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ABSTRACT: We calculate the O((HTH)2/A*) corrections to LEP electroweak precision data
using the geometric formulation of the Standard Model Effective Field Theory (SMEFT).
We report our results in simple-to-use interpolation tables that allow the interpretation of
this data set to dimension eight for the first time. We demonstrate the impact of these
previously unknown terms in the case of a general analysis in the SMEFT, and also in the
cases of two distinct models matched to dimension eight. Neglecting such dimension-eight
corrections to LEP observables introduces a theoretical error in SMEFT studies. We report
some preliminary studies defining such a theory error, explicitly demonstrating the effect of
previously unknown dimension-eight SMEFT corrections on LEP observables.
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1 Introduction

Interpreting current experimental results while allowing for the Standard Model (SM) to
break down at higher energies in future experimental studies is a key task in particle physics.
This can be done in a way that is agnostic about new physics at higher energies by using
an effective field theory (EFT). In this approach we are Taylor expanding in the low-energy
measurement scale(s) divided by the scale of some new physics effects. This defines the
“power counting” of the EFT. When combined with the assumed symmetries, the low-energy
field content, and the representations of the fields under these symmetries, this defines an
EFT. The power of EFT studies of data sets resides in the fact that such an approach is
systematically improvable with quantum loop corrections, and corrections that are higher
order in the power counting without knowledge of the UV completion of the EFT.



When the particle spectrum includes an SU(2)y, scalar doublet (H), and the mass scale
of heavy new physics is parametrically separated from the electroweak scale, the Standard
Model Effective Field Theory (SMEFT) is the appropriate EFT for data with a measurement
scale proximate to the electroweak scale.!

The Large Electron Positron (LEP) collider provided a series of precise measurements
on the properties of the SM states interacting at energies proximate to the Z mass [12].
Over a decade after the conclusion of the LEP experimental program, no consistent and
complete analysis of this data in terms of the SMEFT, extended to sub-leading order in the
power counting, had been developed until the geometric formulation of the SMEFT defined
the relevant formalism not only to sub-leading order, but to all orders in the expansion
in /(H'H)/A in Refs. [13-16].2 To develop this approach the SMEFT was reformulated
geometrically as the Higgs field space geometry plays a key role in this EFT [17-20]. Equally
important was the development and use of Hilbert series techniques in Refs. [21-24].

In this paper, we present a complete set of explicit results that allow the study of LEP
Electroweak Precision Data (EWPD) constraints to dimension eight for the first time. We
also study the effect of previously unknown and neglected dimension-eight corrections when
interpreting LEP data.?

2 SMEFT and geoSMEFT

The SMEFT Lagrangian is

ol
Lsmerr = Lsn + L9, L = Z ngd) for d > 4. (2.1)

The higher-dimensional operators di) are constructed out of the SM fields. The particle
spectrum includes an SU(2)y, scalar doublet (H) with hypercharge y, = 1/2. The operators
di) are labelled with a mass dimension d superscript and multiply unknown Wilson coef-
ficients Ci(d). We define C~’Z.(d) = Ci(d)ﬁ%_‘l /A% and use the Warsaw basis [36] for £©) and
Refs. [15, 37] for £®) results. Our remaining notation is defined in Refs. [1, 27].

'For a review on EFT and the SMEFT, see Ref. [1]. Subtleties in mixing of heavy and light states can
potentially lead to the HEFT [2—6]. These subtleties do not change our conclusions; see Refs. [1, 7-11] for
related scientific discussions.

*Here /(HTH) = vr is defined to be the vacuum expection value (vev) of the Higgs field in the SMEFT.
In this paper we generally do not draw a distinction between the notation vr and v, using the latter for
notational brevity at times. An exception to this rule, where the distinction between the SM classical vev v
and the minimum of the potential in the SMEFT or is important, is discussed in Section 6.

3The results in this work extend previous results [25-29] in a consistent Effective Field Theory extension of
the SM (nowadays called the SMEFT). See also the related Refs. [30-32]. We also note that the first work to
stress the need to characterise a theory error due to the neglect of dimension-eight operators when interpreting
EWPD is Ref. [33]. This point has also been stressed in several recent studies on other observables, see
Refs. [34, 35].



Observable ‘ {é&, 1y, Gp} inputs ‘ {w, Mz, Gr} inputs ‘ Exp. result [12] ‘
ey [MeV] 83.978 £ 0.013 84.003 + 0.018 83.92 £+ 0.12

I'; [MeV] 83.788 £+ 0.013 83.813 £ 0.018 84.08 £ 0.22

r, [MeV] | 167.166 + 0.015 167.168 £ 0.015 166.333 £ 0.5

I, [MeV] | 299.91 + 0.16 300.18 =+ 0.20 ;

. MeV] 299.84 £+ 0.16 300.10 £ 0.20 300.5 £ 5.3

Ly MeV] 382.77 £ 0.13 383.01 £ 0.17 -

Iy [MeV] 375.88 £ 0.13 376.12 £ 0.17 377.6 £ 1.3

I'z MeV] 24944 £ 0.7 2495.7 £ 1.0 24952 £ 2.3

Ry 20.749 + 0.007 20.758 + 0.008 20.767 £ 0.025
R, 0.17221 £+ 0.00002 0.17223 + 0.00003 0.1721 £ 0.003
Ry 0.21588 + 0.00003 0.21586 + 0.00003 0.21619 + 0.00066
A%B 0.01632 + 0.00022 0.01718 +£ 0.00037 0.0171 £+ 0.0010
A% p 0.07370 £ 0.00070 0.07583 £ 0.00117 0.0707 £+ 0.0035
AI},B 0.10341 +£ 0.00097 0.10615 + 0.00162 0.0992 £ 0.0016
004 [pb] 41,491 + 5 41,489 £ 5 41,488 + 6

Table 1. Predictions for LEPI observables in the two input parameter schemes. The {ry, Mz, G F}
scheme results are derived using [40-43]. In particular A%y is derived using Ref. [40]. We have
compared the results for A% g using Refs. [40, 41] and the results agree within quoted errors.

The geometric formulation of the SMEFT (geoSMEFT [13-16]) organizes the theory in
terms of field-space connections. This approach builds on the results reported in Refs. [17—
20, 38, 39]. Using this formulation, the SMEFT was consistently formulated at all orders in
the expansion in O(v/A) for two- and three-point functions. In particular, the theory was
consistently formulated for these n-point functions to O(v*/A*) in Ref. [16], including input
parameter shifts. This is sufficient to examine the effect of heretofore unknown dimension-
eight corrections on EWPD observables.

3 EWPD observables

We seek to interpret the results in Table 1 in the SMEFT consistently to O(v*/A?*). For
the predictions of these measurements, we need numerical values of Lagrangian parameters.
These are defined in an input parameter scheme. Such a scheme is a free choice, and two
choices are in common use in the literature. These are the {my, 1z, Gp} and {&,myz, GF}
schemes. We report results in both of these schemes, and use the numerical input parameter
results in Table 2 to fix values of Lagrangian parameters to this end. For the SM results
for the observables in each scheme, we update the theoretical predictions. For partial widths
and ratios of partial widths we update the results beyond those quoted in Ref. [29]. These



Input parameters Value Ref.
myz [GeV] 91.1876 + 0.0021 [44]
mw [GeV] 80.387 £ 0.016 [45]
my, [GeV] 125.10 £ 0.14 [44]
my [GeV] 172.4+0.7 [44]
my [GeV] 4.18 £0.03 [46]
me [GeV] 1.27+0.02 [46]
m, [GeV] 1.77686 £ 0.00012 [46]

Gr [GeV~2] 1.1663787 -10~° [46, 47]
AEW 1/137.03599084(21) [44]
A« 0.0590 £ 0.0005 [41]
Qg 0.1179 £+ 0.0010 [44]
miy, [GeV] 80.36 £ 0.01 -
Aa™w 0.0576 £ 0.0008 -

Table 2. Input parameter values used to predict EWPD theory predictions for both schemes. m‘o,‘v is
the value of myy inferred in the {&,7,, Gr} scheme using the interpolation formula of Refs. [40-43],
which includes SM loop corrections, while Aa™" is the shift in the value of alpha due to hadronic
effects for the {rhw,mz, G r} scheme. For an introductory discussion on the use of A« relating low
scale measurements of & and higher scale values above the hadronic resonance region see Ref. [48].
Note that we use a tree level value of my, not m‘?jV, in calculating the numerical coefficients for the
shifts due to the SMEFT in EWPD.

numerical values were determined using the interpolation formula in Refs. [42, 43]. In addition,
we use the expansion formula in Refs. [40, 41] to determine up-to-date numerical values of
the A% p bseudo-observables in the {my,mz, G r} scheme, leading to Table 1.4

We present our results for SMEFT corrections normalized to SM predictions. Our results
can be modified to take into account new SM predictions by multiplying by the ratio of the
SM prediction in Table 1 divided by the new SM prediction.

