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Abstract

Deep neural networks have emerged as very suc-
cessful tools for image restoration and reconstruc-
tion tasks. These networks are often trained end-
to-end to directly reconstruct an image from a
noisy or corrupted measurement of that image.
To achieve state-of-the-art performance, training
on large and diverse sets of images is considered
critical. However, it is often difficult and/or expen-
sive to collect large amounts of training images.
Inspired by the success of Data Augmentation
(DA) for classification problems, in this paper,
we propose a pipeline for data augmentation for
accelerated MRI reconstruction and study its ef-
fectiveness at reducing the required training data
in a variety of settings. Our DA pipeline, MRAug-
ment, is specifically designed to utilize the invari-
ances present in medical imaging measurements
as naive DA strategies that neglect the physics
of the problem fail. Through extensive studies
on multiple datasets we demonstrate that in the
low-data regime DA prevents overfitting and can
match or even surpass the state of the art while
using significantly fewer training data, whereas
in the high-data regime it has diminishing returns.
Furthermore, our findings show that DA can im-
prove the robustness of the model against various
shifts in the test distribution.

1. Introduction

In magnetic resonance imaging (MRI), an extremely popu-
lar medical imaging technique, it is common to reduce the
acquisition time by subsampling the measurements, because
this reduces cost and increases accessibility of MRI to pa-
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tients. Due to the subsampling, there are fewer equations
than unknowns, and therefore the signal is not uniquely iden-
tifiable from the measurements. To overcome this challenge
there has been a flurry of activity over the last decade aimed
at utilizing prior knowledge about the signal, in a research
area referred to as compressed sensing (Candes et al., 2006;
Donoho, 2006).

Compressed sensing methods reduce the required number
of measurements by utilizing prior knowledge about the
images during the reconstruction process, traditionally via a
convex regularization that enforces sparsity in an appropri-
ate transformation of the image. More recently, deep learn-
ing techniques have been used to enforce much more nu-
anced forms of prior knowledge (see Ongie et al. (2020) and
references therein for an overview). The most successful of
these approaches aim to directly learn the inverse mapping
from the measurements to the image by training on a large
set of training data consisting of signal/measurement pairs.
This approach often enables faster reconstruction of images,
but more importantly, deep learning techniques yield signif-
icantly higher quality reconstructions. Thus, deep learning
techniques enable reconstructing a high-quality image from
fewer measurements which further reduces image acquisi-
tion times. For instance, in an accelerated MRI competition
known as fastMRI Challenge (Zbontar et al., 2018), all
the top contenders used deep learning reconstruction tech-
niques.

Contrary to classical compressive sensing approaches, how-
ever, deep learning techniques typically rely on large sets
of training data consisting of images along with the corre-
sponding measurement. This is also true about the use of
deep learning techniques in other areas such as computer vi-
sion and Natural Language Processing (NLP) where superb
empirical success has been observed. While large datasets
have been harvested and carefully curated in areas such as
vision and NLP, this is not feasible in many scientific appli-
cations including MRI. It is difficult and expensive to collect
the necessary datasets for a variety of reasons, including
patient confidentiality requirements, cost and time of data
acquisition, lack of medical data compatibility standards,
and the rarity of certain diseases.

A common strategy to reduce reliance on training data in
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classification tasks is data augmentation. Data augmentation
techniques are used in classification tasks to significantly
increase the performance on standard benchmarks such as
ImageNet and CIFAR-10. For a comprehensive survey of
image data augmentation in deep learning see (Shorten &
Khoshgoftaar, 2019). More specific to medical imaging,
data augmentation techniques have been successfully ap-
plied to registration, classification and segmentation of med-
ical images. Recently, several studies (Zhao et al., 2020b;
Karras et al., 2020; Zhao et al., 2020a) have demonstrated
that data augmentation can significantly reduce the data
needed for GAN training for high quality image genera-
tion. In a classification setting, data augmentation consists
of adding additional synthetic data obtained by performing
invariant alterations to the data (e.g. flips, translations, or
rotations) which do not affect the response (i.e., the label).

In image reconstruction tasks, however, data augmentation
techniques are less common and much more difficult to
design because the response (the measurement) is affected
by the data augmentation. For example, measurements of
a rotated image are not the same as measurements from
the original image. In the context of accelerated MRI re-
construction, augmentation techniques such as randomly
generated undersampling masks (Liu et al., 2019) and sim-
ple random flipping (Lee et al., 2018) have been applied,
and authors in Schlemper et al. (2017) note the importance
of rigid transforms in avoiding overfitting. However, an ef-
fective pipeline of augmentations for training data reduction
and thorough experimental studies thereof are lacking.

