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Abstract. We study the log-likelihood function and Maximum Likelihood Estimate (MLE) for
the matrix normal model for both real and complex models. We describe the exact number of
samples needed to achieve (almost surely) three conditions, namely a bounded log-likelihood func-
tion, existence of MLEs, and uniqueness of MLEs. As a consequence, we observe that almost sure
boundedness of log-likelihood function guarantees almost sure existence of an MLE, thereby prov-
ing a conjecture of Drton, Kuriki and Hoff. The main tools we use are from the theory of quiver
representations, in particular, results of Kac, King and Schofield on canonical decomposition and
stability.
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1. Introduction

The following problem is fundamental in statistics in a variety of settings: Among a collection
of probability distributions (a.k.a. a statistical model), find the one that best fits some empirical
data. A probability distribution in the collection that maximizes the likelihood of the empirical data
is called a Maximum Likelihood Estimate (MLE). Understanding the existence and uniqueness of
MLEs is an important problem that is widely studied. A related problem is to understand when the
likelihood function (or equivalently the log-likelihood function) is bounded above. Henceforth, we
will simply say likelihood and log-likelihood functions are bounded to mean that they are bounded
above.

In many settings, data is observed in two domains, and hence observations are naturally matrix-
valued. For such observations, one sometimes assumes that they follow a matrix normal distribution.
These matrix normal models have been used for various purposes in various settings, for example to
EEG/MEG data [6, 11, 32, 54], Environmental data [23, 45], Netflix movie rating data [1] and facial
recognition [55] to name a few. The existence and uniqueness of MLEs, and the boundedness of the
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likelihood function in matrix normal models for small sample sizes is important to understand so
as to use them effectively in applications (see [21] for more motivation). This problem was studied
in many manuscripts before, e.g., [21, 22, 49, 51], each making partial progress.

More recently, Amendola, Kohn, Reichenbach and Seigal [2] uncovered connections between
MLEs and stability notions in invariant theory and adapted results of Bürgin and Draisma [8] to
further improve the results on sample size required for the (almost sure) boundedness of the log-
likelihood function. It is worthwhile to mention some interesting connections to invariant theory
even though it will not be relevant to our paper. The flip-flop algorithm for computing an MLE
for matrix normal models [22, 44] is very similar to the algorithm proposed by Gurvits [28] for
computing capacity of completely positive operators, which is well known to be equivalent to null
cone membership (a central problem in algorithmic invariant theory) for the so called left-right
action. Even more curiously, the notion of geodesic convexity that has played a major role in
understanding invariant theoretic algorithms in recent years [9] can already be seen in Wiesel’s
work [56] several years prior in the setting of the flip-flop algorithm.

Summary of our main results. In this paper, for matrix normal models (both real and complex),
we will compute the exact number of samples needed to achieve (almost surely) three conditions,
i.e., (1) a bounded log-likelihood function, (2) existence of MLEs and (3) uniqueness of MLEs,
thereby completely resolving the problems. In particular, we prove a conjecture of Drton, Kuriki
and Hoff [21] that almost sure boundedness of the likelihood function implies almost sure existence
of an MLE. We utilize heavily the connections between invariant theory and MLEs and in par-
ticular the connection between matrix normal models and geometric invariant theory for quiver
representations discovered in [2]. Our techniques, however, are significantly different from any of
the previous work on these problems and rely on the algebraic aspects of theory of quiver represen-
tations. We also study a related model called the model of proportional covariance matrices and
give complete answers to the aforementioned questions in that case as well.

Before we get into precise definitions and results, a few remarks on background literature. We
refer to [2, 21] and references therein for more details regarding real and complex Gaussian mod-
els, matrix normal models, their MLEs and associated thresholds as well as more motivation for
the problems we discuss in this paper. A detailed explanation and proofs of the connections be-
tween MLEs and invariant theory can be found in [2]. We point the reader to the book [18] as a
comprehensive introductory text on quiver representations.

1.1. Real Gaussian models. We denote by PDn, the cone of n × n positive definite matrices
with entries in R, the field of real numbers. For an n-dimensional Gaussian distribution with mean
0 and covariance matrix Σ ∈ PDn, the density function is described by

fΣ(y) =
1√

det(2πΣ)
e−

1
2
y>Σ−1y.

The inverse of the covariance matrix, i.e., Σ−1 is called the concentration matrix and denoted
Ψ. A subset of M ⊆ PDn defines a statistical model consisting of the n-dimensional Gaussian
distributions with mean 0 and concentration matrix Ψ ∈ M. For Gaussian models, the sample
data is a tuple of vectors Y = (Y1, . . . , Ym) ∈ (Rn)m, where m denotes the sample size. The
likelihood function LY : PDn → R is given by

LY (Ψ) =

m∏
i=1

fΨ−1(Yi) = det

(
Ψ

2π

)m/2
e−

1
2

∑m
i=1 Y

>
i ΨYi .
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The log-likelihood function lY : PDn → R (up to an additive constant) is given by

lY (Ψ) =
m

2
log det(Ψ)− 1

2
Tr

(
Ψ

m∑
i=1

YiY
>
i

)
.

A Maximum Likelihood Estimate (MLE) is a point Ψ̂ ∈ M that maximizes the likelihood of
observing the data Y , which is equivalent to maximizing the log-likelihood function lY . In other

words, Ψ̂ is an MLE if lY (Ψ̂) ≥ lY (Ψ) for all Ψ ∈ M. If the log-likelihood function is unbounded,
then of course MLEs do not exist. But even when the log-likelihood function is bounded, MLEs do
not necessarily exist because the supremum of the log-likelihood function may not be achieved by
any particular concentration matrix. Finally, even when an MLE exists, there is no guarantee that
it is unique as there may be many points in the model that achieve the maximum possible value of
the log-likelihood function.

For a Gaussian model M⊆ PDn, we define three threshold functions as follows:

(1) We define mltb(M) to be the smallest integer m such that for d ≥ m, the log-likelihood
function lY for Y = (Y1, . . . , Yd) ∈ (Rn)d is bounded almost surely.

(2) We define mlte(M) to be the smallest integer m such that for d ≥ m, an MLE exists almost
surely for Y ∈ (Rn)d.

(3) We define mltu(M) to be the smallest integer m such that for d ≥ m, there almost surely
exists a unique MLE for Y ∈ (Rn)d.

In the above, almost surely means that the property holds away from a subset of (Rn)d of
Lebesgue measure zero. We will refer to mltb,mlte and mltu as maximum likelihood threshold
functions. By the above discussion, we observe that mltb ≤ mlte ≤ mltu.

1.2. Complex Gaussian models. The setting of complex Gaussian models is very much analo-
gous, with minor changes. The density function for a (circularly symmetric) complex n-dimensional
Gaussian with covariance matrix Σ ∈ PDn (the cone of positive definite n × n complex matrices)
is given by

fΣ(y) =
1

det(πΣ)
e−y

†Σ−1y,

where y† denotes the adjoint of y, i.e., conjugate transpose.
By an analogous computation the real case, we see that the log-likelihood function (up to an

additive constant) is given by

lY (Ψ) = m log det(Ψ)− Tr

(
Ψ

m∑
i=1

YiY
†
i

)
,

where Y †i denotes the adjoint of Yi. Observe the similarity to the log-likelihood function for real

Gaussian (except for the multiplicative factor of 1
2 which can be ignored for the purposes of un-

derstanding whether lY is bounded above, achieves its maximum, etc). The rest of the discussion
follows analogously. In particular, MLEs and the maximum likelihood thresholds are defined as
above.

Remark 1.1. We will reuse the same notation for real and complex models (for e.g., PDn, lY , etc).
It will always be clear whether we are in a real or a complex model, so there will be no scope for
confusion.
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1.3. Matrix normal models and main results. If n = pq, we consider the subset

M(p, q) = {Ψ1 ⊗Ψ2 | Ψ1 ∈ PDp,Ψ2 ∈ PDq} ⊆ PDpq,

where ⊗ denotes the Kronecker (or tensor) product of matrices. Such a statistical model is called a
matrix normal model. Sometimes it is also called a Kronecker covariance model. We will consider
and deal with both real and complex matrix normal models. As mentioned above, PDn denotes
positive definite real or complex matrices depending on whether we are working with real or complex
matrix normal models. When we want to differentiate between the real and complex models, we
will use MR(p, q) and MC(p, q) respectively. For matrix normal models, it will be convenient to
interpret the data as a p× q matrix, rather than a vector of size pq, and we will do so.

Drton, Kuriki, and Hoff [21] suggest that an exact formula for maximum likelihood thresholds
may be complicated because of the following behavior. For a sample size of two (i.e., Y = (Y1, Y2) ∈
Mat2

p,q, where Matp,q denotes the space of p×q matrices), consider the matrix normal modelM(p, q).

• If (p, q) = (5, 4), then we almost surely have a unique MLE;
• If (p, q) = (6, 4), then we almost surely have an MLE that is not unique;
• If (p, q) = (7, 4), then MLEs do not exist;
• If (p, q) = (8, 4), then we almost surely have an MLE that is not unique.

We obtain exact formulas for the mltb,mlte and mltu for matrix normal modelsM(p, q), both real
and complex. There are some delicate differences between real matrix normal models and complex
matrix normal models which we will elaborate on later, see also [2, Example 4.2]. Nevertheless,
the maximum likelihood threshold functions are the same for both real and complex matrix normal
models.

From the point of view of quiver representations, it is natural to fix the number of samples, and
then study the boundedness of log-likelihood function, existence and uniqueness of MLEs as p and
q vary. This subtle change in point of view offers a significantly different perspective from earlier
work. The added advantage is that the answer comes out very crisp!

Theorem 1.2. Suppose K = R or C. Let Y = (Y1, . . . , Ym) ∈ Matmp,q(K). Let d = gcd(p, q). Then,
for the matrix normal model MK(p, q):

(1) If p2 + q2 −mpq < 0, then there almost surely exists a unique MLE.
(2) If p2 + q2 −mpq ∈ {0, d2}, then an MLE exists almost surely. Further this MLE is almost

surely unique if and only if d = 1.
(3) In all other cases, the log-likelihood function is unbounded always (not just almost surely).

Consequently MLEs do not exist.

At this juncture, we invite the reader to verify that the complicated behavior in the exam-
ples mentioned above is consistent with the statement of the above theorem. We reformulate
Theorem 1.2 to compute exactly mltb,mlte, and mltu for M(p, q). While not as elegant as the
formulation in the above theorem, it remains fairly simple.

Theorem 1.3. Consider the (real or complex) matrix normal model M(p, q). Let gcd(p, q) = d,

and let r =
p2 + q2 − d2

pq
. Then

(1) If p = q = 1, then mltb = mlte = mltu = 1.
(2) If p = q > 1, then mltb = mlte = 1 and mltu = 3.
(3) If p 6= q and r is an integer, then mltb = mlte = r. If d = 1, then mltu = r, and if d > 1,

then mltu = r + 1.

