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Abstract

Deep neural networks give state-of-the-art accu-
racy for reconstructing images from few and noisy
measurements, a problem arising for example in
accelerated magnetic resonance imaging (MRI).
However, recent works have raised concerns that
deep-learning-based image reconstruction meth-
ods are sensitive to perturbations and are less ro-
bust than traditional methods: Neural networks
(i) may be sensitive to small, yet adversarially-
selected perturbations, (ii) may perform poorly
under distribution shifts, and (iii) may fail to re-
cover small but important features in an image. In
order to understand the sensitivity to such pertur-
bations, in this work, we measure the robustness
of different approaches for image reconstruction
including trained and un-trained neural networks
as well as traditional sparsity-based methods. We
find, contrary to prior works, that both trained
and un-trained methods are vulnerable to adver-
sarial perturbations. Moreover, both trained and
un-trained methods tuned for a particular dataset
suffer very similarly from distribution shifts. Fi-
nally, we demonstrate that an image reconstruc-
tion method that achieves higher reconstruction
quality, also performs better in terms of accurately
recovering fine details. Our results indicate that
the state-of-the-art deep-learning-based image re-
construction methods provide improved perfor-
mance than traditional methods without compro-
mising robustness.

1. Introduction

Neural networks outperform traditional (e.g., sparsity-
based) methods in a variety of image reconstruction tasks
across common metrics of image quality. For instance, con-
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sider the compressive sensing problem arising in magnetic
resonance imaging (MRI), where the goal is to reconstruct
a diagnostic quality image using linear under-sampled mea-
surements for accelerating the MRI scans. A large body
of literature shows that neural networks can enable higher
reconstruction quality and faster reconstruction computa-
tions for MRI compared to clinically utilized traditional
sparsity-based reconstruction methods (Hammernik et al.,
2018; Zbontar et al., 2018; Knoll et al., 2020; Sriram et al.,
2020a; Wang et al., 2019; Schlemper et al., 2017; Putzky
& Welling, 2019; Arora et al., 2020; Zalbagi Darestani &
Heckel, 2020).
However, recent works have raised robustness concerns
about neural-network-based image recovery (Cohen et al.,
2018; Huang et al., 2018; Antun et al., 2020; Gottschling
et al., 2020; Genzel et al., 2020). Specifically, Antun et al.
(2020) demonstrated that small, adversarially-selected per-
turbations in the under-sampled measurements may result in
significant reconstruction artifacts. Based on those findings,
Antun et al. (2020) and Gottschling et al. (2020) concluded
that despite providing worse reconstruction quality than neu-
ral networks, traditional sparsity-based compressive sensing
methods tend to be more robust to adversarial perturbations.
Moreover, the results from the fastMRI challenge, a competi-
tion for improving the performance of image reconstruction
systems for accelerated MRI, have shown that while all
top performing deep networks yield high scores according
to various image quality metrics, there is also a potential
to miss small, clinically relevant pathologies (Knoll et al.,
2020, Fig. 3), which may lead to false-negative diagnoses.
These findings, however, do not address the question
whether the identified robustness concerns are specific to
training a network for image reconstruction, or whether un-
trained neural networks and traditional un-trained sparsity-
based reconstruction methods are similarly sensitive to per-
turbations.
In addition, it is unknown whether neural networks for im-
age reconstruction are sensitive to various distribution shifts,
which can commonly arise in clinical practice. Natural
distribution shifts have shown to degrade performance in
learning-based systems, for example for classification prob-
lems (Recht et al., 2019; Taori et al., 2020; Miller et al.,
2021; Yadav & Bottou, 2019) and for question answering
models in natural language processing (Miller et al., 2020)).
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Figure 1: Robustness notions considered in this work. The images are U-net reconstructions from 4x accelerated data. As
adversarial perturbation, we select an additive error that has small `2-norm but induces a large reconstruction error.

In this work, we study the robustness of three popular fami-
lies of compressive sensing reconstruction methods for MRI:

i) Neural networks trained end to end. All leading
methods in terms of image reconstruction quality of
the 2019 and 2020 fastMRI competitions belong to
this class of methods. We consider U-net-based re-
covery (Ronneberger et al., 2015), as it is a simple
baseline, and the end-to-end variational network (Sri-
ram et al., 2020a), which is a state-of-the-art method
on the fastMRI dataset (Zbontar et al., 2018).

ii) Traditional CS methods. We consider imposing a
sparsity prior and image reconstruction with `1-norm
minimization, which is the leading classical compres-
sive sensing method (Lustig et al., 2007).

iii) Un-trained neural networks. We consider a varia-
tion of the Deep Image Prior (Ulyanov et al., 2018)
and Deep Decoder (Heckel & Hand, 2019) for MRI in-
troduced in (Zalbagi Darestani & Heckel, 2020), which
is a neural network based method, but works without
training data.

