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Abstract

Convolutional Neural Networks (CNNs) are highly effective for image reconstruction problems. Typi-
cally, CNNs are trained on large amounts of training images. Recently, however, un-trained CNNs such
as the Deep Image Prior and Deep Decoder have achieved excellent performance for image reconstruction
problems such as denoising and inpainting, without using any training data. Motivated by this develop-
ment, we address the reconstruction problem arising in accelerated MRI with un-trained neural networks.
We propose a highly optimized un-trained recovery approach based on a variation of the Deep Decoder
and show that it significantly outperforms other un-trained methods, in particular sparsity-based classical
compressed sensing methods and naive applications of un-trained neural networks. We also compare
performance (both in terms of reconstruction accuracy and computational cost) in an ideal setup for
trained methods, specifically on the fastMRI dataset, where the training and test data come from the
same distribution. We find that our un-trained algorithm achieves similar performance to a baseline
trained neural network, but a state-of-the-art trained network outperforms the un-trained one. Finally,
we perform a comparison on a non-ideal setup where the train and test distributions are slightly different,
and find that our un-trained method achieves similar performance to a state-of-the-art accelerated MRI
reconstruction method.

1 Introduction

CNNs are highly successful tools for image reconstruction tasks. In recent years, a large number of works
have shown that they can outperform traditional image processing methods for tasks such as image denoising,
compressive sensing, and image compression [1–5]. Almost exclusively, CNNs are trained on large sets of
images, and their success is typically attributed to their ability to learn from those training images.

However, starting with the Deep Image Prior (DIP) [6], a number of works have demonstrated that the
architecture of a CNN can act as a sufficiently strong prior to enable image reconstruction, even without
any training data. Un-trained networks perform well for denoising [6, 7], compressive sensing [8, 9], phase
retrieval [10–12], and even for reconstructing videos [13, 14]. Moreover, they provably succeed in denoising
and reconstructing smooth signals from few measurements [15, 16]. They have, however, mainly been studied
in relatively controlled setups (such as denoising with Gaussian noise), and their performance in practical
medical imaging problems is relatively unexplored.

In this work, we address the problem of accelerating Magnetic Resonance Imaging (MRI) with un-trained
neural networks, to understand if un-trained networks can give state-of-the-art performance in practice, and
to study if they can compete with trained neural networks for image reconstructions problems.

MRI is an important medical imaging technique and is extremely popular because it is non-invasive.
However, performing an MRI scan is slow due to physical limitations of the scanning process. These
limitations have led to a line of research known as compressed sensing which focuses on accelerating MRI [17]
by reconstructing an image from a few measurements, which in turn results in a faster scan time.

Traditional compressed sensing methods are based on `1-norm minimization or Total-Variation (TV)
norm minimization [18] and are un-trained, i.e., they do not rely on any training data. Those methods are
implemented in modern MRI scanners, but are outperformed by an emerging class of deep-learning-based
reconstruction techniques, as demonstrated for example by the fastMRI challenge [19, 20], a competition for
accelerated MRI reconstruction.
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Off-the-shelf un-trained neural networks have been applied to accelerated MRI reconstruction before [9,
13, 21], and have shown promising improvements over traditional un-trained methods for example images.
At the same time, the two works [9, 21] reported visibly worse images than those produced by the state-of-
the-art trained neural networks. The goal of this paper is to develop an un-trained neural network based
reconstruction method specifically tailored to multi-coil MRI and understand its imaging performance relative
to competing un-trained and trained approaches. Our contributions are:

• We improve image recovery performance with un-trained neural networks through i) architectural
improvements, ii) introducing a data consistency step, iii) including sensitivity maps in the reconstruction
process, and iv) combining reconstructions of different runs. Taken together, those steps give a significant
accuracy improvement over naive application of un-trained networks.

• As an architectural improvement, we propose a variation of the Deep Image Prior (DIP) [6] and
Deep Decoder [7] architectures, called ConvDecoder. We show that this architecture performs best
for knee MRI images and similar to Deep Decoder and DIP for brain MRI images, which have less
detail. ConvDecoder is a simple convolutional generator comprised of up-sampling, convolution, batch
normalization, and ReLU blocks in each layer.

• We show that un-trained neural networks significantly outperform traditional un-trained methods based
on sparse and low-rank models. We consider TV-minimization as a baseline [18] and ENLIVE [22] as a
representative un-trained method based on low-rank solutions [23–25]. Traditional sparse and low-rank
approaches are a natural comparison, because they perform well, are used in practice, and do not rely
on training data, just like our un-trained method.

• Un-trained neural networks are relatively slow because they require a neural network to be fitted to
observations via an iterative procedure. We propose an initialization technique that accelerates the
reconstruction by a factor of 10.

• We compare un-trained methods to trained methods on a dataset where trained methods shine: the
fastMRI dataset [26], a dataset for deep learning based accelerated MRI, where the training and test
distribution are the same. We find that, perhaps surprisingly, even in this setup, un-trained methods
have on-par performance with the U-net [27], a baseline trained method, and are only 1.78 dB worse
(see Table 5) than the state-of-the art trained method, the VarNet [28]. This suggests that there is
less benefit in learning-based approaches for imaging, at least in the context of MRI, than currently
thought.

• Finally, we compare un-trained methods to trained methods in a setup where train and test distributions
are slightly different: we train U-net and VarNet and tune un-trained methods on the fastMRI knee
dataset, and test on the fastMRI brain dataset. All methods perform significantly worse under this
distribution shift. In this regard, we propose two approaches to mitigate performance degradation due
to distribution shifts for un-trained methods: (i) performing meta learning via a few examples from
the test domain, and (ii) we propose an auto-tuning technique for un-trained networks with which our
un-trained method achieves performance on par to the state-of-the-art VarNet under the distribution
shift. Distribution shifts are common in practice, and a key advantage of un-trained neural networks
(with auto-tuning) over trained ones is robustness to out-of-distribution examples.

As a baseline for trained methods, we consider U-net based reconstruction because of its popularity and
ease of use. As the current state-of-the art method tested on the fastMRI dataset, we consider the end-to-end
Variational Network (VarNet) introduced in [28]. We emphasize that our method operates without any training

data and only leverages few data points for hyper-parameter tuning, while the U-net and VarNet are trained.
The U-net is a baseline in the fastMRI challenge [19, 20]. Other interesting approaches that perform close to
VarNet are the Pyramid Convolutional Recurrent Neural Network (PCRNN) [29], ⌃-net [30], XPDNet [31],
Cascade net [32], and invertible Recurrent Inference Machines (i-RIM) [33].
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2 Problem statement: Accelerated multi-coil MRI

We consider accelerated multi-coil MRI. Our goal is to recover an image x 2 CN from a set of measurements.
The measurements are obtained as

yi = MFSix+ noise, i = 1, . . . , nc,

where Si is a complex-valued position-dependent sensitivity map, that is applied through entry-wise multipli-
cation to the image x, F implements the 2D discrete Fourier transform, nc is the number of magnetic coils,
and M is a mask that implements under-sampling. The measurements yi are called k-space measurements.

First, suppose that we are only given one measurement, this is called single-coil imaging. Also, suppose
that the sensitivity map is equal to identity, and that the mask also corresponds to the identity, i.e., we are
given a single measurement y = Fx+ noise. In this case, we can estimate the image up to the uncertainty of
the additive noise as x̂ = F�1y.

