
WASP: Wide-area Adaptive Stream Processing

Albert Jonathan
University of Minnesota - Twin Cities

albert@cs.umn.edu

Abhishek Chandra
University of Minnesota - Twin Cities

chandra@cs.umn.edu

Jon Weissman
University of Minnesota - Twin Cities

jon@cs.umn.edu

Abstract

Adaptability is critical for stream processing systems to en-

sure stable, low-latency, and high-throughput processing of

long-running queries. Such adaptability is particularly chal-

lenging for wide-area stream processing due to the highly dy-

namic nature of the wide-area environment, which includes

unpredictable workload patterns, variable network band-

width, occurrence of stragglers, and failures. Unfortunately,

existing adaptation techniques typically achieve these perfor-

mance goals by compromising the quality/accuracy of the re-

sults, and they are often application-dependent. In this work,

we rethink the adaptability property of wide-area stream pro-

cessing systems and propose a resource-aware adaptation

framework, called WASP. WASP adapts queries through a

combination of multiple techniques: task re-assignment, op-

erator scaling, and query re-planning, and applies them in

a WAN-aware manner. It is able to automatically determine

which adaptation action to take depending on the type of

queries, dynamics, and optimization goals. We have imple-

mented a WASP prototype on Apache Flink. Experimental

evaluation with the YSB benchmark and a real Twitter trace

shows that WASP can handle various dynamics without com-

promising the quality of the results.

1 Introduction

Wide-area data analytics has gained much attention in re-

cent years due to the emerging applications that need to ex-

tract insights from large amounts of data generated in a geo-

distributed fashion for operational decisions. For example,

Internet service providers are monitoring system logs from

thousands CDN servers to ensure low-latency service deliv-

ery [28, 39, 43]. Public services are also analyzing live video

streams from cameras installed all over a city for traffic con-

trol and surveillance [4, 5, 40]. Since many of these applica-

tions rely on timely information, achieving low-latency anal-

ysis is crucial.

A wide-area streaming analytics system typically com-

prises multiple geo-distributed clusters, i.e., edge clusters

and data centers, that are connected by a wide-area network

(WAN) [20, 24, 49, 62]. For such systems, achieving low-

latency and high-throughput processing is key to extract in-

sights in a timely manner. However, ensuring a stable exe-

cution of long-running queries in a wide-area environment

is very challenging due to the variability and unpredictable

nature of both workload and WAN bandwidth. Recent work

has shown that WAN bandwidth may change at an interval

of minutes [59, 62], while Internet workload exhibits strong

variability, both temporally and spatially [18, 37]. Further-

more, stragglers and failures are inevitable in large-scale dis-

tributed systems [9, 10, 45].

Existing work has addressed the importance of adaptabil-

ity in distributed stream processing systems, but has mainly

focused on the computational bottlenecks in a cluster envi-

ronment and hence, is WAN-agnostic [13, 19, 38, 48, 60].

As argued by recent work, existing cluster-based policies that

lack WAN awareness may result in significant performance

loss and/or wasteful resource utilization due to the fundamen-

tal differences in the environments [47, 57, 58].

Early work in wide-area data analytics has focused on

short-lived batch processing and assumed that network

bandwidth is relatively stable throughout the runtime of

queries [47, 57, 58], which is an invalid assumption for long-

running streaming queries. Others have also addressed the

importance of adaptability in the context of stream process-

ing, but often require users to trade quality/accuracy for per-

formance through aggregation, degradation, and statistical

estimation [21, 35, 49, 62]. We argue that these approaches

are application dependent, and may not apply generally. For

example, reducing a frame rate may be applicable for some

video analytics applications, but dropping data is not toler-

able for queries that require high accuracy such as fraud

detection, global stock or transactional analysis, and billing

queries [3, 7]. Furthermore, determining the right accuracy-

performance trade-off typically relies heavily on analysts’

expertise and involve extensive parameter tuning, making it

cumbersome in practice.

In this work, we rethink the adaptability property of wide-

area stream processing systems. Our goal is to allow queries

to maintain low-latency execution while preserving the qual-

ity of the results in the face of dynamics as far as possible.

This is especially critical for queries that require high ac-

curacy or those that cannot tolerate significant quality loss.

Furthermore, it is critical to ensure the systems achieve such

performance while utilizing the resources efficiently to re-

duce operational cost. Thus it is desirable for such systems

to automatically handle inefficient resource utilization and

misconfiguration due to workload/environment changes.

To address the above challenges, we propose a resource-

aware adaptation framework called WASP (Wide-area

Adaptive Stream Processing). In contrast to most existing

work that largely rely on one single adaptation technique

(data degradation) to handle runtime dynamics, WASP em-

ploys multiple adaptation techniques by re-optimizing the

execution of a query and adjusting its resource allocation,

1

221

Doi: 10.1145/3423211.3425668

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

using data degradation as a last resort. It adapts queries at

runtime through a combination of multiple techniques: (1)

task re-assignment, (2) operator scaling, and (3) query re-

planning. Both task re-assignment and operator scaling adapt

the physical execution of a query, while query re-planning

adapts the logical plan. We show that a combination of these

techniques are generally applicable for different types of

queries. WASP can automatically determine how to adapt a

query depending on the type of dynamics, whether resource

or workload variation, occurrence of stragglers, failures, and

resource misconfiguration. For example, WASP handles a

compute-constrained task by scaling up its bottleneck oper-

ator within a site, but it handles network bottlenecks differ-

ently by scaling out the bottleneck operator across sites to

distribute the workload over multiple network links. The key

challenge here is to ensure an effective and efficient adapta-

tion, i.e., resolve bottlenecks without hoarding resources.

There are several novel challenges in adapting a query in

wide-area settings as opposed to intra-data-center settings.

First, the system needs to account for the limited WAN

bandwidth as it is typically the bottleneck in a wide-area

environment. Secondly, wide-area network links are highly

heterogeneous in terms of their bandwidth capacity and la-

tency as they may vary by two orders of magnitude [23, 30].

Thirdly, wide-area dynamics may happen frequently and un-

predictably. Hence, any adaptation should be done with low

overhead. Fourthly, it is critical to ensure a stable query ex-

ecution without over-allocating resources to avoid wasteful

resource consumption. Lastly, determining the right adapta-

tion is very challenging since it depends on a lot of factors

and different adaptation actions result in different trade-offs.

To handle these challenges, we study the applicability,

overhead, and benefits of different adaptation techniques,

and propose a practical approach to determine which adap-

tation action to take based on the type of queries (state-

less vs. stateful), bottlenecks (compute vs. network), and

optimization objectives. To ensure low-overhead adaptation,

WASP incorporates a localized checkpointing mechanism

along with a network-aware state migration and state par-

titioning technique in adapting queries with stateful opera-

tors. We have implemented a WASP prototype on Apache

Flink [13]. Experimental evaluation using the YSB bench-

mark [15] and a real Twitter trace demonstrates that WASP

can maintain low-latency execution without compromising

quality and with low overhead in the face of dynamics.

We summarize our contributions as follows:

• We propose a network-aware adaptation framework that is

able to adapt query execution and resources in the face of dy-

namics in wide-area streaming analytics.

• We qualitatively compare the applicability, overhead, and

benefits between different adaptation techniques, and pro-

pose an adaptation policy that can automatically determine

which adaptation to use depending on the types of queries,

dynamics, and goals.

Figure 1. Wide-area query execution pipeline.

• We further highlight the importance of network awareness

in adapting a query execution to ensure low overhead.

• We have implemented a WASP prototype on Apache Flink,

and experimentally demonstrate that WASP can achieve low-

latency execution while preserving the quality of the results.

2 Background

2.1 Wide-area Stream Processing Systems

We consider a wide-area stream processing system span-

ning multiple geo-distributed edge clusters and data cen-

ters [20, 24, 49]. They are connected by WAN with diverse

inbound and outbound bandwidth and latency. A global Job

Manager running in one of the sites (typically in a data cen-

ter) provides an interface for query submission, and it opti-

mizes and deploys queries across multiple sites. The inputs

of a query can be generated or collected at any site, e.g., sys-

tem and user log updates from multiple CDN servers.

Figure 1 shows the execution pipeline of a typical data

analytics query. Each query is parsed into a logical plan rep-

resented using a directed acyclic graph (DAG), where the

vertices correspond to stream operators and the edges refer

to data flows between operators. Each query’s logical plan is

optimized (e.g., pushing filter operators upstream to reduce

data rates) and translated into multiple physical plan candi-

dates. A query’s physical plan consists of one or more execu-

tion stages (jobs), each of which can run in parallel as execu-

tion instances (tasks). The number of instances of each stage

is typically predetermined by the parallelism value in the

configuration. The system will deploy the tasks across multi-

ple sites with WAN awareness to minimize query execution

latency or WAN bandwidth consumption [25, 26, 47, 57, 58].