We study the aforementioned methods with respect to the
following three notions of robustness (see Figure 1):

i) Small adversarial perturbations. Small perturba-
tions are selected adversarially to cause a large re-
construction error for a given image and an image
reconstruction method. Antun et al. (2020) studied the
effect of such perturbations, but only selected them for
neural networks trained end-to-end. However, for a
comparison among methods, it is essential to find these
perturbations separately for each method. While there
is no explicit adversary in an MRI scanner (as an MRI
scanner is a closed system), studying adversarial pertur-
bations is important since measurement perturbations
can be due to scanner-induced artifacts (coil failure, B0

magnet drift, bad gradient shimming, etc.) or patient-
induced artifacts (motion, off-resonance, etc.) (Bellon
et al., 1986).

ii) Robustness to distribution shifts. Neural networks
are typically evaluated by first collecting a set of im-
ages and measurements, second partitioning the data
into training and test sets, and third training and evalu-
ating the network on the train and test data. Thus, both
train and test data are drawn from the same distribu-
tion. However, in practice train and test distributions
may vary: for example, a network can be trained on
data from one set of patients, anatomies, and contrasts,
but may be used for varying datasets at test time. For
classification, it is well known that distribution shifts
are common in practice and have a large impact on
performance (Recht et al., 2019), but for image recon-
struction methods the effect of distribution shifts is
unknown.

iii) Robustness in recovering fine details. Small features
in an MRI image (e.g., 10-pixel sized features or even
smaller) are often important for accurate diagnostics.
Therefore, it is crucial for a reconstruction method to
be able to recover such features in the image.

Understanding the robustness of algorithms with respect
to these perturbations is important, especially in medical
imaging where errors may result in a faulty diagnosis. To-
wards improving our understanding in this realm, the main
contributions of our work and findings of our study are:

• All studied methods—trained and un-trained—are sen-
sitive to small, adversarially-selected perturbations,
and the performance loss is not unique to neural net-
works trained end-to-end. This result is in contrast to
that of Antun et al. (2020), which found that “deep
learning typically yields unstable methods,” whereas
`1-minimization methods “are not affected by the per-
turbation.” Those two results can co-exist because
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Antun et al. (2020) found that an adversarial perturba-
tion selected for a particular neural network does not
affect `1-minimization much. In this work (in contrast
to Antun et al. (2020)), we also compute adversar-
ial perturbations for `1-minimization and show that
while those significantly impair the performance of
`1-minimization, they affect neural networks less.

• We provide the first study of distribution shifts in the
context of image reconstruction. Even un-trained meth-
ods such as `1-minimization are affected by distribu-
tion shifts, because their hyper-parameters are tuned on
a given distribution. We study three notions of natural

distribution shifts for accelerated MRI reconstruction:
(i) slight shift to a close domain (i.e., same anatomy
but a dataset with a different acquisition technique), (ii)
anatomy shift (i.e., training on brains and testing on
knees), and (iii) adversarially-filtered shifts. Perhaps
surprisingly, we find that both un-trained and trained
methods are similarly affected by all three types of dis-
tribution shifts (see Figure 2 as an example for case (i)),
and typically the best performing method is also the
best performing method under a distribution shift. For
adversarially-filtered shifts, we find that challenging-
to-reconstruct-images are difficult to reconstruct for all
methods, from which we conclude that some images
are naturally difficult to reconstruct.

• Finally, we quantify the recovery of small features in
the images i) through introducing artificial small fea-
tures, and ii) through studying small, clinically relevant
features in real data. From studying artificial small fea-
ture recovery, we find that each reconstruction method
is sensitive to specific regions in an image and faces
difficulty in recovering small features in those regions.
By studying small pathologic features in real data, we
find that traditional CS methods are less robust in re-
covering small details compared to neural networks.
This confirms the intuition that small feature recov-
ery ability should correlate with overall reconstruction
performance.