In accelerated imaging, the k-space is under-sampled which is modeled through multiplication with the
mask M which simply sets some of the frequencies of the k-space measurement to zero. Under-sampling
by a factor of K results in a scan speed-up by the same factor. Reconstruction from the under-sampled
measurements amounts to estimating an image from few measurements which is known as compressed sensing.

The practically most relevant problem is multi-coil reconstruction. In multi-coil imaging, each of the
coils results in a different measurement. The sensitivity maps which determine those measurements are
typically not given, but can be estimated from the under-sampled measurements. In this paper we consider
the problem of reconstructing an image from under-sampled multi-coil measurements.

We work with the recently-released fastMRI dataset [26]. The fastMRI dataset consists of a training and
validation set each consisting of full k-space measurements of knees taken with nc = 15 coils, and of brains
taken with a varying number of coils. The dataset also contains “reference” images which are obtained by
reconstructing the coil images from each coil measurement as x̂i = F�1yi and then combining the coil images
via the root-sum-of-squares (RSS) algorithm to a final single image:

x̂ =

vuut
ncX

i=1

|x̂i|
2. (1)

Here, |·| and
p
· denote element-wise absolute value and squared root operations. Since different coil

sensitivities overlap only little, the RSS algorithm works well for combining the images.
We consider accelerated imaging by obtaining measurements with a mask. We utilize a standard 1D

variable-density mask (i.e., random or equi-spaced vertical lines across the k-space), because those masks are
challenging but practically most relevant, and are the default in the fastMRI challenge. For evaluation, we
compare to the “reference” images reconstructed from the full k-space.

3 Image recovery with un-trained neural networks

We recover images from measurements by using un-trained networks as image priors as follows. We view
un-trained neural networks as convolutional image priors mapping a parameter space to an image space,
i.e., G : Rp

! Rc⇥w⇥h, where c is the number of channels of the output image (for example c = 1 for single
grayscale image), and w and h are the width and height of the image.

Deep-learning-based image models are typically trained; specifically, they are parameterized functions
mapping an input to an output, with trainable (weight) parameters. For such trained image priors, the input
parameterizes the image, the output is an image, and the weights are trained on a distribution of images.
In contrast, an un-trained neural network is an image model where the input to the network is relatively
irrelevant and fixed, the weights are the parameters of the model, and the output of the model is again an
image.
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As mentioned before, un-trained neural networks were first proposed for image restoration problems by
Ulyanov et al. [6]. Ulyanov et al. [6] proposed to use a simple U-net architecture consisting of an encoder,
decoder, and skip connections for image reconstruction by fitting this architecture to a measurement. It has
relatively quickly been realized that the encoder and the skip connections are irrelevant for performance and
the decoder can even be further simplified [7]. We discuss architectures in Section 3.3.

3.1 Single-coil reconstruction
To explain how images are recovered with an un-trained neural network, we start with single-coil reconstruction.
Let y 2 CM be the under-sampled k-space measurement and let M and F be the mask and Fourier
transform defined in Section 2 that maps an image to a measurement. Given an un-trained neural network
G : Rp

! Rc⇥w⇥h with parameter vector C 2 Rp, we estimate an image based on the measurements y by
first minimizing the mean-squared loss function

L(C) =
1

2
ky �MFG(C)k22, (2)

with an iterative first order method to obtain the estimate Ĉ, and second, estimating the image as x̂ = G(Ĉ).
The image consists of a real and imaginary part, each described by one channel, therefore c = 2. As will
become clear later, the choice of optimization algorithm is critical for performance: The network together
with the optimization acts as a prior.

3.2 Multi-coil accelerated MRI reconstruction
In multi-coil imaging, multiple magnetic coils take different k-space measurements of the same image, and
thus there are a variety of ways to use un-trained methods for image reconstruction. We found the following
two to work best in different problem setups (i.e., one works best for brain images, the other for knee images);
the first reconstructs an image with estimated sensitivity maps, and the second works without sensitivity
map estimates.

Step 1-A: Reconstruction without coil sensitivity maps The perhaps most straightforward way to
recover the image is to treat each measurement/coil independently, reconstruct as described in the single-coil
reconstruction section above, and then combine the images using the RSS algorithm in (1).

A better performing and computationally more efficient approach is to impose the same prior to all images
pertaining to the coils. This approach was first used by Arora et al. [9]. Here, the first two output channels
of the un-trained network generate the real and imaginary parts of the first image, the second two channels
generate the the real and imaginary parts of the second image and so on. The final single image is then
obtained with the RSS algorithm in (1). The loss function pertaining to this method is

L(C) =
1

2

ncX

i=1

kyi �MFGi(C)k22, (3)

where G(C) is a stack of reconstructed images for all coils, in that we use one generator to generate multiple
images at once. Therefore, Gi(C) (the i�th element of the output stack) is the reconstructed image associated
with the measurements from the i-th coil yi. We found that using a single image prior for all images as
proposed here gives slightly better reconstruction quality relative to reconstructing image by image and is
significantly more efficient (approximately nc-times faster).

Step 1-B: Reconstruction with sensitivity map estimates Instead of reconstructing all coil images
separately, this method reconstructs the final output image directly, and takes the sensitivity maps Ŝ estimated
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(fixed)

· · ·

up-sampling convolution ReLU batch normalization channels_to_image

Figure 1: ConvDecoder architecture. It is comprised of up-sampling, convolutional, ReLU, batch normalization,
and linear combination layers.

from the under-sampled data by applying ESPIRiT [34] into account. Specifically, the loss function is

L(C) =
1

2

ncX

i=1

���yi �MFŜiG(C)
���
2

2
. (4)

Note that the convolutional generator G(C) has only two output channels, corresponding to the final
image (since we reconstruct real and imaginary parts of the image in two separate channels).

Step 2: Enforcing data consistency After fitting the network by minimizing the respective loss function,
we enforce data constancy. Specifically, recall that the measurement consists of under-sampled frequencies of
the original image located at x axis coordinates Sx = {i1, . . . , im}. After reconstructing the image, in its
corresponding Fourier domain representation, we replace frequency components located at Sx with the ones
from the under-sampled measurement.

3.3 Network architectures
In this section, we discuss the network architectures we consider in this paper. All of the architectures we
considered for MRI reconstruction are convolutional image-generating networks that map an input volume
to an output. We choose a fixed input (specifically, we choose it randomly at initialization) and optimize
over the weights of the network. The DIP is the first and most popular architecture [6], and consists of an
encoder, decoder and skip connections.

The Deep Decoder [7] is a simple decoder architecture, even simpler than the decoder part of the DIP,
only consisting of convolutional operations with fixed convolutional filters followed by linear combinations
(i.e., 1x1 convolutions).

In this paper, we found a variation of the Deep Decoder architecture, that we call ConvDecoder to
perform best in most instances; and similar to the original Deep Decoder in other instances. We also tried a
variety of other architectures, including combinations of ConvDecoders that reconstruct an image at different
resolutions, but found the simple ConvDecoder to perform best (more details on the architectures we analyzed
can be found in the supplementary material).

Both the Deep Decoder and the ConvDecoder are convolutional neural networks mapping a parameter
space to images, i.e., G : Rp

! Rc⇥w⇥h, where c is the number of output channels, and w and h are the
width and height of the image in each channel. In each layer, except the last one, the network is composed of
the following components: up-sampling, a convolutional operation, ReLU activation function, and finally a
Batch Normalization (BN) block [35]. BN normalizes each channel of its input volume independent of other
channels. The Deep Decoder uses bi-linear upsampling and 1x1 convolutions, while the ConvDecoder uses
Nearest-Neighbor up-sampling and a 3x3 convolutional layer. Figure 1 depicts the network.