2.2 Wide-area Resource Constraints

Scarce and heterogeneous resources. Extracting real-time

insights from large continuous data streams in wide-area

settings is challenging due to the highly heterogeneous

and scarce WAN bandwidth [23, 25, 30, 59]. Although re-

cent work has argued that higher WAN bandwidth between

data centers can be achieved by leveraging higher VM in-

stances [36], this incurs higher monetary cost. Furthermore,

2

222

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

 0

 50

 100

 150

 200

 0 4 8 12 16 20 24 28 32 36 40 44 48

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (30-minute interval)

Figure 2. Bandwidth variability from Oregon→Ohio.

WAN bandwidth is highly dynamic in practice (will be dis-

cussed later). The emergence of Edge Computing compris-

ing small edge clusters further introduces additional hetero-

geneity [24, 25]. They typically have limited computational

resources and they are connected using the public Internet,

whose bandwidth is even more constrained, with an average

of <10Mbps, as reported by Akamai [1].

Resource and workload dynamics. Most of the work in

adaptive stream processing systems has focused on a clus-

ter environment where the main source of bottlenecks is

due to the limited computational resources. They typically

handle this problem by scaling out bottleneck operators

within a cluster [14, 17, 19, 31, 56]. In wide-area settings,

network bandwidth between sites imposes additional dy-

namic [49, 59, 62]. We conducted a one-day measurement

of WAN bandwidth variation between 8 Amazon EC2 data

centers (Oregon, Ohio, Ireland, Frankfurt, Seoul, Singapore,

Mumbai, and Sao Paulo). We used iperf to measure the

pair-wise bandwidth between sites every 5 minutes. Figure 2

shows the bandwidth variation between the Oregon and Ohio

data centers. We can see that the bandwidth has a high vari-

ation (25% to 93% deviation from the mean). Others have

also reported that the inter-data center network topology may

change every 5-10 minutes [22, 27], supporting the dynamic

nature of WAN bandwidth.

In addition to WAN dynamics, studies have also reported

that many Internet applications have variable workload pat-

terns, both temporally and spatially [18, 52]. For example,

Twitter workload exhibits strong spatial and temporal varia-

tions, with day hours having 2× higher workload compared

to night hours [37]. Thus, relying on a static deployment is a

poor fit in such a highly dynamic environment. This may lead

to performance degradation and wasteful resource utilization

during high and low workload periods respectively.

3 WASP Overview

We first present an overview of WASP. We discuss WASP’s

adaptation techniques, design adaptation for wide-area set-

tings, and how the system determines which technique to use

in §4, §5 and §6 respectively.

3.1 System Architecture

Figure 3 shows the WASP system architecture. It consists of

a Job Manager and multiple Task Managers geo-distributed

Figure 3. System overview of WASP.

across multiple edge clusters and data centers. The Job Man-

ager consists of a Query Planner and a Scheduler that are re-

sponsible for planning query executions and deploying tasks

respectively. We define the computational resources pro-

vided by each Task Manager using a computing slot abstrac-

tion, each of which can handle exactly one task. Each Task

Manager continuously monitors and gathers its task’s per-

formance metrics (e.g., processing latency and input/output

stream rates) through a Local Metric Monitor and reports

them to the Global Metric Monitor 1©. The Global Metric

Monitor uses this information to diagnose any unhealthy exe-

cution or identify wasteful resource consumption 2© and asks

the Reconfiguration Manager to resolve it based on various

factors (will be discussed in §6) 3©.

3.2 Runtime Monitoring

Each operator keeps track of its runtime execution metrics

such as processing rate (λP), output rate (λO), and the selec-

tivity of the operator (σ) which is defined as the ratio between

the output rate and the processing rate. These metrics are pe-

riodically reported to the Global Metric Monitor for diagno-

sis. The execution metric of an operator is computed based

on the aggregate runtime information of all of its execution

instances/tasks over the past time interval.

λP =

p
∑

i=1

λP [i] λO =

p
∑

i=1

λO[i] σ =
λO

λP

WASP considers an execution to be healthy, i.e., uncon-

strained by the allocated resources, if no backpressure (will

be discussed in §3.3) is observed and the following condi-

tions hold:

1. The processing rate is equal to its input rate: λP = λI .

2. The input rate is approximately equal to the aggre-

gated output rates of its upstream operators U : λI ≈
∑

u∈U λO[u].

The first condition ensures that all tasks have sufficient com-

puting resources to process their input streams, while the sec-

ond condition ensures no network congestion in transmitting

data streams from its upstream operators. However, these

3

223

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

conditions may not always hold due to the dynamic nature

of the actual workload and WAN bandwidth.

If λP < λI , this indicates that the execution is con-

strained by the available computing resources. This may hap-

pen due to an increasing workload [37]. On the other hand,

λI <
∑

u∈U λO[u] may happen if the network bandwidth be-

tween an operator and its upstream operators is constrained

or congested. This may happen due to an increasing work-

load and/or the reduction of network bandwidth availability

caused by a change in the underlying network topology or

bandwidth contention with other executions.

3.3 Estimating the Actual Workload

Modern distributed stream processing systems often rely on

a backpressure to identify bottlenecks. When the resources

are constrained, a bottleneck operator will trigger a control-

rate message to its upstream operators to reduce the work-

load [13, 34]. In this case, the observed input and output rates

of an operator do not reflect the actual workload, i.e., the ac-

tual stream rates from the source operators. Yet, to accurately

determine the effective adaptation action that can resolve the

bottleneck, the system should rely on the actual workload in-

stead of the observed information [31]. Thus, we estimate the

expected input and output rates of each operator based on the

actual workload generated by the source operators (λO[src]),
which is computed recursively as follows:

λ̂P = λ̂I =

{

∑

u∈U λ̂O[u], if U 6= ∅

λO[src], otherwise
λ̂O = σ · λ̂I

4 Optimization-Based Adaptation

This section presents the 3 re-optimization adaptation

techniques to handle wide-area dynamics: task re-

assignment (§4.1), operator scaling (§4.2), and query

re-planning (§4.3). We discuss how to apply these tech-

niques in WAN-aware manner in §5 and present WASP’s

adaptation policies in §6.

4.1 Task Re-Assignment

Existing work has addressed the importance of WAN aware-

ness in scheduling tasks in wide area settings to minimize

query execution latency or WAN consumption [47, 57, 58].

However, they have mainly focused on optimizing the initial

placement and do not consider re-evaluating it after the de-

ployment. Yet, the initial placement may become obsolete

when the environment/workload has changed significantly.

Resource-aware task placement. Most task placement al-

gorithms rely only on the deployment of the predeces-

sor (upstream) stages since they schedule one-stage-at-a-

time in a topological order [25, 29, 47, 57]. However, re-

assigning tasks of an already running stage based on solely

Table 1. Descriptions of the used notations

Notation Description

m total number of sites

p operator/stage parallelism

p[s] number of tasks deployed at site s

A[s] number of available slots at site s

ℓs2s1 latency from site s1 to s2
Bs2

s1 available bandwidth from site s1 to s2

λ̂I [s] expected input stream rate to site s

λ̂O[s] expected output stream rate from site s

α bandwidth utilization threshold

the deployment of its upstream stages may result in a sub-

optimal deployment because the deployment of its succes-

sor (downstream) stages rely heavily on its original place-

ment. This may result in a cascading problem. Thus, our

task re-assignment algorithm considers the deployments of

both the upstream and downstream stages. Specifically, we

re-compute the number of tasks to deploy in each site (p[s])
by solving the following Integer Linear Program (ILP):

min

m
∑

s=1

p[s] · (ℓsu + ℓds), ∀u, ∀d (1)

s.t.
p[s]

p
· λ̂I < αBs

u, ∀s, ∀u, s 6= u (2)

p[s]

p
· λ̂O < αBd

s , ∀s, ∀d, s 6= d (3)

0 ≤ p[s] ≤ A[s], ∀s (4)

m
∑

s=1

p[s] = p, p ≥ 1 (5)

Table 1 summarizes the notations. Our goal is to minimize

the network delay of transmitting data streams both from

upstream (u) and to downstream (d) stages, which equiv-

alently minimizes the delay incurred by a particular stage.

Constraints 2 and 3 ensure sufficient inbound and outbound

network bandwidth respectively. Constraint 4 ensures there

are sufficient computing slots in each site, and Constraint 5

ensures that the system deploys all the tasks.