In a nutshell, the take-away of our study is that the deep
learning methods that perform best based on reconstruction
quality are also best under realistic distribution shifts and
for small feature recovery, and we could not find them to
be more sensitive to adversarial perturbations than classical
methods.
2. Problem setup: Accelerated multi-coil MRI

We study robustness in the context of accelerated multi-coil
MRI reconstruction, because this is one of the most popu-
lar applications of compressive sensing and an important
medical imaging technology.
In multi-coil MRI, nc multiple radiofrequency coils each

0.6 0.7 0.8

0.4

0.6

0.8

SSIM on fastMRI

SS
IM

on
St

an
fo

rd best linear fit
y = x
`1 group
un-trained group
U-net group
VarNet group

Figure 2: Reconstruction methods trained on one knee

dataset (fastMRI) do not necessarily generalize to an-

other knee dataset (Stanford dataset), if there are dif-

ferences in how the datasets are obtained. All of the
considered reconstruction methods lose a similar amount
of accuracy when evaluated on the Stanford set (through
a dataset shift). The word “group" in the legend refers to
variants of the respective method and error bars are 95%
confidence intervals.

record a measurement that is sensitive to a spatially local
anatomical region. We consider multi-coil MRI over simpler
single-coil MRI experiments since using multiple coils is
common in clinical practice.
The goal of accelerated multi-coil MRI reconstruction is to
reconstruct an image x

⇤ 2 CN from a set of measurements
(often called k-space measurements) obtained as

yi = MFSix
⇤ + noise 2 CM , i = 1, . . . , nc.

In the above equation, Si is a complex-valued position-
dependent coil sensitivity map, that is applied through
element-wise multiplication to the image x

⇤, F implements
the 2D discrete Fourier transform, and M is a mask that
implements under-sampling of k-space data.
For all experiments, we use the fastMRI dataset (Zbontar
et al., 2018), designed for training and evaluating deep-
learning-based MRI reconstruction methods. The fastMRI
dataset consists of fully-sampled measurements (i.e., taken
with an identity mask M = I) of knees taken with nc = 15
coils, and of brains taken with a varying number of coils.
The dataset also contains reference images that are obtained
by reconstructing the coil images from each full coil mea-
surement as x̂i = F

�1
yi and then combining them via the

root-sum-of-squares (RSS) algorithm to a final single image:
x̂ =

pPnc

i=1|x̂i|2. Here, |·| and
p
· denote element-wise ab-

solute value and squared root operations. Alternatively, one
could use SENSE (Roemer et al., 1990), a signal-to-noise
ratio optimal method, to combine coil images.
To under-sample k-space measurements (for acceleration),
we employ a standard 1D mask (random or equi-spaced ver-
tical or horizontal lines in the frequency domain), which is
the default in the fastMRI challenge. We consider 4x accel-
eration throughout the paper as this is one of the acceleration
factors considered in the fastMRI challenge, although 2x
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acceleration is often used in clinical practice (Deshmane
et al., 2012). For evaluation, we compare to the reference
images reconstructed from the full k-space.

3. Image reconstruction methods

We consider three families of image reconstruction methods:
i) trained neural networks, ii) traditional sparsity-based CS
methods, and iii) un-trained neural networks. In this section,
we provide a brief overview of each method.

Trained neural networks. Convolutional neural net-
works are trained either to map the measurement directly to
an artifact-free image, or to map from a coarse least-squares
reconstruction from the under-sampled measurement to an
artifact-free image.
Let {(x1,y1), . . . , (xn,yn)} be a training set consisting
of pairs of target image xj and a under-sampled measure-
ment yj . The measurement in our setup consists of the
physical k-space measurements from multiple receiver coils.
A network f✓ with parameters (weights) ✓ takes as input
the measurement and generates an image. The network is
typically trained by minimizing the loss

L(✓) = 1

n

nX

j=1

kxj � f(yj)k22,

which yields the trained method f✓̂. At test time, the net-
work generates an image as f✓̂(y) based on the measure-
ment y.
The best performing methods in the fastMRI competition
are all trained networks, and yield significant improvements
over classical methods (Putzky & Welling, 2019; Sriram
et al., 2020b;a). We consider two methods of this type:
U-net (Ronneberger et al., 2015) based reconstruction (Jin
et al., 2017), as this is a simple baseline, and the end-to-end
variational network (VarNet) (Sriram et al., 2020a), as this
is the current state-of-the-art network.
U-net based reconstruction simply trains a U-net end-to-end
on the training set to map the under-sampled measurement
to the original image. VarNet-based reconstruction (Sriram
et al., 2020a) is more intricate, with a more complicated
network including coil sensitivity estimation, image-domain
refinement, and data consistency steps, but conceptually
similar as it is also trained end-to-end.