The parameters of the convolutional layers (and BN) are optimized when fitting the network to the given
under-sampled measurement. The final layer excludes the up-sampling layer and simply combines the images
via a 1x1 convolutional layer that performs linear combinations of the channels.
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Convolutional and up-sampling blocks are essential. The former is responsible for capturing local
information among the pixels and refines that information from one layer to another. The up-sampling
block induces a notion of resolution into each layer as elaborated in supplementary material. Note that
an (n + 1)-layer ConvDecoder outputs an image x̂ 2 Rcn+1⇥wn+1⇥hn+1 from a fixed input z 2 Rc0⇥w0⇥h0 ,
which we drawn from a Gaussian distribution and then fix. The default architecture we consider has 8 layers
(including the last layer) and 256 channels per layer.

4 Reconstruction accuracy of un-trained neural networks for MRI

In this section, we study the performance of un-trained neural networks for multi-coil 4x accelerated knee
MRI reconstruction. We also provide results for 8x accelerated knee measurements and 4x accelerated brain
measurements in the supplementary material. We focus on multi-coil reconstruction, because multi-coil is
clinically more relevant than single-coil reconstruction. Here, we focus on a setup that is ideal for trained
methods: specifically, we train on the fastMRI training set, and evaluate on the fastMRI validation set, and
both of those sets come from the same distribution. In practice, the train an test set often come from slightly
different distributions, hence we study this aspect in Section 7.

After discussing how to evaluate performance (Section 4.1), we provide the evaluation results for 4x
accelerated knee measurements (Section 4.2). Our main findings are: (i) perhaps surprisingly, our un-trained
networks perform as well as a standard baseline trained method, the U-net, and only slightly worse than the
state-of-the-art network VarNet—but without any training data, and (ii) our un-trained network significantly
outperforms other un-trained methods, in particular total-variation minimization (TV), a standard sparsity
based baseline method, and ENLIVE, a calibration-less low-rank based method.

We performed a grid search to find the best parameters for each method; for the ConvDecoder, that
resulted in an 8-layer network with 256 channels in each layer. More details on the architecture setup and
optimization parameters can be found in the supplementary material. We also include a discussion in the
supplementary material on how the results depend on the initialization and the choice of hyper-parameters.

4.1 Considerations when evaluating reconstruction performance
It is surprisingly non-trivial to compare different reconstruction methods for MRI. We have faced the following
challenges and we have made the following choices for measuring the reconstruction performance:

Image comparison metrics Popular image metrics between a ground-truth image and a reconstructed
image, like peak-signal-to-noise ratio (PSNR), are often unsuitable to capture reconstruction performance:
Mason et al. [36] investigated a number of metrics based on the diagnostic quality of MR images according
to the feedback given by a group of five radiologists. Their study shows that Visual Information Fidelity
(VIF) [37] is often a better metric for assessing diagnostic quality than widely-used metrics such as PSNR
and Structural Similarity Index (SSIM) [38]. Interestingly, the study ranked PSNR and SSIM—the perhaps
most widely-used metrics for assessing image quality–among the most inept metrics in this study. But even a
higher VIF score sometimes corresponds to a visibly worse performance; to evaluate algorithms, we therefore
measure performance in VIF, PSNR, SSIM, and Multi-Scale SSIM (MS-SSIM) [39], and also show example
images for visual comparison.

Normalization It is often necessary to normalize images when comparing them to a ground truth image.
Marcin et al. [40] have shown that image normalization techniques have a significant impact on various
texture features being extracted from a medical image. We chose mean-std normalization (applied to the
ground-truth image to match the statistical properties of the reconstructed image) because the resulting
scores were more consistent with the literature.
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Comparison to noisy ground truth In some cases, the ground-truth image itself is corrupted with
measurement artifacts. Hence, even if the reconstructed image is of high quality, the score might not reflect
that and this might result in difficulties of comparing different reconstructions.

Volume- vs. image-based comparison Finally, all the afore-mentioned metrics are sensitive to whether
the comparison is done on an image-based level, or is volume-based. Specifically, each scan of a knee or
brain consists of a number of slices. Each slice is an image and together those images form a volume. All
afore-mentioned metrics depend on the dynamic range of the volumes, and computing scores in a volume- or
image-wise fashion gives different values. In the fastMRI challenge, scores are computed in a volume-based
manner, i.e., the dynamic range of the volume is considered for computing the scores [28, 29, 41, 42].
Since images within each volume are analyzed independently, we consider the dynamic range of each image
separately.

We refer the reader to the supplementary material for further discussion on the mentioned evaluation
challenges.

4.2 Evaluation results
We evaluate the performance of ConvDecoder along with other methods on the 4x accelerated multi-coil
knee measurements of the fastMRI dataset. We consider seven methods (five un-trained and two trained),
specifically (i) ConvDecoder, (ii) Deep Decoder [7], (iii) DIP [6], (iv) a standard un-trained TV-norm
minimization method [18], (v) the recently published calibration-less un-trained method ENLIVE [22], (vi)
the U-net [27], a standard trained method, and finally (vii) the end-to-end variational network (VarNet) [28].
We did an extensive grid search to select the best parameters for each un-trained neural network. See the
supplementary material for details and for the parameter setup for each method.

Method VIF MS-SSIM SSIM PSNR
ConvDecoder 0.6717 ± 0.0411 0.9443 ± 0.0152 0.7775 ± 0.0258 31.81 ± 0.96

DIP 0.6311 ± 0.0391 0.8981 ± 0.0122 0.5938 ± 0.0264 28.40 ± 1.02
DD 0.6359 ± 0.0421 0.8599 ± 0.0176 0.6991 ± 0.0287 29.16 ± 1.13

Table 1: Average image-based scores for the ConvDecoder, DIP, and Deep Decoder (DD) on the mid-slice
images of 20 randomly-chosen volumes in the multi-coil knee measurements from the fastMRI validation set
(4x accelerated). ConvDecoder significantly outperforms DIP and DD according to all metrics. Marginal
errors denote 95% confidence interval.

We start by comparing the ConvDecoder with Deep Decoder and DIP architectures, and find that
ConvDecoder performs best for knee MRI images. Specifically, to compare the afore-mentioned un-trained
networks, we computed the scores by averaging over 20 randomly-chosen mid-slice (i.e., the middle slice of the
volume) images of different volumes in the validation set, and as mentioned earlier, the scores are computed
in an image-based manner; see Table 1 for those scores and Figure 2 for sample reconstructions.

From Figure 2, it can be seen that DIP induces a noticeable amount of vertical artifacts. Moreover, Deep
Decoder–in addition to having reconstruction artifacts–tends to generate rather smooth images and therefore
misses texture details. These differences are present in other images as well, and hence are reflected in the
scores in Table 1.

From Table 1, we conclude that ConvDecoder performs best for knee MRI images. Therefore, in the rest
of the knee experiments, we consider ConvDecoder and compare it to the baselines.

ConvDecoder without training performs as well as a trained U-net and significantly better
than un-trained baselines Next, we compare ConvDecoder with U-net, VarNet, TV, and ENLIVE. We
trained a standard U-net with 8 layers and width factor equal to 32 on the whole training set (974 volumes).
We also trained an end-to-end variational network with 12 cascades and width factor equal to 18 on the
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ConvDecoder DIP DD ground truth

Figure 2: Sample reconstructions for ConvDecoder, DIP, and Deep Decoder (DD) for a validation image from
multi-coil knee measurements (4x accelerated). The top row represents zoomed-in version of the bottom row.
ConvDecoder gives the best reconstruction for this image.

training set1. To compute the results on the whole validation set, we ran the four mentioned methods on the
mid-slice image of each volume in the validation set (a set of 200 images). We also randomly chose the mask
for each run, but the marginal errors shown in Table 2 denote that even with the randomness associated with
masks, confidence intervals are sufficiently tight.