The goal of this paper is to explore the benefits of data
augmentation techniques for accelerated MRI with limited
training data. By carefully taking into account the physics
behind the MRI acquisition process we design a data aug-
mentation pipeline, which we call MRAugment 1, that can
successfully reduce the amount of training data required.
Our contributions are as follows:

• We perform an extensive empirical study of data aug-
mentation in accelerated MRI reconstruction. To the
best of our knowledge, this work is the first in-depth
experimental investigation focusing on the benefits of
data augmentation in the context of training data reduc-
tion for accelerated MRI.

• We propose a data augmentation technique tailored to
the physics of the MR reconstruction problem. It is
not obvious how to perform data augmentation in the
context of accelerated MRI or in inverse problems in
general, because by changing an image to enlarge the
training set, we do not automatically get a correspond-
ing measurement, contrary to classification problems,
where the label is retained.

1Code: https://github.com/MathFLDS/
MRAugment

• We demonstrate the effectiveness of MRAugment on a
variety of datasets. On small datasets we report signifi-
cant improvements in reconstruction performance on
the full dataset when MRAugment is applied. More-
over, on small datasets we are able to surpass full
dataset baselines by using only a small fraction of the
available training data by leveraging our proposed data
augmentation technique.

• We perform an extensive study of MRAugment on
a large benchmark accelerated MRI data set, specif-
ically on the fastMRI (Zbontar et al., 2018) dataset.
For 8-fold acceleration and multi-coil measurements
(multi-coil measurements are the standard acquisition
mode for clinical practice) we achieve performance
on par with the state of the art with only 10% of the
training data. Similarly, again for 8-fold acceleration
and single-coil experiments (an acquisition mode pop-
ular for experimentation) MRAugment can achieve the
performance of reconstruction methods trained on the
entire dataset while using only 33% of training data.

• We reveal additional benefits of data augmentation on
model robustness in a variety of settings. We observe
that MRAugment has the potential to improve gener-
alization to unseen MRI scanners, field strengths and
anatomies. Furthermore, due to the regularizing effect
of data augmentation, MRAugment prevents overfit-
ting to training data and therefore may help eliminate
hallucinated features on reconstructions, an unwanted
side-effect of deep learning based reconstruction.

2. Background and Problem Formulation

MRI is a medical imaging technique that exploits strong
magnetic fields to form images of the anatomy. MRI is a
prominent imaging modality in diagnostic medicine and
biomedical research because it does not expose patients to
ionizing radiation, contrary to competing technologies such
as computed and positron emission tomography.

However, performing an MR scan is time intensive, which
is problematic for the following reasons. First, patients are
exposed to long acquisition times in a confined space with
high noise levels. Second, long acquisition times induce
reconstruction artifacts caused by patient movement, which
sometimes requires patient sedation in particular in pediatric
MRI (Vasanawala et al., 2010). Reducing the acquisition
time can therefore increase both the accuracy of diagnosis
and patient comfort. Furthermore, decreasing the acqui-
sition time needed allows more patients to receive a scan
using the same machine. This can significantly reduce pa-
tient cost, since each MRI machine comes with a high cost
to maintain and operate.

Since the invention of MR in the 1980s there has been
tremendous research focusing on reducing their acquisition

https://github.com/MathFLDS/MRAugment
https://github.com/MathFLDS/MRAugment
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time. The two main ideas are to i) perform multiple ac-
quisitions simultaneously (Sodickson & Manning, 1997;
Pruessmann et al., 1999; Griswold et al., 2002) and to ii)
subsample the measurements, known as accelerated acqui-
sition or compressed sensing (Lustig et al., 2008). Most
modern scanners combine both techniques, and therefore
we consider such a setup.

2.1. Accelerated MRI acquisition

In magnetic resonance imaging, measurements of a patient’s
anatomy are acquired in the Fourier-domain, also called k-

space, through receiver coils. In the single-coil acquisition
mode, the k-space measurement k 2 Cn of a complex-
valued ground truth image x⇤ 2 Cn is given by

k = Fx⇤ + z,

where F is the two-dimensional Fourier-transform, and
z 2 Cn denotes additive noise arising in the measurement
process. In parallel MR imaging, multiple receiver coils
are used, each of which captures a different region of the
image, represented by a complex-valued sensitivity map Si.
In this multi-coil setup, coils acquire k-space measurements
modulated by their corresponding sensitivity maps:

ki = FSix
⇤ + zi, i = 1, .., N,

where N is the number of coils. Obtaining fully-sampled
k-space data is time-consuming, and therefore in accelerated
MRI we decrease the number of measurements by under-
sampling in the Fourier-domain. This undersampling can
be represented by a binary mask M that sets all frequency
components not sampled to zero:

k̃i = Mki, i = 1, .., N.

