
DLion: Decentralized Distributed Deep Learning in
Micro-Clouds

Rankyung Hong
University of Minnesota
Minneapolis, MN, USA
hongx293@umn.edu

Abhishek Chandra
University of Minnesota
Minneapolis, MN, USA
chandra@umn.edu

ABSTRACT
Deep learning (DL) is a popular technique for building models
from large quantities of data such as pictures, videos, messages
generated from edges devices at rapid pace all over the world. It is
often infeasible to migrate large quantities of data from the edges
to centralized data center(s) over WANs for training due to privacy,
cost, and performance reasons. At the same time, training large DL
models on edge devices is infeasible due to their limited resources.
An attractive alternative for DL training distributed data is to use
micro-clouds—small-scale clouds deployed near edge devices in mul-
tiple locations. However, micro-clouds present the challenges of
both computation and network resource heterogeneity as well as
dynamism. In this paper, we introduce DLion, a new and generic
decentralized distributed DL system designed to address the key
challenges in micro-cloud environments, in order to reduce overall
training time and improve model accuracy. We present three key
techniques in DLion: (1)Weighted dynamic batching to maximize
data parallelism for dealing with heterogeneous and dynamic com-
pute capacity, (2) Per-link prioritized gradient exchange to reduce
communication overhead for model updates based on available net-
work capacity, and (3) Direct knowledge transfer to improve model
accuracy by merging the best performing model parameters. We
build a prototype of DLion on top of TensorFlow and show that
DLion achieves up to 4.2× speedup in an Amazon GPU cluster, and
up to 2× speed up and 26% higher model accuracy in a CPU cluster
over four state-of-the-art distributed DL systems.

CCS CONCEPTS
• Computer systems organization → Cloud computing; •
Computing methodologies →Machine learning.

KEYWORDS
Edge computing, Deep learning, Micro-clouds, Resource allocation

ACM Reference Format:
Rankyung Hong and Abhishek Chandra. 2021. DLion: Decentralized Dis-
tributed Deep Learning in Micro-Clouds. In Proceedings of the 30th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460643

Figure 1: Distributed deep learning (DL) in micro-clouds.

(HPDC ’21), June 21–25, 2021, Virtual Event, Sweden. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3431379.3460643

1 INTRODUCTION
Deep learning (DL) is a popular technique to buildmodels from large
volumes of input data for applications in many domains [10, 15, 24].
Traditionally, DL models are trained in a cluster or data center
environment as a one-time solution for a fixed set of training data.
Recently, the advent of sensors, mobile, and IoT devices has led to
increasingly large volumes of continuously generated data from
the edge [33, 47, 49]. Such data has created the need for DL models
to keep evolving using data continuously generated from edge
devices across the globe, and could be used for online-learning or
incremental-learning [6, 35, 37].

However, migrating such large amounts of data into centralized
cloud(s) over WANs for training is likely to be prohibitive due to
cost, performance, or privacy reasons. For instance, such data is
hard to move because of WAN bandwidth constraints, or because
it could contain a lot of personal information such as pictures or
videos generated by user devices or recorded using surveillance
cameras. The need for geo-distributed data analysis has also been
shown for many other analytics tasks [17, 19, 23, 27].

Federated learning [5, 7, 28] has been proposed to train models
at the edge without data movement. However, federated learning
can only train much smaller-scale models like traditional machine
learning algorithms due to limited resources of the edges, such as
computation, storage, or energy, which are significantly constrained
for training large deep learning models.

An attractive alternative is to carry out distributed deep learning
across micro-clouds [4, 13, 14, 38]: an emerging type of infrastruc-
ture to support the exponentially growing large amounts of data
generated by edge devices [20, 44, 50] such as surveillance cameras,
mobile phones, or various sensors (Figure 1). Micro-clouds often
provide better computation, storage, and energy capabilities than
edges, and better data locality than public clouds. While there has
been growing interest in using the edge for DL inference [2, 21, 45],
where models trained in the cloud are deployed at the edge for
faster inference; in this paper, we argue for the use of micro-cloud

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

227

https://doi.org/10.1145/3431379.3460643
https://doi.org/10.1145/3431379.3460643


environments for DL training to efficiently build DL models in-situ
and to support such learning.