(4) If p 6= q and r is not an integer, then mltb = mlte = mltu = dp
2+q2

pq e.

Now, it is a simple observation to see that the Drton-Kuriki-Hoff conjecture [21] follows imme-
diately from the above theorems:
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Corollary 1.4 (Drton-Kuriki-Hoff conjecture [21]). For the (real or complex) matrix normal model
M(p, q), almost sure boundedness of (log-)likelihood function implies almost sure existence of MLE.
In particular, for all (p, q),

mltb(M(p, q)) = mlte(M(p, q)).

We also consider a variant of the matrix normal model where one of the matrices is diagonal
which is called the model of proportional covariance matrices (see e.g., [24, 35]). Let

N (p, q) = {Ψ⊗D | Ψ ∈ PDp, D ∈ PDq is a diagonal matrix} ⊆ PDpq.

This model has also been considered before [49] in the context of maximum likelihood threshold
functions. We have the following results:

Theorem 1.5. Consider the model N (p, q). Let r = p/q.

(1) If r is an integer, then mltb = mlte = r. If q = 1, then mltu = r and if q > 1, then
mltu = r + 1.

(2) If r is not an integer, then mltb = mlte = mltu = dre.

Once again, we see that mltb(N (p, q)) = mlte(N (p, q)).

1.4. Organization. In Section 2, we recall invariant theory and the connections to MLE for Gauss-
ian group models. We also study stability notions when the underlying field is R or C and discuss
an important result, i.e., Proposition 2.23 that allow us to transfer generic stability results from C
(where it is easier to prove things) to R (which is more important for statistics). We discuss quiver
representations, stability for quiver representations and canonical decompositions in Sections 3, 4
and 5 respectively. In Section 6 and Section 7, we bring together all the material we develop to
prove our main results on maximum likelihood thresholds.

1.5. Acknowledgements. We would like to thank Carlos Améndola, Mathias Drton, Kathlén
Kohn, Philipp Reichenbach, Anna Seigal for interesting discussions and comments on an earlier
draft of this paper. We also thank Ronno Das and Siddharth Krishna for helpful discussions.

2. Invariant theory

Invariant theory is the study of symmetries captured by group actions. The roots of this subject
can be traced back to the masters of computation in the 19th century. At the turn of the 20th
century, the work of Hilbert and Weyl brought invariant theory to the forefront of mathematics,
and served to establish the foundations for modern algebra and algebraic geometry.

The basic setting is as follows. Let G be a group. A representation of G is an action of G on
a (finite-dimensional) vector space V (over a field K) by linear transformations. This is captured
succinctly as a group homomorphism ρ : G → GL(V ). In particular, an element g ∈ G acts on
V by the linear transformation ρ(g). We write g · v or gv to mean ρ(g)v. Throughout this paper,
we will only consider the setting where G is a linear algebraic group (over the underlying field K),
i.e., G is an (affine) variety, the multiplication and inverse maps are morphism of varieties, and
the action is a rational action (or rational representation), i.e., ρ : G → GL(V ) is a morphism of
algebraic groups.

The G-orbit of v ∈ V is the set of all vectors that you can get from v by applying elements of
the group, i.e.,

Ov := {gv | g ∈ G} ⊆ V.
We denote by K[V ], the ring of polynomial functions on V (a.k.a. the coordinate ring of V ). A

polynomial function f ∈ K[V ] is called invariant if f(gv) = f(v) for all g ∈ G and v ∈ V . In other
words, a polynomial is called invariant if it is constant along orbits. The invariant ring is

K[V ]G := {f ∈ K[V ] | f(gv) = f(v) ∀ g ∈ G, v ∈ V }.
5



The invariant ring has a natural grading by degree, i.e., K[V ]G = ⊕∞d=0K[V ]Gd where K[V ]Gd
consists of all invariant polynomials that are homogeneous of degree d. For v ∈ V , we denote by
Ov the closure of the orbit Ov.

Remark 2.1. To define the closure, we need to define a topology on V . In this paper, we will
only use the fields K = R or C. Hence, we will use the standard Euclidean topology on V for orbit
closures, unless otherwise specified. This is not standard. In literature, the topology is usually
taken as the Zariski topology. We will need to use the Zariski topology at times, but we will be
careful in specifying it each time. For K = C, the orbit closure w.r.t. Euclidean topology agrees
with the orbit closure w.r.t. Zariski topology (in the setting of rational actions of reductive groups).
We caution the reader that the interplay between the Euclidean and Zariski topology can be a bit
tricky at times for K = R.

The stabilizer of the action at a point v ∈ V is defined to be the subgroup Gv := {g ∈ G | gv = v}.
We make a few definitions.

Definition 2.2. Let K = R or C, and let G be an algebraic group (over K) with a rational action
on a vector space V (over K), i.e., ρ : G→ GL(V ). Let ∆ denote the kernel of the homomorphism
ρ. Give V the standard Euclidean topology. Then, for v ∈ V , we say v is

• unstable if 0 ∈ Ov;
• semistable if 0 /∈ Ov;
• polystable if v 6= 0 and Ov is closed;
• stable if v is polystable and the quotient Gv/∆ is finite.

We point out again that our definitions may not be quite standard because we use the Euclidean
topology. However, this is the form that is most suited for our purposes. Clearly, stable =⇒
polystable =⇒ semistable. A point is unstable if and only if it is not semistable. Also, note for
any action of G on V , there is a natural diagonal action on the direct sum V m by g · (v1, . . . , vm) =
(gv1, . . . , gvm) for all g ∈ G and vi ∈ V . Moreover, note that for any group action ρ : G→ GL(V ),
the notions of semistable, polystable and stable are the same whether we consider the action of G
or the action of ρ(G).

We make another important definition:

Definition 2.3. Let K = R or C, and let G be an algebraic group (over K) with a rational action
on a vector space V (over K). Then, we say V is generically G-semistable (resp. polystable, stable,
unstable) if there is a non-empty Zariski-open subset U ⊆ V such that every v ∈ U is G-semistable
(resp. polystable, stable, unstable).

The following notion of a null cone plays a central role in computational invariant theory.

Definition 2.4 (Null cone). Let K = R or C, and let G be an algebraic group (over K) with a
rational action on a vector space V (over K). Then, the null cone is defined by

NG(V ) := {v ∈ V | 0 ∈ Ov}.

In other words, the null cone consists of all the unstable points in V .

2.1. MLE for Gaussian group models and invariant theory. In this subsection, we will
briefly recall Gaussian group models and their connections to invariant theory. Suppose K = R
or C. For any group G acting on Kn by linear transformations (i.e., ρ : G → GLn), there is a
corresponding Gaussian group model MG := {ρ(g)†ρ(g) | g ∈ G} ⊆ PDn. Note that adjoint is the
same as transpose for a matrix with real entries. The following result for Gaussian group models
was proved in [2] (we state a more general, but equivalent form of their result).
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Theorem 2.5 ([2]). Let K = R or C, and let V be a finite dimensional Hilbert space, i.e., a
vector space with a positive definite inner product (Hermitian when K = C). Let ρ : G → GL(V )
be a rational action of G on V . Suppose ρ(G) ⊆ GL(V ) is a Zariski closed subgroup, closed
under adjoints and non-zero scalar multiples. Let GSL ⊆ G be a subgroup such that ρ(GSL) =
ρ(G) ∩ (SL(V )) and let Y ∈ V m be an m-tuple of samples. Then, for the (diagonal) action of GSL

and the model MG, we have

• Y is semistable ⇐⇒ lY is bounded from above;
• Y is polystable ⇐⇒ an MLE exists;
• Y is stable =⇒ there is a unique MLE. Further, if K = C, the converse also holds, i.e.,

there is a unique MLE =⇒ Y is stable.

Remark 2.6. In the above result, it suffices to ask for ρ(GSL) and ρ(G) ∩ (SL(V )) to have the
same identity component since the stability notions for the action of either group will be the same.
Indeed, we will need this mild generalization in Theorem 2.7 and Proposition 2.9 below.

Matrix normal models are Gaussian group models. Consider the so-called Left-Right action of
G = GLp×GLq on V = Matp,q given by the formula (P,Q) · Y = PY Q−1. The Gaussian group
modelMG equalsM(p, q). In this case, we can take GSL to be the subgroup SLp× SLq. This puts
us squarely in the setup of semi-invariants for Kronecker quivers, which we will discuss in detail in
later sections.

Theorem 2.7 ([2]). Let K = R or C. Let Y ∈ Matmp,q be an m-tuple of matrices. Consider the
left-right action of GSL = SLp×SLq on Matmp,q. Then, w.r.t. the matrix normal model M(p, q),

• Y is GSL-semistable ⇐⇒ lY is bounded from above;
• Y is GSL-polystable ⇐⇒ an MLE exists;
• Y is GSL-stable =⇒ there is a unique MLE. Further, if K = C, the converse also holds,

i.e., there is a unique MLE =⇒ Y is GSL-stable.

The example below is a concrete illustration of the ideas in this paper that we will use to prove
our main result, i.e., Theorem 1.2.

Example 2.8. We take m = 2, p = 4, and q = 7. For generic (Y1, Y2) ∈ Mat2
4,7, we claim (and

justify below) that there is a change of basis (on the left and right) such that both Y1 and Y2 are
simultaneously in a block form as below (where all non-starred entries are 0):

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗


So, without loss of generality, let us assume Y1, Y2 are in the form above.

We write diag(d1, . . . , dk) to represent a diagonal k×k matrix with diagonal entries d1, . . . , dk. For
t 6= 0, consider λ(t) = diag(t7, t7, t−7, t−7) ∈ SL4 and µ(t) = diag(t6, t6, t6, t6, t−8, t−8, t−8) ∈ SL7.
Let g(t) = (λ(t), µ(t)) ∈ SL4×SL7. Then, one can check that g(t) · Yi = λ(t)Yiµ(t)−1 = tYi follows
from the pattern of zeros. Hence limt→0 g(t) · Yi = 0. This would mean that Y = (Y1, Y2) is not
semistable because the origin is a limit point of its SL4×SL7 orbit. Since generic points in Mat2

4,7

are unstable, all points in Mat2
4,7 are unstable because the null cone is closed in the Zariski topology

(see Lemma 2.12 below). In other words, for the matrix normal modelM(4, 7), MLEs do not exist
if you only have two samples, which agrees with the observations in Section 1.3 due to Drton,
Kuriki and Hoff.