We include a maximum bandwidth utilization threshold,

{α | 0 < α < 1}, in Constraints 2 and 3 for a few rea-

sons. First, it provides a certain degree of stability in the

solution by providing bandwidth headroom to handle slight

workload and bandwidth variations. Secondly, the headroom

makes the system robust to mis-estimation in measuring the

actual inter-site bandwidth availability and data stream rates.

Lastly, the reserved bandwidth can be used to process events

that are queued during the transitioning process when an ex-

ecution is adapted. Setting the α parameter too high (∼ 1)

leads to greater impact of misestimation and makes the sys-

tem unstable, while setting it too low leads to a non-optimal

4

224

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

Figure 4. Scaling up/out operator within and across sites.

optimization. The automatic determination of the α parame-

ter could probably benefit from the use of machine-learning

techniques, an optimization that we leave for future work.

Here, we set α = 0.8.

If the system is able to find an alternative task placement,

it may re-assign some of the existing tasks. Those that can

be run at the original sites do not need to be migrated. For

example, if the original placement is S = {s1, s2, s3, s4}
and the new placement is S′ = {s3, s4, s5, s6}, only (S −
S′) = {s1, s2} need to be migrated to (S′ − S) = {s5, s6}.

When re-assigning tasks, the system will (1) temporarily halt

the execution, (2) instantiate new tasks at the new sites and

terminate the old ones, and (3) resume the execution.

4.2 Operator Scaling

Although task re-assignment is generally applicable for any

operator, the algorithm may not always be able to find a so-

lution due to its constraint on the initial operator parallelism

(Constraint 5). Yet, determining the right parallelism for ev-

ery operator in advance may not be feasible given the highly

dynamic environment. Thus, we consider (1) increasing the

parallelism if an execution is constrained by the available

resources, and (2) decreasing the parallelism to reduce any

wasteful resource consumption.

Scale up/out. We define scale up and scale out in wide-area

settings as instantiating new operator instances within a site

and across sites respectively. In general, increasing paral-

lelism can handle computational bottlenecks since it reduces

the work performed by each individual task. However, scale

up cannot resolve network bottlenecks while scale out can

solve this by distributing the workload of any overloaded net-

work link across multiple links.

Figure 4 shows how scale up and scale out can handle

computational and network bottleneck respectively. When

the system observes that a task’s processing rate is less than

its expected input rate 1©, it may allocate additional slots

and launch more instances. To prevent distributing large state

over the WAN, the system will prioritize launching the new

tasks within the same site 2©. If the bandwidth from an up-

stream task u to Site-A is constrained 3©, the system will in-

stantiate a new task at Site-B and distribute the load across 2

links: u → A and u → B 4©. This will reduce the load of the

constrained network link but may require an inter-site state

re-distribution in the case of stateful operator. We will dis-

cuss how to reduce such overhead later in §5. Although the

example only shows inbound bandwidth contention, scale

out can also handle outbound bandwidth contention.

When scaling up/out an operator, the system needs to de-

termine the scale up factor, i.e., the increase in parallelism.

We compute the scale factor based on the operator’s exe-

cution model proposed in §3. Specifically, we compute the

new parallelism of a bottleneck operator p′ based on the ra-

tio between the actual/expected input rate and the operator’s

processing rate. This is similar to the technique proposed by

DS2 in handling computational bottleneck in a cluster-based

stream processing system [31]:

p′ =
⌈ λ̂I

λP

· p
⌉

This equation gives the minimum parallelism value that

can effectively resolve the bottleneck. Once the system has

computed the new parallelism, it will determine the place-

ment of the tasks by solving Equation 1. In the case of scale

out, it is computed as the ratio between the stream rate that

cannot be handled over the bandwidth availability. In general,

increasing the parallelism can handle network bottleneck by

distributing the data stream over multiple network links, i.e.,
λ
p′

< λ
p

as p′ > p, and hence, this will reduce the workload

that needs to be transmitted to each individual network link.

Scale down. A system may over-allocate resources to a par-

ticular stage due to several reasons: misconfiguration, pes-

simistically reserving extra resources to handle peak work-

load, or as a result of scaling out/up an operator. This re-

sults in wasteful resource utilization. If the system identifies

such a problem, it should scale down some of the under-

utilized tasks. We prioritize scaling down tasks that are not

co-located with their upstream/downstream tasks to reduce

the inter-site bandwidth consumption. However, the system

needs to ensure the bandwidth to/from any of the sites is

higher than the input/output rate after the scaling.

Determining the scale down factor has to be done carefully

since it will increase the workload to the remaining tasks. In

general, the scale down factor can be computed based on the

ratio between the aggregated data stream rate and resource

availability. However, aggressively scaling down an opera-

tor may result in a workload spike if the workload increases

after the scale down. Yet, it is hard in practice to predict

the future availability of the resources and the rate of the

workload. Thus, we opt to gradually reduce the parallelism

by 1 per iteration to prioritize performance stability over re-

source utilization. In every iteration, the system needs to en-

sure that any of the remaining tasks is not constrained, i.e.,

every task should have sufficient bandwidth and processing

capacity to consume the additional workload (relayed data

streams) from the terminated tasks. The system will observe

its stability and may further scale down the operator in the

subsequent iteration as needed.

5

225

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

Figure 5. Different plans result in different executions.

4.3 Query Re-Planning

While task re-assignment and operator scaling focus on

adapting the physical execution of a query, we further con-

sider adapting its logical plan. Consider an example in Fig-

ure 5 which shows 2 different plans for the same query. It

consumes input streams from 4 sources that are located at:

A, B, C, and D, and joins them using a full hash join, which

is commutative. A WAN-aware Query Planner may choose

the first plan if the bandwidth is sufficient since it consumes

less bandwidth (70MB/s for the first plan, and 90MB/s for

the second plan). However, if the bandwidth between Site-C

and Site-A is constrained, the Query Planner may opt for the

second plan. This shows that the optimal plan depends on the

runtime information when the query is deployed. Thus, the

Query Planner may consider adapting the query plan when

the environment has changed significantly [41].

To determine the optimal deployment of a query, the

Query Planner and the Scheduler need to jointly optimize

the query by evaluating different combinations of logical

and physical plans. To avoid computing all possible combi-

nations (that is NP-Hard), we rely on a heuristic cost-based

estimation. It first applies any optimization that is indepen-

dent of the environment similar to query optimization in the

context of RDBMS [16, 50] (e.g., pushing filter operation up-

stream) and then evaluates multiple plans with different ag-

gregation ordering. We only consider the ordering of aggre-

gation operators since they are typically the ones that involve

cross-site data transmission. The Scheduler will compute the

optimal task placement for each plan and select the combined

plan-placement pair with the lowest estimated delay.

Re-planning queries with stateful operators. The main

challenge in re-planning a query is in preserving the process-

ing state of a stateful operator. Changing the query plan of a

stateless execution can be done by simply replacing the old

execution with a new execution. However, in the case of state-

ful execution, the new execution must restore the state main-

tained by the previous execution. Although the Query Plan-

ner guarantees that alternative plans will output the same re-

sults, switching plans in the middle of an execution may not

provide this guarantee because different plans may have dif-

ferent stateful operators with different state semantics. For

example, the state of σ(A ⊲⊳ B) may not be compatible with

σ(B ⊲⊳ C). Thus, the state of σ(A ⊲⊳ B) cannot be recov-

ered by the operator instances of σ(B ⊲⊳ C).
To continue the progress from the old execution without

losing any state, our Query Planner will only consider plans

that comprise common sub-plans covering the stateful opera-

tors. For example, both Plan 1 and Plan 2 in Figure 5 exhibit

a common sub-plan on σ(C ⊲⊳ D). Thus, the new instances

of σ(C ⊲⊳ D) in the second plan can fully recover the states

maintained by the previous plan. However, if σ(A ⊲⊳ B) is

also stateful, changing from Plan 1 to Plan 2 may not be

feasible unless the query can tolerate a certain degree of ac-

curacy/quality loss. Another way to switch query plans for

stateful execution is if the operator maintains a short and fi-

nite state where reconfiguration can be done at the end of the

state interval. For example, in the case of a windowed-group

aggregation with a tumbling window, this can be performed

at the end of the window when the state is re-initialized. This

is similar to the adaptation during the coordination interval

in the batch synchronous processing (BSP) model [56, 61].

Re-evaluating both the logical and physical plans of

a query typically results in a better adaptation than re-

optimizing only its physical plan. However, the former is

computationally expensive. Furthermore, query re-planning

also has limited applicability for queries that comprise state-

ful operators. Thus, to preserve the accuracy of the results

when re-planning a stateful execution, we only consider al-

ternative plans that exhibit common sub-plans involving the

stateful operators.