We can write the overall forward map concisely as

k̃ = A (x⇤),

where A (·) is the linear forward operator and k̃ denotes
the undersampled coil measurements stacked into a single
column vector. The goal in accelerated MRI reconstruction
is to recover the image x⇤ from the set of k-space mea-
surements k̃. Note that—without making assumptions on
the image x⇤—it is in general impossible to perfectly re-
cover the image, because we have fewer measurements than
variables to recover. This recovery problem is known as
compressed sensing. To make image recovery potentially
possible, recovery methods make structural assumptions
about x⇤, such that it is sparse in some basis or implicitly
that it looks similar to images from the training set.

2.2. Traditional accelerated MRI reconstruction

methods

Traditional compressed sensing recovery methods for ac-
celerated MRI are based on assuming that the image x⇤ is

sparse in some dictionary, for example the wavelet trans-
form. Recovery is then posed typically as a convex opti-
mization problem:

x̂ = argmin
x

���A (x)� k̃
���
2
+R(x),

where R(·) is a regularizer enforcing sparsity in a certain
domain. Typical functions used in CS based MRI reconstruc-
tion are `1-wavelet and total-variation regularizers. These
optimization problems can be numerically solved via itera-
tive gradient descent based methods.

2.3. Deep learning based MRI reconstruction methods

In recent years, several deep learning algorithms have been
proposed and convolutional neural networks established
new state of the art in MRI reconstruction significantly sur-
passing the classical baselines. Encoder-decoder networks
such as the U-Net (Ronneberger et al., 2015) and its variants
were successfully used in various medical image reconstruc-
tion (Hyun et al., 2018; Han & Ye, 2018) and segmentation
problems (Çiçek et al., 2016; Zhou et al., 2018). These
models consist of two sub-networks: the encoder repeatedly
filters and downsamples the input image with learned con-
volutional filters resulting in a concise feature vector. This
low-dimensional representation is then fed to the decoder
consisting of subsequent upsampling and learned filtering
operations. Another approach that can be considered a
generalization of iterative compressed sensing reconstruc-
tions consists of unrolling the data flow graph of popular
algorithms such as ADMM (Yang et al., 2016) or gradient
descent iterations (Zhang & Ghanem, 2018) and mapping
them to a cascade of sub-networks. Several variations of
this unrolled method have been proposed recently for MR
reconstruction, such as i-RIM (Putzky & Welling, 2019),
Adaptive-CS-Net (Pezzotti et al., 2019), Pyramid Convolu-
tional RNN (Wang et al., 2019) and E2E VarNet (Sriram
et al., 2020).

Another line of work, inspired by the deep image
prior (Ulyanov et al., 2018) focuses on using the induc-
tive bias of convolutional networks to perform reconstruc-
tion without any training data (Jin et al., 2019; Darestani
& Heckel, 2020; Heckel & Soltanolkotabi, 2020; Heckel &
Hand, 2019; Van Veen et al., 2018). Those methods do per-
form significantly better than classical un-trained networks,
but do not perform as well as neural networks trained on
large sets of training data.

3. MRAugment: a data augmentation

pipeline for MRI

In this section we propose our data augmentation technique,
MRAugment, for MRI reconstruction. We emphasize that
data augmentation in this setup and for inverse problems
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in general is substantially different from DA for classifi-
cation problems. For classification tasks, the label of the
augmented image is trivially the same as that of the original
image, whereas for inverse problems we have to generate
both an augmented target image and the corresponding mea-
surements. This is non-trivial as it is critical to match the
noise statistics of the augmented measurements with those
in the dataset.

We are given training data in the form of fully-sampled MRI
measurements in the Fourier domain, and our goal is to
generate new training examples consisting of a subsampled
k-space measurement along with a target image. MRAug-
ment is model-agnostic in that the generated augmented
training example can be used with any machine learning
model and therefore can be seamlessly integrated with ex-
isting reconstruction algorithms for accelerated MRI, and
potentially beyond MRI.