The fact that a generic 2-tuple of 4 × 7 matrices can be simultaneous block form as mentioned
above is a special case of the notion of canonical decomposition which we discuss in Section 5.
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This particular example concerns the 2-Kronecker quiver and the dimension vector (4, 7). It can be
deduced from [17, Section 3] that the canonical decomposition is (4, 7) = (1, 2) ⊕ (1, 2) ⊕ (2, 3) in
the notation explained in Section 5. The ability to drive the matrices Yi to the origin in the limit
using only diagonal group elements and that too of a very particular form is an exhibition of the
Hilbert–Mumford criterion, see Theorem 2.13. In fact, this style of elementary argument could be
used to prove Corollary 4.5.

The model of proportional covariance matrices N (p, q) is also a Gaussian group model. Consider
the action of the group H = GLp × Tq on V = Matp,q given again by (P,Q) · Y = PY Q−1, where
Tq ⊆ GLq denotes the subgroup of diagonal q × q matrices (i.e., a q-dimensional torus). It is easy
to observe that the Gaussian group model MH equals N (p, q). Further, in this case, one can take
HSL to be the subgroup SLp×STq where STq denotes the subgroup of diagonal q× q matrices with
determinant 1. We remark here that this fits the setup of semi-invariants for star quivers (details
in later sections). We record this result to use in later sections.

Proposition 2.9. Let K = R or C. Let Y ∈ Matmp,q be an m-tuple of matrices. Consider the
aforementioned action of HSL = SLp×STq on Matmp,q. Then, w.r.t. the model N (p, q),

• Y is HSL-semistable ⇐⇒ lY is bounded from above;
• Y is HSL-polystable ⇐⇒ an MLE exists;
• Y is HSL-stable =⇒ there is a unique MLE. Further, if K = C, the converse also holds,

i.e., there is a unique MLE =⇒ Y is HSL-stable.

2.2. Invariant theory over C. For this section, we take K = C and discuss a few notions in
invariant theory. An algebraic group G (over C) is called a reductive group if every rational
representation is completely reducible, i.e., it can be decomposed into a direct sum of irreducible
representations. There are other equivalent definitions of reductive groups over C. For rational
actions of reductive groups, Hilbert [29, 30] showed that the invariant ring is finitely generated.

Remark 2.10. The groups GLn = GLn(C), SLn = SLn(C), and finite groups are all reduc-
tive groups (over C). Direct products of reductive groups are reductive, in particular G =
GLn1 × · · · ×GLnd is reductive. For any σ = (σ1, . . . , σd) ∈ Zd, the subgroup Gσ = {(g1, . . . , gd) ∈
G |

∏d
i=1 det(gi)

σi = 1} ⊆ G is also a reductive group. All groups that we consider in this paper fall
into the list of aforementioned examples. With reference to Theorem 2.5, note that any complex
Zariski closed subgroup of GLn that is closed under adjoints is a complex reductive group. On the
other hand, if you have a Zariski closed subgroup of GL(V ) that is reductive, then there is a choice
of inner product on V such that the group is closed under adjoints, see [41]. Thus, reductivity can
be thought of as a coordinate free version of a Zariski-closed subgroup of GLn being closed under
adjoints.

The first point to note about orbit closures is that since invariant polynomials are continuous
(w.r.t. either Zariski or Euclidean topology), any invariant polynomial will be constant not just
along orbits, but their closures as well. Hence, any invariant polynomial will not be able to dis-
tinguish two points v, w ∈ V if their orbit closures intersect. The converse is also true for rational
actions of complex reductive groups (see e.g., [31, Lemma 3.8] for a proof). We say a subset W ⊆ V
is G-invariant if gW = W for all g ∈ G.

Theorem 2.11 (Mumford). Suppose G is a (complex) reductive group with a rational action on
V . Then for v, w ∈ V ,

Ov ∩Ow 6= ∅ ⇐⇒ f(v) = f(w) ∀f ∈ C[V ]G.

In fact a more general statement is true – if W1,W2 are G-invariant Zariski-closed subsets with an
empty intersection, then there exists f ∈ C[V ]G such that f(W1) = 0 and f(W2) = 1.
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While the definition of the null cone (see Definition 2.4) is analytic in nature, it happens to
be an algebraic variety when we consider rational actions of reductive groups. For a collection of
polynomials {fi} ⊆ C[V ], we denote by V({fi}) the common zero locus of all the fi’s.

Lemma 2.12. Let V be a rational representation of a (complex) reductive group G. Then

NG(V ) = V

⋃
d≥1

C[V ]Gd

 .

Proof. This follows immediately from Theorem 2.11 �

An important result in understanding the null cone is the Hilbert–Mumford criterion which says
that you can detect whether a point v ∈ V is in the null cone using 1-parameter subgroups of G.
A 1-parameter subgroup of G is simply a morphism of algebraic groups λ : C∗ → G.

Theorem 2.13 (Hilbert–Mumford criterion). Let G be a (complex) reductive group with a rational
action on V . Then v ∈ NG(V ) if and only if there is a 1-parameter subgroup λ : C∗ → G such that
limt→0 λ(t) · v = 0.

Definition 2.14. Let V be a rational representation of a reductive group G. Then, we define three
subsets

V ss := {v ∈ V | v is G-semistable},
V ps := {v ∈ V | v is G-polystable},
V st := {v ∈ V | v is G-stable}.

We call V ss (resp. V ps, V st) the semistable (resp. polystable, stable) locus. We will write
V G-ss, V G-ps, V G-st if we need to clarify the group.

Since the semistable locus is precisely the complement of the null cone, the following is immediate
from Lemma 2.12:

Corollary 2.15. Let V be a rational representation of a complex reductive group G. Then, the
semistable locus V ss is Zariski-open (but may be empty).

Similar statements are true for the polystable and stable loci.

Lemma 2.16. Let V be a rational representation of a complex reductive group G. Then, the stable
locus V st is Zariski open and the polystable locus V ps is Zariski-constructible, i.e., it is a union of
Zariski locally closed subsets.

Proof. For a non-negative integer r, define Zr := {v ∈ V | dimOv ≤ r}. It is easy to show that
Zr is Zariski closed for all r. Let k = dimG/∆ (where ∆ is the kernel of the action), then clearly
Zk = V since no orbit can have dimension larger than k.

If V st is empty, then it is Zariski open. If V st is non-empty, there is some w ∈ V st. Hence Gw/∆
is finite, which means that dimOw = k and Ow is Zariski-closed (see Remark 2.1). Hence Ow and
Zk−1 are G-invariant Zariski-closed subsets with empty intersection, so by Theorem 2.11, we have
f ∈ C[V ]G such that f(Ow) = 1 and f(Zk−1) = 0. Consider Vf := {v ∈ V |f(v) 6= 0}. Then, clearly
Vf ∩ Zk−1 = ∅ because f(Zk−1) = 0. Take v ∈ Vf , we have dimOv = k since v /∈ Zk−1. Further,

we claim Ov is closed. If not, take v1 ∈ Ov \ Ov. Then, we must have dimOv1 < dimOv = k, so
v1 ∈ Zk−1. However, since v1 ∈ Ov, we have f(v1) = f(v) 6= 0, which means that v1 ∈ Vf , which
is absurd since Vf ∩ Zk−1 is empty. Hence Ov is closed. In other words, Vf ⊆ V st. To summarize,
we have shown that for each w ∈ V st, there is a Zariski-open subset Vf such that w ∈ Vf ⊆ V st,
which means that V st is Zariski-open.
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Let Cr := {v ∈ Zr \Zr−1 | v is polystable}. The above argument shows that Ck = V st is Zariski-
open in Zk = V . A similar argument shows that Cr is Zariski-open in Zr. In particular, this means
that Cr is a Zariski locally closed subset of V . Thus V ps = ∪ki=1Ci is a union of Zariski locally closed
subsets, i.e., it is Zariski-constructible. �

For an algebraic group G, we denote its connected component of the identity by G0, which is an
algebraic subgroup. The following result tells us that as far as stability notions are concerned, one
might as well restrict themselves to the connected component of identity.

Lemma 2.17. Let V be a rational representation of a complex reductive group G. Let G0 ⊆ G
denote its connected component of identity. Then for v ∈ V , v is G-semistable/stable/polystable if
and only if it is G0-semistable/stable/polystable.

Proof. For semistability, observe that the Hilbert-Mumford criterion is the same whether you use
G or G0. For polystability, use the fact that the G-orbit is a finite disjoint union of G0-orbits,
each of which forms a connected component of the G-orbit. For stability, using the orbit-stabilizer
theorem (i.e., dimension of stabilizer + dimension of orbit = dimension of the group), we see that
dim(Gv) = dim((G0)v) since the G-orbit and G0-orbit have the same dimension. Let ρ : G →
GL(V ) be the map that defines the action of G on V . Let ∆ denote the kernel of ρ : G→ GL(V ).
Then ∆∩G0 is the kernel of ρ restricted to G0. Both ∆ and ∆∩G0 have the same Lie algebra, so
they have the same dimension. Thus dim(Gv/∆) = 0 if and only if dim((G0)v/∆ ∩G0) = 0. Thus
v is G-stable if and only if it is G0-stable. �

2.3. Invariant theory over R. Even though invariant theory is nicest when K = C, the case of
K = R is perhaps more important in the context of MLE and statistics in general. Hence, in this
subsection, we collect some results on invariant theory over the real numbers which will help us
“transfer” results from C to R. We also intend that this subsection serve as a general reference for
the reader who is not familiar with the intricacies of invariant theory and algebraic groups over R.
The following definitions are from [3].

For a complex (affine) variety X, we denote its coordinate ring by C[X]. A complex (affine)
variety X with an R-structure (i.e., an R-subalgebra R[X] ⊆ C[X] such that R[X]⊗RC = C[X]) is
called an (affine) R-variety. As a technical point, we identify a variety X with its complex points
XC (which can be viewed as algebra morphisms C[X] → C). A morphism f : X → Y of (affine)
varieties is equivalent to a map on the coordinate rings f∗ : C[Y ]→ C[X]. The morphism f is said
to be defined over R if f∗(R[Y ]) ⊆ R[X]. The real points XR as the points in XC (i.e., the algebra
morphisms C[X]→ C) that are defined over R. A complex algebraic group G is called an R-group
if it is an (affine) R-variety such that the multiplication map and inverse map are defined over R,
and its real points GR is an algebraic group over R.

Remark 2.18. All varieties in this paper will be affine, so we will henceforth drop the prefix affine.

For this entire section, let G be a connected reductive R-group. Let V be a rational representation
of G that is defined over R – this means that V is an R-variety, and that ρ : G→ GL(V ) is defined
over R. In particular, we get an action of GR on VR.