The observables are

_ 1hy N} ; ; 4?2 _ a4 &A=
Ty = P22 (17 2 D ) (U= 5%, Thaa =T+ Tat To+ Ty Ty, (3.1)
247 m7
_ r _ r
= =2 ) = —had (3.2)
Chad Iy
1227 T.T _ 3 - _
-0 had 07 —
Ohad — mZZ efQZa ) AF% = Z Ay Afa (3'3)

“We once again thank A. Freitas for helpful comments and advice on using the results of Refs. [40-43].



where

ZirL ZiR L Z?’LR

z
A — (geff ~ YJeff )(geff t Geff )
P = Zi X .
(Qef}L)z + (gef}R)z

(3.4)

The bar notation indicates theoretical predictions in a canonically normalized SMEFT to
mass dimension d. A hat indicates an experimentally measured quantity, or a numerically
defined quantity using measured input parameters. gff’}L are defined in Eq. (4.1).

4 EWPD results

The results of Refs. [15, 16] allow EWPD to be studied to O(v*/A*) in the SMEFT. We
neglect in our results corrections further suppressed by SM masses, and proportional to the
small decay width of the Z compared to its mass, as LEP data is strongly peaked at p? ~ m%
We also neglect self-interference effects in the decay due to dipole operators squared. Both
of these corrections in the SMEFT are calculable and neglected here largely for brevity of
presentation. These extra effects only further support our main point, calling for a cautious
interpretation of LEP constraints in the SMEFT.?

In both input parameter schemes, {m, G r} are used to fix the dimensions, so the ob-
servables are defined in terms of these dimensionful parameters, with shifts due to corrections
to the input observables conventionally included in the shifts to the effective Z couplings
gif’jir. Here p,r are flavor labels. For the observables we study, the energy scale is fixed to
be p? ~ % and the SMEFT corrections scale as O(v**/A*"). Once the corrections to the
effective Z couplings in an input scheme are known to an order in this expansion, EWPD can
be analyzed to the same order.

The effective couplings are defined at all orders in v/A to be [15, 16]

z, 9z 0 : U ’
Gait'or = o | (255, Qu = 03)0pr + D0 (LYT") + 03”T<L§’ﬁ§r>]

2
Z, Z, z,
= <gSMdjpr> + <gcﬁ‘?z£)r>o(112/A2) + <gcﬂ‘jf)r>0(7j4/[\4) + e (41)
Here ¢, = {qr,¢1}, while g = {ur,dgr,er} and o3 = 1 for up, vy while o3 = —1 for dp, ey.

L34, L3 3 are geoSMEFT field space connections defined in Refs. [15, 16].

4.1 SMEFT to L©)

It is straightforward to derive

(CSMEETY = TM 4 (Ta) o2 /a2y + - - - (4.2)

For high enough A these neglected effects, along with loop corrections, might be on the same order or
larger than the dimension-eight corrections. In that case a more comperehensive analysis of EWPD is called
for.



for each EWPD observable in the SMEFT.® By Taylor expanding the predictions to linear
order in the corrections to the partial widths via the effective couplings, we have that

T szp Zﬂ/’ szp Zﬂlf
<FZ—“/;pwp>O(v2/A2) _ 2Re [<gSM7;P> <geﬂ?7PI£3>O(V2/A2)] Re |:<gSM,§p> <geﬁ,p%>0(v2/A2)]
I - 27 27 Z’ 27
v [ gant ) 2 + (9530 = )2 (gant ) 2 + (953 = )2
Z, Z,
= NV%{ggiom) o2 /a2) + NVH{ggve) o2 /a2)- (4.3)

The NYR/L are numerical coefficients that are reported in Table 3. For example, for 'z .,
N"R = 2.66 while N*L = —6.29 in the {rmy,mz, @p} input parameter scheme.

Each partial width T';, and the sum of partial widths I'j.q, Tz, are defined at linear order
in SMEFT perturbations via Table 3. Linear perturbations in the partial widths then define
Rc,b,g and 5-2ad via

Rep _ " (Cep)owe/az)  (Thad)ow?/a?) (4.4)
R Ly L
Ry (Thadow2/az)  Thow/az)
=i = Lt oM o +... (4.5)
R; Lad I
gt ) Te)owz/azy  (Lhad)ow?/a2) 2<FZ>0(U2/A2) L6
~0,SM =1+ f‘SM + f‘SM - f‘SM + ( . )
Ohad e had Z

The remaining observables, fl%’é for f = {/,c,b} have the leading SMEFT perturbation

<Ai>o(”2/1\2) 4 <gZ7iL> <gZ’iR> Z, Z Zi Zi
ASM - <gZ7iLS;vA£ . <gS§/7[iR>4 [<QSMR><geffL>O(v2/A2) - <QSML><gef’fR>(9(U2/A2) . (4.7)
1 SM SM

The required numerical coefficients to construct these observables are given in Table 4. For
example, for the bottom quark in the {ry, Mz, Gr} scheme we find that

<Ab>(9 v2 /A2
% = 22(0577") 0w/a%) + 039075 Yo /a2 (4.8)
b
The fl%”; follow directly via
A0, \SMEFT Ao A .
FB e f

Each of the effective couplings is expanded into SMEFT Wilson coefficients in Table 5.

5See Refs. [25, 26, 29, 33, 49] for past analyses consistent with these results.



4.2 SMEFT to £®)

Defining EWPD to dimension eight in the SMEFT requires an expansion of the observables
to O(v*/A%), and the definition of the effective couplings to O(v%/A%). The latter is defined in
Tables 6 and 7. Expressing the results compactly, we build upon the presentation in Ref. [16].
Expanding to second order the partial widths

(CPMEFTY = DM 1 (T3) o2 /a2y + (Ti)o(ut/at) + - - - (4.10)
where
(TMEET Joinsy _Re {85t (emmmlowt/an]  Re [(8i) (simowan]
T N NN T TN R TP TR RN TP TR NE
|<geff71ﬁ>p>(’)(’u2//\2 2+ (g5 o ow2/az)l?

4.11)
Z z (
[(g8nt ) 2 + 19501 ) 2

There is dependence on the <geff’7/;1;)/ R>O(U2n /a2ny at each order in the expansion n. The
(pseudo)-observables also have dependence on the squared dimension-six effective couplings.

The required numerical coefficients are given in Table 3. As an example, for decays to up
quarks in the {my,mz, GF} scheme we have that

(P )o@ /at) Zu Zy 2y 2
IV = _6-29<geff77pr>O(v4/A4) + 2‘66<geﬂ77p};>0(v4/A4) + 12'1’<geff7,p%>(’)(v2/A2)|
Z—rlpup
+ 1211955 o002 a2 (4.12)
The observables Rc,b, Ry, 6,wd are determined from the expansion of the I'; directly via
- = - - 2
(T;/T;)SMEFT - (Fdowz/az)  (Tjow2/az) N (C)ow?/a2) (4.13)
(/)M - ['SM AJS.M fJSM :
+<fz' owi/aty  Towiany  (Liowz/az) (Ti)owe/az)
o Fon FSM S |

For fl%g we expand directly in terms of the effective couplings via

- Zi Zi i

(A owan _ 2(9501")” Yot 002 /02 <<g 1) — (") )

ASM (&) + (ggu™22 \ (gdt™)? — (gdur™)?

2{g550")” et ) D24 << > 3(gZim)?
({93

[(g&t™)2 + (5™ 2)2 (g2™)2)

M — {g5n1
z z
( 931\/? gsﬁR>

ZlL 21R> )2> (4.14)

Zi Z,ir,
+ 8 (ga b ) 002 /02) (9ot o) (w2 /A2)

((g5n1" )% + (9501
z Zi z
<gSh/}L><geﬂ‘Z;p>O(v4/A4) (gz ZR>2 4 951\/?%><9eﬁ,pp> O(vt/A%) <gZ,iL>2
Z Z3 SM /) T Z Zi SM /-
(g5t — (gan™) (gant™ )t — (g5



The numerical dependence of EWPD observables on the SMEFT induced effective coupling
in the I'; is largely scheme independent and is given in Table 3. The numerical dependence
on the SMEFT induced effective couplings for the AiSMEFT are given in Table 4.