There are two major system challenges in enabling distributed
deep learning in micro-clouds.
1. Compute resource heterogeneity and dynamism. Different
micro-clouds can have different number of servers equipped with
different performance hardware. Servers in the micro-clouds can
also be shared by other applications, so the available compute ca-
pacity may dynamically change.
2. Network resource heterogeneity and dynamism. Servers in
a micro-cloud communicate with each other over LAN, whereas
servers in different micro-clouds are connected via WAN. Network
capacities in LANs may vary due to network resource contention
with other applications, while bandwidths in WANs are much more
scare and fluctuating than in LANs.

Existing distributed deep learning systems do not fully address
these challenges. General purpose distributed DL systems [1, 8]
do not consider system heterogeneity, resulting in much longer
training times in the presence of compute heterogeneity or network
bottlenecks. Recent research has addressed the network bottleneck
issue by reducing the amounts of data transmitted over the net-
work [18, 46], and system heterogeneity by skipping updates from
stragglers [31]. However, these approaches typically trade off train-
ing time and model accuracy, and do not comprehensively consider
all challenges of DL learning in micro-cloud environments. Fed-
erated learning [5, 7, 28] handles system heterogeneity, but DL
training is not feasible due to extremely limited resources at edges.

In this paper, we present DLion, a new and generic distributed
deep learning system designed for deep learning in heterogeneous
environments such as micro-clouds. It builds on a decentralized
system architecture because it naturally fits in such heterogeneous
environments. The goal of DLion is to reduce training time while
achieving higher model accuracy for distributed DL in micro-clouds.
We assume that training data continuously generated from edges
can be collected to nearby micro-clouds, and DL models then pe-
riodically start or resume training process with the collected data
on DLion system. Input data collection/movement is an interesting
research problem by itself, and we consider it to be beyond the
scope of this paper.

DLion employs three key techniques: (1)Weighted dynamic batch-
ing to handle compute heterogeneity, (2) Per-link prioritized gradient
exchange to handle network heterogeneity, and (3) Direct knowledge
transfer to improve model accuracy. We implement a prototype of
DLion on top of TensorFlow and deploy DLion on an Amazon GPU
cluster and a local CPU cluster emulating micro-clouds. To evaluate
the effectiveness of DLion on different types of applications, we
train Cipher CNN model over CIFAR10 on CPUs and MobileNet
over ImageNet on GPUs. Our experiments show the efficacy of
DLion towards achieving accurate and efficient distributed DL in
micro-clouds: DLion provides up to 4.2× speedup over four state-
of-the-art distributed DL systems in the GPU cluster, and up to 2×
speed up and 26% higher model accuracy in CPU cluster.

We make the following major contributions:
• We propose a new distributed deep learning system for DL train-
ing in heterogeneous environments such as micro-clouds. The sys-
tem achieves shorter training time and higher model accuracy by

handling system heterogeneity having dynamically changing com-
putation capacity and network bandwidth.
•We design DLion as a generic and flexible system. The system is
well-modularized, so it is very easy to adopt different distributed
DL systems and algorithms in DLion. For example, we have im-
plemented three state-of-the-art existing distributed DL systems
(Ako [46], Gaia [18], and Hop [31]), with a maximum additional 23
lines of code per system.
• We build a DLion prototype on top of TensorFlow and demon-
strate its effectiveness on both CPU-based and GPU-based clusters
with Cipher and MobileNet models training. We show that DLion
outperforms four state-of-the-art distributed DL systems in terms
of training time and accuracy in micro-clouds environments.

2 BACKGROUND AND MOTIVATION
We first describe the general terms used in distributed deep learning
and centralized and decentralized system architectures that state-
of-the-art distributed DL systems utilize. We then introduce DL
learning in micro-clouds and discuss challenges and motivation in
designing a distributed DL system in such environments.

2.1 Distributed Deep Learning
Deep Learning.We consider supervised learning using minibatch
stochastic gradient descent (SGD) [36] to minimize the loss value
of the function 𝑓 over the training dataset 𝑥 (Eq. 1).

Learning: min
𝑥 ∈𝑅𝑛

𝑓 (𝑥 ;𝑤) = 1
𝑚

𝑚∑
𝑖=1

𝑓𝑖 (𝑥 ;𝑤𝑡 ) (1)

A DL model consists of a set of parameters called weights, and
operators. The meaning of training a DL model is to find the best
values for the weights, which lead to the smallest loss value.