Remark 2.19. All the groups we consider in this paper will be connected reductive R-groups, and
all representations will be defined over R. Groups such as GLn and SLn are connected reductive,
and are naturally R-groups, and hence so are their direct products. The group Gσ defined in
Remark 2.10 is also naturally an R-group, and connected if σ is indivisible, i.e., gcd(σ1, . . . , σd) = 1.

The following proposition is a fundamental result:
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Proposition 2.20. Let G be a connected reductive R-group. Let V be a rational representation of
G that is defined over R. Then, the invariant ring for the action of G on V is obtained by base
change from the invariant ring for the action of GR on VR, i.e.,

R[V ]GR ⊗R C = C[V ]G.

In other words, Spec(C[V ]G) (also called the categorical quotient) is naturally an R-variety.

Proof. To begin with, first note that by definition R[V ] is the same as R[VR], the coordinate ring
of VR. The action G × V → V gives a map µC : C[V ] → C[G] ⊗ C[V ]. Similarly, we get a map
µR : R[V ]→ R[G]⊗ R[V ], and note that µR ⊗R C = µC is simply a restatement that the action is
defined over R.

It is easy to see that the polynomial f ∈ C[V ] is G-invariant if and only if µC(f) = 1⊗ f . Write
f = f1 + if2 with fj ∈ R[V ]. Then, we see that µC(f) = µR(f1) + iµR(f2). Thus µR(f1) and µR(f2)
are the real and imaginary parts of µC(f) which are 1⊗ f1 and 1⊗ f2 respectively. So, for each j,
we have µR(fj) = 1⊗ fj , which means that fj is GR-invariant. This proves ⊇.

To prove ⊆, it suffices to prove that R[V ]GR = R[VR]GR ⊆ C[V ]G. Indeed, observe that the
action of G on V gives an action of G on C[V ]. A function f ∈ C[V ] is G-invariant if and only if
g · f = f for all g ∈ G (easy to see and only uses that C is an infinite field). Similarly, we have
an action of GR on R[VR] and f ∈ R[VR]GR if and only if g · f = f for all g ∈ GR. Now, suppose
f ∈ R[VR]GR ⊆ C[V ]. Then, since g ·f = f for all g ∈ GR and GR is Zariski-dense in G (see e.g., [48]
or [3, Corollary 18.3]), we get that g · f = f for all g ∈ G, so f ∈ C[V ]G. Thus R[VR]GR ⊆ C[V ]G

as required. �

The following result is crucial for transferring our results for complex matrix normal models to
real matrix normal models. We will need some results from Lie algebras. The theory of Lie algebras
is well understood and we do not intend to recall the theory here. We refer the interested reader
to standard references, e.g., [3, 4, 5, 53].

Proposition 2.21. Let G be a connected reductive R-group. Let V be a rational representation of
G that is defined over R. Let v ∈ VR. Then v is semistable/polystable/stable for the GR-action if
and only if v is semistable/polystable/stable for the G-action.

Proof. Let us split the argument for each notion of stability.

• Semistability: Suppose v is G-semistable. Then, there is a homogeneous polynomial
invariant f ∈ C[V ]G such that f(v) 6= 0. Write f = f1 + if2 where fj ∈ R[V ] and hence in
R[V ]G by the above proposition. Thus, fj(v) 6= 0 for some j. By homogeneity, fj(0) = 0.
Since fi is GR-invariant, the GR-orbit closure of v cannot contain the origin. For the
converse, suppose v ∈ VR is G-unstable. Then, by Theorem 2.13 there is a 1-parameter
subgroup that drives v to 0 in the limit. By a result of Birkes [7, Theorem 5.2], you can
choose a 1-parameter subgroup defined over R that drives v to 0 in the limit. Hence, v is
GR-unstable.
• Polystability: Suppose the G-orbit of v is closed in the Euclidean topology (and hence in

the Zariski topology, see Remark 2.1). Borel and Harish-Chandra [5, Proposition 2.3] show
that this implies that the GR-orbit of v is closed in the Euclidean topology. Birkes showed
that if the GR-orbit of v is closed in the Euclidean topology, then the G-orbit is closed in
the Zariski topology (and hence the Euclidean topology), see [7, Corollary 5.3].
• Stability: Stability is polystability along with the fact that the stabilizer (modulo the

kernel) is finite. We already know from above that v is G-polystable if and only if v is GR-
polystable. So, we only have to analyze the stabilizers. We will utilize heavily the fact that
the dimensions of Lie algebras reflect the dimensions of the groups themselves (in both the
real and complex settings). Let ∆ denote the kernel of the representation ρ : G→ GL(V ).
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Since Gv ⊇ ∆, we see that Gv/∆ is finite if and only if we have an equality of Lie algebras
Lie(Gv) = Lie(∆). Since Gv (resp. ∆) is defined over R (see [53, Proposition 12.1.2,
Corollary 12.1.3]), we get that (Gv)R (resp. ∆R) is a real manifold whose dimension equals
the complex dimension of Gv (resp. ∆), see [4, Section 5.2]. In fact, more is true, the
Lie algebra of Lie((Gv)R) (resp. Lie(∆R)) is a real form of Lie(Gv) (resp. Lie(∆)), see [4,
Section 5.3]. In other words, we have Lie((Gv)R) ⊗R C = Lie(Gv) and Lie(∆R) ⊗R C =
Lie(∆).

Since, we have inclusions ∆ ⊆ Gv (and consequently ∆R ⊆ (Gv)R), we get that Lie(Gv) =
Lie(∆) if and only if Lie((Gv)R) = Lie(∆R). It is perhaps trivial, but nonetheless necessary
to observe that (Gv)R = (GR)v and ∆R is the kernel of ρR. Thus Lie((Gv)R) = Lie(∆R) if
and only if both (GR)v and ∆R have the same dimension if and only if (GR)v/∆R is finite
(since (GR)v ⊇ ∆R, and real algebraic groups have finitely many components).

To summarize, we have that Gv/∆ is finite if and only if (GR)v/∆R is finite, so v is
G-stable if and only if it is GR-stable.

�

We write (V G-ss)R to denote the real points of the set of G-semistable points of V , i.e., (V G-ss)R =
V G-ss ∩ VR. We write (VR)GR-ss to denote the GR-semistable points of VR. We will use similar
notation for polystable and stable loci as well. The following is immediate from Proposition 2.21.

Corollary 2.22. We have (V G-ss)R = (VR)GR-ss, (V G-ps)R = (VR)GR-ps, and (V G-st)R = (VR)GR-st.

Recall the notions of generic G-semistability/polystability/stability from Definition 2.3.

Proposition 2.23. Let G be a connected reductive R-group. Let V be a rational representation of
G that is defined over R. Then V is generically G-semistable (resp. G-polystable, G-stable) if and
only if VR is generically GR-semistable (resp. GR-polystable, GR-stable).

Proof. Let X ⊆ V be a Zariski-constructible subset. Then it is easy to see that X contains a
dense Zariski-open subset of V if and only if XR = X ∩ VR contains a dense Zariski-open subset of
VR. Now, the proposition follows from the fact that V ss, V ps and V st are Zariski-constructible (by
Corollary 2.15 and Lemma 2.16) along with Corollary 2.22. �

3. Quiver representations

The theory of quivers and their representations forms a rich generalization of linear algebra. Nu-
merous applications of quivers have been discovered in various algebraic subjects ranging from clus-
ter algebras and cluster categories [19, 38], Schubert calculus [15, 16, 47], moduli spaces, Donaldson-
Thomas invariants and cohomological Hall algebras and non-commutative algebraic geometry (see
[46] and references therein) and symplectic resolutions (see [27] and references therein) to name a
few. More recently, the invariant theory of quivers has played an influential role in areas of theo-
retical computer science, notably to Geometric Complexity Theory and non-commutative identity
testing [12, 13, 33, 34, 42], Brascamp–Lieb inequalities [26] and simultaneous robust subspace re-
covery [10].

Let K denote the ground field. The reader should keep in mind K = R or C. A quiver Q is a
directed acyclic graph, i.e. a set of vertices denoted Q0 and a set of arrows Q1. For each arrow
a ∈ Q1, we denote by ta and ha, the tail vertex and head vertex of the arrow. We will demonstrate
all the basic notions and definitions in the crucial example (below) of the m-Kronecker quiver Θ(m)
with two vertices x and y with m arrows a1, . . . , am from y to x.
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x y

a1

am

.

.

.

A representation V of Q is simply an assignment of a finite-dimensional vector space (over a
ground field K) V (x) for each x ∈ Q0 and a linear transformation V (a) : V (ta)→ V (ha) for each
arrow a ∈ Q1. A morphism of quiver representations φ : V → W is a collection of linear maps
φ(x) : V (x) → W (x) for each x ∈ Q0 subject to the condition that for every a ∈ Q1, the diagram
below commutes.

V (ta) V (ha)

W (ta) W (ha)

V (a)

φ(ta) φha

W (a)

A representation V of Θ(m) is given by assigning vector spaces V (x) and V (y) to x and y, and
m linear maps V (a1), . . . , V (am) from V (y) to V (x). A morphism between two representations
V and W of Θ(m) is two linear maps φ(x) : V (x) → W (x) and φ(y) : V (y) → W (y) such that
φ(x) ◦ V (ai) = W (ai) ◦ φ(y) for all 1 ≤ i ≤ m.

A subrepresentation U of V is a collection of subspaces U(x) ⊆ V (x) such that for every edge
the linear map U(a) is simply a restriction of V (a). In particular, this means that the image of
U(ta) under V (a) will need to be contained in U(ha). For two representations V and W , we define
their direct sum V ⊕W to be the representation that assigns V (x) ⊕W (x) to each vertex x and

the linear map

(
V (a) 0

0 W (a)

)
for each arrow a ∈ Q1. Similarly, the notion of direct summand,

image, kernel, co-image, etc are all defined in the obvious way, see [18] for details. In summary, the
category of quiver representations forms an abelian category.

The dimension vector of a representation V is dim(V ) = (dimV (x))x∈Q0 . So, for a representation
V of Θ(m), its dimension vector is dim(V ) = (dim(V (x)), dim(V (y))). For any representation V

of a quiver Q, for each x ∈ Q0, picking a basis for V (x) identifies V (x) with Kdim(V (x)). Further,
with this identification, every linear map V (a) is just a matrix of size dim(V (ha)) × dim(V (ta)).
Thus, we come to the following definition. For any dimension vector α = (α(x))x∈Q0 ∈ NQ0 (where
N = {0, 1, 2, . . . , }), we define the representation space

Rep(Q,α) =
⊕
a∈Q1

Matα(ha),α(ta) .