Our data augmentation pipeline, illustrated in Figure 1,
generates a new example consisting of a subsampled k-
space measurement k̃a along with a target image x̄a as
follows. We are given training examples as fully-sampled
k-space slices, which we stack into a single column vector
k = col(k1,k2, ...,kN ) for notational convenience. From
these, we obtain the individual coil images by applying
the inverse Fourier transform as x = F�1k. We generate
augmented individual coil images with an augmentation
function D, specified later, as xa = D(x). From the aug-
mented images, we generate an undersampled measurement
by applying the forward model as k̃a = A (xa). Both x and
xa are complex-valued: even though the MR scanner ob-
tains measurements of a real-valued object, due to noise the
inverse Fourier-transform of the measurement is complex-
valued. Therefore the augmentation function has to generate
complex-valued images, which adds an extra layer of diffi-
culty compared to traditional data augmentation techniques
pertaining to real-valued images (see Section 3.1 for fur-
ther details). Finally, the real-valued ground truth image is
obtained by combining the coil images xa,i by pixel-wise
root-sum-squares (RSS) followed by center-cropping C:

x̄a = C (RSS(xa)) = C

0

@

vuut
NX

i=1

|xa,i|2
1

A .

In the following subsections we first argue why we generate
individual coil images with the augmentation function, then
discuss the design of the augmentation function D itself.

3.1. Data augmentation needs to preserve noise

statistics

As mentioned before, we are augmenting complex-valued,
noisy images. This noise enters in the measurement process
when we obtain the fully-sampled measurement of an image

complex
real

k F−1 x = F−1k D xa = Dx
RSS C

MF
RSS (xa)

ka = Fxa

x̄a

k̃a =Mka

x split
R�I t1

p1

tk

pk

pixel preserving
augmentations

augmentation
scheduler

↗ tk+1
pk+1

tK

pK

interpolating
augmentations

↘ combine
R�I xa

1

Figure 1. Flowchart of MRAugment, our data augmentation
pipeline for MRI.

x⇤ as k = Fx⇤ + z, and is well approximated by i.i.d
complex Gaussian noise, independent in the real and imagi-
nary parts of each pixel (Nishimura, 1996). Therefore, we
can write x = x⇤ + z0 where z0 has the same distribution
as z due to F being unitary. Since the noise distribution
is characteristic to the instrumental setup (in this case the
MR scanner and the acquisition protocol), assuming that the
training and test images are produced by the same setup, it
is important that the augmentation function preserves the
noise distribution of training images as much as possible.
Indeed, a large mismatch between training and test noise
distribution leads to poor generalization (Knoll et al., 2019).

Let us demonstrate why it is non-trivial to generate aug-
mented measurements for MRI through a simple example.
A natural but perhaps naive approach for data augmenta-
tion is to augment the real-valued target image x̄ instead
of the complex valued x. This would allow us to directly
obtain real augmented images from a real target image just
as in typical data augmentation. However, this approach
leads to different noise distribution in the measurements
compared to the test data due to the non-linear mapping
from individual coil images to the real-valued target and
works poorly. Experiments demonstrating the weakness of
this naive approach of data augmentation can be found in
Section 4.5.

In contrast, if we augment the individual coil images x
directly with a linear function D, which is our main focus
here, we obtain the augmented k-space data

ka = FDx = FD(x⇤ + z0) = FDx⇤ + FDz0,

where FDx⇤ represents the augmented signal and the noise
FDz0 is still additive complex Gaussian. A key observa-
tion is that in case of transformations such as translation,
horizontal and vertical flipping and rotation the noise dis-
tribution is exactly preserved. Moreover, for general linear
transformations the noise is still Gaussian in the real and
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imaginary parts of each pixel.

To elaborate further, in the multi-coil case our augmentation
pipeline applies transformations to the underlying object
modulated by the different coil sensitivity maps. In partic-
ular, the fully sampled measurement of the ith coil in the
image domain takes the form

xi = Six
⇤ + z0i, (3.1)

where z0i = F�1zi is i.i.d Gaussian noise obtained via a
unitary transform of the original measurement noise. As-
suming linear augmentations, the augmented coil image
from MRAugment can be written as

xa,i = D(Six
⇤ + z0i) = DSix

⇤ +Dz0i, (3.2)

where the additive noise is still Gaussian. As seen in (3.2),
MRAugment transforms images modulated by the coil sen-
sitivities, therefore the sensitivitiy maps are also indirectly
augmented. However, the models we experimented with
had no issues learning the proper mapping from augmented
measurements with transformed sensitivity maps as our ex-
perimental results show.