Traditional compressive sensing methods. Traditional
compressive sensing methods are sparsity based and either
impose a sparse representation by minimizing the `1-norm,
or perform total-variation norm minimization. Traditional
CS methods are popular for MRI reconstruction (Chen &
Huang, 2012; Block et al., 2007; Lustig et al., 2007), and
are used commonly in clinical practice. `1-norm minimiza-
tion relies on assuming sparsity in a transform domain.
We impose Wavelet sparsity following common practice

in MRI (Chen & Huang, 2012; Lustig et al., 2007). Sparsity-
based reconstruction recovers an image by minimizing the
(convex) loss

L1(x) =
ncX

i=1

���yi �AŜx

���
2

2
+ �kHxk1. (1)

Here, H denotes the 2D Wavelet transform and Ŝ are coil
sensitivity maps estimated from the under-sampled mea-
surement using the ESPIRiT method (Uecker et al., 2014).
Sparsity-based approaches provably succeed provided that
the signal is sparse (Candès et al., 2006; Lustig et al., 2007).

Un-trained neural networks. Perhaps surprisingly, con-
volutional neural networks can regularize inverse problems
without training, as has first been demonstrated by the Deep
Image Prior (Ulyanov et al., 2018) for denoising, super-
resolution, and inpainting problems.
Such un-trained networks are also powerful for compres-
sive sensing (Veen et al., 2018), and simple convolu-
tional architectures such as the Deep Decoder (Heckel &
Hand, 2019) work well in practice. Arora et al. (2020)
and Zalbagi Darestani & Heckel (2020) used variants of
the deep decoder for multi-coil MRI and achieved no-
ticeable improvements over traditional CS methods. Zal-
bagi Darestani & Heckel (2020) further demonstrated that
un-trained networks even perform similar to the U-net—
the trained approach mentioned earlier. Un-trained neural
networks provably recover smooth signals from few mea-
surements (Heckel & Soltanolkotabi, 2020a).
In a nutshell, an un-trained network recovers an image by
first fitting a randomly initialized, image generating network
to a measurement, and then taking the network output as the
recovered image. The network is not trained, and uses the
structure of the network alone as a prior for the images.
We finally note that there is a fourth class of neural network-
based reconstruction methods, pioneered by (Bora et al.,
2017), which impose a learned prior (Bora et al., 2017; Hand
& Voroninski, 2018; Asim et al., 2020; Daras et al., 2021).
At the time of writing, this class of neural network-based
reconstruction methods has not been applied to MRI, and
was therefore not included in our study. In the meantime,
Kelkar et al. (2021) applied this method to MRI images, and
it would be interesting to include this class of methods into
further robustness studies.

4. Small, adversarially-selected perturbations

Adversarial perturbations are often studied to evaluate the
robustness of machine learning systems. For classification
problems, there exists a large body of literature on the sensi-
tivity of neural networks to adversarial perturbations (Good-
fellow et al., 2015; Szegedy et al., 2014; Moosavi-Dezfooli
et al., 2017). These works show that the predicted label for
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Figure 3: Both trained and un-trained reconstruction methods are vulnerable to small adversarial perturbations.
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, for all methods. In each plot, the perturbations
are obtained by attacking one method (specified in the plot title), and are applied to all methods. The results are averaged
over 10 randomly-chosen proton density knee images from the fastMRI validation set. Shaded areas denote 95% confidence
intervals.

a test image can be altered by adding a small perturbation
to that image. This observation is attributed to test images
lying close to a learned decision boundary, and thus slightly
altering the image allows to cross this boundary.
The study of adversarial robustness in classification is moti-
vated by the concept of an adversary that may alter the input
of a machine learning system with imperceptible perturba-
tions. In image reconstruction problems, there is typically
no such adversary, but studying adversarial robustness in
image reconstruction methods is important as it enables
certifying worst-case robustness.
The study of small perturbations for image reconstruction
problems was initiated by Cohen et al. (2018); Huang et al.
(2018); Antun et al. (2020). Antun et al. (2020) generated
these perturbations for a given network and image through
optimization and concluded that “deep learning for inverse
problems is typically unstable” because of the impact of ad-
versarial perturbations. In a recent subsequent work, Genzel
et al. (2020) unrolled a classical method, total variation min-
imization (TV), and generated small perturbations for this
unrolled network in the same way as Antun et al. (2020) did,
and found “superior robustness of the learned reconstruction
schemes [a U-net] over TV.” Thus there is a disagreement
on whether neural network or classical methods are more
sensitive to adversarial perturbations.
In this section we study small adversarial perturbations, but
in contrast to those previous works, (i) we include un-trained
neural networks in our study, (ii) we include the state-of-
the-art method VarNet beyond the baseline trained method
U-net, and (iii) we introduce a method to generate small
adversarial perturbations for un-trained methods without
unrolling and thus without treating un-trained methods as a
neural network.
Our experimental setup is as follows. We consider 10
randomly-chosen proton-density-weighted knee MRI im-
ages from the fastMRI validation set. For each image, we
generate a small perturbation added to the measurement