Method VIF MS-SSIM SSIM PSNR
ConvDecoder 0.6823 ± 0.0217 0.9387 ± 0.0059 0.7753 ± 0.0145 31.67 ± 0.39

ConvDecoder-noDC 0.6323 ± 0.0236 0.9265 ± 0.0061 0.7107 ± 0.0153 30.46 ± 0.42
U-net 0.5955 ± 0.0147 0.9489 ± 0.0035 0.7883 ± 0.0097 32.04 ± 0.21

VarNet 0.6456 ± 0.0122 0.9592 ± 0.0028 0.8342 ± 0.0084 34.20 ± 0.18
TV 0.4412 ± 0.0272 0.9262 ± 0.0061 0.6977 ± 0.0141 30.20 ± 0.41

ENLIVE 0.3906 ± 0.0346 0.8516 ± 0.0098 0.5531 ± 0.0213 26.14 ± 0.29

Table 2: Performance for reconstructing 200 mid slice knee images of the fastMRI validation set (4x
accelerated). ConvDecoder performs best in the VIF metric deemed most relevant by Clinicians. In the other
metrics, ConvDecoder and U-net are extremely similar. Marginal errors denote 95% confidence interval.

Table 2 shows the results for each method. The scores show that the ConvDecoder has higher VIF
performance than U-net and VarNet (recall that VIF is deemed most relevant by clinicians), and achieves
on-par performance with U-net on all other metrics. Moreover, it significantly outperforms TV and ENLIVE.
Figure 3 shows a sample reconstruction for an image from the validation set for the mentioned methods. As
we also noted before, the state-of-the-art VarNet outperforms both ConvDecoder and the U-net on the other
metrics.

5 Computational cost and making un-trained networks 10x faster

We next show that un-trained neural networks are relatively slow, but in order to mitigate that, we propose
a domain-specific initialization that accelerates the method by a factor of 10. Table 3 shows runtimes for
testing each method on a single validation image, averaged over 10 runs. All runtime values denote CPU
clock times and the experiments were run on a single TITAN V GPU. As those numbers demonstrate, and
as is well known, un-trained methods, and in particular un-trained networks, are significantly slower than
trained neural networks. That is because un-trained methods solve an optimization problem via an iterative
algorithm, whereas neural networks only require a forward pass through the network.

1Both U-net and VarNet are trained by following the exact instructions outlined in the fastMRI repository.
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ConvDecoder TV ENLIVE U-net VarNet ground truth

Figure 3: Sample reconstructions for ConvDecoder, TV, ENLIVE, U-net, and the end-to-end variational
network (VarNet) for a validation image from multi-coil knee measurements (4x accelerated). The bottom row
represents zoomed-in version of the top row. ConvDecoder and the end-to-end variational network (VarNet)
find the best reconstructions for this image (slightly better than U-net and significantly better than TV and
ENLIVE).

Method test train tune
ConvDecoder 63.5 ± 0.3 minutes - 4 days

DIP 119.7 ± 0.2 minutes - 8 days
DD 56 ± 0.2 minutes - 4 days

U-net 0.2 ± 0.1 seconds 8 days -
VarNet 0.7 ± 0.3 seconds 2 weeks -

TV 20 ± 3 seconds - 5 minutes
ENLIVE 230 ± 10 seconds - 60 minutes

Table 3: Runtimes when applying each method to a validation knee image (a single slice). The numbers are
averaged over 10 runs and marginal errors are for the 95% confidence interval.

We next propose an approach to accelerate un-trained networks by a factor of 10. It is well known that
for iterative optimization methods (e.g., gradient descent), the initialization affects the time it takes to get a
solution of desired accuracy. Our acceleration approach is based on starting from a good initialization.

Specifically, we exploit that MRI knee images fall into two categories that are statistically similar:
fat-suppressed and non-fat-suppressed images. Images in each class share statistical properties such as
contrast, pixel-wise histogram, etc. It turns out that a decoder optimized to represent (or reconstruct) a
non-fat-suppressed image provides a good initialization for other non-fat-suppressed images.

Accordingly, we first select one non-fat-suppressed knee slice randomly and fit ConvDecoder (based on loss
function (3)) until full convergence to reconstruct that image from its 4x under-sampled measurements. As a
result, we obtain a set of parameters C1 for the decoder. We then use C1 as an initialization to reconstruct
other non-fat-suppressed images using ConvDecoder. Table 4 and Figure 4 show that this approach enables
achieving the same reconstruction accuracy in 10 times less iterations. Thus, 60 minutes in Table 3 reduces
to 6 minutes at the cost of no performance loss. This result shows that interestingly, only one sample gives
sufficient information to represent a specific category of knee images.

We hasten to add that the idea of initializing generative models through training has been used before
with the goal of enhancing reconstruction quality, see [43, 44] for examples where a generative model is
initialized by training on some training set.
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Method VIF MS-SSIM SSIM PSNR
ConvDecoder 0.8449 ± 0.0108 0.9612 ± 0.0032 0.8244 ± 0.0097 32.94 ± 0.28

ConvDecoder-Fast 0.8317 ± 0.0115 0.9598 ± 0.0036 0.8297 ± 0.0092 33.05 ± 0.26

Table 4: Guided domain-specific initialization results in achieving the same reconstruction accuracy, yet 10x
faster. Scores are averaged over all 100 non-fat-suppressed mid-slice images from the fastMRI validation set
for 4x acceleration. Marginal errors denote 95% confidence interval.

ground truth ConvDecoder
(slow)

ConvDecoder
(10x faster - random init)

ConvDecoder
(10x faster - guided init)

Figure 4: Guided initialization results in the same reconstruction accuracy as full convergence from random
initialization. “10x faster - random init” denotes fitting ConvDecoder from random initialization, but for 10
times less number of full convergence iterations.

6 Better performance at the cost of more computations

According to Section 4.2, ConvDecoder significantly outperforms TV and achieves performance close to U-net.
In this section, we study an approach to obtain an even better performance with ConvDecoder. Consider an
under-sampled measurement y and k-many ConvDecoders with the same hyper-parameters, but initialized
independently. After fitting each decoder to y, we average the resulting k reconstructed images. This, shown
to be effective for denoising in [6], also results in a higher reconstruction accuracy in our setup, in terms of
SSIM and PSNR scores, but makes very little visible difference.

Table 5 shows PSNR scores when using this averaging technique. The ConvDecoder’s output is obtained
through 20 runs based on the mentioned averaging technique. Also, the numbers are averaged over 18 random
images (9 proton-density and 9 fat suppressed) from the 4x accelerated knee measurements from the fastMRI
validation set. According to Table 5, ConvDecoder marginally outperforms U-net and achieves performance
close to the end-to-end variational network.

How many runs are enough to achieve this higher performance? For a given image, Figure 5 shows how
PSNR changes based on the number of ConvDecoders whose outputs are averaged together to form the final
reconstruction (the numbers are averaged over the same 18 images as in Table 5). Even averaging over the
output of two decoders has a noticeable impact (more than 0.5 dB) on the reconstruction quality. Note
that the improvement rate decreases as we increase the number of decoders. A sample reconstruction of our
ensemble trick is included in the supplementary material. The sample reconstruction shows that the visible
performance increase over the ConvDecoder without the averaging technique is small.
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Method SSIM PSNR
ConvDecoder-A 0.8127 32.72
ConvDecoder 0.7946 32.13

U-net 0.8094 32.71
VarNet 0.8365 34.50

TV 0.7012 30.35
ENLIVE 0.5763 26.72

Table 5: Using our averaging technique, ConvDecoder’s
performance (ConvDecoder-A) exceeds U-net’s and
becomes close to the performance of the state-of-the-
art reconstruction method, the end-to-end variational
network (VarNet).