It is natural to ask if data augmentation would be possible by
directly augmenting the object, before the coil sensitivities
are applied. If the sensitivity maps are known or are esti-
mated a priori, one may recover the object from the various
coils as

x =
NX

j=1

S⇤
j xj =

NX

j=1

S⇤
j (Sjx

⇤ + z0j) = x⇤ +
NX

j=1

S⇤
j z

0
j ,

where S⇤
j is the complex conjugate of Sj and

PN
j=1 S

⇤
j Sj =

I due to typical normalization (Sriram et al., 2020). Then,
we can apply the augmentation as

xa = Dx = D(x⇤ +
NX

i=1

S⇤
j z

0
j) = Dx⇤ +D

NX

j=1

S⇤
j z

0
j .

Finally, we obtain the augmented coil images as

xa,i = Sixa = SiDx⇤ + SiD
NX

j=1

S⇤
j z

0
j . (3.3)

Comparing (3.3) with (3.2), one may see that now the aug-
mentation is directly applied to the ground truth signal by-
passing the coil sensitivities. However, comparing this result
in (3.3) with the original unaugmented coil images in (3.1)
reveals that the additive noise in (3.3) has a very different
distribution from the original i.i.d Gaussian, even worse
noise on different augmented coil images are now corre-
lated. Finally, the sensitivity maps are typically not known
and need to be estimated before we can apply this augmenta-
tion technique, which can introduce additional inaccuracies
in the augmentation pipeline.

This discussion motivates our choice to i) augment complex-
valued images directly derived from the original k-space
measurements, ii) consider simple transformations which
preserve the noise distribution and iii) augment individual
coil images as in (3.2). Next we overview the types of aug-
mentations we propose in line with these key observations.

3.2. Transformations used for data augmentation

We apply the following two types of image transformations
D in our data augmentation pipeline:
Pixel preserving augmentations, that do not require any
form of interpolation and simply result in a permutation of
pixels over the image. Such transformations are vertical
and horizontal flipping, translation by integer number of
pixels and rotation by multiples of 90�. As we pointed out
in Section 3.1, these transformations do not affect the noise
distribution on the measurements and therefore are suitable
for problems where training and test data are expected to
have similar noise characteristics.
General affine augmentations, that can be represented by
an affine transformation matrix and in general require resam-
pling the transformed image at the output pixel locations.
Augmentations in this group are: translation by arbitrary
(not necessarily integer) coordinates, arbitrary rotations,
scaling and shearing. Scaling can be applied along any
of the two spatial dimensions. We differentiate between
isotropic scaling, in which the same scaling factor s is ap-
plied in both directions (s > 1: zoom-in, s < 1: zoom-out)
and anisotropic scaling in which different scaling factors
(sx, sy) are applied along different axes.

Figure 2 provides a visual overview of the types of augmen-
tations applied in this paper. Numerous other forms of trans-
formations may be used in this framework such as exposure
and contrast adjustment, image filtering (blur, sharpening)
or image corruption (cutout, additive noise). However, in
addition to the noise considerations mentioned before that
have to be taken into account, some of these transforma-
tions are difficult to define for complex-valued images and
may have subtle effects on image statistics. For instance,
brightness adjustment could be applied to the magnitude
image, the real part only or both real and imaginary parts,
with drastically different effects on the magnitude-phase
relationship of the image. That said, we hope to incorporate
additional augmentations in our pipeline in the future after
a thorough study of how they affect the noise distribution.

3.3. Scheduling and application of data augmentations

With the different components in place we are now ready
to discuss the scheduling and application of the augmen-
tations, as depicted in the bottom half of Figure 1. Re-
call that MRAugment generates a target image x̄a and cor-
responding undersampled k-space measurement k̃a from
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Original V-flip H-flip Rot. k90� Rotation

Transl. Zoom-in Zoom-out Aniso sc. Shearing

Figure 2. Transformations used in MRAugment applied to a
ground truth slice.

a full k-space measurement. Which augmentation is ap-
plied and how frequently is determined by a parameter
p, the common parameter determining the probability of
applying a transformation to the ground truth image dur-
ing training, and the weights W = (w1, w2, ..., wK) per-
taining to the K different augmentations, controlling the
weights of transformations relative to each other. We
apply a given transformation ti with probability pi =
p · wi. The augmentation function is applied to the coil
images, specifically the same transformation is applied
with the same parameters to the real and imaginary parts
(<{x1},={x1},<{x2},={x2}, ...,<{xN},={xN}) of
coil images. If a transformation ti is sampled (recall that we
select them with probabilities pi), we randomly select the
parameters of the transformation from a pre-defined range
(for example, rotation angle in [0, 180�]). To avoid aliasing
artifacts, we first upsample the image before transformations
that require interpolation. Then the result is downsampled
to the original size.