5 WAN-aware Design Adaptation

Local state management. Modern distributed stream pro-

cessing systems support stateful computation, where each

task tracks its processing progress as a state and periodi-

cally checkpoints it to a rendezvous storage system (e.g.,

HDFS [53]) [12, 14, 44]. This allows tasks to start/resume

their executions from the last checkpointed state. Examples

of state include intermediate aggregation results and parti-

tion offsets in Kafka [33]. Since tasks in wide-area streaming

analytics are geo-distributed, their states are naturally gener-

ated in a geo-distributed fashion. To reduce the overhead of

checkpointing large states over the WAN, WASP stores every

state locally or to a nearby storage system. When a task is

migrated to a different site, the Checkpoint Coordinator will

first initiate a state migration and only after the state transfer

completes, the task can resume its execution.

Network-aware state migration. Since WASP stores all

computing states locally based on the deployment of the

tasks, migrating a task to a different site requires migrat-

ing its state. Since the size of a state can be large in prac-

tice [11, 60], migrating a state over a low-bandwidth network

*Excluding the cross-site state migration overhead.
**Yes, if the state is not compatible or ignored by the new plan.

6

226

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

Table 2. Qualitative comparison between different adaptation techniques for streaming analytics queries.

Technique Adaptation Applicability Granularity Overhead* Quality reduction

Task Re-Assignment Task deployment General Stage Low No

Operator Scaling Operator parallelism General Stage Low No

Query Re-Planning Query execution plan Query-specific Query High No**

Data Degradation Degradation policy Query-specific Policy-dependent Low Yes

link may incur a high state migration time, making it imprac-

tical for frequent dynamics. Thus, it is critical to reduce such

overhead. As the major overhead of migrating a task is deter-

mined by the slowest state migration time, we determine the

mapping from (S − S′) to (S′ − S) by solving a minmax

problem with the goal of minimizing the slowest state migra-

tion: minmax(
|states1 |

B
s2
s1

), ∀s1 ∈ (S − S′), ∀s2 ∈ (S′ − S).

We show in Section 8.7 that a network-aware state migration

can significantly reduce the overall adaptation overhead.

6 WASP’s Adaptation Policy

In this section, we qualitatively compare different adaptation

techniques (§6.1) and see how WASP determines which tech-

nique to use in the presence of dynamics (§6.2).

6.1 Adaptation Technique Comparison

Table 2 shows a qualitative comparison between different

adaptation techniques. Both task re-assignment and operator

scaling are generally applicable for any type of operators that

can be parallelized whereas query re-planning has limited ap-

plicability for queries that comprise stateful operators since

their states may not be compatible with the operators of a dif-

ferent plan. In contrast, data degradation is application- and

algorithm-dependent and may not be applicable for queries

that require high accuracy/quality.

The granularity of task re-assignment and operator scal-

ing is on a stage level, but the latter is more flexible since

it is not constrained by the initial operator parallelism. On

the other hand, query re-planning typically results in a better

adaptation since it re-optimizes the whole execution pipeline.

However, it comes at the expense of high overhead since it

needs to replace the entire execution. The granularity of data

degradation depends heavily on the policies [49, 62]. For ex-

ample, in video analytics, users can specify different frame

rates (e.g., 30 and 60 FPS) and fidelity (e.g., 50% and 75%).

Lastly, task re-assignment and operator scaling do not affect

the output while degrading data may reduce the quality.

6.2 Determining Factors

Determining the right adaptation is complex and may not be

feasible since it depends on a lot of factors. We propose a

heuristic approach that considers (1) the type of bottlenecks,

(2) the type of operators, (3) overhead, and (4) the type of

dynamics. Figure 6 shows WASP’s adaptability decision.

Figure 6. Determining which adaptability action.

Type of bottlenecks. To handle computational bottlenecks,

WASP allocates additional resources and scales up the bottle-

neck operator. It will first try to scale the operator within the

same site and only consider remote sites if the local resources

are insufficient since the latter will incur additional network

delay and WAN bandwidth consumption. On the other hand,

if the execution is network-constrained, it further considers

the type of the operator (stateless or stateful).

Type of operators. In the case of stateless execution, WASP

will re-optimize the whole execution pipeline: both the log-

ical and physical plans, since it does not require migrating

any execution state. In the case of stateful execution, query

re-planning may not always be feasible (as discussed in §4.3).

Thus, WASP will first try to re-assign the existing tasks and

only scale the operator if it cannot find an alternative place-

ment with the given parallelism or the adaptation overhead

is higher than a specific threshold (tadapt > tmax). However,

WASP may limit the number of additional tasks to scale per

iteration to prevent resource hoarding or over-allocation, and

may further choose to re-evaluate the query plan if the par-

allelism has exceeded the threshold (p′ > pmax). In some

cases, an operator may not be split without losing its seman-

tic or requires modification to the query plan. For example,

splitting a counter or sink operator requires an additional ag-

gregator to combine the result. In this case, WASP will pre-

vent scaling such an operator and simply re-plan the query.

Overhead. WASP estimates the adaptation overhead (tadapt)

based on the slowest state migration time (tmigrate) because

the time required to migrate states over WAN typically dom-

inates the overall adaptation overhead:

tadapt = tmigrate = max(
|states1 |

Bs2
s1

), ∀s1, ∀s2

Here, s1 and s2 are the source and the destination sites re-

spectively. If the overhead is too high, WASP will scale out

the operator from p to p′. This can reduce the overhead

7

227

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

through state partitioning. Since most stream operators bal-

ance their workload among their tasks [31], the average state

size per task after the scaling is
|state|

p′
<

|state|
p

, given that

p′ > p. Hence, tmigrate can typically be reduced as the size

of state partition is reduced. In a practical scenario, tmax

can be set based on the frequency of the dynamics, so that

tmax < the frequency for the system to progress.

Type of dynamics. Our discussion so far has focused on ad-

dressing short-term dynamics. However, WASP can also be

extended to handle long-term dynamics (e.g., daily workload

shift [52]). This type of dynamics usually follows a specific

pattern and can be predicted. Thus, WASP will handle this

differently by periodically re-evaluating the query plan in the

background. How to accurately model/profile the dynamics

itself is out of the scope of this work.

7 Discussion & Assumptions

Re-optimize or degrade? Data degradation has been widely

used in wide-area streaming analytics and video analyt-

ics [24, 35, 49, 62, 63]. We believe that this approach is

complementary to our work, and can be used in conjunction.

For example, if maintaining accuracy is a priority, the system

may prefer re-optimizing the execution to degradation. On

the other hand, if the query can tolerate a certain degree of

inaccuracy, the system may first degrade the accuracy and re-

optimize the execution once it has reached a certain accuracy

threshold. The main drawback of degradation with respect

to operator scaling is that it cannot resolve misconfiguration

and may result in significant quality loss when recovering

from failures.

Transient workload spikes. We focus on workload dynamic

that lasts longer than a few seconds. Re-optimizing a query

execution to handle very short workload spikes may make

the system unstable because the workload may have already

changed when the query is adapted. Thus, WASP ignores

transient workload fluctuations.

Homogeneous compute power across slots. WASP ab-

stracts the computational resources in each location/site us-

ing computing slots. This is similar to the approach adopted

by many distributed stream processing systems [13, 54, 61].

Since, the performance of most wide-area streaming analyt-

ics queries is predominantly determined by the inter-site data

transmission, we hide the heterogeneity across slots and only

consider the heterogeneity across sites based on the number

of available slots per site.

Balanced event partitioning. A stream operator may parti-

tion its output to multiple downstream operators and tasks.

For clarity reason, we assume the output stream is evenly

distributed across tasks, which is common for stream opera-

tors [31]. However, our proposed techniques are not limited

by this assumption. It is worth noting that we do not make

any assumption on the input data distribution itself.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Bandwidth (Mbps)

Edge

Data Center

(a) Bandwidth distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
D

F

Latency (ms)

Edge

Data Center

(b) Latency distribution.

Figure 7. Inter-site network distribution. Edge connections

only consider data centers within the same region.

8 Experimental Evaluation

Our experiments address the following questions:

• Is the re-optimization-based adaptation applicable for

different types of queries (stateless and stateful) and

dynamics (workload and network bandwidth) (§8.4)?

• How do task re-assignment, operator scaling, and

query re-planning compare to each other (§8.5)?

• How does WASP perform in actual geo-distributed set-

tings where workload variations, bandwidth changes,

and failures may happen unpredictably and fre-

quently (§8.6)?

• How does WASP mitigate the overhead of adapting

stateful operators in wide-area settings (§8.7)?