The numerical dependence of the effective couplings on the Wilson coefficients are re-
ported at O(v?/A?), O(v*/A*) in Tables 5, 6, and 7. This expansion of the effective couplings
in terms of the individual Wilson coefficients carries a significant SMEFT input parameter
scheme dependence, which increases at higher orders in the v” /A" expansion [16]. This is
expected due to the decoupling theorem and represents the effect of new physics being ab-
sorbed into the lower energy measured input parameters. This is a more significant issue for
the SMEFT compared to many EFTs, due to the presence of a Higgs field.

4.3 Expansion of R,

We illustrate the use of the formula we present defining EWPD to O(v*/A*) using the example
of Ry. First we use the result for the expansion of this observable to second order

R?MEFT (fhad/fZ)SMEFT

= Lhed/7l) (4.15)
RM (Thaa/T'e)SM
2
(ToEET) owzynzy (TP D) 02 a2y (CFMEFT) 60202
=1+ [SM - [SM + [SM
had i i
+<F§L%EFT>O(U4/A4) M oty (Thad - Dowz/azy TP owe /a2

SN Y PSM pSM :

had l had ~ ¢

Then we substitute the values from Table 3 into this expression, using the {7z, G F}
input parameter scheme results, finding

Re/REM = 1+ [3.9(51%) — 0.69(g51%) — 5.9(g5 ") + 4.8(g57%) — 2.2(954") + 0.92<gfjg}m>}

[ Z.d Z.d Z0 Z0 zZ, Z,
6.2(971)2 + 6.2(971™) + 217717 + 8.20g77 (") + 4.2(g577) + 4.2<gef}LR>2}

[ Z.d Z0 Z.d Z0 Z.d Z0 Z.d Z0
__23<geffL> <geffL> + 19<geffL> <geffR> + 4'1<geffR> <geffL> - 3'3<geffR> <96ffR>}
[ Z0 Z0 Z Z, Z0 Z, Z0 Z,
_—56<geffL> <geffR> + 13<geffL> <gef}LL> - 5'4<geffL> (gef}LR> - 1O<geffR> <gef;L>]

[ Z0 Zugr
_4‘4<geffR> <gef}m>] :

+ o+ o+ o+

All of the gef¢ appearing in Eq. (4.16), excepting those on the second line, are <gezf7}b>(9(112/A2)'
Those on the second line are <gff}b>@(v4 /A%), as indicated.

The structure of the corrections in Eq. (4.16) in the O(v?/A?) expansion makes a number
of points. The numerical coefficients of the corrections in the first and second line are identical.
This is due to both of these terms coming about due to linear interference with the SM
amplitude, and is consistent with a naive expectation that corrections in the SMEFT follow a

+ [3:9095") - 0.69971™) — 5.9(95 ) + 4807 ) — 220075 + o.92<gj;;ﬁR>] o

4/A4)

(4.16)



Numerical dependence of (I;)/TSM in the {ruy, 1z, Gr}/{a, Mz, Gr} schemes

O(?/A%) | (Lu)/T3M | (Ty)/T5M | (T /TM | (Tap)/TFY | (Tz)/T5 (Thad) /TSN,
(952) | 2.66/2.76 2(0.320/0.331) | 2(0.458,/0.475)
(g2 -1.04/-1.08 | 3(-0.160/-0.166) | 3(-0.229/-0.236)
(952) -4.75/-4.93 3(-0.160,-0.166)

(go"=) | -6.29/-6.19 2(-0.756/-0.745) | 2(-1.08/-1.07)
(922 5.97/5.94 | 3(0.917/0.911) | 3(1.31/1.29)
(9% ) 5.91/5.74 3(0.199/0.193)
(gei=) -5.36/-5.36 3(-0.359/-0.359)

Ot /AY) | (Tu)/TSM | (L) /TSM | (D) /TP | (D) /TSN (Tz)/T3M (Thad) /TN,
(gage) | 2.66/2.76 2(0.320/0.331) | 2(0.458/0.475)
(e ) -1.04/-1.08 | 3(-0.160/-0.166) | 3(-0.229/-0.236)
(g2 -4.75/-4.93 3(-0.160,-0.166)

(gaguk) | -6.29/-6.19 2(-0.756/-0.745) | 2(-1.08/-1.07)
(9555 5.97/5.94 | 3(0.917/0.911) | 3(1.31/1.29)
(95 ) 5.91/5.74 3(0.199/0.193)
(gaii ) -5.36,/-5.36 3(-0.359,/-0.359)

(gZuey? | 12.1/12. 2(1.45/1.45) 2(2.08/2.08)
(gZ30n )2 9.47/9.47 |  3(1.45/1.45) 3(2.08/2.07)
(g2 )? 14.4/14.4 3(0.485,/0.485)

(gZE)? | 12.1/12.1 2(1.45/1.45) 2(2.08/2.08)
(i) 0.47/9.47 |  3(1.45/1.45) 3(2.08/2.07)
(g2 )2 14.4/14.4 3(0.485/0.485)

(g2 )? 7.24/7.24 3(0.485/0.485)

Table 3. Dependence of the partial widths on the effective couplings, scaled to the SM prediction of
the partial width. For the columns Ty, T, l_“d,b the individual partial widths are reported. The sum over
flavors is explicit in the contribution to I'jqq, I'z. The top section of the Table reports the dependence
on (gifip)o(vz//\z). The middle section of the Table reports the dependence on <9§-§ji,p>0(v4/A4)a while

the bottom section is the dependence on (gj%?/;pﬁg(w/m). In the quoted results, (I:d,b>/f3}\f was

determined using numerical values of light quarks d, s for the partial width. f‘il\f / f‘fM differs at the
percent level in the SM. This leads to numerical differences, when combined with rounding effects,
in the results quoted that should be incorporated as a simple rescaling based on Table 1. An empty

entry indicates no dependence on the relevant effective coupling.




<Az>/AZSM in the {mW,mZ,GF}/{@,mZ,GF} schemes

O(v?/A?)

(Ag)/ASM

(Ac)/ A

(Ay)/ ASM

26.9/37.7

21.7/32.4

-6.71/-7.23

-2.84/-3.22

2.22/2.33

0.387/0.423

(Ag)/ ASM

(Ac)/ A

(Ay)/ ASM

< Z Ul

46.6/76.9

-75.4/-106

-12.0/-10.7

-13.0/-14.7

-17.8/-17.8

-1.77/-1.94

{
{
{

ZuR
Yeft,pp
Z7dR
Yeft pp
ZaZR
Yeff,pp

)
)

Mg

Z’uL
Yeff pp

Z7dL
Yeft pp
Z/lr
eff,pp

)
)
)

-56.3/-57.3

-35.9/-37.8

-13.2/-13.9

(getin)

g -6.71/-7.23

2.22/2.33
26.9/37.7
-2.84/-3.22
0.387/0.423
21.7/32.4

Table 4. Numerical coefficients defining the dependence on the SMEFT effective couplings in forward
backward asymmetries. The expressions are normalized to the tree level SM values in each input
parameter scheme: ASM = 0.70/0.70, AEM = 0.94/0.94, ASM = 0.21/0.15. The significant scheme
dependence of A?M follows from the accidental numerical suppression of the value of the vectorial
leptonic coupling, rendering it more sensitive to scheme dependence.

numerical pattern of the form n (m 4224 ), with n a numerical coefficient, and x a power
counting expansion. The first three lines follow the pattern expected from chiral symmetry,
as we are neglecting light fermion masses. The full O(v*/A*) result includes the last four

lines. Note the fact that gz)ff X gfﬁc interference terms are present in the full result and this is

,10,



SMEFT corrections in the {ry, mz, Gr}/{a,mz, Gp} scheme

2

z, Z.d Z0 Z Z.d Z10
O(%) <geffj;;§)> <geff7plz)> <geff71fp> <geﬁ?l£)1£)> <geﬁ,pr> <geff’1:1;p> <geff7pp

c® 1 -0.21/0.39 | 0.10/-0.19 | 0.31/-0.58 | -0.21/0.39 | 0.10/-0.19 | 0.31/-0.58

5G9 | -0.08/0.15 | 0.04/-0.07 | 0.12/-0.22 | 0.18/0.41 | -0.22/-0.34 | -0.15/-0.49 | 0.26/0.26
1 -0.22/0.05 | 0.11/-0.03 | 0.33/-0.08 | -0.13/0.15 | 0.02/-0.12 | 0.24/-0.17 | 0.09/0.09

Cly), | 0.37/0.37 | 0.37/0.37 | 0.37/0.37 | 0.37/0.37 | 0.37/0.37 | 0.37/0.37 | 0.37/0.37
Y -0.37/-0.37 | 0.37/0.37 | 0.37/0.37 | -0.37/-0.37

Table 5. The effective couplings expanded to O(v2/A?) in each input parameter scheme. (5G;§)
is defined in Ref. [16]. Reported is the numerical coefficient multiplying each SMEFT correction.
p ={1,2,3} is a flavor index. The operator subscript labels ¢ take on the values {ug,dg, g, qr, %L},
with the effective coupling v label dictating the value of .

not inconsistent with chiral symmetry at second order in the SMEFT expansion even though
we are neglecting light quark masses. Here ratios of observables are considered.