Any point V = (V (a))a∈Q1 ∈ Rep(Q,α) can be interpreted as a representation of Q with di-

mension vector as follows: for each x ∈ Q0, assign the vector space Kα(x), and for each arrow
a ∈ Q1, the matrix V (a) describes a linear transformation from Kα(ta) to Kα(ha). The base
change group GL(α) =

∏
x∈Q0

GLα(x) acts on Rep(Q,α) in a natural fashion where GLα(x) acts

on the vector space Kα(x) assigned to vertex x. More concretely, for g = (gx)x∈Q0 ∈ GL(α) and
V = (V (a))a∈Q1 ∈ Rep(Q,α), the point g · V ∈ Rep(Q,α) is defined by the formula

(g · V )(a) = ghaV (a)g−1
ta .

The GL(α) orbits in Rep(Q,α) are in 1 − 1 correspondence with isomorphism classes of α-
dimensional representations.

Consider the subgroup SL(α) =
∏
x∈Q0

SL(α(x)) ⊆ GL(α). Then, the invariant ring for the

action of SL(α) on Rep(Q,α) is called the ring of semi-invariants

SI(Q,α) = K[Rep(Q,α)]SL(α).
13



For the m-Kronecker quiver Θ(m), suppose we pick a dimension vector α = (p, q) (we use the
convention that the first entry corresponds to vertex x), then the representation space

Rep(Θ(m), (p, q)) = Matmp,q .

Now, GL(α) = GLp×GLq, and the action is given by the formula

(g1, g2) · (Y1, . . . , Ym) = (g1Y1g
−1
2 , . . . , g1Ymg

−1
2 ).

The orbits of this action correspond to isomorphism classes of (p, q)-dimensional representa-
tions of Θ(m). The subgroup SL(α) is SLp×SLq. First, observe that Y = (Y1, . . . , Ym) is
semistable/polystable/stable (for the action of SLp×SLq) if and only if λY = (λY1, . . . , λYm)
is semistable/polystable/stable for λ ∈ K∗. This is a simple consequence of the fact that the action
is by linear transformations. Thus, we see that whether Y = (Y1, . . . , Ym) is semistable, polystable,
or stable (for the action of SL(α)) only depends on the isomorphism class of the quiver represen-
tation it defines (i.e., the GL(α)-orbit). This is the starting point of understanding the various
stability notions from a representation theoretic perspective, which we will discuss in more detail
in the next section.

Remark 3.1. The space Rep(Q,α) is a representation of GL(α) and its various subgroups such as
SL(α). At the same time, we refer to a point V ∈ Rep(Q,α) also as a representation. We advise the
reader to keep in mind that we think of V as a representation of the quiver Q to avoid confusion.
Moreover, if V ∈ Rep(Q,α)R =

⊕
a∈Q1

Matα(ha),α(ta)(R), then it can be thought of as both a real
and complex representation of Q.

3.1. Indecomposability of modules over field extensions. Let A be a finite-dimensional R-
algebra, and let A- mod denote the category of finite dimensional (left)-modules over A. We denote
by AC := A⊗R C, the C-algebra obtained by extending scalars. Let AC- mod denote the category
of finite dimensional (left)-modules over AC. For any module M ∈ A- mod, let MC := M ⊗R C ∈
AC- mod. The AC structure on MC is the obvious one you get by extending scalars. We can
interpret MC as an A-module: MC = M ⊕ iM , and hence we have MC ∼= M⊕2 as A-modules.

The Krull-Remak-Schmidt Theorem says that modules in the category A- mod can be decom-
posed as a direct sum of indecomposables and this decomposition is essentially unique in the sense
that any two such decompositions have the same summands (counted with multiplicities). The
Krull-Remak-Schmidt theorem holds for AC- mod as well. Note that an indecomposable module
is one that cannot be written as a direct sum of two or more (proper) submodules, and not to be
confused with an irreducible (or simple) module, which is a module with no non-trivial submodules.

Lemma 3.2. Let M ∈ A- mod. If MC ∈ AC- mod is indecomposable, then M is indecomposable.

Proof. If M = M1⊕M2, then MC = (M1)C⊕ (M2)C is a decomposition of MC as AC-modules. �

We will need the following lemma.

Lemma 3.3. Let M ∈ A- mod. Suppose MC can be written as a direct sum of three or more
(non-zero) submodules (as an AC-module). Then M is not indecomposable as an A-module.

Proof. Let MC = N1 ⊕N2 ⊕ · · · ⊕Nd with d ≥ 3. Each Ni is an AC-module summand, and hence
an A-module summand as well. If we further refine the Ni into a direct sum of indecomposable
A-modules, we can write MC = N ′1 ⊕ N ′2 ⊕ . . . N ′d′ for some d′ ≥ d ≥ 3, where each N ′i is an
indecomposable A-module. Suppose M is indecomposable. The module MC = M ⊕ iM as an
A-module. Hence, by the Krull-Remak-Schmidt theorem, we know that any decomposition into
indecomposables has to have exactly two summands (and each of which is isomorphic to M as
A-modules). But this contradicts the fact that MC = N ′1 ⊕ N ′2 ⊕ . . . N ′d′ is a decomposition with
d′ > 2 summands. �
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3.2. Quiver representations as modules over the path algebra. Let K denote the ground
field. For a quiver Q = (Q0, Q1), we will define the path algebra KQ. A path p of length k is a
sequence of k arrows akak−1 . . . a1 such that t(ai+1) = h(ai) for 1 ≤ i < k. The head vertex of
the path is h(ak) and the tail vertex is t(a1). We introduce trivial paths ex of length zero for each
x ∈ Q0 with h(ex) = t(ex) = x.

The path algebra KQ is a K-algebra with a basis labeled by all paths in Q. The multiplication
is as follows. For paths p and q, their product p · q is the concatenation of the two paths if
tp = hq and 0 otherwise. For any representation V of Q over K, we can interpret it as KQ-
module ⊕x∈Q0V (x). For w ∈ V (x), and a path p = akak−1ak−2 . . . a1, the action is given by
p ·w = V (ak)V (ak−1) . . . V (a1)w ∈ Vhp if tp = x, and 0 otherwise. This is in fact an equivalence of
categories, see [18] for details.

Of particular importance is the fact that if we take A = RQ, then AC = CQ, and hence
Lemma 3.3 applies.

4. Stability notions for quiver representations

We follow the conventions from [18] for consistency. For this section, we let K = C. Let Q be
a quiver with no oriented cycles (self loops are counted as oriented cycles). Let α be a dimension
vector. For any σ ∈ ZQ0 (which we call a weight), we have a character of GL(α) which we
also denote σ by abuse of notation. The character σ : GL(α) → K∗ is given by σ((gx)x∈Q0) =∏
x∈Q0

det(gx)σ(x). The ring of semi-invariants has a decomposition

SI(Q,α) =
⊕
σ∈ZQ0

SI(Q,α)σ,

where SI(Q,α)σ = {f ∈ SI(Q,α) | f(g · x) = σ(g−1)f(x) ∀g ∈ GL(α)}.
We define the effective cone of weights

C(Q,α) := {σ ∈ ZQ0 | SI(Q,α)mσ 6= 0 for some m ∈ Z>0}.

For a weight σ and a dimension vector β, we define σ(β) :=
∑

x∈Q0
σ(x)β(x). We point out

there that every σ ∈ C(Q,α) must satisfy σ(α) = 0. For each 0 6= σ ∈ C(Q,α) that is indivisible
(i.e., gcd(σ(x) : x ∈ Q0) = 1), we consider the subring

SI(Q,α, σ) := ⊕∞m=0SI(Q,α)mσ.

For a sincere dimension vector α (i.e., α(x) 6= 0 ∀x ∈ Q0), it turns out that this subring can

also be seen as an invariant ring, i.e., SI(Q,α, σ) = K[Rep(Q,α)]GL(α)σ where GL(α)σ = {g ∈
GL(α) | σ(g) = 1}. Note that GL(α)σ is a reductive group. It is well-known that the associated
projective variety Proj(SI(Q,α, σ)) defines a moduli space for the α-dimensional representations of
Q, see [39].

We make a definition following King [39]. We follow the convention from [18] which is consistent
with our notational choices so far, but differs from King’s original convention by a sign.

Definition 4.1 (King [39]). Let Q be a quiver with no oriented cycles, V be a representation of Q
and σ ∈ ZQ0 a weight such that σ(dimV ) = 0.

• V is σ-semistable if σ(β) ≤ 0 for all β ∈ ZQ0

≥0 such that V contains a subrepresentation of
dimension β.

• V is σ-stable if σ(β) < 0 for all β ∈ ZQ0

≥0 (other than 0 and dim(V )) such that V contains
a subrepresentation of dimension β.
• V is σ-polystable if V = V1 ⊕ V2 ⊕ · · · ⊕ Vk such that Vi are all σ-stable representations.
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Observe here that any σ-stable representation must be indecomposable, i.e., it cannot be written
as a direct sum of (proper) subrepresentations. Indeed, suppose V = V1⊕V2, then 0 = σ(dimV ) =
σ(dimV1) + σ(dimV2). Hence at least one of σ(dimVi) ≥ 0, and hence V cannot be σ-stable. Also
observe that if V is a direct sum V = V1 ⊕ V2 ⊕ · · · ⊕ Vk, then V is σ-semistable (or σ-polystable)
if and only if all the Vi are. Thus, in order to understand whether a generic representation of
dimension α is σ-semistable/polystable/stable, it is useful to understand how it decomposes as a
direct sum of indecomposables, which is the topic of discussion in the next section.

We now relate σ-stability notions to GL(α)σ-stability notions:

Theorem 4.2 (King [39]). Let Q be a quiver with no oriented cycles, α ∈ ZQ0
>0 a sincere dimension

vector and 0 6= σ an indivisible weight such that −σ /∈ C(Q,α). A representation V ∈ Rep(Q,α)
is σ-semistable (resp. σ-polystable, σ-stable) if and only if V is GL(α)σ-semistable (resp. GL(α)σ-
polystable, GL(α)σ-stable).

King’s original formulation is slightly different from the one above, but can be seen to be equiva-
lent (details in Appendix A). Now, we proceed to discuss these stability notions for the m-Kronecker
quiver.

4.1. Stability notions for the m-Kronecker quiver. For the m-Kronecker quiver Θ(m), let us
take α = (p, q). Let p′ = p/gcd(p, q) and q′ = q/gcd(p, q). Then

(1) SI(Θ(m), (p, q)) =

∞⊕
k=0

SI(Θ(m), (p, q))(−kq′,kp′).

Indeed, observe that for σ ∈ Z2 to be in the cone of effective weights C(Θ(m), (p, q)), we need
σ(p, q) = 0. This means that any σ ∈ C(Θ(m), (p, q)) must be a multiple of (−q′, p′). As it
turns out, non-trivial semi-invariants do not exist when you take a weight that is a negative scalar
multiple of (−q′, p′), which one can see directly from the fundamental theorem that describes semi-
invariants of quivers in a determinantal fashion [16, 20, 52] (see also [18, Theorem 10.7.1]) because
there are no paths from x to y.