Gradient Calculation: 𝑔𝑡 =
1
𝑚

𝑚∑
𝑖=1

▽𝑤 𝑓𝑖 (𝑥 ;𝑤𝑡 ) (2)

Model (Weight) Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑔𝑡 (3)

The weights are tuned by iterations of gradient 𝑔𝑡 calculation
(Eq. 2) and model (weight 𝑤𝑡 ) update (Eq. 3) over minibatches. A
minibatch is composed of𝑚 training data samples from the training
data 𝑥 and batch size indicates the size of a minibatch. An iteration
indicates a cycle of gradient calculation and model update over a
minibatch. An epoch indicates a set of iterations trained over one
pass of the whole training data. Batch size and learning rate 𝜂 are
tunable model parameters.

Distributed Deep Learning. Multiple workers in a cluster col-
laborate to train a model over partitioned training data. 𝑛 workers
calculate their own gradients locally based on a minibatch size of𝑚
in parallel. Local batch size indicates the minibatch size processed
in a worker, which is𝑚, and global batch size indicates the total
batch size across all workers at an iteration, which is 𝑛 ×𝑚.

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
1
𝑛

𝑛∑
𝑗=1

1
𝑚

𝑚∑
𝑖=1

▽𝑤 𝑓𝑖 (𝑥 ;𝑤𝑡 ) (4)

The model update in distributed DL systems follows Eq. 4.
Weights are updated based on the average of the 𝑛 gradients.

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

228



(a) Centralized DL Systems (b) Decentralized DL Systems

Figure 2: Distributed DL system architectures

Figure 3: Deep learning training in micro-clouds; workers in a
micro-cloud communicate over LANs, whereas workers in differ-
ent micro-clouds are connected over WANs. Large solid ellipses are
workers withmore computation capacity than small dotted ellipses.

2.2 Distributed Deep Learning Systems
Distributed deep learning systems allow users to train their DL
models using a cluster of multiple workers where training data are
distributed. General purpose DL systems like TensorFlow [1] or
MXNet [8] utilize central components called parameter servers (PS)
for model updates in a centralized manner as shown in Figure 2a.
All workers pull the synchronized weights from PSs to calculate
gradients for the next iteration. However, in such a centralized
architecture, PSs can be a communication bottleneck and the per-
formance depends on their optimal deployment. On the other hand,
decentralized distributed DL systems such as Ako [46], Hop [31] and
Prague [30] synchronize models without PSs as shown in Figure 2b.
Workers exchange local gradients with each other, and update their
local model based on collected gradients. The workload imposed on
PSs can be offloaded to all the workers and there is no PS placement
problem in this architecture. Hybrid distributed DL systems such
as Gaia [18] employ the decentralized architecture to exchange
gradients between PSs over WANs while learning in a centralized
manner in LANs.

2.3 DL Learning in Micro-Clouds
The system model that we target is to train deep learning models
in micro-clouds as shown in Figure 3. Workers in a micro-cloud are
connected over LANs, whereas workers in different micro-clouds
communicate over WANs. Available compute capacities of individ-
ual workers may vary: some of them utilize only CPUs while others
use GPUs, and the number of processing units may vary across
workers. In addition, available compute and network capacities can
fluctuate over time due to resource sharing with other applications.
2.4 Challenges and Motivation
There are two major challenges factored in designing a distributed
DL system running on micro-clouds.
Compute resource heterogeneity and dynamism. How to ef-
fectively handle different computation capacities of workers in micro-
clouds to shorten training time while retaining model accuracy? Un-
like public clouds, micro-clouds may have various types of CPUs
and/or GPUs and the number of units may vary per worker because

different providers may set up their own micro-clouds for various
application-specific purposes. Besides, the cluster can be shared by
multiple applications, so the available computation resources can
vary over time. The state-of-the-art distributed DL systems hold
an implicit assumption that the computation power of workers are
identical and steady, so the overall performance can be bounded by
the slowest worker and system resource cannot be fully utilized,
especially if they employ a synchronous training strategy. Thus,
we study techniques to effectively work on such heterogeneous
computation resource environments for faster training time with
minimum impact on accuracy.
Network resource heterogeneity and dynamism. How to ef-
fectively communicate with workers over various types of network
environments ranging from LANs to WANs, from homogeneous to
heterogeneous, and from steady to dynamic network bandwidths to
reduce training time while improving model accuracy? Most state-
of-the-art distributed DL systems address the network bottleneck
issue caused by scarce network capacity in distributed DL training.
However, they target a certain type of network environment such
as a homogeneous LAN or a heterogeneous WAN. Besides, these
techniques reduce the running time, but typically at the cost of
accuracy. We propose a general technique to work well in all types
of network environments while achieving both faster training time
and higher model accuracy.