The SMEFT is useful so long as there is at least one small power counting expansion
parameter. For EWPD observables, this condition is v/A < 1. All of the O(v*/A%) cor-
rections, beyond those in the first line of Eq. (4.16) are further suppressed. This numerical
factor is absorbed into the presentation of the results via the notation C’Z(d) = Cfd)ﬁ%% /A,
Typically, due to the constraints of direct searches, a working hypothesis is v/A < 0.1. Then
the second to sixth lines are suppressed, and expected to be percent level corrections to the
leading perturbation. Even so, accidental numerical enhancements occur. This occurs in this
observable, note the coefficient of 56 for (gé’?) (gezf’ﬁﬂ

results for the {7y, mz, GF} scheme, these points all hold for the {éeq, 27, GF} scheme as

. Although we have shown explicit

well.
Fundamentally, scheme dependence is very significant in the SMEFT. Expanding the ef-

;61) can be done using

fective couplings in terms of the individual Wilson coefficients and 6G
Tables 5, 6, and 7. The resulting expressions for EWPD are not transparent in interpreta-
tion and are lengthy. The dimension-eight terms are expected to be suppressed by < 1072
compared to the dimension-six terms due to the power counting expansion. On the other
hand, the calculable numerical coefficients of dimension-eight terms compared to dimension-
six terms are ~ 10? in some cases. In R,/ R?M, this is reflective of the numerical accident
in the enhanced coefficient of <ger’§L> (gezf’ﬁR) It does not follow that EWPD offers no con-
straint on the SMEFT parameter space. Such numerical accidents in one observable are also
expected to be less relevant once multiple measurements are combined in the SMEFT. This
observation does encourage reasonable caution on over-interpreting LEP constraints on £(6)

Wilson coefficients in naive leading-order analyses of LEP data.
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SMEFT corrections in {riy, iz, Gr}/{a&, mz, Gr} scheme
O(%7) (Yot g (gari ) (g i)
(953%)? 14/5.5 -27/-11 -9.1/-3.6

CupCuywp | -0.21/0.39 0.10/-0.19 0.31/-0.58

(o 0.28/-0.026 | -0.14/0.013 | -0.42/0.040
CupCl), | -0.83/-0.19 | -0.83/-0.19 | -0.83/-0.19
CupCruws | 059/-0.19 | -0.29/0.097 | -0.88/0.29
Cuploz’) | 4.0/0.50 4.0/0.50 4.0/0.50
(Cio))? 0.62/1.4 1.2/-28 -0.42/-0.93
CuwpCly)y | -0.69/058 | -0.60/0.58 | -0.69/0.58
Cinloz’) | -6.7/-58 13/12 4.5/3.9

Cuws (954") | 3.7/0.26 3.7/0.26 3.7/0.26

Cruw Cawn | -0.21/0.39 0.10/-0.19 0.31/-0.58
c® -0.014/0.026 | 0.0069/-0.013 | 0.021/-0.040
Cihs -0.21/0.026 | 0.10/-0.013 | 0.31/-0.040

c) 0.19/0.19 0.19/0.19 0.19/0.19
Cia -0.38/0 0.19/0 0.58/0
c® . 0.10/0.19 | 0.051/-0.097 | 0.15/-0.29
56 -0.078/0.15 | 0.039/-0.075 | 0.12/-0.22

(€9 2 | 0.19/-035 | -0.096/0.18 | -0.29/0.53

Table 6. The effective couplings expanded to O(v*/A*) in each input parameter scheme. 6G§§) and
the remaining operator forms are defined in Ref. [15, 16]. (gezﬁ’j/;)p> is understood to be <g§%?/;p>(9(v2/A2)
in the left most column. Reported is the numerical coefficient multiplying each SMEFT correction.
p = {1,2,3} is a flavour index. We have eliminated 5Gg?) in favor of introducing <g§f’j§)p>?9(vz//\2) in
these expressions.

5 SMEFT bottom up

To visually illustrate the O(v?/A%) effects, we need to assign numbers for the unknown Wilson
coefficients. Such a numerical output requires a scheme for numerical inputs. This is true
if constraints on a UV model are studied through its matching to the SMEFT in a global
analysis, or if the SMEFT is studied bottom up as a model-independent EFT. In the latter
case, a rough estimate of the impact of these effects is developed in this section.

As a first example, we calculate the £®) contributions to each EWPD observable relative
to the SM EWPD values, 00; gim—8/Oism. The £®) EWPD contributions are a function
of vp/A and the CN’Z-(S). After choosing a A, we select values for the coefficients using the
same scheme as in Ref. [16]. Specifically, we draw random coefficient values according to
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SMEFT corrections in the {ry, iz, Gr}/{a, mz, Gr} scheme

O(4a) (9ei ) (9eti ) (et o) (Geit )
(9537)? -5.8/-0.92 4.8/1.9 7.3/0.40 4.1/-41
CupCuwns -0.21/0.39 0.10/-0.19 0.31/-0.58
c2, -0.0073/-0.073 | 0.0060/0.060 | 0.084/0.086 | -0.046/-0.046
Crp Cly), 0.088/-0.19 | -0.072/-0.19 | 0.33/-0.19 | -0.19/-0.19
CupCryws | 0.079/-0.19 | -0.084/0.097 | 0.086/0.29
Cuploz’) | -0.97/0.50 -0.11/0.50 -2.3/0.50 0.50/0.50
(Cio))? -0.26/0.11 | 0.22/-0.026 | 0.33/-0.14 | -0.19/-0.19
Cuwp Cly) | 0.29/-0.62 0.12/-0.49 | 0.56/-0.62
é}%@iﬁ% 2.8/0.042 -2.3/-0.64 -3.6/0.24 2.0/2.0
Cuwnl9%") | -1.6/2.3 L0.65/1.7 13.0/2.5
Cruw Crawn -0.21/0.39 0.10/-0.19 0.31/-0.58
c® 0.033/0.073 | -0.039/-0.060 | -0.026/-0.086 | 0.046/0.046
Ciohs -0.16/0.073 | 0.057/-0.060 | 0.26/-0.086 | 0.046/0.046
o 0.19/0.19 0.19/0.19 0.19/0.19 0.19/0.19
Cia -0.38/0 0.19/0 0.58/0
c® -0.10/0.19 | 0.051/-0.097 | 0.15/-0.29
5GS%) 0.18/0.41 -0.22/-0.34 | -0.15/-0.49 | 0.26/0.26
(€9 )2 | -0.081/-0.20 | 0.017/-0.017 | 0.23/0.49
Cip ChtY | -0.088/0.19 | -0.072/-0.19 | 0.33/-0.19 0.19/0.19
Cio -0.19/-0.19 0.19/0.19 0.19/0.19 | -0.19/-0.19
(0131;;}63)2 0.26/0.11 | 0.22/-0.026 | 0.33/-0.14 | -0.19/-0.19
) O 0.53/-0.22 | 0.43/-0.052 | 0.67/-0.29 0.37/0.37
Ciws Cild | -0.29/0.62 0.12/-0.49 | 0.56/-0.62
P (g%"y | -2.8/-0.042 | -2.3/-0.64 -3.6/0.24 2.0/-2.0
cp -0.19/-0.19 0.19/0.19 0.19/0.19 | -0.19/-0.19

these expressions.
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Table 7. The effective couplings expanded to O(v*/A*) in each input parameter scheme. (5GS§) and
the remaining operator forms are defined in Ref. [15, 16]. (gffg?ﬁ)p> is understood to be (gjjf’?/;p>o(v2//\2)
in the left most column. Reported is the numerical coefficient multiplying each SMEFT correction.
p = {1,2,3} is a flavour index. We have eliminated 5GE§) in favor of introducing (gi’ip)éwzﬂ\z) in

gaussian distributions with zero mean and root mean square equal to 1 for ‘tree-level’ Wilson
coefficients and 0.01 for ‘loop-level’ Wilson coefficients as classified by Refs. [50-52]. Selecting
A =1 TeV, the results for the partial width ratios Ry, Ry, R, for both input schemes and 5000
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Figure 1. Contributions to the Ry, R, and R. EWPD from £® operators relative to the SM value.
Here A = 1TeV. The histograms are formed by selecting random values for the coefficients 5000 times
following the scheme described in the text.