(k-space) of a given `2 norm. For `1-minimization and
the ConvDecoder, we generate adversarial perturbations
through a new optimization-based method detailed in Ap-
pendix A.1. For U-net- and VarNet-based reconstruction,
we generate perturbations with Projected Gradient Descent
(PGD) as described in Appendix A.1. We then apply each
perturbation to each image, and reconstruct with all four
methods. Figure 3 shows the results and the supplement
contains reconstructions examples.
Our experiment shows that both trained and un-trained

methods are sensitive to small adversarial perturba-

tions. Recall that (Antun et al., 2020; Gottschling et al.,
2020) found that perturbations adversarially selected for
neural networks only mildly affect sparsity-based methods,
and concluded that traditional CS methods are more ro-
bust than trained methods to such small perturbations. In
contrast, our results show that while adversarially-selected
perturbation for a trained network (e.g., U-net) have a rela-
tively mild impact on `1-norm minimization, the converse
is also true: perturbations found for `1-norm minimization
have a significant effect for `1-minimization, but only a
mild effect on U-net’s performance. Thus, both methods are
vulnerable to perturbations specifically tailored to them.
We note that at first sight, the findings in Figure 3 suggest
that ConvDecoder is slightly more robust than both U-net
and `1-based reconstruction, which in turn is slightly more
robust than VarNet-based reconstruction. However, it is
not possible to draw such absolute comparisons, simply be-
cause in order to find adversarial perturbations, we solve a
non-convex optimization problem with a numerical method
(PGD), and because of the non-convexity, we are not guar-
anteed to find a worst-case perturbation. It could be that
for `1-minimization we find a worst-case perturbation but
for U-net we do not. This issue is inherent to the problem
setup and applies to all current methods for finding adversar-
ial perturbations, including those from (Antun et al., 2020;
Genzel et al., 2020).
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5. Distribution shifts

While robustness to distribution shifts has gained lots of
attention over the past few years for image classification
tasks (Recht et al., 2019; Ovadia et al., 2019; Taori et al.,
2020; Hendrycks et al., 2020), there is little understanding
on the effect of distribution shifts in image reconstruction
problems. In particular, we are not aware of a systematic
study on distribution shifts in accelerated MRI reconstruc-
tion. Understanding the robustness to distribution shifts in
image reconstruction problems is important, since given the
paucity of training datasets, it may be common to train a
method on one patient population, but use the trained model
on another; or train on the machine of one manufacturer and
test on the machine of another, etc.
In this section, we study three variants of distribution shifts:
(i) A dataset shift from the fastMRI-knee dataset to a knee
dataset from mridata.org that we call the Stanford set, (ii)
an anatomy shift from brain images to knee images and
vice versa, and finally (iii) an adversarially-filtered shift to
evaluate different models on a set of difficult-to-reconstruct
images, inspired by adversarially-filtered shifts for classifi-
cation introduced by Hendrycks et al. (2021).
We note all methods, even un-trained ones are affected by
distribution shifts, because un-trained methods have hyper-
parameters (such as the penalty � in `1-minimization), that
are tuned on a given distribution. Moreover, we consider
multiple variants of each method (e.g., VarNet with differ-
ent hyper-parameters) in order to obtain a larger variety of
models. The details of each reconstruction method and its
variants are provided in the supplement.
Our overarching finding is that the performance drop under
each of the distribution shifts is similar for all considered
trained and un-trained methods. Thus, out-of-distribution
performance is strongly correlated with in-distribution per-
formance. We found that surprising because un-trained
methods depend only very mildly on the distribution through
hyper-parameter tuning. As a consequence, the advantage
achieved by a given method over another typically retains
this advantage even under distribution shifts.
This complements an emerging line of works starting
with (Recht et al., 2019) that finds a strong correlation be-
tween out-of-distribution and in-distribution generalization
for a large variety of datasets and models for image clas-
sification problems (Miller et al., 2021; Taori et al., 2020;
Yadav & Bottou, 2019) and even for question-answering
models (Miller et al., 2020). Our results, presented next, in-
dicate that this relation persists even in the context of image
recovery, and even when including un-trained methods.

