure for

several set numbers of events, we can plot the CPU time required versus the number of events

generated to understand how the CPU time scales with the number of events for the NLO

and LO models. The same random seed is used for each running of each gridpack. These

tests were performed using a single core from an AMD Opteron 6276 2.3 GHz processor.

Figure 15 shows the NLO and LO CPU comparisons tt̄h, tt̄W, and tt̄Z. Though the

overhead time (indicated by the y-intercept of the fit) for the LO samples is somewhat larger

than the NLO overhead, the slopes of the NLO fits are larger than the LO slopes by a factor

of about two to three, depending on the process.
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Figure 15. Plots showing how the CPU time scales with the number of events generated for the NLO
and LO models. For tt̄h (left), the slope of the fit to the NLO points is about 3 times larger than the
slope of the line fit to the LO points. For tt̄W (center), the slope of the fit the NLO points is about 2
times larger than the slope of the line fit to the LO points. For tt̄Z (right), the slope of the line fit to
the NLO points is about 3 times larger than the slope of the line fit to the LO points. For consistency
with the NLO samples, the LO samples were generated with a QED=1 constraint.

A.2 Negative weights

It is known that NLO cross sections are not always positive locally in the phase space which

would imply events with negative weights in simulations. The negative weighted events reduce

the statistical accuracy of the simulated samples at the level of physical observable. For

example, the statistical power of a sample with a fraction of 20-30% negative weighted events

is 3-5 times less than a sample with the same number of events but all weighted positively

[40].

Currently the vast majority of studies about the SMEFT are based on the predictions

by the MadGraph. The NLO simulated samples, generated by the MadGraph, have negative-

weight events which their fractions vary for di↵erent processes. In Simulated tt̄W, tt̄Z and

tt̄h samples by the MadGraph for an arbitrary reference point in WC phase space, far from

the SM point, we find 17%, 27%, and 28% negative-weight events, respectively. This means

we need to simulate 3-5 times larger sample at NLO for finding similar statistical precision

as LO sample which will cause more time and CPU cost for a global EFT search.

B Feynman rules for t-t-g couplings

Feynman rules for the t-t-g couplings are shown in Figure 16, where the index a runs over

the eight color degrees of freedom of the gluon field.

C Comparison of fit parameters for tt̄X and tt̄X+j processes

In tables 5, 6, and 7 we report the coe�cients of the quadratic µtt̄X and µtt̄X+j fits. Since the

fits have been normalized to the SM, the constant term in each parameterization is 1, and

we only report the coe�cients for the linear terms (corresponding to the interference between

the given Wilson coe�cient and the SM) and quadratic terms (corresponding to the purely
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Figure 16. Feynman rules for (left) the SM t-t-g vertex and (right) the anomalous t-t-g coupling
originated from the OtG operator in Eq.(3.1).

EFT term). The statistical uncertainties on the fit coe�cients are smaller than the precision

with which we report the coe�cients.

Table 5. Summary of quadratic fit coe�cients for the tt̄h parameterization for µtt̄h and µtt̄h+j. As
discussed in the text, the cross sections are normalized to the SM.

WC
µtt̄h µtt̄h+j

Linear coe�cient Quad coe�cient Linear coe�cient Quad coe�cient

ctW 0.01215 0.03415 0.01903 0.08627

ct' -0.12269 0.00382 -0.12268 0.00384

c
�
'Q -0.00044 0.00012 -0.00130 0.00069

ctZ -0.00568 0.02382 -0.01009 0.05951

ctG 1.00811 1.23562 0.99949 1.40486

cbW 0.00000 0.00178 0.00000 0.00153

c
3
'Q 0.00202 0.00248 0.00163 0.00215

c'tb 0.00000 0.00036 0.00000 0.00029

c't -0.00021 0.00005 0.00044 0.00061

– 31 –



Table 6. Summary of quadratic fit coe�cients for the tt̄W parameterization for µtt̄W and µtt̄W+j. As
discussed in the text, the cross sections are normalized to the SM.

WC
µtt̄W µtt̄W+j

Linear coe�cient Quad coe�cient Linear coe�cient Quad coe�cient

ctW 0.01384 0.02293 0.02332 0.05624

ct' -0.00003 0.00000 -0.00036 0.00004

c
�
'Q -0.00085 0.00006 -0.00553 0.00106

ctZ 0.00041 0.00139 -0.00043 0.00196

ctG 0.28568 0.02875 0.28313 0.04146

cbW 0.00000 0.00000 0.00000 0.00000

c
3
'Q 0.00058 0.00015 0.00590 0.00409

c'tb 0.00000 0.00000 0.00000 0.00000

c't -0.00038 0.00006 0.00237 0.00103

Table 7. Summary of quadratic fit coe�cients for the tt̄Z parameterization for µtt̄Z and µtt̄Z+j. As
discussed in the text, the cross sections are normalized to the SM.

WC
µtt̄Z µtt̄Z+j

Linear coe�cient Quad coe�cient Linear coe�cient Quad coe�cient

ctW 0.00521 0.00946 0.00780 0.02654

ct' -0.00001 0.00000 -0.00014 0.00001

c
�
'Q -0.10464 0.00415 -0.10434 0.00424

ctZ -0.00262 0.08617 -0.00188 0.10632

ctG 0.35923 0.26202 0.36826 0.37035

cbW 0.00000 0.00154 0.00000 0.00167

c
3
'Q 0.00368 0.00109 0.00292 0.00106

c'tb 0.00000 0.00017 0.00000 0.00016

c't 0.06876 0.00410 0.06820 0.00415
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TopFitter, PoS CKM2016 (2016) 127, [1612.02294].

[8] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou et al., A Monte
Carlo global analysis of the Standard Model E↵ective Field Theory: the top quark sector, JHEP
04 (2019) 100, [1901.05965].

[9] CMS collaboration, A. M. Sirunyan et al., Measurement of the cross section for top quark pair
production in association with a W or Z boson in proton-proton collisions at

p
s = 13 TeV,

JHEP 08 (2018) 011, [1711.02547].

[10] CMS collaboration, A. M. Sirunyan et al., Measurement of top quark pair production in
association with a Z boson in proton-proton collisions at

p
s = 13 TeV, JHEP 03 (2020) 056,

[1907.11270].

[11] ATLAS collaboration, M. Aaboud et al., Measurement of the tt̄Z and tt̄W cross sections in
proton-proton collisions at

p
s = 13 TeV with the ATLAS detector, Phys. Rev.D 99 (2019)

072009, [1901.03584].

[12] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated
computation of tree-level and next-to-leading order di↵erential cross sections, and their
matching to parton shower simulations, JHEP 07 (2014) 079, [1405.0301].

[13] T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)
026, [hep-ph/0603175].
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