Further, this means that

C[Rep(Θ(m), (p, q))]SLp× SLq = C[Rep(Θ(m), (p, q))]SL(α) = C[Rep(Θ(m), (p, q))]GL(α)(−q′,p′) .

In fact, we have the following result:

Lemma 4.3. Let ρ : GLp×GLq → GL(Rep(Θ(m), (p, q)) be the left-right action. Let α = (p, q)
and let p′ = p/gcd(p, q) and q′ = q/gcd(p, q). Then

ρ(SLp×SLq) = ρ(GL(α)(−q′,p′)).

In particular, this means that σ-semistability (resp. polystability, stability) for σ = (−q′, p′) is the
same as semistability (resp. polystability, stability) for the SLp×SLq-action.

Proof. Since SLp×SLq ⊆ GL(α)(−q′,p′), we only need to show ⊇. Suppose (g, h) ∈ GL(α)(−q′,p′).

This means that det(g)q
′

= det(h)p
′
. Note that ρ(g, h) = (g⊗(h−1)>)⊕m. Without loss of generality,

we can assume that det(g) = 1 (otherwise, choose a λ such that det(λg) = 1 and replace (g, h)

with (λg, λh)). Thus, we have det(h)p
′

= 1. Thus det(h) = e2πin/p′ for some n. Now, choose an
integer t such that t ≡ 0 mod q′ and t ≡ −n mod p′. Such a t exists by the Chinese remainder
theorem since p′ and q′ are coprime. Let µ = e2πit/dp′q′ , where d = gcd(p, q) = p/p′ = q/q′. Then

det(µg) = µp = e2πit/q′ = 1 and det(µh) = µq · e2πin/p′ = e2πit/p′ · e2πin/p′ = 1. Now, observe that
ρ(µg, µh) = ρ(g, h) and µg ∈ SLp and µh ∈ SLq.

Further, we observe that for σ = (−q′, p′), GL(α)σ-semistability (resp. polystability, stability)
is equivalent to σ-semistability (resp. polystability, stability) because −σ /∈ C(Q,α) follows from
Equation 1 above. �
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From Lemma 4.3 and Theorem 4.2, we deduce:

Corollary 4.4. Consider the G = SLp×SLq-action on Rep(Θ(m), (p, q)), and let σ = (−q′, p′),
where p′ = p/gcd(p, q) and q′ = q/gcd(p, q). A representation V ∈ Rep(Θ(m), (p, q)) is

• semistable if and only if σ(β) ≤ 0 for all dimension vectors β such that V has a subrepre-
sentation of dimension β.
• stable if and only if σ(β) < 0 for all dimension vectors β (other than 0 and (p, q)) such that
V has a subrepresentation of dimension β.
• polystable if and only if V is a direct sum of σ-stable representations.

A simple corollary of the above is the following, which will be very useful.

Corollary 4.5. Let V ∈ Rep(Θ(m), (p, q)). Suppose V = V1⊕V2 · · ·⊕Vk is the decomposition of V
into indecomposables, and let βi = dim(Vi). If for some i and j, βi and βj are linearly independent,
then V is unstable (w.r.t. SLp×SLq action).

Proof. Let σ = (−q′, p′), where p′ = p/gcd(p, q) and q′ = q/gcd(p, q). Then, by Lemma 4.3, if V is
to be semistable, then σ(βi) ≤ 0 for all i and further σ(

∑
i βi) = σ((p, q)) = 0. This means that

σ(βi) = 0 for all i. However, the kernel of σ is clearly 1-dimensional, so both βi and βj cannot be
in the kernel if they are linearly independent. �

5. Canonical decomposition

For this section, we assume K = C. Let Q be a quiver with no oriented cycles and let α
be a dimension vector. Every representation V ∈ Rep(Q,α) can be decomposed into a direct
sum V = V1 ⊕ V2 ⊕ · · · ⊕ Vk where each Vi is an indecomposable representation. The Krull-
Remak-Schmidt theorem tells us that the summands that occur in any such decomposition are
isomorphic (up to permutation). Of course, this decomposition will be different for different choices
of V ∈ Rep(Q,α), but for a (non-empty) Zariski-open subset of Rep(Q,α), the dimension vectors
of the indecomposables in the decomposition will be the same. This brings us to the definition of
canonical decomposition that was first defined by Kac.

Definition 5.1 (canonical decomposition [36, 37]). We write α = β1 ⊕ · · · ⊕ βk and call it the
canonical decomposition if a generic representation V ∈ Rep(Q,α) decomposes as a direct sum of
indecomposables whose dimension vectors are β1, . . . , βk.

The existence and uniqueness of canonical decomposition requires a little argument and we refer
the reader to [18]. To fully understand canonical decomposition, we need to recall the notion of
roots. We need to define a bilinear form on RQ0 . For α, β ∈ RQ0 , we define

〈α, β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha).

Definition 5.2. A dimension vector α is called a root if there is an indecomposable representation
of dimension α. A root is called real if 〈α, α〉 = 1, isotropic if 〈α, α〉 = 0 and non-isotropic imaginary
if 〈α, α〉 < 0. Further, it is called a Schur root if there exists a non-empty Zariski open subset of
Rep(Q,α) such that every representation in it is indecomposable. Note that isotropic roots are also
considered imaginary roots.

For the rest of this section, we fix a quiver Q with no oriented cycles. We will recall some
standard results. First two lemmas that are straightforward, see [17, 18].

Lemma 5.3. For any Schur root α, its canonical decomposition is α = α.

Lemma 5.4. Suppose α = β1 ⊕ β2 ⊕ · · · ⊕ βk is the canonical decomposition of α. Then each βi is
a Schur root.
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We now state a theorem of Schofield that will be very useful for us.

Theorem 5.5 (Schofield [50]). Suppose α = β1 ⊕ β2 ⊕ · · · ⊕ βk is the canonical decomposition for
α. Then the canonical decomposition for mα is

mα = [mβ1]⊕ [mβ2]⊕ · · · ⊕ [mβk],

where [mβ] = β⊕m if β is a real or isotropic Schur root and [mβ] = mβ if β is a non-isotropic
imaginary Schur root.

Corollary 5.6. Suppose α = β⊕m1
1 ⊕ β⊕m2

2 ⊕ · · · ⊕ β⊕mkk is the canonical decomposition of α. For
all i such that mi > 1, βi must be a real Schur root or an isotropic Schur root.

We make a definition:

Definition 5.7. Let α be a dimension vector. Then, we call α σ-stable (resp. σ-semistable, σ-
polystable) if a generic representation of dimension α is σ-stable (resp. σ-semistable, σ-polystable).

It is easy to see that in order for α to be σ-stable for any σ, it must be a Schur root. Schofield
proved a result in the other direction, which will be very useful for us:

Theorem 5.8 (Schofield [50]). Let α be a Schur root. Then there exists 0 6= σ ∈ C(Q,α) such that
α is σ-stable.

Corollary 5.9. Let α be a dimension vector and σ be a weight. Suppose α = β1 ⊕ β2 ⊕ · · · ⊕ βk is
the canonical decomposition with βi being σ-stable for all i. Then, α is σ-polystable. Moreover, α
is σ-stable if and only if k = 1.

Proof. We have a map φ : GL(α) ×
∏k
i=1 Rep(Q, βi) → Rep(Q,α), that takes (g, (V (i))1≤i≤k) 7→

g · (V (1) ⊕ V (2) ⊕ · · · ⊕ V (k)). The fact that α = β1 ⊕ β2 ⊕ · · · ⊕ βk is the canonical decomposition
means that φ is dominant, i.e., its image Im(φ) contains a (non-empty) Zariski open subset of
Rep(Q,α).

Now, the fact that each βi is σ-stable means that there is a non-empty Zariski open subset

Ui ⊆ Rep(Q, βi) that consists of σ-stable representations. Let U = GL(α) ×
∏k
i=1 Ui. Then

for any representation V ∈ φ(U) ⊆ Rep(Q,α), it decomposes as a direct sum of representations of
dimension β1, . . . , βk, each of which is σ-stable. Hence φ(U) consists of σ-polystable representations.
Now, φ(U) is Zariski-dense in Im(φ) which is Zariski-dense in Rep(Q,α). Thus the Zariski-closure
of φ(U) is Rep(Q,α). Since U is constructible, its image under the map φ is constructible (by
Chevalley’s theorem on constructible sets) and hence contains a (dense, hence non-empty) Zariski-
open subset of its closure, i.e., there exists a Zariski-open subset of Rep(Q,α) that is contained in
φ(U). Thus α is σ-polystable.

That α is σ-stable if and only if k = 1 is obvious. �

6. Matrix normal models

Let us explicitly compute the canonical decomposition for the m-Kronecker quiver Θ(m).

Proposition 6.1 (Canonical decomposition for them-Kronecker quiver). Consider the m-Kronecker
quiver Θ(m) and let α = (p, q) be a dimension vector, and let d = gcd(p, q).

(1) If p2 + q2 −mpq < 0, then α is a (non-isotropic) imaginary Schur root and its canonical
decomposition is α = α.

(2) If p2 + q2 −mpq = 0, then α
d is an isotropic Schur root and the canonical decomposition is

α = (αd )⊕d (note that α
d ∈ ZQ0

≥0).

(3) If p2 + q2 − mpq = d2, then α
d is a real Schur root and the canonical decomposition is

α = (αd )⊕d.
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(4) In all other cases (i.e., p2 + q2−mpq > 0, but not equal to d2), the canonical decomposition
has at least two linearly independent dimension vectors.

Proof. First, observe that for a dimension vector γ = (a, b), we have 〈γ, γ〉 = a2 + b2 −mab. The
set of roots for Θ(m) are precisely the dimension vectors (a, b) such that a2 + b2 −mab ≤ 1 [36].
All real roots and non-isotropic imaginary roots are Schur [36, Theorem 4] (note that non-isotropic
imaginary roots only occur for m ≥ 3). To be precise, Kac shows that all real and non-isotropic
imaginary roots occur in a canonical decomposition, and hence must be Schur. Isotropic roots only
occur for m = 2, and these are precisely (a, a). In this case, (1, 1) is Schur, but the rest are of
course not Schur. Moreover, observe that any real root (a, b) must be indivisible as otherwise, it
would not be possible for 〈(a, b), (a, b)〉 = a2 + b2 −mab = 1. Thus, all real and isotropic Schur
roots are indivisible. Further, we can conclude that if (a, b) is indivisible, then (a, b) is a Schur root
if and only if a2 + b2 −mab ≤ 1.