5.1. Dataset shift

We start with studying the performance of models trained or
tuned on the fastMRI knee dataset, but tested on a different

knee dataset. Specifically, we test on the Stanford dataset re-
trieved by collecting all available 18 knee volumes from mri-
data.org (Epperson et al., 2013). The Stanford set contains
knees of the same size as the fastMRI images (320⇥ 320),
but the dataset is different in that i) the frequency-domain
representation of the Stanford set has a 320⇥320 resolution
as opposed to 640⇥360 on average for fastMRI, ii) the slice
thickness is lower for the Stanford dataset (0.6mm vs 3mm),
resulting in lower SNR, and iii) the Stanford set is acquired
using 3D MRI (single volumetric MRI measurement) vs.
2D fastMRI (multiple slice-wise measurements), resulting
in varying blurring and SNR. All those slight differences
induce a clinically relevant distribution shift.
Since all of the Stanford set samples are fat-suppressed
images, when considering the shift from fastMRI to the
Stanford set, we only consider fat-suppressed images from
the fastMRI dataset as well. Our main finding is that all

reconstruction methods perform worse on the new MRI

samples, but the absolute performance drop is similar.

In-distribution and out-distribution performances are

linearly correlated. Figure 2 shows average SSIM values
when training on the fastMRI dataset and evaluating on both
fastMRI and Stanford datasets. Reconstruction examples
are provided in the supplement.
We finally remark that when naively applied, the state-of-
the-art VarNet is particularly sensitive to this dataset shift,
in that the frequency resolution changes in the Stanford
set and this affects VarNet as it is based on estimating the
unknown k-space. This is not reflected in Figure 2, since we
manually increased the resolution of Stanford set data points
for VarNet to have a fair comparison among all methods
with respect to only the dataset shift (and not resolution
shift). For an example of VarNet reconstruction without
such resolution fix, we refer to the supplement.

5.2. Anatomy shift

We next consider an anatomy shift where we move from
a certain image type (knees) to another (brains), and vice
versa. To understand the robustness to anatomy shifts, we
perform the following experiment: We train U-net and Var-
Net on the whole knee training set and also optimize the
hyper-parameters of the ConvDecoder and `1-norm mini-
mization on that set. Then we test all methods on the brain
validation set. We conversely train on brain MRIs and test
on knee MRIs.
Our main finding from the corresponding results in Figure 4
is that, again, all reconstruction methods perform worse

on the new anatomy, but the absolute performance drop

is similar. Note that there is more variance in the scores
for knee images since there are two considerably different
knee image types. Those different types arise from different
contrasts and different MRI sequences for obtaining the
measurements. For the brain images, there are 5 categories

mridata.org
mridata.org
mridata.org
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Figure 4: Both trained and un-trained methods are not

robust to an anatomy distribution shift. Validation re-
sults for a group of 100 brain images and a group of 100
knee images from the fastMRI validation set. x and y axes
denote SSIM scores given the training domain for trained
neural networks and hyper-parameter learning domain for
un-trained methods.

of images which are close distribution-wise (i.e., similar
contrasts), and most images belong to one of the categories.
As a final remark, Figure 5 shows that for some images,
trained neural networks generate aliasing artifacts in their
reconstruction caused by the distribution shift. The results
of the transfer track of the fastMRI 2020 challenge (Muckley
et al., 2021, Fig. 3) which considers a shift from one scanner
to another, also showed that such shifts can induce visible ar-
tifacts in reconstructions. Thus, the forward reconstruction
model (k-space to image space) for trained neural networks
is conditioned on the learned distribution. Consequently,
such trained networks may not learn a scan-agnostic recon-
struction model and that their generalizability to overcome
aliasing artifacts relies explicitly on the distribution they are
trained on (knees in the case of Figure 5).

5.3. Adversarially-filtered shift

We finally study the performance on images that are partic-
ularly difficult to reconstruct as measured by their recon-
struction error, in order to understand whether any of the
considered methods degrade or shine on such naturally dif-
ficult examples. This experiment is inspired by the study
of “adversarially-filtered” data in image classification. Such
points refer to a set of challenging samples that cause a
significant performance loss to most of the classifiers, and
was introduced by Hendrycks et al. (2021) as ImageNet-A.