5 10
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#ConvDecoders
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Figure 5: Averaging the output of k 2 {1, 2, ...10}
ConvDecoders monotonically enhances the PSNR
score for the resulting image.

7 Robustness to out-of-distribution samples

In Section 4, we found that ConvDecoder achieves on-par performance with U-net when evaluated on
in-distribution data (i.e., fastMRI validation set). This is a setup where trained methods shine because the
test and train distribution match perfectly. However, this might not reflect performance in practice, where it
is difficult to impossible to train on a distribution that matches the test distribution perfectly. Un-trained
networks only mildly rely on the training distribution through hyper-parameter tuning and we therefore
expect them to potentially be less sensitive to a distribution shift.

In this section, we first show that, perhaps surprisingly, even un-trained methods suffer from distribution
shifts through parameter tuning. However, we demonstrate that for un-trained methods, this can be mitigated
(i) either through tuning on a few images on the test domain, if available, or (ii) through an auto parameter
tuning approach introduced here. With either technique, un-trained networks become robust to distribution,
and even perform on par with the best trained method, VarNet, when evaluated under distribution shifts. In
practice we suggest to choose option (i) if it is possible to obtain a very small tuning dataset from the test
domain, and the auto-tuning technique (ii) otherwise.

7.1 Performance loss under distribution shifts
We start by studying the effect of a distribution shift on reconstruction performance. Even un-trained methods
are sensitive to such distribution shifts, because its hyper-parameters are tuned on the training distribution.

We consider a distribution shift from knee to brain images, i.e., we train/tune on knees and test on
brains. Specifically, we train the U-net and VarNet models on both knee and brain images, one model for
each set of images. Moreover, we tune the un-trained methods on 10 randomly-chosen knee images, which
results in an 8-layer ConvDecoder with 256 channels per layer. We also tune the un-trained methods on 10
randomly-chosen brain images, which results in a 5-layer ConvDecoder with 64 channels per layer.

Next, we evaluate those methods on 100 randomly-chosen mid-slice brain images from the fastMRI
validation set. Table 6 demonstrates that both trained and un-trained methods suffer a similar performance
loss under this distribution shift.

7.2 Mitigating performance loss under distribution shifts with meta learning
A straightforward approach to eliminate the performance loss of un-trained methods under distribution shifts
is to record a few ground-truth samples from the test domain for hyper-parameter tuning. To illustrate
this approach for the distribution shift from knee to brain images, we tune un-trained methods on 10
randomly-chosen brain images.

The results in Table 7 show that un-trained methods are robust against a distribution shift provided that
a few samples from the test domain are available for meta learning (i.e., tuning their hyper-parameters).
In this setup, our un-trained network achieves on-par performance with the state-of-the art VarNet and it
outperforms the baseline U-net.
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train/tune on knee train/tune on brain
test on brain test on brain

Method PSNR SSIM PSNR SSIM
ConvDecoder 31.75 ± 0.22 0.8589 ± 0.0056 34.46 ± 0.13 0.9097 ± 0.0049

U-net 31.21 ± 0.14 0.8842 ± 0.0043 34.29 ± 0.10 0.9173 ± 0.0036
VarNet 33.96 ± 0.11 0.9067 ± 0.0039 37.46 ± 0.07 0.9421 ± 0.0031

TV 26.02 ± 0.48 0.7659 ± 0.0078 27.10 ± 0.57 0.7846 ± 0.0082
ENLIVE 24.86 ± 0.42 0.7534 ± 0.0081 26.51 ± 0.55 0.7780 ± 0.0087

Table 6: Validation results for a set of 100 mid-slice brain images from the fastMRI validation set. All
methods suffer a significant performance loss under a distribution shift. Left. PSNR and SSIM scores when
evaluating on the brain validation set (training U-net and VarNet as well as tuning ConvDecoder, TV, and
ENLIVE is done on the knee training set). Right. PSNR and SSIM scores when evaluating on the brain
validation set (training U-net and VarNet as well as tuning ConvDecoder, TV, and ENLIVE is done on the
brain training set). Marginal errors denote 95% confidence intervals.

train on knee train on brain
test on brain test on brain

Method PSNR SSIM PSNR SSIM
ConvDecoder-SM 34.46 ± 0.13 0.9097 ± 0.0049 34.46 ± 0.13 0.9097 ± 0.0049

U-net 31.21 ± 0.14 0.8842 ± 0.0043 34.29 ± 0.10 0.9173 ± 0.0036
VarNet 33.96 ± 0.11 0.9067 ± 0.0039 37.46 ± 0.07 0.9421 ± 0.0031

TV 27.10 ± 0.57 0.7846 ± 0.0082 27.10 ± 0.57 0.7846 ± 0.0082
ENLIVE 26.51 ± 0.55 0.7780 ± 0.0087 26.51 ± 0.55 0.7780 ± 0.0087

Table 7: Validation results for a set of 100 mid-slice brain images from the fastMRI validation set. Trained
neural networks suffer a significant performance loss under a distribution shift. Left. PSNR and SSIM scores
for evaluating on the brain validation set (training is done on the knee training set only for VarNet and
U-net). Right. PSNR and SSIM scores when evaluating on the brain validation set (training is done on the
brain training set only for VarNet and U-net). Marginal errors denote 95% confidence interval.

7.3 Mitigating performance loss under distribution shifts with auto-tuning
Next, we consider again the setup in Section 7.1 where no data points from the test distribution are available
for parameter tuning. Here, we show that it is possible to auto-tune the parameters of the un-trained neural
networks to adjust their hyper-parameters for a given reconstruction problem.

The idea of our new auto-tuning approach is to measure how well ConvDecoder with a set of hyper-
parameters interpolates missing information in the k-space. Specifically, given an under-sampled measurement
y, we first randomly remove (i.e., set to zero) a fraction q of the given k-space measurements, denoted by the
hold-out set S. The measurement vector without those frequencies is denoted by y�S . Then, for a specific
hyper-parameter configuration h, we reconstruct an image with ConvDecoder based on the measurement
y�S . The Fourier representation of the reconstructed image is denoted by ŷ. We then compute the MSE
between y and ŷ over S, the set of hold-out values in the k-space. The resulting number is a good proxy on
how well the given ConvDecoder configuration performs on all the missing frequency elements, even those
not in the hold-out set S.

At the cost of computation, this procedure might be performed k times for each parameter setup, similar
to performing k-fold cross validation. The described auto-tuning framework selects a set of hyper-parameters
whenever a new sample appears, therefore it does not rely on any training or tuning data except the
given sample itself. As mentioned before, this approach is computationally expensive as it increases the
computational cost of reconstructing an image by a factor of |H| · k, where k is the number of folds and |H| is
the number of hyper-parameter configurations. We set k = 2 in our experiment and also use any combination
from #layers = {5, 8}, #channels = {64, 256}, and sens = {0, 1} for the hyper-parameters (sens = 1 denotes
incorporating coil sensitivity estimates in the optimization as shown in loss function (4)).