Let us understand when the canonical decomposition of (p, q) has at least two linearly inde-
pendent dimension vectors and when it does not. If it does not have two linearly independent
dimension vectors, then all the dimension vectors in the canonical decomposition must be parallel
to α, so α = λ1α⊕λ2α⊕ · · · ⊕ λkα is the canonical decomposition for some scalars λi. This means
that α is a scalar (not necessarily integral) multiple of a Schur root, i.e., λ1α. So, let us now turn
to understanding dimension vectors that are scalar multiples of Schur roots.

Let p′ = p/d and q′ = q/d. We claim that (p, q) is a scalar (not necessarily integral) multiple of a
Schur root if and only if (p′, q′) is a Schur root. The “if” is obvious and we have to prove “only if”.
So, let us assume (p, q) is a multiple of a Schur root. Suppose p2 + q2−mpq < 0, then clearly both
(p, q) and (p′, q′) are non-isotropic imaginary Schur roots. If p2 + q2 −mpq ≥ 0, then (p, q) must
be a multiple of a real or isotropic Schur root, and since real/isotropic Schur roots are indivisible,
that Schur root must be (p′, q′). Note that as a consequence of the above arguments, we get that
(p, q) is a scalar multiple of a Schur root if and only if it is an integral multiple of a Schur root.

Having proved the claim in the previous paragraph, we know that (p, q) is a multiple of a Schur
root if and only if p′2 + q′2 − mp′q′ ≤ 1 or equivalently p2 + q2 − mpq = d2 or ≤ 0. This is
precisely the first three cases and in these cases, Theorem 5.5 tells us precisely what the canonical
decomposition has to be, depending on whether the Schur root (p′, q′) is real, isotropic or non-
isotropic imaginary. In all other cases, (p, q) is not a multiple of a Schur root and as argued above
its canonical decomposition will have two linearly independent dimension vectors. �

6.1. Maximum Likelihood thresholds for complex matrix normal models. Let us prove
Theorem 1.2 for the case of K = C first.

Proof of Theorem 1.2 for K = C. For this proof, let GSL denote SLp×SLq. For σ = (−q′, p′),
we know that σ-stable/polystable/semistable is the same as GSL-stable/semistable/polystable by
Lemma 4.3.

For (1), (resp. (2)), observe (by Proposition 6.1) that α (resp. α
d ) are Schur roots and hence

π-stable for some (indivisible) π by Theorem 5.8. Such a π must satisfy π(p, q) = 0 and so π must
be σ = (−q′, p′) (naively, it could also have been (q′,−p′), but this is not in C(Θ(m), (p, q)) as
remarked before). Thus, from Corollary 5.9, we deduce that α is σ-stable (resp. σ-polystable) and
further than in the case of (2), α is σ-stable if and only if d = 1. Applying Theorem 2.7, we get
the required conclusion.

(4) follows immediately by combining Corollary 4.5, Proposition 6.1 and Theorem 2.7. �

6.2. Maximum Likelihood thresholds for real matrix normal models.

Lemma 6.2. Let Y ∈ Rep(Θ(m), (p, q))R = Matmp,q(R). If an MLE given Y is unique for the real
matrix normal model M(p, q), then Y is indecomposable over R. In other words, it is indecompos-
able when thought of as a representation over R or equivalently, an RQ-module.
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Proof. Let G = SLp×SLq, so that GR = SLp(R) × SLq(R). If an MLE given Y exists, then Y is
polystable. Hence, without loss of generality, assume Y is polystable. Moreover, without loss of
generality, assume Y is a point in the GR-orbit with minimal norm. Let (GR)Y denote the stabilizer
at Y .

There is a constant λ ∈ R \ {0} such that for each (g, h) ∈ (GR)Y , λ(g>g⊗ (h−1)(h−1)>) ∈ PDpq

is an MLE, see [2, Proposition 5.2, Remark 5.5]. There is a very minor change in the formula
because the action we use is slightly different (yet equivalent) from the one used in [2]. The two
actions are related by an automorphism of SLq, given by h 7→ (h−1)>), and we modify appropriately
the formula for an MLE.

Clearly λIpq is an MLE, so if it is unique, then for all (g, h) ∈ (GR)Y , we must have g>g = αIp
and h>h = αIq for some 0 6= α ∈ R. Since g>g and h>h are positive definite, we must have α > 0,

and since det(g) = det(h) = 1, we must have α = 1. In other words, we must have g>g = Ip and

h>h = Iq, i.e., g and h are orthogonal matrices.
Suppose on the contrary that Y is decomposable over R. Interpreting this as a representation

over R for Θ(m), we assign Rp to the vertex x and Rq to the vertex y, and to each arrow ai, we assign
the linear map Yi : Rq → Rp. Now, Y is decomposable means that there is a decomposition Rp =
W (x)⊕Z(x) and Rq = W (y)⊕Z(y), such that for each i, Yi(W (y)) ⊆W (x) and Yi(Z(y)) ⊆ Z(x).
Consider dim(W ) = (dim(W (x)),dim(W (y))) and dim(Z) = (dim(Z(x)),dim(Z(y))). Then since
Y is σ-semistable, we must have that dim(W ) = (ap, aq) and dim(Z) = (bp, bq) by Corollary 4.5
(to be precise, we have to complexify everything to apply Corollary 4.5, we leave the details to the

reader). Now, let c, d ∈ R>0 such that cadb = 1 and |c|, |d| 6= 1 (for e.g., c = 2 and d = 2−a/b).
Let g ∈ SLp(R) be the linear map that is defined by g(v) = cv for v ∈ W (x) and g(v) = dv for
v ∈ Z(x), and let h ∈ SLq(R) be the linear map defined by h(v) = cv for v ∈ W (y) and h(v) = dv
for v ∈ Z(y). Then, it is a simple check to see that (g, h) ∈ (GR)Y . However, clearly g and h are
not orthogonal matrices because they have eigenvalues with absolute value 6= 1. This contradicts
uniqueness of MLE by the above discussion.

Thus, Y must be indecomposable over R.
�

Proof of Theorem 1.2 for K = R. Let GSL = SLp(C)× SLq(C) and so (GSL)R = SLp(R)× SLq(R).
By using Proposition 2.23, all the generic stability notions (Definition 2.3) carry over without any
change from the case of K = C to the case of K = R.

In particular, the statements regarding boundedness of log-likelihood function and existence of
MLEs also carry over from K = C to K = R. The only issue arises in terms of uniqueness of an
MLE. Over the reals, stability implies uniqueness of MLEs, but not conversely. Thus, even when
Rep(Θ(m), (p, q))R is not generically (GSL)R-stable, we might still have almost sure uniqueness of
MLEs. So, we need to look at the cases where we have generic polystability but not generic stability.
This happens exactly when d ≥ 2 and p2 + q2 −mpq is either 0 or d2. This is precisely why we
proved the above lemma.

Now, suppose p2 + q2 −mpq = 0 or d2 and d ≥ 3. Then, by Lemma 3.3, we get that a generic
point in Rep(Θ(m), (p, q))R is decomposable over R, and by Lemma 6.2 that MLE is not unique.

Now, suppose p2 + q2 − mpq = d2 and d = 2. This is precisely the case where (p, q) = 2β
where β is a real Schur root. This means that there is a unique indecomposable of dimension β
and it is defined over R – this is because for a real Schur root, the representation space has a
Zariski-dense orbit corresponding to this unique indecomposable [18, Lemma 11.1.3]. This unique
indecomposable corresponds to an RQ-module (for Q = Θ(m)) that we will call W . Take a generic
point Y ∈ Rep(Θ(m), (p, q))R. Interpret this as an RQ-module, which we will call M . Then, by
genericity, we know that MC ∼= WC ⊕WC as CQ-modules. Hence MC ∼= W⊕4 as RQ-modules.
Thus M⊕2 ∼= W⊕4 as RQ-modules. By Krull-Remak-Schmidt theorem, we get that M ∼= W⊕2 as
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RQ-modules. In other words, Y is decomposable over R, and hence by Lemma 6.2, there is not a
unique MLE.

Now, suppose p2 + q2 −mpq = 0 and d = 2. This happens precisely in the case of (p, q) = (2, 2)
and m = 2. This is a slightly tricky case, and it turns out that we cannot claim uniqueness or
non-uniqueness of MLEs generically. In fact, the subset of points having a unique MLE is semi-
algebraic and full-dimensional, but not dense. Nevertheless, it remains that we do not have almost
sure uniqueness of MLEs, see [21, Section 4] (in particular Corollary 4.6) for a more thorough
explanation of this behavior.

Thus every statement in the case of K = C transfers to the case of K = R. �

7. Model of proportional covariance matrices

In this section, we will focus on the model of proportional covariance matrices N (p, q). Once
again, we will first work with K = C (and then transfer the result to K = R). For this case, we
consider the quiver B(q,m) with vertices x, y1, . . . , yq and m arrows from each yi to x. The quiver
B(q, 1) is pictured below.

y1

y2

yq

x
.
.
.

.

.

.

.

.

Let us first define an operation for quivers. For any quiver Q = (Q0, Q1), define Q[m] to be
the following quiver: Let its vertex set be Q0, the vertex set for Q. For each a ∈ Q1, define m

arrows a[1], . . . , a[m] in Q
[m]
1 such that ta = ta[i] and ha = ha[i] for all i. For example, we have

B(q,m) = B(q, 1)[m]. For any dimension vector α ∈ ZQ0

≥0, we have Rep(Q[m], α) = Rep(Q,α)⊕m.

Further, the action of GL(α) on Rep(Q[m], α) = Rep(Q,α)⊕m is the diagonal action obtained from
the action on Rep(Q,α). The same holds for the action of any subgroup of GL(α).

We use the convention that in a dimension vector for B(q,m), the coordinates correspond to
x, y1, . . . , yq in order. If we take the dimension vector α = (p, 1, 1, . . . , 1), then Rep(B(q, 1), α)
can be identified with Matp,q. Let σ = (−q′, p′, . . . , p′) where (p′, q′) = 1

gcd(p,q)(p, q). Analogous

to Lemma 4.3, we can prove that σ-semistability/polystability/stability coincides with SLp×STq-
semistability/polystability/stability.

Since B(q,m) = B(q, 1)[m], by the above discussion we conclude the following:

Lemma 7.1. Consider the action of HSL = SLp×STq on Matmp,q = Rep(B(q,m), (p, 1, 1, . . . , 1)).

Let σ = (−q′, p′, . . . , p′) be a weight for B(q,m), where (p′, q′) =
1

gcd(p, q)
(p, q). Suppose Y ∈

Matmp,q. Then, Y is HSL-semistable/polystable/stable if and only if Y is σ-semistable/polystable/stable.