ImageNet-A consists of all ImageNet (Deng et al., 2009)
images that ResNet-50 misclassifies.
Here, we create fastMRI-A, a subset of the fastMRI dataset
that contains the most challenging to reconstruct samples,
and test all methods on this set of difficult images.
We construct the fastMRI-A (A for adversarial) dataset as
follows. We take 5 mid-slice images from each of the 199
knee validation volumes of the fastMRI dataset. This results
in a set of 995 images. From this set, we select the images
that result in the 100 lowest SSIM scores (bottom 10%)
when reconstructing them via the i-RIM architecture (Putzky
& Welling, 2019). We use the i-RIM architecture, a fifth
reconstruction method, because this network is one of the
best-performing methods in the fastMRI competition, and
the winner of the single-coil challenge track. Note that for
our experiment, it is important not to choose the difficult
examples with any of the methods we study (i.e., VarNet, U-
net, ConvDecoder, and `1-norm minimization), because the
goal is to understand whether challenging samples for one
method are also challenging for other methods. We include
a few examples from fastMRI-A and their corresponding 4x-
accelerated reconstructions in the supplementary materials.
Figure 6 shows the performance of the four methods we con-
sider on the fastMRI-A dataset. We plot the performance
on those images as a function of the performance on the
fastMRI dataset, in order to compare the relative perfor-
mance change caused by the distribution shift. For testing
these methods on the fastMRI-A dataset, we used the same
set of validation images that we chose in Section 5.2.
There is a constant gap between the linear interpolation
shown in Figure 6 and y = x which demonstrates that all
four reconstruction methods are equally sensitive to a shift to
naturally challenging samples. Thus, we again find (see Fig-
ure 6) that the performance of all methods drops by a

similar amount under this distribution shift—meaning

that neither un-trained nor trained methods degrade or

shine on the difficult-to-reconstruct images. This estab-
lishes that there are difficult images to reconstruct, on which
all methods perform worse than on an average image.
Moreover we find that challenging images are naturally
difficult to reconstruct, since both trained and un-trained
methods are equally prone to this shift. Our hypothesis for
this natural difficulty is that fastMRI-A samples contain
more high-frequency information compared to an average
fastMRI example, and thus are harder to reconstruction
because less high-frequency information is available in the
measurements. The experiments in the supplement confirm
this hypothesis.

6. Recovering small features in an image

For medical applications, it is important to recover small
details of an image, because such details can be critical for
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`1 minimization U-net VarNet ConvDecoder ground truth

Figure 5: Anatomy shift from knee to brain. End-to-end variational network (VarNet) and U-net cannot remove under-
sampling aliasing artifacts for some images when being trained on knee and tested on brain. `1-norm minimization (an
un-trained method), also induces aliasing artifacts (irrespective of the distribution shift) similar to most of the traditional CS
methods. The ConvDecoder (an un-trained network) is more stable in this setup.
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Figure 6: Challenging data points are naturally challeng-
ing and lower scores for these data points are not due to

learning. Trained and un-trained methods perform equally
poorly on these samples as there is a constant gap between
y = x and the best linear fit.

a diagnosis. Figure 2b in (Knoll et al., 2020) shows that for
a given image in the fastMRI challenge, all participating
trained neural networks fail to recover a small but clinically
relevant detail (a tear of the meniscus, which may require
surgery for the patients).
In this section, we study the ability of the four methods
to recover such small details. We first propose a simple
framework based on artificial features in order to deter-
mine whether there is any location dependency for a given
reconstruction method when recovering the small feature.
Furthermore, we evaluate the ability to recover small fea-
tures on a set of 22 annotated fastMRI knee images which
contain real-world pathologies.
Artificial feature recovery. Our proposed framework for
small feature recovery is as follows. We take a small window
consisting of 3⇥3 pixels, fill it with the maximum value of a
pixel in the image and slide it through the image to have this
spot in different locations. We then generate a measurement
from this perturbed image and perform the reconstruction
using the four mentioned methods. We then measure the
error in reconstructing this feature only (i.e., we compute
the Mean-Squared Error (MSE) for the 3⇥ 3 region). We
performed this experiment for every location in a test image
to understand whether there is a location dependency for
different methods.