random coefficient selections are shown in Fig. 1; the asymmetries Af,, p and A% are show
in Fig. 2, and the remaining EWPD observables are shown in Appendix B.

The resulting distributions have widths of roughly 0.01 for the partial width ratios and
0.2 for the asymmetries, with the leptonic versions of both variables being slightly wider.
The shapes are not artifacts of our gaussian sampling procedure, as sampling with a flat prior
yields qualitatively similar results. For higher choices of A, the distributions narrow, given
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Figure 2. Contributions to the A% ; and A%, EWPD from £®) operators relative to the SM value.
Here A = 1TeV. The histograms are formed by selecting random values for the coefficients 5000 times
following the scheme described in the text.

that the £®) contribution scales as o2 /A% While the numerical results shown are specific to
how we chose dimension-eight coefficients, other coefficient choices can easily be tested using
the formulae in Sec. 4. Finally, it is important to remember that the £(8) terms are only a

"The same narrowing/widening would occur if we fixed A and drew the dimension eight8 coefficients from
a thinner/fatter distribution, given that the combination C’i(s) / A* is what appears in all observables. By this
logic, the distributions for C® ~ 1/0.01 and A = 1 TeV are the same as C® ~ 0.06/6 x 1074, A = 0.5 TeV
or ~16/0.16,A =2 TeV.
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portion of the O(v?/A?) contribution. However, if we repeat the simple calculation above
with both £ and £® operators, the O(v*/A*) effects are correlated with the O(v?/A?)
effects. In order to make sure we are not biased by scenarios with O(v?/A?) effects that are
experimentally excluded, a more careful calculation is necessary.

As a second example, we will zero all £ coefficients except for two, then calculate the
x? bounds on that 2-d coefficient space with and without O(v*/A%) effects. Said more plainly,
we want to see how the S-T analysis [53-62] (and other, less famous 2-d slices of coefficient
space) fare at O(v*/A%).

Using the expressions in Sec. 4, we form the full y? following the procedure laid out
in Refs. [33, 63] for O(v?/A?) SMEFT; we take the experimental correlation matrix from
Ref. [64] and assume theoretical uncertainties are completely uncorrelated. We also calculate
the x? using EWPD observables calculated to O(v?/A?) only.

Next, we zero all £®) Wilson coefficients except two: our first choice is to zero all
coefficients but Cywp and Cgp — S and T up to normalization factors, while for our second
choice we zero all but Cgsg and Cpgp. C}?g affects the coupling of Z to leptons and is
therefore assumed to be tightly constrained by LEP, hence it is an interesting candidate to
study including O(v*/A%) effects. At this point, X?Q(UQ /A2) is a function of the two nonzero
coefficients and the scale A, while X?Q(M /A% also depends on the £® Wilson coefficients.
Rather than rely on random coefficients, we adopt a simpler approach here — setting all
tree-level £ Wilson coefficients to 1 and all loop-level to 0.01.

For a given A, we determine the minima of X?’)(v2 /A2) and X?o(v‘l A% and plot the Ay?
contours in Fig. 3. The green, yellow, grey regions correspond to the 68%,95% and 99.9%
CL regions for a two parameter fit around the minimum of X%(v‘* /Ad): The regions correspond
to x% = x2,;, + Ax? with Ax? = 2.30 (10, green), 6.18 (20,yellow), 11.83 (30, grey) defined
via the Cumulative Distribution function for a two-parameter fit. The same Ax? regions are
shown in red for the fit using X?Q@Q /A2) (inner contour is 68% CL, intermediate is 95% and
the outer is 99.9% CL).

The difference between the contours shows the effect of going from O(v?/A?) to O(v*/A%).
For A =1 TeV, the shift is striking, to the extent that the different order contours don’t even
overlap for the Cyp — Cgiz case. The effect is smaller for A = 2 TeV, unsurprising given
that the difference between the contours scales as v*/A%, but it is not negligible. Of course,
the details of how the fit shifts depends strongly on our treatment of the dimension-eight
operators, so these results should be viewed as qualitative. However, we emphasize that the
choice of 1/0.01 for tree/loop level dimension-eight coefficients was made for simplicity and
not to amplify the effect. Repeating the study using random coefficients for the dimension-
eight coefficients (following the procedure used earlier in the section), we observe a wide range
of shifts, from significantly smaller to significantly larger than what is shown in Fig. 3.
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Figure 3. The green/yellow/gray contours correspond to the 68%/95%/99.9% CL two parame-
ter fit determined by Axé@‘l /A4)) while the red rings correspond to the same CL determined using
AX%(vz /A2)" In the top panels the free parameters are Cyp and Cyw g, while in the bottom panels

the free parameters are Cyp and C’l(,?g. Note that the axes ranges vary from panel to panel. In the
left panels, we have taken the scale A =1 TeV, while in the right panels A = 2 TeV. All calculations
use the my scheme.

6 Explicit matching examples

The expressions for EWPD to dimension eight in the SMEFT are lengthy. While a bottom up
analysis in the SMEFT is reported in Section 5, it is also useful to examine some cases where
models are matched to dimension eight, and EWPD constraints are studied. Restricting to
UV models with few parameters allows the results to be visually represented. In the following
sections we explore two such UV models — the U(1) model developed to dimension eight in
matching in Ref. [16], and a model containing a scalar triplet. The details of matching the
triplet model to dimension eight can be found in Appendix A.

6.1 U(1) kinetic mixing

In this model, a heavy U(1) gauge boson K, with Stueckelberg mass [65] my kinetically
mixes with By, the U(1)y gauge boson in the SM. The SM Lagrangian is extended with the
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H*D? y*: (RR)(RR) ' (LL)(RR)

2,/,2 21.2
H=y*D C(ﬁ) _gik 0(6) _lg%kQ C(G) _lQ%kQ
HO 8m2 ee 32 le 2 m?2
L) yegl by ; 12( MK mx
He | 2mi oo | _ak o0 | 29k o© | 1K
HD 2m>2 uu 2 2
0(6) }’egl b K 9 mi. Lu 3 mi.
— 5.2 V1
He 2mi o® | _ gk (©) 1 gk
017(6) _ quj bl 1/}4 ( )( ) dd 18 Mk b 6 Mk
Hq 2m3, g 0(6) 2 g2k? 0(6) 193k2
C —= eu 3.2 qge 6 2
C(G) yug? by ZE 8 m MK MK
53
Hu 2m3, 1.6) 2k ©) | _19ik L(6) | _ 197k
(O _14 C 2 Cou 2
C(G) ngl b a4 72 m%{ ed 3 M q 9 my
Hd 2mi oLO | 1 gle oL©) | 293k oL6) | 1 gtk

Table 8. £ matching coefficients in the U(1) model [16], here by = k? — 2X (k? — k%) % Our
notation is such that y; is the hypercharge of field 3.

UV Lagrangian

1 1 k
AL =— K K" + §m%<K#K“ = 5 B" Ky, (6.1)

where the field strength is K,, = 0,K, — 0,K,. Integrating out the heavy K" field, the
matching pattern in the SMEFT, with geoSMEFT operator form conventions, is given in
Table 8 and Table 9. This weakly coupled, renormalizable model has one scale and one
coupling, but its matching pattern does not follow the pattern claimed to follow from a
UV of this form in some literature. The matching pattern is consistent with the results of
Ref. [16, 50-52].