We next evaluate the performance of ConvDecoder with the auto-tuning approach under the distribution
shift from knee to brain. We compare: (i) tuning ConvDecoder on a few brain images, which is the best-
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performing option but relies on training data (cf. Section 7.2), (ii) simply applying knee-tuned ConvDecoder
to brain images (cf. Section 7.1), and (iii) using our auto-tuning approach. Table 8 shows that our auto-tuning
approach significantly mitigates the performance loss due to distribution shifts, yet still incurs a slight
performance loss through this distribution shift when relative to tuning on the test distribution.

Score
Setup PSNR SSIM

Tune on brain - test on brain 34.46 ± 0.13 0.9097 ± 0.0049
Tune on knee - test on brain 31.75 ± 0.22 0.8589 ± 0.0056

Auto-tune - test on brain 33.54 ± 0.16 0.8944 ± 0.0052

Table 8: Validation results for a group of 100 mid-slice brain images from the fastMRI validation set.
Un-trained methods lose performance through a restricted distribution shift. Our auto-tuning framework
significantly improves over naive usage of hyper-parameters obtained from the original domain. Marginal
errors denote 95% confidence interval.

8 Discussion and Conclusion

MRI scans are typically accelerated by under-sampling the measurements, and classically the images are
reconstructed with an un-trained method by solving an optimization problem such as `1-minimization or
total-variation minimization. Those classical algorithms are significantly outperformed by deep learning
approaches that learn to reconstruct an image from measurements. Thus, those learning based approaches
enable higher accelerations. However, concerns have been raised over the stability of those methods and the
ability to generalize to different scanners and distributions of images. For example, if trained on knees, a
neural network might perform poorly on brains as demonstrated here.

In this paper we studied un-trained neural networks (from both reconstruction accuracy and reconstruction
speed aspects) for accelerated MRI reconstruction and proposed an architecture that is most suitable for
MRI. We find that this architecture significantly outperforms other un-trained methods–including traditional
CS methods–and has image reconstruction performance close to that of trained neural networks, but without
using any training data. We further demonstrated that under a distribution shift, un-trained networks suffer
a similar performance than trained methods, but this loss can be mitigated through (i) meta learning with a
small tuning dataset, or (ii) auto-tuning without any access to the test distribution.

While our results show that the best trained neural networks still slightly outperform our un-trained
methods if sufficient training data is available, the (i) robustness to distribution shift and (ii) not needing
any training data (except a few images for meta learning) make un-trained networks an important tool in
practice, especially in regimes with a lack of training data, and a need for robustness.

Reproducibility

The code to reproduce all results in this paper is available at https://github.com/MLI-lab/ConvDecoder and
an online demonstration that uses ConvDecoder for reconstructing a sample is available at colab-ConvDecoder.
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APPENDIX
A Details on evaluating the reconstruction performance

Evaluating the performance of different reconstruction methods is challenging for reasons related to the (i)
choice of image comparison metrics, (ii) impact of the normalization of images, (iii) the fact that we often
compare to a noisy ground truth image, and (iv) because we can compare image wise or volume wise. In this
section, we further iterate points ii and iii.

Normalization As for the image normalization method, which is typically required to fairly compare two
images, we investigated three image normalization methods: min-max normalization, which transforms image
I to I�min(I)

max(I)�min(I) ; mean-std normalization on both ground-truth and reconstructed images, which transforms
image I to I�mean(I)

std(I) ; and mean-std normalization which is only applied to the ground-truth image to match
its histogram to that of the reconstructed image.

0 0.0002 0.0004
0

5,000

10,000

15,000

20,000

without normalization

ground truth
reconstruction

0 0.0002 0.0004

mean-std (ground truth)

ground truth
reconstruction

0 2 4

mean-std (both)

ground truth
reconstruction

0 0.5 1

min-max

ground truth
reconstruction

Figure 6: The effect of different image normalization techniques on the distribution of ground truth and
reconstructed images.

Method no norm min-max mean-std (both)) mean-std (gt)
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

ConvDecoder 0.7563 29.93 0.7464 30.09 0.6957 29.57 0.7753 31.67
U-net 0.7867 32.01 0.7354 28.04 0.7091 29.37 0.7883 32.04
TV 0.6592 27.21 0.6875 26.67 0.6565 28.43 0.6977 30.20

Table 9: Average image-based scores for the ConvDecoder, U-net, and TV on the mid-slice images of the
volumes in the multi-coil knee measurements from the fastMRI validation set (4x accelerated). Scores are
computed based on different image normalization methods. Surprisingly, different image normalization types
result in a very different ranking of the reconstruction methods.

Figure 6 illustrates how each of the mentioned normalization methods affects the distribution of ground-
truth and reconstructed images for a sample file from the multi-coil knee dataset. In addition, Table 9 shows
the average SSIM and PSNR scores for ConvDecoder, Unet, and TV after running them on 200 mid-slice
images from the multi-coil knee dataset (4x accelerated). The remarkable outcome of these results is that
different image normalization methods can result in a totally different winning reconstruction method.

Comparison to noisy ground truth As mentioned, in some cased the ground-truth image itself is
corrupted with measurements images, as illustrated in Figure 7 where the ground truth image is very noisy. In
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ground truth reconstruction

Figure 7: A sample image from the multi-coil knee dataset where the ground-truth image is very noisy. In
the evaluation, we compare a reconstructed image to such a noisy image, and even if the reconstruction is a
subjectively sharp and clear image, the error metric is large.

such cases, the scores may not reflect the true quality of the reconstructed image. Note that the reconstruction
is almost free from noise, demonstrating the image prior also denoises the image.

Volume-based vs. image-based evaluation To illustrate the point that volume- and image-based
evaluations give very different numbers, Table 10 provides average volume-based as well as image-based
SSIM and PSNR scores for ConvDecoder, U-net, the end-to-end variational network, and TV. Note that the
results are averaged over 20 randomly-chosen volumes (640 slice images in total) from the validation set. The
numbers show that the image-based score computation results in a lower range of numbers compared with the
volume-based one, yet we employ the former because we think it better reflects the performance. In any case,
the ranking of algorithms is typically roughly preserved when transitioning from image- to volume-based
evaluation.

Method Volume-based Image-based
SSIM PSNR SSIM PSNR

ConvDecoder 0.8713 35.61 0.7868 31.81
U-net 0.8753 35.68 0.7992 32.14
VarNet 0.9062 38.21 0.8432 34.10

TV 0.7214 33.21 0.6832 30.12

Table 10: Volume-based vs. image-based score compution leads to different numbers: Average scores for
ConvDecoder, U-net, the end-to-end variational network (VarNet), and TV. For comparing volume- vs.
image-based evaluation, SSIM and PSNR scores are averaged over 20 randomly-chosen volumes (640 slices).

B Parameter setup and optimization

We tuned the parameters of ConvDecoder, DIP, and Deep Decoder by performing a grid search over a group
of 10 randomly-chosen training images. We also tried different architectures (e.g., adding skip connections, or
stacking multiple decoders to form a multi-resolution network) but found the plain ConvDecoder to perform
best.

Table 11 shows the grid parameters for each network. For the U-net and the end-to-end variational
network (VarNet), we chose the set of parameters used in the fastMRI challenge2 [26] and trained them
accordingly. The parameter setup is provided in Table 11.

In order to fit the un-trained methods to the under-sampled measurements, we used the Adam optimizer [45]
with constant stepsize 0.01 (without early stopping) for optimizing the loss function (which is MSE loss
function in our experiments).