8.1 System Implementation

We have implemented a WASP prototype on Apache

Flink [13] by (1) implementing a network monitoring mod-

ule (WAN Monitor) that periodically monitors the pair-wise

available between sites in the background, (2) incorporat-

ing WAN awareness in planning queries and scheduling

tasks, and (3) implementing an adaptability module that pe-

riodically gathers tasks’ runtime information, diagnoses any

unhealthy execution and wasteful resource utilization, and

adapts them. We override the default task scheduler algo-

rithm in Flink with our WAN-aware task placement algo-

rithm that solves the ILP problem using the Gurobi optimiza-

tion tool [2]. To reduce the overhead of evaluating query

plans, the Query Planner only evaluates plans with differ-

ent aggregation/join order as this type of operator typically

involves data transafer over the WAN that may cause bottle-

necks [57, 59].

8.2 Environment and System Setup

We evaluated WASP on a testbed derived from a real wide-

area system deployment and created a driver program to in-

troduce dynamics. We rely on a controlled environment for

our evaluation to (1) clearly identify how each adaptation

technique performs and (2) fairly contrast the techniques un-

der a common condition. We later show how WASP per-

forms under a live environment in (§8.6). Our testbed con-

sisted of 16 nodes: 8 edge nodes (2−4 slots/node) and 8 data

8

228

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

Table 3. Location-based query details.

Application State Operators Dataset

Advertising <10 filter, map YSB [15]

Campaign MB window, join synthetic data

Top-K ∼100 filter, map, union Twitter [6]

Topics MB window, reduce trace (scaled)

Events of 0 filter, union Twitter

Interest MB project trace (scaled)

center nodes (8 slots/node). A slot was configured with 1

CPU and 1GB of RAM. Figure 7 shows the network band-

width and latency distributions between the nodes. The net-

work between the data center nodes were configured based

on a 1-day measurement of network bandwidth between 8

Amazon EC2 data centers: Oregon, Ohio, Ireland, Frank-

furt, Seoul, Singapore, Mumbai, and Sao Paulo. On the other

hand, the network between the edge nodes were configured

based on the actual public Internet reported by Akamai [1].

We configure the system with α = 0.8, pmax = 3, and a

monitoring interval of 40 seconds to allow any adapted query

to stabilize. These parameters were set based on the obser-

vation that WAN bandwidths are relatively stable within a

period of 5 minutes [57].

8.3 Methodology

Query and Dataset. We evaluated WASP using the Ya-

hoo! Streaming Benchmark (YSB) [15] and Twitter analytics

queries. They cover (1) both stateful and stateless executions,

(2) various combinations of commonly-used operators, and

(3) real workloads with different characteristics (see Table 3

for details):

1. Advertising Campaign from the YSB monitors rele-

vant advertisements related to specific campaigns ev-

ery 10 seconds. To prevent bottlenecks in Redis and

Kafka (e.g., partition mismatch), we replace all I/O op-

erations with in-memory operations and cache interme-

diate results in memory.

2. Top-K Popular Topic Detection detects top events on

a replayed geo-tagged Twitter trace. The query aggre-

gates the top 10 most popular topics in each country

over a period of 30 seconds. It consists of 2 different

states: the source’s offset and the intermediate aggre-

gation results.

3. Events of Interest filters out tweets based on one or

more attributes (e.g., language, topic, country of ori-

gin) and it does not maintain any internal state (state-

less).

The YSB data were synthetically generated and dis-

tributed evenly across the 8 edge locations. On the other

hand, the Twitter trace was distributed based on the actual

geo-location information embedded in each tweet. Thus, the

latter covers the spatial and temporal distributions of actual

events. All operators were initially configured with p = 1
and we set a checkpointing interval of 30 seconds.

Metrics. We consider 2 main metrics in our experiments:

1. Execution Delay. The delay is measured as the average

event latency which is the difference between the time

an event is emitted at the sink and the time it was gen-

erated by the external source. In the case of windowed-

group aggregation, the event generation time is set to

the maximum event time of all events within a particu-

lar window (the latest event within a window) [32].

2. Processing Ratio. The processing ratio is computed as

the ratio between the processing rate and the aggre-

gated source rate over a time interval. A ratio of 1 in-

dicates that the query is able to process all the events,

while a ratio of < 1 indicates that the query is con-

strained by the allocated resources. This is more gen-

eral than an accuracy metric [8, 55] since the latter is

algorithm-specific [62].

8.4 Adapting to Wide-area Bottlenecks

We initialized the input stream rate at each source to 10,000

events/second at t = 0 and introduced dynamics every 5

minutes. Specifically, we first increased the rate to 20,000

events/second at t = 300, and decreased it back to 10,000

events/second at t = 600. To see the effect of network band-

width variation, we halved the bandwidth of every link at

t = 900 and restore it at t = 1200. We compare our re-

optimization-based approach, (1) Re-opt, against (2) No

Adapt which did not adapt to dynamics, and (3) Degrade

which dropped late events in case of insufficient resources.

We set the SLO to 10 seconds for Degrade. Figure 8 and

Figure 9 show the average delay and processing ratio of the

all the 3 queries respectively.

300 ≤ t < 600: We see from Figure 8 that the delay of

No Adapt increased continuously by up to 2−3 orders of

magnitude as the workload increased because some network

links could not sustain the workload. This shows in the reduc-

tion of the processing ratio from 1 to ∼0.86 (Figure 9). The

processing ratio of Degrade also dropped to ∼0.86 but it

was able to maintain the delay within the SLO by dropping

any late events, which in practical scenario may affect the

result’s accuracy. In contrast, Re-opt was able to maintain

low-latency processing without dropping any event (main-

tain the average processing ratio to ∼1) by re-assigning the

bottleneck tasks to different locations at t = 380. The pro-

cessing ratio of the YSB and Top-K momentarily dropped

since the executions were suspended for approximately 2

and 10 seconds to migrate the states (Figure 9(a) and Fig-

ure 9(b)). Notice that the delay of Degrade increased to ∼8

seconds for the YSB case but it remained low for the Top-

K case. This was because the key distribution of the former

was much lower than the latter’s, making it more sensitive to

9

229

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt Degrade Re-opt

(a) YSB Advertising Campaign.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt Degrade Re-opt

(b) Top-K Popular Topics.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt Degrade Re-opt

(c) Event of Interests.

Figure 8. Average execution delay under workload (t = 300 → 600) and bandwidth (t = 900 → 1200) dynamics.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign
drop

scale out
drop

P
ro

c
e
s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(a) YSB Advertising Campaign.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign
drop

scale out
drop

P
ro

c
e
s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(b) Top-K Popular Topics.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign
drop

scale out
drop

P
ro

c
e
s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(c) Event of Interests.

Figure 9. Processing ratio under workload (t = 300 → 600) and bandwidth (t = 900 → 1200) variations.

late events when measuring the event time of the windowed-

group aggregation.

600 ≤ t < 900: When the workload reduced at t = 600,

Degrade stopped dropping events and its processing ratio

started to increase to 1. In the case of No Adapt, the pro-

cessing ratio temporarily increased > 1 indicating that the

system was consuming queued events that had been accumu-

lating from the previous interval.

900 ≤ t ≤ 1200: To see the effect of network bandwidth

variation, we halved the bandwidth capacity of all links at

t = 900. We can see that the delay and processing ratio have

similar trends to the effect of increasing workload. However,

Re-opt took a different adaptation action by scaling out the

bottleneck operator instead of re-assigning the tasks since

the adaptation module could not find a single alternative link

whose bandwidth was higher than the stream rate. We can

also see that operator scaling resulted in a faster convergence,

taking advantage of having more resources. Finally, the delay

of the 3 queries dropped at t = 1200 when the bandwidth

increased.

These results show that (1) the re-optimization-based

adaptation can handle both workload and bandwidth varia-

tions, (2) this is generally applicable for both stateless and

stateful executions, and (3) it can maintain low-latency exe-

cution without dropping any event. For the rests of the exper-

iments, we used the stateful Top-K query as our workload

since it is the best representation of an actual geo-distributed

workload among the 3 queries, although they have a similar

trend (Figure 8 and Figure 9).

8.5 Re-Assign vs. Scale vs. Re-Plan

Next, we compared task re-assignment, operator scaling, and

query re-planning, in handling a combination of workload

and bandwidth variations independently. We introduced dy-

namics every 5 minutes by varying the workload and band-

width by a factor of {1, 2, 2, 1, 1} and {1, 1, 0.5, 0.5, 1} re-

spectively. We compared (1) No Adapt: which did not adapt

to dynamics, (2) Re-assign: which only handled dynamics

by re-assigning tasks, (3) Scale: which would first try to re-

assign the tasks but might scale some operators if it could

not find a solution, and (4) Re-plan: which re-evaluated the

execution plan based on the observed workload and resource

availability. Both Re-assign and Re-plan never changed

the parallelism.