A critical question is how to schedule p over training in
order to obtain the best model. Intuitively, in initial stages
of training no augmentation is needed, since the model can
learn from the available original training examples. As
training progresses the network learns to fit the original
data points and their utility decreases over time. We find
schedules starting from p = 0 and increasing over epochs to
work best in practice. The ideal rate of increase depends on
both the model size and amount of available training data.

4. Experiments

In this section we explore the effectiveness of MRAugment
in the context of accelerated MRI reconstruction in various
regimes of available training data sizes on various datasets.
We start with providing a summary of our main findings,
followed by a detailed description of the experiments. Addi-
tional reconstructions and more experimental details can be
found in the supplementary material.

In the low-data regime (up to ⇡ 4k images), data augmen-
tation very significantly boosts reconstruction performance.

The improvement is large both in terms of raw SSIM and vi-
sual reconstruction quality. Using MRAugment, fine details
are recovered that are completely missing from reconstruc-
tions without DA. This suggests that DA improves the value
of reconstructions for medical diagnosis, since health ex-
perts typically look for small features of the anatomy. This
regime is especially important in practice, since large public
datasets are extremely rare.

In the moderate-data regime ( ⇡ 4k � 15k images)
MRAugment still achieves significant improvement in re-
construction SSIM. We want to emphasize the significance
of seemingly small differences in SSIM close to the state
of the art and invite the reader to visit the fastMRI Chal-
lenge Leaderboard that demonstrates how close the best
performing models are.

In the high-data regime (more than 15k images) data aug-
mentation has diminishing returns. It does not notably im-
prove performance of the current state of the art, but it does
not degrade performance either. Our experiments in the
latter two regimes however strongly suggest that data aug-
mentation combined with much larger models may lead to
significant improvement over the state of the art, even in
the high-data regime. However, without larger models it is
expected that in a regime of abundant data, DA does not im-
prove performance. For the models and problem considered
here, this is around 15k images. We hope to investigate the
effectiveness of MRAugment combined with such larger
models in our future work.

Additional benefits of data augmentation include improved
robustness under shifts in test distribution, such as improved
generalization to new MRI scanners and field strengths.
Furthermore, we observe that data augmentation can help to
eliminate hallucinations by preventing overfitting to training
data.

4.1. Experimental setup

We use the state-of-the-art End-to-End VarNet model (Sri-
ram et al., 2020), which is as of now one of the best perform-
ing neural network models for MRI reconstruction. We mea-
sure performance in terms of the structural similarity index
measure (SSIM), which is a standard evaluation metric for
medical image reconstruction. We study the performance of
MRAugment as a function of the size of the training set. We
construct different subsampled training sets by randomly
sampling volumes of the original training dataset and adding
all slices of the sampled volumes to the new subsampled
dataset. For all experiments, we apply random masks by
undersampling whole k-space lines in the phase encoding
direction by a factor of 8 and including 4% of lowest fre-
quency adjacent k-space lines in order to be consistent with
baselines in (Zbontar et al., 2018). For both the baseline ex-
periments and for MRAugment, we generate a new random
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mask for each slice on-the-fly while training by uniformly
sampling k-space lines, but use the same fixed mask for
each slice within the same volume on the validation set
(different across volumes). This technique is standard for
models trained on the fastMRI dataset and not specific to our
data augmentation pipeline. For augmentation probability
scheduling we use

p(t) =
pmax

1� e�c
(1� e�tc/T ),

where t is the current epoch, T denotes the total number of
epochs, c = 5 and pmax = 0.55 unless specified otherwise.
This schedule works resonably well on datasets of various
size that we have studied and has not been fine-tuned to
individual experiments. Ablation studies on the effect of the
scheduling function is deferred to the supplementary.

4.2. Low-data regime

For the low-data regime we work with two different datasets,
the Stanford 2D FSE dataset and the 3D FSE Knee dataset
described below and demonstrate significant gains in recon-
struction performance.

Stanford 2D FSE dataset. First, we perform experiments
on the Stanford 2D FSE (Cheng) dataset, a public dataset of
89 fully-sampled MRI volumes of various anatomies includ-
ing lower extremity, pelvis and more. We use 80%� 20%
training-validation split, randomly sampled by volumes. We
generate 5 random splits in order to minimize variations in
reconstruction metrics due to validation set selection and
report the mean validation SSIM over 5 runs along with the
standard errors.