2https://github.com/facebookresearch/fastMRI/tree/master/models
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Method #layers #channels convolutional #pools #sens-pools #sens-channels #cascades
(or width) kernel size

ConvDecoder {4, 5**, 6, 7, 8*, 9} {32,64**,128, 160, 256*, 480} 3 0 - - -
U-net 8 32*** 3 4 - - -
Varnet - 18 3 4 4 8 12
DIP {10, 12**, 14, 16*, 18} {64**,160, 256*, 360} 3 2 - - -
DD {6, 7, 8, 9, 10⇤,⇤⇤,11} {64**,128,256, 368*, 512} 1 0 - - -

* Knee chosen parameters.
** Brain chosen parameters.
*** This is the number of channels for the first layer of U-net. For the 8-layer U-net that we used, the number of channels are [32, 64, 128, 256, 512,

256, 128, 64, 32] including a non-pooling layer in the middle.

Table 11: Model parameters for ConvDecoder, U-net, Varnet, DIP, and Deep Decoder (DD).

Regarding the output dimension of un-trained methods, as an example, for a 15⇥ 640⇥ 368 (15 is the
number of coils) under-sampled measurement, ConvDecoder (also DIP or DD) generates an image of size
30⇥ 640⇥ 368, because it recovers the real and complex pixel values of an image separately with two separate
channels. Finally, we fixed the input of the un-trained methods which is sampled from N (0, I) and has
dimension 256⇥ 10⇥ 5 (256 being the number of channels).

B.1 Sensitivity to initialization and choice of hyper-parameters
We next discuss (i) how the width of the network affects the reconstruction quality, and (ii) demonstrate
that there is little variance in the scores given a specific setup when fitting the ConvDecoder starting from a
random initialization to a given under-sampled measurement over multiple runs on the same problem.

A key hyper-parameter of the ConvDecoder is the width of the network (the number of channels per layer).
In order to check how different wideness factors affect the performance, we ran a seven-layer ConvDecoder on
three under-sampled measurements (again from the multi-coil accelerated knee measurements of the fastMRI
dataset) and computed the SSIM score. We performed this experiment four times to average the results.
Figure 8 (right) shows the SSIM score based on network width for the three mentioned data points. It can be
seen that if the network width is either too small or too large, it does not perform well. A width parameter
around 200 performs well across images.

Recall that to recover an image, we run gradient descent starting from a random initialization. It is
natural to ask whether the reconstruction quality varies significantly as a function of the random initialization.
We find that the reconstruction quality is relatively insensitive to the particular initialization. Specifically, for
the general setup we used in Section B, we ran the ConvDecoder 10 times on an under-sampled measurement
and averaged the scores. Figure 8 (left) depicts the variances of different scores over several runs of the
algorithm, and illustrates that the scores vary relatively mildly (VIF as well as PSNR and MS-SSIM tend to
have the highest and lowest variations, respectively).

V
IF

M
S-

SS
IM

SS
IM

0.8

0.85

0.9

0.95

200 400 600

0.75

0.8

0.85

0.9

#channels/layer

SS
IM

image1
image2
image3

PS
N
R

30

32

34

36

Figure 8: Effect of hyper-parameters on the ConvDecoder’s performance. Left: fluctuations of different
scores during 10 runs on a single data point. Right: effect of network width on the SSIM score for three
data points from the validation set.
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Figure 9: ConvDecoder finds an image representation by constructing fine details per each layer. The network
is fitted for representing an image from the 4x under-sampled k-space of the ground-truth image in the mid
row. Top row: different resolutions of the ground-truth image in the bottom row to each of which we fit the
layer outputs. Bottom row: output visualization for each of the six layers.

C How does ConvDecoder represent an image?

Despite the notable empirical success of un-trained neural networks for solving inverse problems, there is
still little knowledge about why these methods work so well in practice. In this section, we illustrate how

un-trained networks functions as image priors. Specifically we demonstrate (i) how different layers play a role
in forming successively higher resolution versions of an image and (ii) how different layers are fitted in the
optimization, and why this matters.

C.1 Successive approximation of an image
To understand the role of different layers in reconstructing the image, it is instructive to see how an un-trained
network generates an image by visualizing the outputs of each layer. Visualizing the layers’ 256 channels,
however, is not informative. Instead, we visualize the best representation that can be achieved by linearly
combining the channels in each layer to the re-scaled ground-truth image. For example, if the image size
(omitting the number of channels) in layer i’s output is (wi, hi), then we down-sample the ground-truth image
to match this size.

Figure 9 shows the results of our visualization method. The top row shows different resolutions of the
ground-truth image x1. The bottom row shows the visualization results for a network fitted to reconstruct x1

from the 4x under-sampled measurements y1. We observe that: (i) ConvDecoder finds a fine representation
of an image by adding more detail in each layer. (ii) As shown in Figure 9, we observe the role of up-sampling
blocks in inducing the notion of resolution to the network, in that different layers represent reconstructions of
different resolutions.

C.2 It is critical to fit different layers at different speeds
The optimization method employed to minimize the loss function of an un-trained network has a significant
impact on the quality of the reconstructed image because it determines which layer is fitted at which speed.
The Adam optimizer yields a significantly better reconstruction than Gradient Descent (GD) both qualitatively
and quantitatively (an approximately 3% higher SSIM score).

The reason behind this discrepancy in performance lies in the fact that Adam chooses different stepsizes
(and hence different fitting speeds) for each parameter in the network, whereas GD treats all network
parameters the same. It is important to (i) choose larger stepsizes for earlier layers and (ii) employ an
increasing stepsize schedule, but it is not critical to choose the stepsize adaptively or differently within a layer.

20



To illustrate this point, we recorded layer-wise stepsizes assigned by Adam over the number of iterations
which is shown in Figure 10 (right). We then ran GD with the same stepsize schedule for each layer as we
found Adam to use (we refer to this setup as GD-A), and observed that it performs essentially the same as
Adam (See Figure 10 (left)). This demonstrates that it is critical to learn the layers with different stepsizes,
but the adaptive gradients chosen by Adam are not critical nor relevant for performance.
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Figure 10: Left. Assigning larger stepsizes to shallower layers and utilizing an increasing schedule enhances
the performance of GD relative to Adam. SSIM scores are shown for different optimizers over 10 runs
on a sample image from the 4x accelerated fastMRI validation set. Adam, GD, and GD-A (GD with the
same stepsize schedule as Adam) are considered. Right. Average layer-wise stepsizes for different layers of
ConvDecoder based on the iteration number when using the Adam optimizer. All values are averaged over 6
randomly-chosen images from the 4x accelerated fastMRI validation set.

D 8x accelerated multi-coil knee measurements

In this section, we report the results for 8x accelerated knee measurements. For 8x acceleration, we found
different hyper-parameters of the ConvDecoder (relative to 4x acceleration) to work best. To find good
hyper-parameters for the ConvDecoder, we again performed a grid search—the details of which is provided in
Section B—which resulted in a ConvDecoder with 6 layers, 64 channels, and (4, 4) as the input size.

Method VIF MS-SSIM SSIM PSNR

ConvDecoder 0.5234 ± 0.0214 0.8827 ± 0.0070 0.6815 ± 0.0142 28.49 ± 0.31
U-net 0.5233 ± 0.0146 0.9148 ± 0.0029 0.7115 ± 0.0088 29.25 ± 0.15

VarNet 0.5821 ± 0.0115 0.9432 ± 0.0025 0.7812 ± 0.0076 31.65 ± 0.13
TV 0.3119 ± 0.0232 0.8340 ± 0.0075 0.5986 ± 0.0139 26.55 ± 0.35

ENLIVE 0.3636 ± 0.0283 0.7889 ± 0.0086 0.4986 ± 0.0183 23.11 ± 0.26

Table 12: Average image-based scores for reconstructing the mid-slice images of 200 volumes in the multi-
coil knee measurements from the fastMRI validation set (8x accelerated). ConvDecoder achieves on-par
performance with U-net and outperforms TV as well as ENLIVE, yet the end-to-end variational network
(VarNet) performs significantly better for 8x acceleration. Marginal errors denote 95% confidence interval.