First, we can see from Figure 10(a) that all of the tech-

niques that adapt the query resulted in lower delay compared

to No Adapt, highlighting the importance of adaptability in

handling dynamics. Secondly, Scale resulted in the low-

est overall delay compared to Re-plan and Re-assign,

and Re-plan resulted in a lower delay for the majority of

the events (< 93rd percentile) with respect to Re-assign.

Figure 10(b) breaks down the delay of each technique for

each interval. At t = 300, both Re-assign and Scale

re-assigned the tasks while Re-plan switched to another

plan. All of them could handle the the workload increase

during this interval. However, when the available bandwidth

decreased at t = 600, Re-assign was unable to find an

alternative task placement since it was constrained by the ini-

tial parallelism. In contrast, Scale was able to handle this

problem by acquiring 20% additional slots (Figure 10(c))

and scaling out the bottleneck operators. Re-plan was also

able to handle the problem by re-planning the query. How-

ever, Scale resolved the bottleneck faster than Re-plan,

taking advantage of the additional resources. Lastly, Scale

decreased the parallelism when the bandwidth availability

10

230

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

 0

 0.25

 0.5

 0.75

 1

 0.1 1 10 100 1000

C
D

F

Delay (seconds)

No Adapt

Re-assign

Scale

Re-plan

(a) Delay distribution.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

re-assign

re-assign

re-plan

scale out

re-plan

scale down

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt
Re-assign

Scale
Re-plan

(b) Average delay over time.

 0

 0.4

 0.8

 1.2

 0 300 600 900 1200 1500

P
a
ra

lle
lis

m
 c

h
a
n
g
e
s

Time (seconds)

No Adapt

Re-assign

Scale

Re-plan

(c) Parallelism changes over time.

Figure 10. Breakdown comparison between different techniques in handling dynamics individually.

had increased at t = 1200 and some of the resources became

underutilized.

Comparing Re-assign and Scale, we can see that dy-

namically adapting operator parallelism can better handle

bottlenecks with the expense of consuming more resources.

We can also see that re-optimizing both the logical and phys-

ical executions (Re-plan) results in a more optimal adap-

tation than simply re-assigning tasks (Re-assign) with the

same parallelism, and hence the former is preferable when-

ever possible.

8.6 WASP in a Live Environment

In this experiment, we evaluated WASP using the Top-K pop-

ular topic detection query in a live, trace-driven environment

where we introduced (1) network bandwidth dynamics based

on a real pair-wise bandwidth variation trace between 8 Ama-

zon EC2 data centers which ranged from 0.51 to 2.36, and (2)

random workload patterns for each source with a variation

factor ranging from 0.8 to 2.4, and (3) a failure at t = 540
by revoking all the computational resources and re-allocating

them after 60 seconds. We added failure in this experiment to

see how WASP can scale a query to quickly process accumu-

lating events. Figure 11(a) shows the bandwidth and work-

load variations in our experiment. Here, we compared (1)

WASP against (2) No Adapt and (3) Degrade. WASP could

use any of the adaptation techniques: task re-assignment, op-

erator scaling, and query re-planning, depending on the con-

dition discussed in §6.2.

Figure 11(b) and Figure 11(c) show the delay and paral-

lelism over time. We make a few observations here. First,

WASP’s processing delay stayed close to 1 second (similar to

the unconstrained case) for most of the time except for some

intervals: At 300 ≤ t < 540, there was a variation in the

delay when WASP scaled out 2 of the tasks to handle work-

load increases and bandwidth drops. At t = 640, WASP was

able to quickly handle the accumulated events after recover-

ing from failure by scaling out the bottleneck operators. It

then gradually scaled down the operators after the execution

stabilized. Finally, it further scaled down the majority of the

additional tasks at 900 ≤ t < 1320 when the available band-

width had increased.

 0

 0.5

 1

 1.5

 2

 2.5

 0 300 600 900 1200 1500 1800

V
a
ri
a
ti
o
n
 f
a
c
to

r
(X

)

Time (seconds)

Bandwidth Workload

(a) Bandwidth and workload variations over time.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500 1800

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt Degrade WASP

(b) Average delay over time.

 0

 0.5

 1

 1.5

 2

 0 300 600 900 1200 1500 1800

P
a
ra

lle
lis

m
 c

h
a
n
g
e
s

Time (seconds)

No Adapt Degrade WASP

(c) Parallelism changes over time.

Figure 11. WASP’s adaptations to dynamics and failures.

In contrast to WASP, the delay of No Adapt increased by

more than 2 orders of magnitude, especially after the execu-

tion recovered from failure since it was unable to handle the

queued events. Although Degrade could maintain the aver-

age delay within 1 second, it had to sacrifice up to ∼24% of

the events. This resulted in an inaccurate result and hence,

may not be tolerable for queries that require high accuracy.

In contrast, WASP could process all of the events while main-

taining the low-latency processing (Figure 12(a)). From Fig-

ure 12(b) we can see that WASP had a longer delay tail distri-

bution compared to Degrade. We observed that the majority

of the delay came from the monitoring process, the transition-

ing phase for migrating states, and the processing of queued

events after WASP recovered from failure.

These results show that (1) WASP can handle real-world

dynamics and failures without dropping any of the events,

11

231

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

 0

 25

 50

 75

 100

No Adapt WASP Degrade

P
ro

c
e

s
s
e

d
 e

v
e

n
ts

 (
%

)

Adaptation techniques.

(a) Average processed events.

 0

 0.25

 0.5

 0.75

 1

 0.1 1 10 100 1000

C
D

F

Delay (seconds)

No Adapt

WASP

Degrade

(b) Delay distribution.

Figure 12. Quality vs. delay trade-offs.

 0

 20

 40

 60

 0 100 200 300 400 500

D
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Migrate

WASP

Random

Distant

(a) Execution delay over time.

 0

 50

 100

 150

 200

No
Migrate

WASP Ran-
dom

Distant

O
v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
) Transition

Stabilize

(b) Adaptation Overhead.

Figure 13. Network-aware state migration.

and (2) there is essentially a trade-off between the re-

optimization and degradation-based adaptation techniques in

maintaining the quality/accuracy of the results and maintain-

ing the low-latency processing.

8.7 Mitigating Adaptation Overhead

In the last set of experiments, we see how WASP can re-

duce the overhead of adapting queries with large computa-

tion state. Specifically, we highlight the importance of net-

work awareness and the benefit of state partitioning in re-

ducing the overhead. We break down the overhead into 2

phases: (1) transition time: when the execution is suspended

for state migration, and (2) stabilizing time: the time needed

to consume all queued events that have been accumulating

during the transition process. We highlight the importance of

network-aware state migration in §8.7.1 and show the benefit

of state partitioning to further reduce the overhead in §8.7.2.

In both experiments, we controlled the size of the state that

needed to be migrated.

8.7.1 Network-aware State Migration

To ensure low-overhead adaptation, WASP estimates the

transition time of migrating a task to a different site based

on the size of its state and the bandwidth availability be-

tween the initial site and the new site. The problem with the

network-agnostic approach is that migrating a state over the

WAN may take a long time if the bandwidth between the two

sites is low. This is impractical for frequent dynamics that are

common in wide-area settings.

 0

 20

 40

 60

 80

0 32 64 128 256 512

9
5

th
 %

 d
e

la
y
 (

s
e

c
o

n
d

s
)

State size (MB)

Default

Partitioned

(a) Execution delay distribution.

 0

 100

 200

 300

 400

0 32 64 128 256 512

O
v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

State size (MB)

Stabilize

Transition

Stabilize-prt

Transition-prt

(b) Adaptation overhead.

Figure 14. Mitigating overhead through operator scaling and

state partitioning. ”prt” stands for Partitioned.

In this experiment, we compared (1) WASP against (2) No

Migrate† which did not migrate the state (equivalent to

adapting stateless operators), (3) Random: which ignored the

bandwidth availability, and (4) Distant: which migrated a

state to a site. In any case, the system ensured that the destina-

tion site had sufficient bandwidth to process the actual data

stream and hence, the execution would eventually stabilize.

We fixed the state size to 60MB.

Figure 13(a) compares the effect of different state migra-

tion techniques to the overall query execution delay. In any

of the cases, the system started adapting the query at t = 180.

Here, we can see that No Migrate could quickly reduce the

delay without migrating the state. However, this resulted in

an incorrect result or a loss in accuracy. Comparing the other

3 techniques that maintained the state, we can see that WASP

resulted in the lowest delay during the adaptation phase.