In the SM we have the leading-order effective couplings given in Ref. [16]. Using the
results of Ref. [16] and this work, the O(v?/A?) corrections are:

2 =2
Z.u [mW/aew] T 2 4 v UT
gz a) = —[0.0017/0.019]k o +[0.030/0.031]\ (k2 — & )TL;{ ,
(g2 \Imw [aew] _ 14.00084/0.0095]k> v — [0.015/0.016]\ (k% — k)L v* ”%’
eff,pp/ O(v2/A2) m%{ mK ’
Z.Lr ylmw [Gew] _ 16 0095 /0.029 i  10.045/0.04717 (k2 — k92 ”% 6.2
(g o ) = [0.0025/0.029]8% L — [0.045/0.047)A (1~ k)T (6.2
K K
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Cit) | 1ok k- D3 (h? — k) (20 + D52)
Ot | Jl Kt — S0 (k2 — kY)(20 + B2
Clia | 345 k1 — 0 (2 — k(20 + B2
il ~thk (0~ kY
A s
Crif” e (k)
Chiy) ~ oo~ )

HSD?
(8) gik' 9195 2 g4
Citps | hte — 21812 — )
(8) 3 g4 k4 2 2
Clip | Wiy — $ote (2 — kY
xX2Hg4
(8) 91 (1.2 _ 14
Chp ‘ _167711}1((k — k%)
8
Cittr | i (2 — k)

Table 9. Matching coefficients onto operators in £®) [16]. In the U(1) model, in addition to these
matching contributions, there are four-fermion operators and four-point contributions.

T 2 52

Zup\ [hw /Gew] _ 2 _ 1YV V1
(g5 b/l = [0.0040/ — 0.013k2 L -+ 00075/0.0078)2 (k2 — 1) 5T
(g0 ) /aen) _ [ 0048/ 1 0.0036)k2-L- + [0.0075/0.007S]A (K2 — k)T

eff,pp/ O(v?/A?) 2 mi
(gt /ae] _ 1 _0.0031/0.023k2L- — [0.023/0.023]A (k2 — k%) Gl

eff,pp/ O(v2/A2) mK }1( ,
(g /tenl = 10.0057/0.0059]k2 i — [0.023/0.023]\ (k% — k4)“2 o

eff,pp/ O(v?/A?) m2. mh

)

(6.3)

where the first value in square brackets is the value in the my, scheme and the second is the

Qew scheme value. The A that appears is the Higgs quartic coupling, which arises because

the Higgs EOM is needed to massage the operators one gets from integrating out K, into the
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geoSMEFT basis. The O(v?/A%) corrections are:

(gZumylnw/Genl _ 138/ — 3 9]10—%2ﬁ +[-3.8/4 3]10—31<:4ﬁ — [3.0/3.1]10 2\ (k2 — k:4)”2 o
eft,pp) O(wi /A1) . . - .8/4. " .0/3. s
K K K
(g2 mw [oen] _ 1 9/9 0]10—%2ﬁ +[1.9/ -2 2]10—31<:4ﬁ + [1.5/1.6]10 72\ (k2 — k4)”2 i
Yeff pp/ O(vi/a%) = LT HI/Z my ' mi mi
(g2 /8] _ (575 01102 T ¢ 5.7/ — 65120 k4 U 4 [4.5/4.7]102A (K2 — kUL
Geff ,pp/ O(vi/AY) — : : m;}( . . m}l( . . mK ,
(6.4)
4 ~4 2 =2
Zaup [ /Gew] _ —3;2 VUt -314 YT -3y (1.2 4Hv
= [3.6/ — 4.2]1073k2 L — [3.7/ — 4.4]10 "3k L= — [7.5/7.8]10 3\ (k% — k
<geﬂ,pp>0(y4/A4) 3.6/ ] mz}{ 3.7/ ] mz}{ [7.5/7.8] ( ) m‘}{ )
(g2l facal _ (1 770 5110722 T 4 (187 — 2,310 k422 _ [7.5/7.8]1070A (k2 — k)" %
eff,pp/ O(vt/A%) m‘%{ m%{ mK >
(g2t i /aenl _ 15 516 11107382 T 4 [5.6/ — 6 6]10*31#ﬁ +[2.3/2.3]1072\ (k2 — k4)” o
9eff pp/ O(v4/A%) = -0/0. 1 . . 7} .3/2. ,
My Mg K
(el o] 5 679 5110-K2- 0 4 [1.3/1.1710- K2 4 [2.3/2.3710-2A (k2 — k)L
eff,pp/ O (vt /A%) m‘}( m‘%{ mK )
(6.5)

Note that the A dependence, which is a basis dependent artifact in this matching, cancels
exactly between the O(v?/A%) and O(v*/A*) contributions to the effective couplings (e.g.
when one adds Eq. (6.2), (6.3) to Eq. (6.4), (6.5)). These terms come about due to correlated
matching at £, and £® in the SMEFT in both models. This occurs quite generally,
due to the presence of the classical dimensionful parameter, SM Higgs vev v in the EFT.
Matching contributions that are naively assumed restricted to £(® corrections descend down
in mass dimension to give matching contributions to £®) Wilson coefficients. These matching
contributions can be overlooked until matching results are developed to £® and are an
example of the intrinsic ambiguity in a £(®) SMEFT treatment related to higher-order terms
in the power counting expansion.

This cancelation in A dependence in observable quantities has an important implication.
Quantities such as the Z effective couplings, and subsequently the amplitudes they define are
not exact in the SMEFT, but are only defined order by order systematically in 1/A. In this
case an ambiguity is present of order v?/A* in the matching to £, This leads to an intrinsic

ambiguity in an amplitude that depends on CZ-(G)

parameters of order 1/A*. The square of the
SM perturbed with such a correction is then ambiguous and not precisely defined at order
1/A*. Due to the classical presence of a parameter in the theory carrying mass dimension,
the SM Higgs vev, all contributions to observables at each order in 1/A are required to obtain
basis independent and well-defined results in an observable. Although we have discussed this
point considering £®) corrections leading to matching ambiguities in £ operators of order

1/A*, the same effect is present for all higher order £6+2n) matching corrections with n > 1.
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I'z was reported in Ref. [16] in each input parameter scheme. These numerical results
differ in the last significant digit compared to Ref. [16]. This is due to the use of updated SM
predictions produced and reported in Table 1 and numerical approximations differing in this
work. The total width is

S SMEFTGe, o2 K2 .
PiEouly oy 48 x 1073 L 5.6 x 1075 (k4 — 1.70k2) —L- 6.6
nSM,&
2y D o mic i’
S FSMEFT iy 242 »
Y Zg\fﬁ; = 1-30x10227 1 7.8 x 1078 (k* — 0.88k2) 74“ . (6.7)
PDNE N A K M

The remaining EWPD observables, with numerical values ordered in the [mw,agpw]
schemes, are

RSMEFT k2 =2 k4 4 k2
e = [2.7/110] x 1074 T 1 [0.0028/0.00056] "L + [~0.0028/0.0026]
M M K mi
(6.8)
PSMEFT k‘2 =2 ]{34 ~4 k‘2 ~4
R‘nw —[4.2/59] x 104 ;JT — [1.4/0.44) x 1073 “2T 1 [1.4) — 1.2] x 1073~ L,
Ry My mic My
(6.9)
RSMEFT L K252 4 o 12 i
R [7.5/280] x 107 ST 1 [4.3/ —2.3] x 1073 L 4 [~4.3/6.2] x 1073 L
(6.10)
=0 SMEFT 2 52 =4 4 =4
k k2 ko
% = —[2.6/28] x 1074°L — [8.7/6.0] x 1074 "L 4 [8.7/140] x 10~ 4T ,
(0haa) My mK my
(6.11)
AYc \SMEFT k2 52 4 —4
% = [-2.3/2.0] x 10742 2T 1 [0.31/ — 0.22 k* L~ 4+ [~0.31/0.46] k2L,
0,c
(App)™M mi mi mic
(6.12)
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A07b SMEFT k2 2 —4 —
Uepl 0118 % 100 BT | 0,98/ — 0.45) K1 4 [—0.28/0.43] k2L
0,6 \SM 2 4 1
(App) M mi mi
(6.13)
AO,K SMEFT k2 52 —4 ~4
(Es) 437360 % 104 0T 4 10.55/2.31 K T 1 1—0.55/0.84] k2 T
0,¢ 2 4 4
(6.14)

The above expressions are the perturbations to the SM, as such there is an implied
14 in each equation. There are several generic expectations on how SMEFT constraints
projected onto a specific UV model come about in a global analysis. Input parameter scheme
dependence, and the effects of £®) corrections are both expected to be significant in some
observables due to the decoupling theorem and numerical accidents. Both effects are expected
to be reduced as more observables are consistently combined in a global SMEFT fit, and this
expectation is born out in the models we study in this section. In the case of the U(1) kinetic
mixing model, the results for each observable are shown in Figs. 4,5,6,7,8. The plots show mg
in the range [350, 750] GeV, chosen to illustrate some of the structure of the allowed parameter
space that shows the largest effects at low mass scales. We make these same choices in the
scalar triplet model. Larger suppression scales are considered in the previous section.®

Note the large x axis in the case of the A?}% constraints at £ in the my scheme. This is
due to an accidental numerical suppression of the £6) perturbations in these observables. For
such large coupling values, perturbation theory is breaking down, so the axis was expanded
simply to illustrate the allowed parameter space.