Table 12 shows that ConvDecoder achieves similar performance to U-net (according to all metrics except
SSIM and MS-SSIM which U-net slightly outperforms ConvDecoder) and significantly outperforms TV as
well as ENLIVE. Figure 11 shows a sample reconstruction for all considered methods.
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ConvDecoder TV ENLIVE U-net VarNet ground truth

Figure 11: Sample reconstructions for ConvDecoder, TV, ENLIVE, U-net, VarNet for a validation image
from multi-coil knee measurements (8x accelerated). The bottom row represents zoomed-in version of the top
row. ConvDecoder finds a similar reconstruction as U-net and outperforms TV. The state-of-the-art VarNet
yields the best reconstruction for this image.

E 4x accelerated multi-coil brain measurements

So far, we have shown that un-trained neural networks perform surprisingly well for knee MRI reconstruction.
Specifically, they perform on-par with a baseline trained neural network and significantly better than a
baseline un-trained method (TV) as well as a modern un-trained method (ENLIVE). In this section, we
consider un-trained networks for the reconstruction of brain images to fortify our claims.

For the sake of consistency with the rest of the paper, we first compare different un-trained neural networks
and then compare the best-performing one to competing methods. We again performed an extensive grid
search and the resulting hyper-parameters are shown in Section B.

Table 13 shows average scores for the ConvDecoder, DIP, and DeepDecoder. Interestingly, all three
un-trained networks perform similar on the brain images and unlike knee, there is not a significant difference
among them. However, we emphasize the role of our new data consistency step which resulted in approximately
8% SSIM score improvement for these un-trained networks.

Method VIF MS-SSIM SSIM PSNR

ConvDecoder 0.8002 ± 0.0168 0.9743 ± 0.0055 0.9018 ± 0.0121 34.58 ± 0.41
DIP 0.8223 ± 0.0144 0.9736 ± 0.0051 0.8918 ± 0.0131 34.96 ± 0.35
DD 0.7952 ± 0.0184 0.9713 ± 0.0063 0.9023 ± 0.0138 34.52 ± 0.51

Table 13: Average image-based scores for the ConvDecoder, DIP, and Deep Decoder (DD) on the mid-slice
images of 20 randomly-chosen volumes in the multi-coil brain measurements from the fastMRI validation
set (4x accelerated). All three networks perform similar on the brain images. Marginal errors denote 95%
confidence interval.

Since there is not a noticeable difference among ConvDecoder, DIP, and Deep Decoder on the brain
images, we proceed with the ConvDecoder for comparison to baselines, to be consistent with the previous
sections. However, ConvDecoder can be replaced with the Deep Decoder or DIP architectures in the following
comparison with similar results; although the DIP has a larger computational overhead.

During tuning, we noticed that Step 1-B—described in Section 3.2, which takes the estimates of the coil
sensitivity maps into account instead of using Step 1-A which does not, works significantly better for brain
images. To quantify the gains of employing the estimated coil sensitivity maps, we include ConvDecoder
scores with/without sensitivity maps along with U-net, the end-to-end variational network, TV, and ENLIVE
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Figure 12: ConvDecoder, DD, and DIP yield similar reconstructions for brain images. The artifacts can
be mitigated by incorporating coil sensitivity maps as shown in Fugure 13. Images in the bottom row are
zoomed-in versions of the top row.

in Table 14. The numbers are averaged over 100 validation brain images.

Method VIF MS-SSIM SSIM PSNR

ConvDecoder 0.8178 ± 0.0091 0.9722 ± 0.0024 0.8892 ± 0.0054 33.06 ± 0.11
ConvDecoder-SM 0.8707 ± 0.0087 0.9804 ± 0.0021 0.9097 ± 0.0049 34.46 ± 0.13

U-net 0.8714 ± 0.0062 0.9792 ± 0.0014 0.9173 ± 0.0036 34.29 ± 0.10
VarNet 0.9173 ± 0.0051 0.9912 ± 0.0009 0.9421 ± 0.0031 37.46 ± 0.07

TV 0.6734 ± 0.0379 0.8748 ± 0.0113 0.7846 ± 0.0082 27.10 ± 0.57
ENLIVE 0.6431 ± 0.0371 0.8660 ± 0.0108 0.7780 ± 0.0087 26.51 ± 0.55

Table 14: Average image-based scores for the ConvDecoder, ConvDecoder-SM (ConvDecoder + sensitivity
maps) vs U-net, VarNet, TV, and ENLIVE on 100 mid-slice images of the multi-coil brain measurements from
the fastMRI validation set (4x accelerated). ConvDecoder with sensitivity maps achieves on-par performance
with U-net and outperforms TV as well as ENLIVE. However, both U-net and ConvDecoder are slightly
outperformed by the state of the art (VarNet). Marginal errors denote 95% confidence interval.

Figure 13 depicts sample reconstructions for ConvDecoder-SM (Convdecoder + sensitivity maps), Con-
vDecoder, U-net, the end-to-end variational network, TV, and ENLIVE for a validation image. Note the
significant improvement in the reconstruction quality as a result of using estimated sensitivity maps. Since
ConvDecoder-SM, U-net, and the end-to-end variational network (VarNet) are performing best in recon-
structing the shown sample, we also annotated two specific parts on their reconstructions to point out their
differences. The blue circle denotes a region where U-net and VarNet are giving a sharp reconstruction, while
ConvDecoder-SM yields a smooth reconstruction. The red circle on the other hand, denotes a region fully
recovered by ConvDecoder-SM, whereas U-net has merged the two black points in the region. We observe
that for the region denoted by the red circle, VarNet also merges the mentioned black points to some extent,
yet this effect is less severe compared to the Unet.

F Better performance at the cost of more computations

In Section 6, we showed a better reconstruction accuracy can be achieved via ConvDecoder at the cost of
more computation. Specifically, we introduced an ensemble trick to enhance the performance by averaging
the outputs of multiple decoders. We further demonstrated monotonic improvement of PSNR as a function
of the number of decoders. The outcome of such analysis was getting closer (within 2 dB) to the performance
of the state-of-the-art VarNet.
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Figure 13: ConvDecoder-SM, without any training data, yields noticeable improvement over ConvDecoder
for brain MRI images, significantly outperforms TV (a traditional compressed sensing method) as well as
ENLIVE (a recently-introduced compressed sensing method), and performs slightly worse than U-net (a
baseline trained neural network) as well as VarNet (a state-of-the-art trained neural network). Images in the
bottom row are zoomed-in versions of the top row.

Figure 14 shows sample reconstructions for ConvDecoder with and without our averaging technique (the
average image is obtained using ten decoders). As shown, the averaging technique results in slightly smoother
regions in the middle parts of the image, yet removes small reconstruction artifacts, and overall yields a
higher score (e.g., 0.59 dB higher PSNR as shown in Section 6).

ConvDecoder-A ConvDecoder ground truth

Figure 14: Sample reconstructions for ConvDecoder and ConvDecoder-A (with the averaging technique) for a
validation image from multi-coil knee measurements (4x accelerated).
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