Figure 13(b) shows the breakdown of the overhead. First,

No Migrate incurred ∼0 transition time since it only redi-

rected the data streams. There was a stabilizing time and

a slight increase in delay despite not migrating the state

(similar to adapting stateless operator) due to the queued

events during diagnosis period. Reducing this period may

reduce the transition time but makes the system more sus-

ceptible to spikes and miss-estimation. Secondly, WASP re-

sulted in 41−56% lower overhead and 7−20 seconds lower

99th percentile delay compared to Random and Distant re-

spectively. The reason is because the two WAN-agnostic ap-

proaches migrated state over a low-bandwidth link, leading

to a higher transitioning time and stabilizing time. These re-

sults show the importance of network awareness in reducing

the adaptation overhead in wide-area settings.

8.7.2 State Partitioning

In addition to network awareness, we observe how parti-

tioning large states across multiple links can further re-

duce the adaptation overhead. In this experiment, we com-

pared Default: which never partitioned the state, and

Partitioned: which would force the adaptation module to

find an alternative placement (may involve operator scaling)

and partition the state whenever the estimated transition time

†Ignoring the state will result in a loss of accuracy in the result.

12

232

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

exceeded a specific threshold. We varied the state size to {0,

32, 64, 128, 256, 512} MB and set the maximum threshold

to 30 seconds.

Figure 14(a) shows the 95th percentile delay over different

state size. We can see that the delay of Default increased as

the state size increased. In contrast, Partitioned could re-

duce the delay in the case of large state (256MB and 512MB).

This is due to the reduction in the adaptation overhead. Fig-

ure 14(b) shows the breakdown of the overhead. In general,

the overhead of adapting a query increased as the state size

increased. However, Partitioned was able to reduce this

overhead by scaling out the bottleneck operator and partition-

ing its state across multiple network links. This reduced the

overhead by more than 120 seconds (Figure 14(b)) which

subsequently reduced the average delay by 42 seconds (Fig-

ure 14(a)). These results highlight another benefit of operator

scaling in reducing the adaptation overhead.

9 Related Work

Wide-Area Data Analytics Systems. Wide-area data ana-

lytics systems can be classified into two different groups

based on their processing model: (1) batch analytics, and (2)

streaming analytics. Early work in wide-area data analytics

has focused on incorporating WAN awareness in scheduling

jobs and placing tasks across multiple sites with the goal of

minimizing query execution latency [25, 47, 57] or saving

WAN bandwidth consumption [58]. However, they ignore

the dynamic nature of wide-area environment. Tetrium [25]

considers dynamic resource availability but does not con-

sider re-optimizing jobs that have already been deployed.

Turbo [59] has looked at dynamic query re-planning for

batch analytics but its techniques cannot be applied directly

for long-running streaming analytics queries.

Existing work has also looked at optimizing streaming an-

alytics queries in wide-area settings [21, 29, 46, 49, 62]. Piet-

zuch et al. [46] address the problem of network-aware op-

erator placement, and Sana [29] considers sharing common

execution between queries. However, they do not address

workload/resource dynamics. Others have considered the dy-

namic nature of a wide-area environment, but focused on

trading latency, WAN traffic, and accuracy. Heintz et al. [21]

propose a technique to trade accuracy and delay in the con-

text of windowed grouped aggregation. Kumar et al. [35] pro-

poses a TTL-based approach that trades delay and WAN traf-

fic for windowed grouped aggregation. JetStream [49] allows

users to specify different degradation policies with a data-

cube model. AWStream [62] relies on a profiling technique

to determine which degradation policy to take to ensure a

certain degree of accuracy. We argue that these degradation

approaches are application-specific and they are complemen-

tary to our techniques.

Adaptability in stream processing systems. There have

been a large body of work that address the importance of

adaptability in cluster-based stream processing systems [11,

14, 17, 19, 31, 38, 42, 48, 51, 56, 60]. However, they have

focused on addressing computational bottlenecks by scaling

out tasks across multiple computing nodes within a cluster.

These techniques cannot be directly applied to handle dy-

namics in a wide-area environment due to the highly hetero-

geneous and limited network bandwidth.

Others have also looked at the importance of minimizing

the adaptability overhead. Drizzle [56] reduces the synchro-

nization overhead for Bulk Synchronous Processing model.

Chi [42] relies on control mechanism to reduce the overhead

of global synchronization. ChronoStream [60] partitions and

distributes large states across multiple nodes to allow fast re-

covery. DS2 [31] predicts the scaling factor based on the ex-

pected processing rate of each operator for dataflow model.

Although these techniques are related to our work, they do

not account for network constraints. In wide-area environ-

ment, the overhead of migrating large states over WAN is sig-

nificantly higher than the partitioning overhead, and hence

our techniques focus on minimizing this overhead.

10 Conclusion

In this work, we rethink the adaptability property of

wide-area stream processing systems and propose a WAN-

aware adaptation framework, WASP, that allows queries

to handle dynamics without compromising quality. WASP

adapts queries through a combination of multiple techniques:

task re-assignment, operator scaling, and query re-planning.

WASP can automatically determine which adaptation to take

based on the type of queries, dynamics, and goals. WASP

further incorporates network awareness to mitigate the over-

head of adapting queries in wide-area settings. Experimental

evaluation shows that WASP is able to handle wide-area dy-

namics with low overhead while maintaining the quality of

the results.

Acknowledgments

The authors would like to thank the anonymous Middleware

reviewers for their valuable comments and feedback. The

work is supported by grant NSF CNS-1619254 and CNS-

1717834.

References
[1] Akamai’s state of the Internet report. https://bit.ly/2N6fL8r.

[2] Gurobi optimization. http://www.gurobi.com/. Accessed: 2018-11-

27.

[3] Keystone real-time stream processing platform.

https://bit.ly/2pxsMyI. Accessed: 2019-11-02.

[4] One nation under CCTV: The future of automated surveillance.

https://bit.ly/2N7vfZE. Accessed: 2019-11-02.

[5] One surveillance camera for every 11 people in Britain.

https://bit.ly/2JIut3v. Accessed: 2019-11-02.

[6] Twitter streaming API. https://developer.twitter.com/. Accessed:

2019-06-04.

13

233

https://bit.ly/2N6fL8r
http://www.gurobi.com/
https://bit.ly/2pxsMyI
https://bit.ly/2N7vfZE
https://bit.ly/2JIut3v
https://developer.twitter.com/

Middleware ’20, December 7–11, 2020, Delft, The Netherlands Albert Jonathan, Abhishek Chandra, and Jon Weissman

[7] Video access log processing with Apache Flink.

https://bit.ly/2oIe8o6. Accessed: 2019-11-02.

[8] H. Abdi. The Kendall rank correlation coefficient. Encyclopedia of

Measurement and Statistics. Sage, Thousand Oaks, CA, pages 508–

510, 2007.

[9] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective

straggler mitigation: Attack of the clones. In NSDI, volume 13, pages

185–198, 2013.

[10] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris. Reining in the outliers in Map-Reduce clus-

ters using Mantri. In 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 10), volume 10, page 24, 2010.

[11] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,

A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman. Pho-

ton: Fault-tolerant and scalable joining of continuous data streams. In

Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, pages 577–588. ACM, 2013.

[12] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas.

State management in Apache Flink®: Consistent stateful dis-

tributed stream processing. Proceedings of the VLDB Endowment,

10(12):1718–1729, 2017.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas. Apache Flink: Stream and batch processing in a single

engine. Bulletin of the IEEE Computer Society Technical Committee

on Data Engineering, 36(4), 2015.

[14] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.

Integrating scale out and fault tolerance in stream processing using

operator state management. In Proceedings of the 2013 ACM SIG-

MOD international conference on Management of data, pages 725–

736. ACM, 2013.

[15] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-

baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al. Benchmarking

streaming computation engines: Storm, Flink and Spark Streaming. In

2016 IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW), pages 1789–1792. IEEE, 2016.

[16] R. Elmasri. Fundamentals of database systems. Pearson Education

India, 2008.

[17] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy.

Dhalion: Self-regulating stream processing in heron. Proceedings of

the VLDB Endowment, 10(12):1825–1836, 2017.

[18] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload analysis

and demand prediction of enterprise data center applications. In Work-

load Characterization, 2007. IISWC 2007. IEEE 10th International

Symposium on, pages 171–180. IEEE, 2007.

[19] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and

P. Valduriez. Streamcloud: An elastic and scalable data streaming

system. IEEE Transactions on Parallel and Distributed Systems,

23(12):2351–2365, 2012.

[20] B. Heintz, A. Chandra, and R. K. Sitaraman. Optimizing grouped

aggregation in geo-distributed streaming analytics. In Proceedings of

the 24th International Symposium on High-Performance Parallel and

Distributed Computing, pages 133–144. ACM, 2015.