The effect of the £® corrections in the U(1) model damps in the allowed parameter space
when all LEP observables are combined, as expected. Input parameter scheme dependence
is reduced as observables are combined, but remains even in the global fit combination.
This is driven by the accidental numerical scheme dependence in the observables (A%t%) that
introduce the largest pulls in the EWPD fit.

6.2 Electroweak triplet scalar

In this model, we introduce a scalar ® which is an electroweak triplet with zero hyperchange.
The SM Lagrangian is then augmented by the Lagrangian for the new heavy scalar,
1 1 1
Lo=; (D,®%)* — §m§>q>a<ba + 2H T H®® — n(H H)®®* — qu,(@“cba)?. (6.15)
We now integrate out the heavy triplet scalar, with the details given in Appendix A. The
resulting matching pattern for the £(9 and £® Wilson coefficients in the SMEFT is given
in Table 10. For the effective couplings we find:

8The lower bound on mx > o is imposed in the global minimum found to define the best fit region as a
prior assumption.
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Table 10. Matching for the electroweak triplet scalar up to £®. These matching results are consistent

with geoSMEFT conventions on operator forms and are sufficient to examine observables constructed
via two and three point contributions.

252 2,2 -2
Z, w [ Gew K0 K°v° 0
( eff?;)];>£gl(zv2//i!\2)] =[0.44/ — 0.11]——L + [~1.8/0.42]A ; T
2 52 2,2 =2
Z.dg\ [w /Gew K“v K“v° D
(oo ) = 1-0.22/0.53)" L + [0.88/ — 0.2\ L
o )
2 2 2,2 -2
205\ [w /e K° D K202 D
(9 s sy = [0.66/0.16] =T 4 [2.6/ — 0.64] A=, (6.16)
meg meg
252 2,2 =2
Zag\buw faenl _ 1095/ 0991 O 1 [_1.0/1.90" 00
<geff»Pp>(’)(v2/A2) [ : / . ] mé +[ . / . ] m% 5
2 52 2,22
Z.d 7 Aew K™ KR~ UV7 U
<geff,§p>[£§vwz)§i2)] = [—0.034/0.24] mbe +[0.14/ — 0.95]A : T
2 52 2,22
20 D faenl _ 10 4770341508 1 1.9/ 10O
<9eff,pp>@(vz//\2) [—0.47/0.34] mé, +[1.9/ A] m% ,
252 2,2 =2
Zvp\[mw /Gew KD K02
() sy = 2019/ = 0.10) 5 + [0.74/0. 74—, (6.17)
) ®
with O(v*/A%) corrections:
4 54 2 54 2,22
Zug\[mw /Gew] _ —1.5/0.49 K™ Up _0.88/0.21 K Up 18 _042)\,% Ve Uy
(et pp) O@iyas) = [71.5/0.49] ms + [—0.88/0.21]n s + 1.8/ — 0.42] r—
4 54 2 54 2,22
Z.d 7 Aew KU [V K“v°v
(gt by = 1076/ = 024 1 [0.44/ = 0110 "L + [~0.88/0.2\ " T
® @ @
4 54 2 -4 2,2 =2
Z4 7 ew AN K™V K U% 0
oo )b = 2.3/ — 0.73] ol 13/ - 03200 L 4 [-2.6/0.64A7 T, (6.18)
® @ ®
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(oot = (09210 T [-0.51/0.615" Lo/ 1.2]Am2:%

(9 ) o ay| = [0.16/ = 0.84] K;? +[0.068/ — 0.48]77”;? [-0.14/0.95] )\Hz;:;%ﬁ%,
(05 ) ouayass = 17/ 1.3 K:g +[0.95/ — 0.69]77"‘;? 19/14) AKQ;?%’

(gt Yoz = 10.60/0.60] H;? + [0.37/0.37]17“;? +[0.74/ — 0.74] AHQ:E%’

(6.19)

Again we note that the A dependence exactly cancels between matching effects at £(6)
and £®) in observables. This occurs at the effective coupling level, as the on shell Z effective
couplings are closely related to observable quantities.

The total width is

SSMEF T, Gew _ _ _
R SRk, PPk Bk 6.20
A b, T A0 e — 98 e (6.20)
Zd’ FZ%@p"/’p ® ¢ ®
ASMEFT
Z T AL my 2 -2 2 =4 4 54
L L S W AL G PATL R A (6.21)
SM,mw 4 6 8
2oz h, e e e

The remaining EWPD observables, with numerical values ordered in the [y, agw]
schemes, are

RSMEFT W2 o K2 o o
e —[-0.30/0.008 +[0.60/ — 0.20 Y27/ — 01654 (6.22
G = [2030/0098 " 5T+ 060/ 020" T 27/ 016 (62)
RSMEFT 2 =2 2 -4 4 =4
T =015/ — 0.030) L + [~0.31/0.050)n L + [~1.4/ — 0.016] "L, (6.23)
b mg mg mg
DSMEFT 2 =2 2 =4 4 =4
7] KR UT KR UT K 'UT
e [-0.46/0.22 +[0.92/ — 0.44 163/ — 25T (6.24
= 1-046/022 T+ 092/ —0.4ag "5+ 03/ —25 L (62
—0 SMEFT 2 =2 2 =4 4 =4
Onad™ 7 1082/ — 0.019] "L + [0.16/0.039)y "L + [7.2/1.5]" L (6.25)
0 SM 4 6 8
(Ghaa) mg mg mg
AO’C SMEFT 2 -2 2 -4 4 =4
Ues)™" " (30191 VT 4 163/ — 38]n"—L 4 [190/ — 65]"_L. (6.26)
0,c 4 6 8
(AﬁB)SM mg me mg
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(A%ZJB)SMEFT 2 -2 24 4 -4

KR~ U R™U Y
SEBL  — [-28/17)——F + [57/ — 35|n——F% + [85/ — 82| — L, (6.27)
(App)sM mg me mi
AO,K SMEFT 2 =2 2 =4 4 -4
% — [—56/34) L 4 [110/ — 69]n"—L + [950,/130] L. (6.28)

Again, the above expressions are the perturbations to the SM, as such there is an implied
14 in each equation. Figures 9, 10, 11, 12, and 13 show the effects for each observable and
their combination. The effect of the £®) corrections in the scalar triplet model also damp
in significance as more observables are consistently combined in the SMEFT into a global
fit, as seen in Fig. 13. Once again, significant input parameter scheme dependence remains
in the global fit combination. The results are shown for the value n = 0.1, and are simply
illustrative. The same numerical behavior is present for other values of 7.