We plot a training curve of validation SSIM with and with-
out data augmentation in Figure 3a. The regularizing effect
of data augmentation prevents overfitting to the training set
and improves reconstruction SSIM on the validation dataset
even in case of training 4⇥ longer than in the baseline ex-
periments without data augmentation. Figure 3b compares
mean validation SSIM when the model is trained in differ-
ent data regimes from 25% to 100% of all training data.
MRAugment leads to significant improvement in recon-
struction SSIM and this improvement is consistent across
different train-val splits and training set sizes. We achieve
higher mean SSIM using only 25% of the training data with
MRAugment than training on the full dataset without DA.
On the full dataset, we improve reconstruction SSIM from
0.8950 to 0.9120, and MRAugment achieves even larger
gains in the lower data regime. Figure 4 provides a visual
comparison of a reconstructed slice emphasizing the benefit
of data augmentation.

Stanford Fullysampled 3D FSE Knees dataset. The Stan-
ford Fullysampled 3D FSE Knees dataset (Sawyer et al.,
2013) consists of 20 fully-sampled k-space volumes of
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Figure 3. Experimental results on the Stanford 2D FSE dataset.

Figure 4. Visual comparison of reconstructions on the Stanford 2D
FSE dataset with and without data augmentation.

knees. We use the same methodology to generate train-
ing and validation splits and evaluate results as in case of
the Stanford 2D FSE dataset.

This dataset has significantly less variation compared to
the Stanford 2D FSE dataset. Consequentially, we observe
strong overfitting early in training if no data augmentation
is used (Figure 5a). However, applying data augmentation
successfully prevents overfitting. Furthermore, in accor-
dance with observations on the Stanford 2D FSE dataset,
data augmentation significantly boosts reconstruction SSIM
across different data regimes (Figure 5b).

4.3. High-data regime

Next, we perform an extensive study on the fastMRI dataset
(Zbontar et al., 2018), the largest publicly available fully-
sampled MRI dataset with competitive baseline models, that
allows us to investigate the utility of MRAugment across
a wide range of training data regimes. More specifically,
we use the fastMRI knee dataset, for which the original
training set consists of approximately 35k MRI slices in 973
volumes and we subsample to 1%, 10%, 33% and 100% of
the original size. We measure performance on the original
(fixed) validation set separate from the training set.

Single-coil experiments. For single-coil acquisition we are
able to exactly match the performance of the model trained
on the full dataset using only a third of the training data as
depicted on the left in Fig. 7. Moreover, with only 10% of
the training data we achieve comparable SSIM to the model
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Figure 5. Experimental results on the Stanford Fullysampled 3D
FSE dataset.

Figure 6. Visual comparison of single-coil (top row) and multi-coil
(bottom-row) reconstructions using varying amounts of training
data with and without data augmentation. We achieve reconstruc-
tion quality comparable to the state of the art but using 1% of the
training data. Without DA fine details are completely lost.

0.35k 3.5k 11.5k 35k

0.65

0.66

0.67

0.68

0.69

# of training examples

V
al
.
S
S
IM

no DA
DA

1

0.35k 3.5k 11.5k 35k

0.84

0.85

0.86

0.87

0.88

0.89

# of training examples

V
al
.
S
S
IM

no DA
DA

1

Figure 7. Single-coil (left) and multi-coil (right) validation SSIM
vs. # of training images.

trained on the full dataset. The visual difference between re-
constructions with and without data augmentation becomes
striking in the low-data regime. As seen in the top row of
Fig. 6, the model without DA was unable to reconstruct
any of the fine details and the results appear blurry with
strong artifacts. Applying MRAugment greatly improves
reconstruction quality both in a quantitative and qualitative
sense, visually approaching that obtained from training on
the full dataset but using hundred times less data.

Multi-coil experiments. As depicted on the right in Fig. 7
for multi-coil acquisition we closely match the state of the

art while significantly reducing training data. More specif-
ically, we approach the state of the art SSIM within 0.6%
using 10% of the training data and within 0.25% with 33%
of training data. As seen in the bottom row of Fig. 6, when
using only 1% of the training data we successfully recon-
struct fine details comparable to that obtained from training
on the full dataset, while high frequencies are completely
lost without DA.

Finally, we perform ablation studies on the fastMRI dataset
and demonstrate that both pixel preserving and interpolating
transformations individually improve reconstruction SSIM.
Furthermore their effect is complementary: the best results
are obtained by adding all transformations to the pipeline.
Moreover, we investigate the effect of the data augmenta-
tion scheduling function and demonstrate that exponential
scheduling results in better performance compared to a con-
stant augmentation probability. We also evaluate a range
of different augmentation schedules and show that both
significantly lower or higher probabilities lead to poorer
reconstruction SSIM. All ablation experiments can be found
in the supplementary material.