[21] B. Heintz, A. Chandra, and R. K. Sitaraman. Trading timeliness and

accuracy in geo-distributed streaming analytics. In Proceedings of the

Seventh ACM Symposium on Cloud Computing, pages 361–373. ACM,

2016.

[22] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer. Achieving high utilization with software-driven

WAN. In ACM SIGCOMM Computer Communication Review, vol-

ume 43, pages 15–26. ACM, 2013.

[23] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.

Gibbons, and O. Mutlu. Gaia: Geo-distributed machine learning ap-

proaching LAN speeds. In NSDI, pages 629–647, 2017.

[24] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,

P. Bahl, and M. Philipose. Videoedge: Processing camera streams us-

ing hierarchical clusters. In Proceedings of the Second ACM/IEEE

Symposium on Edge Computing. ACM, 2018.

[25] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and

M. Zhang. Wide-area analytics with multiple resources. In Proceed-

ings of the Thirteenth EuroSys Conference, page 12. ACM, 2018.

[26] C.-C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across geo-

distributed datacenters. In Proceedings of the Sixth ACM Symposium

on Cloud Computing, pages 111–124. ACM, 2015.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a

globally-deployed software defined WAN. In ACM SIGCOMM Com-

puter Communication Review, volume 43, pages 3–14. ACM, 2013.

[28] J. Jiang, S. Sun, V. Sekar, and H. Zhang. Pytheas: Enabling data-driven

quality of experience optimization using group-based exploration-

exploitation. In NSDI, volume 1, page 3, 2017.

[29] A. Jonathan, A. Chandra, and J. Weissman. Multi-query optimization

in wide-area streaming analytics. In Proceedings of the ACM Sympo-

sium on Cloud Computing, pages 412–425. ACM, 2018.

[30] A. Jonathan, A. Chandra, and J. Weissman. Rethinking adaptability in

wide-area stream processing systems. In 10th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud 18). USENIX Association,

2018.

[31] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and

T. Roscoe. Three steps is all you need: Fast, accurate, automatic scal-

ing decisions for distributed streaming dataflows. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18), pages 783–798. USENIX Association, 2018.

[32] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and

V. Markl. Benchmarking distributed stream data processing systems.

In 2018 IEEE 34th International Conference on Data Engineering

(ICDE), pages 1507–1518. IEEE, 2018.

[33] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging

system for log processing. In Proceedings of the NetDB, pages 1–7,

2011.

[34] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mit-

tal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter Heron: Stream

processing at scale. In Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, pages 239–250. ACM,

2015.

[35] D. Kumar, J. Li, A. Chandra, and R. Sitaraman. A TTL-based ap-

proach for data aggregation in geo-distributed streaming analytics.

Proceedings of the ACM on Measurement and Analysis of Computing

Systems, 3(2):29, 2019.

[36] F. Lai, M. Chowdhury, and H. Madhyastha. To relay or not to relay for

inter-cloud transfers? In 10th {USENIX} Workshop on Hot Topics in

Cloud Computing (HotCloud 18), 2018.

[37] K. Leetaru, S. Wang, G. Cao, A. Padmanabhan, and E. Shook. Map-

ping the global Twitter heartbeat: The geography of Twitter. First Mon-

day, 18(5), 2013.

[38] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou. Stream-

Scope: Continuous reliable distributed processing of big data streams.

In NSDI, volume 16, pages 439–453, 2016.

[39] H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Mahajan, J. Pad-

hye, and M. Zhang. Efficiently delivering online services over inte-

grated infrastructure. In NSDI, volume 1, page 1, 2016.

[40] F. Loewenherz, V. Bahl, and Y. Wang. Video analytics towards vision

zero. Institute of Transportation Engineers. ITE Journal, 87(3):25,

2017.

[41] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla. Dynamic

query re-planning using QOOP. In 13th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 18), pages 253–267.

USENIX Association, 2018.

14

234

https://bit.ly/2oIe8o6

WASP: Wide-area Adaptive Stream Processing Middleware ’20, December 7–11, 2020, Delft, The Netherlands

[42] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman,

P. Costa, T. Kim, S. Muthukrishnan, V. Kuppa, et al. Chi: A scalable

and programmable control plane for distributed stream processing sys-

tems. Proceedings of the VLDB Endowment, 11(10):1303–1316, 2018.

[43] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang.

Practical, real-time centralized control for CDN-based live video de-

livery. In ACM SIGCOMM Computer Communication Review, vol-

ume 45, pages 311–324. ACM, 2015.

[44] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,

I. Gupta, and R. H. Campbell. Samza: Stateful scalable stream process-

ing at LinkedIn. Proceedings of the VLDB Endowment, 10(12):1634–

1645, 2017.

[45] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and

V. ICSI. Making sense of performance in data analytics frameworks.

In NSDI, volume 15, pages 293–307, 2015.

[46] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and

M. Seltzer. Network-aware operator placement for stream-processing

systems. In Data Engineering, 2006. ICDE’06. Proceedings of the

22nd International Conference on, pages 49–49. IEEE, 2006.

[47] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,

and I. Stoica. Low latency geo-distributed data analytics. In ACM

SIGCOMM Computer Communication Review, volume 45, pages 421–

434. ACM, 2015.

[48] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and

Z. Zhang. Timestream: Reliable stream computation in the cloud. In

Proceedings of the 8th ACM European Conference on Computer Sys-

tems, pages 1–14. ACM, 2013.

[49] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman. Aggre-

gation and degradation in JetStream: Streaming analytics in the wide

area. In NSDI, volume 14, pages 275–288, 2014.

[50] R. Ramakrishnan and J. Gehrke. Database management systems.

McGraw-Hill, 2000.

[51] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu. Elastic

scaling of data parallel operators in stream processing. In Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-

posium on, pages 1–12. IEEE, 2009.

[52] Z. Shen, Q. Jia, G.-E. Sela, B. Rainero, W. Song, R. van Renesse, and

H. Weatherspoon. Follow the sun through the clouds: Application mi-

gration for geographically shifting workloads. In Proceedings of the

Seventh ACM Symposium on Cloud Computing, pages 141–154. ACM,

2016.

[53] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop

distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1–10. Ieee, 2010.

[54] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Pa-

tel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al.

Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD Inter-

national Conference on Management of Data, pages 147–156. ACM,

2014.

[55] C. J. Van Rijsbergen. Information Retrieval (2nd ed.). Butterworth-

Heinemann, 1979.

[56] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,

M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable

stream processing at scale. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 374–389. ACM, 2017.

[57] R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clarinet: Wan-

aware optimization for analytics queries. In 12th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 16),

volume 16, pages 435–450, 2016.

[58] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and

G. Varghese. Global analytics in the face of bandwidth and regulatory

constraints. In NSDI, volume 7, pages 7–8, 2015.

[59] H. Wang, D. Niu, and B. Li. Dynamic and decentralized global analyt-

ics via machine learning. In Proceedings of the ACM Symposium on

Cloud Computing, pages 14–25. ACM, 2018.

[60] Y. Wu and K.-L. Tan. ChronoStream: Elastic stateful stream compu-

tation in the cloud. In Data Engineering (ICDE), 2015 IEEE 31st

International Conference on, pages 723–734. IEEE, 2015.

[61] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Dis-

cretized streams: Fault-tolerant streaming computation at scale. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 423–438. ACM, 2013.

[62] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee. Aw-

stream: Adaptive wide-area streaming analytics. In Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Commu-

nication, pages 236–252. ACM, 2018.

[63] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and

M. J. Freedman. Live video analytics at scale with approximation and

delay-tolerance. In NSDI, volume 9, page 1, 2017.

15

235

	1 Introduction
	2 Background
	2.1 Wide-area Stream Processing Systems
	2.2 Wide-area Resource Constraints

	3 WASP Overview
	3.1 System Architecture
	3.2 Runtime Monitoring
	3.3 Estimating the Actual Workload

	4 Optimization-Based Adaptation
	4.1 Task Re-Assignment
	4.2 Operator Scaling
	4.3 Query Re-Planning

	5 WAN-aware Design Adaptation
	6 WASP's Adaptation Policy
	6.1 Adaptation Technique Comparison
	6.2 Determining Factors

	7 Discussion & Assumptions
	8 Experimental Evaluation
	8.1 System Implementation
	8.2 Environment and System Setup
	8.3 Methodology
	8.4 Adapting to Wide-area Bottlenecks
	8.5 Re-Assign vs. Scale vs. Re-Plan
	8.6 WASP in a Live Environment
	8.7 Mitigating Adaptation Overhead

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