7 Discussion and Conclusions

In this paper we have developed and reported the first analysis of EWPD in the SMEFT
to dimension eight. This result was enabled by the geoSMEFT formulation of the SMEFT
reported in Refs. [15, 16]. The interpretation of EWPD in the SMEFT has been subject to
significant controversy over the years. A cautious interpretation of EWPD has been advo-
cated in some works, when determining constraints on £ parameters in the SMEFT, due
to the neglect of loop corrections, and dimension-eight operator effects in a leading order
SMEFT analysis of LEP data. More aggressive interpretations of LEP data in the SMEFT
have also been advanced. All of the unknown corrections leading to past differences of opin-
ion are calculable in a well-defined formulation of the SMEFT. Recently, loop corrections for
LEP observables in the SMEFT have been reported in Refs. [66-68]. In this paper we have
reported the dimension-eight corrections; see Appendix C for a comparative discussion of
loop corrections versus O(v*/A%) effects, both from the bottom-up SMEFT perspective and
for the two UV models discussed. The key point is that such calculable corrections intro-
duce more parameters into the predictions of LEP observables, compared to the number of
parameters present in a naive £6 SMEFT analysis. We encourage the reader to draw their
own conclusion on how the interpretation of LEP EWPD is impacted by the dimension-eight
contributions that are now known, and reported in this work.
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A Matching the electroweak triplet scalar model

Matching to dimension six of the real scalar triplet model has been considered in Refs. [69—
71]. We follow the notation of Ref. [69] and extend the matching results to dimension eight.
We can write the Lagrangian in Eq. (6.15) in a different form, using vector notation,
1 = - =g — = —

£:§<I>T(P2—mé—U)<I>—|—<I>-B— Ap(P - P)?, (A1)
where U = 2n(H'H), B = 2xH'7H, and P, = iD,. The normalization of the SU(2)y,
matrices is 7% = 0?/2, where 0% are the Pauli matrices. The equation of motion is

1 = 1

Ce= gDt gy — g (e B (A-2)

Here we have the equation of motion of the theory before the Taylor expansion leading to the
matching to dimension 6 and 8. Plugging this back into the Lagrangian, we find that

- - o 1 -
E-—(I)T(P2—m¢ U)@c+ e B= o o(P. - B.)?
1 1 o 1op1 1 1 =
73 B+ BT 5 (P?—U)—B+ B"—(P*-U)—(P*-U)—B
qu) m(b mg 2 mq) ms ms
1
— —<Xa(B - B)? + O(k*/m}). (A.3)
4m¢

We simplify the operators in the expansion. The Lagrangian involving the Higgs field is

1 2
Ly =(D,HY)(D'H) — A (HTH - 21;2) — H'Y = Y'H + a0 + 10 + 0,0, + a0,

+ o (HH)(OHH + H'OH) + 0,05 + 4505, + 605D 1 + ar0
+by(HTH)*(OH'H + H'OH) + b3(OH'H + H'OH)?
+by(D*H'D,H)(OH'H + H'OH) + bs(H'H)(OH'OH) + bs(H'OH)(OHH)

+ by [(DHHIOH)(H' D, H) + (D“HTH)(DHTD,,H)] . (A.4)
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where

K2 nK? K2 2k2
a 9 ay = ) a 3 agz = 5
B T AT
20?2 KA \ 42 252 4K2
a4 = —_— ar = aeg = ar =
4 g 4m§{> [ 5 mg ) 6 mg7 7 mgv
K2 2nk> K2 942
by =— 10 by = 776’ b3_ ’ by = 67
Mg meg 2myg, mg,
2r2 25 4K?
by =—%, b=——%, br=—%, (A.5)
meg Mg me
and
0D y1 =(D*H'D,H)(D'H' D, H), (A.6)
O, =(DPH'D,H)(D'H' D, H). (A7)

Here we have written the Yukawa terms compactly as —HTY + h.c.
We need to remove the higher-derivative operators to find a suitable form of the La-
grangian. This we achieve by redefining the Higgs field as

H— H+b(HHH+0®, (A.8)
where
1 1
O® =b3(OH'H + H'OH)H + by(D*H' D, H)H + 5b5(HT H)OH + 5b6(HT OH)H
+by(D*HYH)D, H + dyv*N(HYH)H + do(HTH)?H — b3(V'H + HY)H

1 1
— gbs(H'H)Y — Sbe(H'V)H, (A.9)
and
1
di = (2b3 — by + 5(()5 + b())) , (AlO)
9 1 1 1
do = | ba + 4b7 + 4agby — 5&31)1 + 2(ap — )\) 2bs + 555 + 5176 . (A.ll)

The final result for the matching (contributing to three-point couplings) is given in Table 10.

B Additional EWPD, coefficient scan

For completeness, in figure 14 we show the results of the bottom-up coefficient scan in Sec. 5
for the remaining EWPD, I'; and o},
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C O(v*/A*) EWPD, compared to loop corrections to £

A robust interpretation of EWPD at O(v?/A?) should define EWPD observables, including
loop correction to £(®) effects, and also O(v*/A*) contributions. When the size of sub-leading
terms are known numerically, a conclusion drawn on leading order terms is more robust, and
a theory error for the neglected higher order terms can be assigned. This is the case for both
the bottom up (completely general) and top-down (UV model specific) SMEFT perspectives.

In this work, we have reported the first result characterizing EWPD to O(v*/A*). These
corrections modify observables via interference with the SM amplitude for an EWPD observ-
able AY,), as

~ ‘ASIMTTv (C.1)

from the interference of a £ correction with the SM, and via double insertions of £
corrections in Feynman diagrams (or £ cross terms) scaling as

KT AT (C2)

Conversely, loop corrections to EWPD scale as

6)—
01 Cvl( )U%

Tz (C.3)

~

Treating the SMEFT bottom up — meaning we assume all operators are present and are
agnostic about their respective Wilson coefficients — the O(v*/A*) corrections dominate over
loop corrections when

(8) -4 6) —2

o Ci 'Up 0 Cl( ur
51]\4 A4 Z ,5'1]\4 167T2A2 ) (04)

for corrections from £®) operators, or

(6) 2 ~(6) - 6) -
G % OO g OO (C.5)
A2 A2 Y TSMgn2A2

from double insertions of £ corrections. These conditions reduce to

Ci(S)T}Q C(G) 6 o) T2 ) 0(6)
o 2 em md OO S 2 A% s (C.6)

6,8 - : : -
If one assumes the Ci( i k) ; are similar numerically, and a factor of A%,, is not a significant

numerical enhancement or suppression, these conditions can be reduced to ~ 4wop 2 A i.e.
3TeV = A. For A in the few TeV range, it is reasonable to expect that dimension eight
corrections will dominate over loop corrections.
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In the case of the specific models, the inferred conditions scale with the model parameters.
For the U(1) kinetic mixing model we have C’i(ﬁ) ~ k%*g%,;/m3 and C’Z-(S) ~ kgl /mic, or
Ci(g) ~ k%g&,,/m3;. Substituting these results into the reduced conditions for the O(v?/A%)
corrections to dominate over the loop corrections to £, Eq. (C.6), we find

2.4 52 2
k95007 < gSM’ (C.7)
m2. " 1672

and

k? g4 ﬁ > 491 gg‘M (C 8)
M3~ TSM 62 '

For the scalar triplet model we have CZ-(G) ~ K? /m‘;5 and CZ-(S) ~ K2gsm /mg7 C’Z-(S) ~

/<;4QSM/m§¢ and C® ~ /QG/m(IbO. Plugged into Eq. (C.6), these become

(2

) 2-9 4-9
gsmvp o 1 ’ gsmr“vp o 1 7 gsmk v o 1 , (C.9)
m2 "~ 1672 mi ~ 1672 mS ~ 1672
o] o] ¢
and
)
2 UT > 01 1

K — —_—. C.10
md ~ M 162 (C.10)

Here we have neglected logs that can appear in the perturbative corrections, as we are re-
stricted to A of a few TeV.

While there is a regime where O(v*/A*) dominates over loop corrections, the scope of
the parameter space depends on whether one takes the bottom-up or top-down approach.
An additional ingredient to consider when exploring different SMEFT perspectives is the
number of operators present. The U(1) model matches to operators which contribute to the
Z-pole data; 3 + 5ny at dimension six and 2 4 9ny at dimension eight (treating 5GS§) as one
parameter for the purposes of this counting). In contrast, only one operator at dimension six
and two at dimension eight coming from matching in the triplet model contribute to Z-pole
data. In the bottom-up approach, a total of 6+ 7n dimension-six operators as well as 5+9n
dimension-eight operators contribute to Z-pole data. Contrasting the number of operators
present for the top-down models with the bottom-up approach, we see the importance of a
global analysis using the bottom up approach.
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Figure 4. Constraints from EWPD observables in the U(1) mixing model. The results are organised
so that increasing the precision of the theoretical predication from O(v?/A?) to O(v*/A*) from left to
right. Both the a and my, schemes results are shown, and individual observables carry a significant
scheme dependence. Shown are the constraints on the model space from the I'; and R, observables.
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