Proof. This is analogous to Lemma 4.3. �

Proposition 7.2. Let Q = B(q,m), α = (p, 1, 1, . . . , 1) and σ = (−q′, p′, . . . , p′) where (p′, q′) =
1

gcd(p,q)(p, q). If mq < p, then every Y ∈ Rep(Q,α) = Matmp,q is σ-unstable. If mq = p, then α is

σ-polystable (and σ-stable precisely when q = 1). If mq > p, then α is σ-stable.

Proof. Let mq < p, and let Y ∈ Rep(Q,α). We claim that there is a subrepresentation of dimension
β = (mq, 1, 1, . . . , 1). This is because from each vertex yi, there are m arrows, and each one of
them has a 1-dimensional image. There are mq of such 1-dimensional subspaces (one for each
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arrow), so there is a subspace U ⊆ Cp of dimension mq that contains all of these. This gives a
subrepresentation of dimension β. Now σ(β) > 0, so α is not σ-semistable.

Now, let mq = p, and let Y ∈ Rep(Q,α) be generic. Then, for each yi, the images of the m
arrows starting from yi form an m-dimensional subspace of Cp (the vector space at the vertex x).
You get one such m-dimensional subspace for each yi (call it Ui), hence there are q of them. By
genericity, we will have that Cq = ⊕qi=1Ui. This means that placing C at the vertex yi, Ui at vertex
x and C0 at all other vertices gives a subrepresentation, and in fact a direct summand. Thus, Y is a
direct sum of q indecomposables of dimensions (m, 1, 0, . . . , 0), (m, 0, 1, . . . , 0), . . . , (m, 0, . . . , 1). It
is straightforward to see (by genericity) that each one of these summands will be indecomposable,
has no non-trivial subrepresentations, and is σ-stable. Thus, Y is σ-polystable. In fact, it is easy
to see that the canonical decomposition is α = (m, 1, 0, . . . , 0)⊕ (m, 0, 1, . . . , 0)⊕ · · · ⊕ (m, 0, . . . , 1)
and that each of the dimension vectors appearing in the canonical decomposition are real Schur
roots that are σ-stable.

Now, let mq > p, and let Y ∈ Rep(Q,α) be generic. Similar arguments as above will show that
any subrepresentation has a dimension vector of the form β = (min{m(

∑
εi), p}, ε1, ε2, . . . , εq),

where εi ∈ {0, 1}. For each subrepresentation, we observe that σ(β) < 0 unless β = α, when
σ(α) = 0. Hence Y is σ-stable. �

Proof of Theorem 1.5. We claim the following three statements. If mq < p, then the log-likelihood
function is unbounded. If mq = p, then (almost surely) an MLE exists and we have almost sure
uniqueness precisely when m = 1. If mq > p, then (almost surely) we have a unique MLE. For
K = C, they follow from Proposition 7.2, Lemma 7.1 and Proposition 2.9. Transfering the result
to K = R is analogous to Theorem 1.2. For the case mq = p, one has to look into the proof of
Proposition 7.2 to see that the canonical decomposition of (p, q) consists of real Schur roots, so the
argument parallels part (2) of Theorem 1.2.

Reformulating this in terms of maximum likelihood thresholds gives us the required conclusion.
�
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Appendix A. Equivalence of stability notions

In this appendix, we reconcile Theorem 4.2 with King’s original formulation [39].
Let Q be a quiver with no oriented cycles, let α be a sincere dimension vector, i.e., α(x) 6= 0

for all x ∈ Q0, and let σ ∈ C(Q,α) be a non-zero indivisible weight. Then, it is easy to see that

C[Rep(Q,α)]GL(α)σ =
⊕

n∈Z SI(Q,α)nσ. But, in fact, C[Rep(Q,α)]GL(α)σ =
⊕

n∈Z≥0
SI(Q,α)nσ

because we assume the quiver has no oriented cycles. This follows from the fact that the form
〈−,−〉 is non-degenerate (see [18, Definition 2.5.3]) and that SI(Q, α)γ 6= 0 implies that γ = 〈β,−〉
for some dimension vector β (see [18, Theorem 10.7.1]). Now, since we chose 0 6= σ ∈ C(Q,α), we

know that for some n ∈ Z>0, nσ = 〈β,−〉 for some dimension vector 0 6= β ∈ ZQ0

≥0. So for m ∈ Z>0,

we get that −mσ =
〈
−m
n β,−

〉
, but −m

n β cannot be a dimension vector as it contains negative
entries, so SI(Q,α)−mσ = 0 for all m ∈ Z>0.

Let Cσ denote the 1-dimensional representation of GL(α) corresponding to σ, i.e., Cσ = C as a
vector space and the linear action of GL(α) is given by g · 1 = σ(g).

Proposition A.1. Let Q,α, σ be as above. Then V ∈ Rep(Q,α) is GL(α)σ-semistable/polystable/stable
if and only if (V, 1) ∈ Rep(Q,α)⊕ Cσ is GL(α)-semistable/polystable/stable.

Proof. Let z denote the coordinate of Cσ in Rep(Q,α) ⊕ Cσ. Let us split the argument for each
notion of stability

• Semistability: Suppose V is GL(α)σ-semistable. Then there exists f ∈ SI(Q,α)nσ such

that f(V ) 6= 0. This means that f̃ = fzn is GL(α) invariant (with no constant term) and

f̃(V, 1) = f(V ) 6= 0. So (V, 1) is GL(α)-semistable.

Conversely, if f̃(V, 1) 6= 0 for some f̃ that is GL(α)-invariant and homogeneous (say of

degree m > 0), then write f̃ =
∑m

i=0 fm−iz
i, with fj homogeneous of degree j for all j.

Then, each fm−iz
i is GL(α)-invariant. For some i, we have that fm−iz

i does not vanish
24



on (V, 1). So, fm−i ∈ SI(Q,α)iσ is homogeneous of degree (m− i) such that fm−i(V ) 6= 0.
If i = m, this means that f0 is a constant, but f0 ∈ SI(Q,α)mσ, which is absurd because

mσ 6= 0. Thus i < m and so fm−i ∈ SI(Q,α)iσ ∈ C[Rep(Q,α)]GL(α)σ is a homogeneous
polynomial of positive degree that does not vanish on V . Thus, V is GL(α)σ-semistable.
• Polystability: Suppose 0 6= V is not GL(α)σ-polystable. Then, by the (generalized)

Hilbert–Mumford criterion ([18, Proposition 9.6.2]) there exists a 1-parameter subgroup
λ : C∗ → GL(α)σ such that limt→0 λ(t)V = W where W /∈ GL(α)σ · V . This means that
limt→0 λ(t)(V, 1) = (W, 1). Now, we will show that (W, 1) /∈ GL(α) · (V, 1). Otherwise, we
have (W, 1) = g(V, 1) = (gV, σ(g)) for some g ∈ GL(α). Thus σ(g) = 1, i.e., g ∈ GL(α)σ
and gV = W and hence W ∈ GL(α)σ · V , which is a contradiction. So, (V, 1) is not
polystable. In the case that V = 0, note that (0, 1) is not even GL(α)-semistable if there
exists g ∈ GL(α) such that |σ(g)| < 1 (since that would mean limk→∞ g

k(0, 1) = (0, 0)). It
is easy to construct such a g ∈ GL(α) with our assumptions, i.e., Q has no oriented cycles,
α is sincere and σ is non-zero.

Conversely, suppose (V, 1) is not polystable. Then there is a 1-parameter subgroup λ
of GL(α) such that limt→0 λ(t)(V, 1) = (W, c), with (W, c) /∈ GL(α)(V, 1). Suppose c = 0,
then (W, 0) is easily seen to be unstable because all points are unstable for the action of
GL(α) on Rep(Q,α) if Q has no oriented cycles (as is the case for us). This would mean
that (V, 1) is not even GL(α)-semistable, which means that V is not GL(α)σ-semistable
and hence not GL(α)σ-polystable. Hence w.l.o.g., assume c 6= 0 from now on. Now, the
function t 7→ σ(λ(t)) is a character of C∗ and has to be of the form t 7→ tk for some integer
k. Since c = limt→0 t

k is defined, we must have k ≥ 0. If k = 0, we get c = 1 and if
k > 0, we get c = 0. Since c 6= 0, we must have c = 1 and λ(t) ∈ GL(α)σ. This means

that limt→0 λ(t)V = W , so W ∈ GL(α)σ · V . But W /∈ GL(α)σ · V , because if it were,
then gV = W for some g ∈ GL(α)σ, which means g(V, 1) = (W, 1) = (W, c), which is a
contradiction. Thus the orbit of V is not closed, and hence V is not polystable.
• Stability: Since V is GL(α)σ-polystable if and only if (V, 1) is GL(α)-polystable, we only

need to now understand the stabilizers. First, observe that if ∆ ⊆ GL(α)σ is the kernel for
its action on Rep(Q,α), then ∆ is the kernel for the action of GL(α) on Rep(Q,α) ⊕ Cσ.
Thus, all we need to do is to show that the two stabilizers, i.e., GL(α)(V,1) and (GL(α)σ)V ,
have the same dimension. In fact they are both the same. Indeed g ∈ GL(α)(V,1) if and
only if g(V, 1) = (gV, σ(g)) = (V, 1) if and only if σ(g) = 1 and gV = V if and only if
g ∈ (GL(α)σ)V .

�

Now, we bridge the gap between the result stated in [39] and Theorem 4.2. In Theorem 4.2, we
have σ such that −σ /∈ C(Q,α). We have two cases

• Case 1: σ ∈ C(Q,α) – In this case, King [39] showed that σ-semistability/polystability/stability
for V ∈ Rep(Q,α) was the same as the GL(α)-semistability/polystability/stability of
(V, 1) ∈ Rep(Q,α)⊕Cσ, which is equivalent to GL(α)σ-semistability/polystability/stability
of V as we have shown above.
• Case 2: σ /∈ C(Q,α) – In this case, we see that C[Rep(Q,α)]GL(α)σ = C since we also

assume −σ /∈ C(Q,α). Thus, every V ∈ Rep(Q,α) is GL(α)σ-unstable. On the other
hand, King [39] showed that σ-semistability of V ∈ Rep(Q,α) is equivalent to the existence
of f ∈ SI(Q,α)dσ for some d ∈ Z≥1 such that f(V ) 6= 0. But as SI(Q,α)dσ = 0 for all
d ∈ Z≥1 (because σ /∈ C(Q,α)), we see that every V ∈ Rep(Q,α) is σ-unstable (i.e., not
σ-semistable). Thus, in this case, Theorem 4.2 is clearly true.
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Finally, we remark that the hypothesis on Q,α and σ cannot be entirely removed. For example,
if you take σ = 0, then for V = 0, it is easy to see that (V, 1) is GL(α)-semistable, but V is not
GL(α)σ-semistable.
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