4.4. Model robustness

In this section we investigate further potential benefits of
data augmentation in scenarios where training examples
from the target data distribution are not only scarce as stud-
ied before, but unavailable. Distribution shifts can have
a detrimental effect on a variety of reconstruction meth-
ods (Darestani et al., 2021).

To this end, we explore how data augmentation impacts
generalization to new MRI scanner models not available in
training time. Different MRI scanners may use different
field strenghts for acquisition, and higher field strength typ-
ically correlates with higher SNR. Approximately half of
the volumes in the fastMRI knee dataset have been acquired
by a 1.5T scanner, whereas the rest by three different 3T
scanners. We perform the following experiments:

• 3T ! 3T : We train and validate on volumes acquired
using 3T scanners. Volumes in the validation set have
been imaged by a 3T scanner not in the training set.

• 3T ! 1.5T : We train on all volumes acquired by 3T
scanners and validate on the 1.5T scanner.

• 1.5T ! 3T : We train on all volumes acquired by the
1.5T scanner and validate on all other 3T scanners.

Table 1 summarizes our results. Data augmentation con-
sistently improves reconstruction SSIM on unseen scanner
models. Similarly to our main experiments, the improve-
ment is especially significant in the low-data regime. We
observe that DA provides the greatest benefit when training
on 1.5T scanners and testing on 3T models. We hypoth-
esize that data augmentation can hinder the model from
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2% train no DA DA
3T ! 3T 0.8646 0.9049

3T ! 1.5T 0.8241 0.8551

1.5T ! 3T 0.8174 0.8913

100% train no DA DA
3T ! 3T 0.9177 0.9185

3T ! 1.5T 0.8686 0.8690

1.5T ! 3T 0.9043 0.9062

Table 1. Scanner transfer results using 2% (top) and 100% (bot-
tom) of training data.

overfitting to the higher noise level present on 1.5T acquisi-
tions during training thus resulting in better generalization
on the lower noise 3T volumes.

Experiments suggesting additional promising properties of
models trained with MRAugment, such as improved general-
ization on unseen anatomies and robustness to hallucinations
can be found in the supplementary.

4.5. Naive data augmentation

We would like to emphasize the importance of applying
DA in a way that takes into account the measurement noise
distribution. When applied incorrectly, DA leads to signifi-
cantly worse performance than not using any augmentation.

We train a model using ’naive’ data augmentation without
considering the measurement noise distribution as described
in Section 3.1, by augmenting real-valued target images. We
use the same exponential augmentation probability schedul-
ing for MRAugment and the naive approach. As Fig. 8a
demonstrates, reconstruction quality degrades over training
using the naive approach. This is due to the fact that as
augmentation probability increases, the network sees less
and less original, unaugmented images, whereas the poorly
augmented images are detrimental for generalization due to
the mismatch in train and validation noise distribution. On
the other hand, MRAugment clearly helps and validation
performance steadily improves over epochs. Fig. 8b pro-
vides a visual comparison of reconstructions using naive DA
and our data augmentation method tailored to the problem.
Naive DA reconstruction exhibits high-frequency artifacts
and low image quality caused by the mismatch in noise
distribution. These drastic differences underline the vital
importance of taking a careful, physics-informed approach
to data augmentation for MR reconstruction.

5. Conclusion

In this paper, we develop a physics-based data augmentation
pipeline for accelerated MR imaging. We find that MRAug-
ment yields significant gains in the low-data regime which
can be beneficial in applications where only little training
data is available or where the training data changes quickly.
We also demonstrate that models trained with data augmen-
tation are more robust against overfitting and shifts in the
test distribution. We believe that this work opens up many
interesting venues for further research with respect to data
augmentation for inverse problems in the low data regime.
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Figure 8. Experimental results comparing MRAugment with naive
data augmentation.

First, learning efficient data augmentation from the training
data has been investigated in prior literature (Cubuk et al.,
2019; Lemley et al., 2017; Tran et al., 2017) and would
be a natural extension of our method. Second, finding the
optimal augmentation strength throughout training is chal-
lenging, therefore an adaptive scheme that automatically
schedules the augmentation probability would potentially
further improve upon our results. Such a method is proposed
in Karras et al. (2020) for discriminator augmentation in
GAN training, where the augmentation strength is adjusted
based on an discriminator overfitting heuristic with great
success. Finally, combining our technique with a generative
framework such as AmbientGAN (Bora et al., 2018) that
generates high quality samples of a target distribution from
noisy partial measurements, could be potentially used to
synthesize fully-sampled MRI data from few noisy k-space
measurements.
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