The results, displayed in Figure 7, show that different re-

construction methods are sensitive to errors at differ-

ent regions in the image. In Figure 7, we see that `1-
minimization and VarNet perform worse in dark regions of
the image (note that the feature itself is bright). Note that
this location dependency is not due to learning, in that both
trained and un-trained methods have location dependent
recovery performance.

Real-world feature recovery. Next, we study natural fea-
tures by performing an evaluation on a set of 22 annotated
images (Cheng et al., 2020) from the fastMRI knee dataset
which contain real-world pathologies. We study the perfor-
mance of those methods in recovering the small features by
measuring the MSE only for the region in which the feature
is located. The results, depicted in Figure 8, show that the
ranking of the methods in terms of small-feature-recovery
performance is VarNet > U-net > ConvDecoder > `1-norm
minimization, which coincides with the ranking in terms of
overall reconstruction quality. The figure also shows that
the reconstruction quality is perfectly linearly correlated
with accurate recovery of fine details, which is intuitively
expected.
With regards to prior works on small feature recovery, Cheng
et al. (2020) made the first step toward this direction by
proposing an optimization framework to synthesize small
features for trained networks, by generating different ran-
dom perturbations of small spatial extent and selecting the
worst one for a given method. However, we found it diffi-
cult to build a comparison among different methods based
on such framework, mainly because of the reasons we dis-
cussed for optimization-based perturbations in Section 4
(i.e., (i) worst-case features are not guaranteed, and (ii)
hyper-parameters are different across methods).

7. Conclusion

Deep-learning-based image reconstruction methods yield
high-quality reconstructions from under-sampled data. How-
ever, recent works raised the concern that the improvements
in reconstruction quality come at a loss in robustness. In
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Figure 7: Reconstruction heat maps for the end-to-end variational network (VarNet), U-net, ConvDecoder, and `1-norm
minimization. Each heat map shows the information loss at different locations of an image (i.e., the MSE for each 3⇥ 3
region) across the image. The left-most image on the top row is the ground-truth image on which we slide a window of fixed
information. All heat maps are normalized to the interval [0, 1].
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Figure 8: Reconstruction accuracy is correlated with ro-

bustness. Small feature recovery error based on reconstruc-
tion accuracy (SSIM) computed on a set of 22 fastMRI
images which contain natural small features. The state-of-
the-art VarNet performs best both in terms of reconstruction
quality and in terms of small feature recovery error.

this paper, we have studied the robustness (i) against small
adversarial perturbations, (ii) to distribution shifts, and (iii)
in recovering fine details, for three families of MRI recon-
struction methods: trained deep networks, un-trained deep
networks, and classical sparsity-based approaches.
We find that both deep-learning-based as well as classical
sparsity-based image reconstruction methods are sensitive
to small, adversarially-selected perturbations.
Moreover, the reconstruction quality is correlated with small
feature recovery, and hence improving overall reconstruc-
tion performance also improves performance for recovering
fine details of an image.
Finally, we find that the performance drop under each of
three different realistic distribution shifts is similar for
all considered trained and un-trained methods. The out-
of-distribution accuracy is linearly correlated with the in-
distribution accuracy, and the performance ranking of the
methods typically remains accurate even under distribu-
tion shifts. This is perhaps surprising, because un-trained
methods only depend on the training distribution through
hyper-parameter tuning.
To improve performance in practice, it is important over-
come the performance drop due to distribution shifts: Dis-

tribution shifts occur in practice and incur a significant loss
in performance. For un-trained methods, very little data
for hyper-parameter tuning is needed and thus the perfor-
mance gap may be closed via access to only few images
of the new domain, and it might even be possible to do
hyper-parameter tuning on a single under-sampled measure-
ment (Zalbagi Darestani & Heckel, 2020).
For trained methods, this problem might be addressed
through larger and more diverse datasets, or through data-
augmentation (Fabian et al., 2021). However, distribution
shifts are difficult to overcome: Taori et al. (2020) finds for
image classification that robustness enhancing methods—
apart from training on large and more diverse datasets—help
little for natural distribution shifts, and conclude that “dis-
tribution shifts arising in real data are currently an open
research problem.”
In a nutshell, the take-away of our study is that the deep
learning methods that perform best based on reconstruction
quality are also best under realistic distribution shifts and
for small feature recovery, and we could not find them to be
more sensitive to adversarial perturbations.

Reproducibility

The code to reproduce all results in this paper is available at
https://github.com/MLI-lab/Robustness-CS.
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