3 OUR APPROACH: DLION
We propose DLion, a new decentralized distributed DL system for
DL training in micro-clouds to address the challenges discussed
above. In this section, we introduce design goals of DLion and
describe key techniques and relevant exploratory studies to handle
compute and network resource heterogeneity and dynamism for
reducing training time and improving accuracy.

3.1 Design Goals and Overview
DLion is designed using a decentralized training architecture. The
philosophy of a decentralized architecture fits well in distributed
micro-cloud environments, which are inherently geo-distributed
and loosely coupled. It also obviates the need for centralized control
to consider where and howmany parameter servers to deploy in the
system. DLion has the following design goals to meet the challenges
outlined above.
Maximize data parallelism to reduce training time with a mini-
mal cost on accuracy by handling different computation capacities
of workers.
Reduce communication cost among workers and guarantee
model convergence by handling available network bandwidth for
faster training while retaining accuracy.
Improve model accuracy by directly sharing knowledge among
workers to compensate for any adverse impact on accuracy.

DLion employs three key techniques to accomplish the aforemen-
tioned goals: (1)Weighted dynamic batching (§ 3.2) to maximize
data parallelism, (2) Per-link prioritized gradient exchange
(§ 3.3) to reduce communication cost among workers and guarantee
model convergence, and (3) Direct knowledge transfer (§ 3.4) to
improve model accuracy. Figure 4 shows how these techniques fit
into the workflow of DLion workers at each training iteration. We
next describe these techniques in detail. The results in this section

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

229



Figure 4: Three key techniques of DLion and the workflow for a
worker at each training iteration

are based on experiments with Cipher model over CIFAR10 [26]
in an emulated 6-worker cluster: more details of the experimental
setup are provided in Section 5.1.

3.2 Weighted Dynamic Batching
Traditional DL training is performed in a single machine with a
fixed batch size. If the training is performed on multiple workers in
a cluster, the total size of batches processed by all workers for an
iteration is called a global batch size (GBS). The batch size processed
at a machine for an iteration is called a local batch size (LBS). GBS
can increase by having either larger LBS or larger cluster size. In
this paper, we do not focus on elastic cluster, and assume � workers
in the system.

There are advantages and disadvantages of training DL models
with large global batch size [25, 40]. The major gain is to expedite
training by processing an epoch within much shorter time. On the
other hand, the drawback is that very large GBS deteriorates final
model accuracy. Therefore, it is critical to find an appropriate GBS
which results in shorter training time without significant accuracy
drop. DLion presents a GBS controller that automatically adjusts
GBS. It does not change the learning rate, as prior work[40] has
shown that the same training performance can be achieved by
varying GBS without decaying the learning rate.

Workers in micro-clouds may be heterogeneous, having different
computational capacities. If workers have homogeneous computa-
tion capacity, it makes sense to have an even LBS share (��� = ���

� ).
However, it is inefficient in heterogeneous environments because
more powerful workers would have to wait for less powerful work-
ers to complete gradient computation. In addition, the computation
power of individual workers can also be fluctuating over time. So
DLion uses an LBS controller to automatically and dynamically as-
sign a desired LBS per worker by considering available computation
capacity at that time.

The high-level idea of the weighted dynamic batching tech-
nique is to dynamically determine the GBS and assign an appropri-
ate LBS to workers based on their available computation capacities
for better data parallelism. The technique is composed of three
modules; (1) global batch size (GBS) controller, (2) local batch size
(LBS) controller, and (3) weighted model update module.

Global batch size (GBS) controller. The GBS controller is de-
signed to systematically increase GBS in an automatic manner,
unlike traditional schedule-based approaches like [40] that require
definitive user input such as a fixed total training epoch, and a good
knowledge or intuition about how much and when to increase GBS
prior to the training.

The design of the GBS controller is informed by two findings
from our empirical results shown in Figure 5. This figure shows how

Figure 5: Model accuracy for Cipher model trained for 30 epochs on
6 workers with initial LBS=32, as GBS is doubled beginning at differ-
ent starting epochs. Accuracy does not change for the later epochs.

Figure 6: An example of how local batch size is adjusted for workers
with different compute capacities in a heterogeneous computation
environment. The GBS increases around time=250s, 600s, and 800s,
resulting in corresponding changes in LBS.

the model accuracy varies as GBS is increased (doubled) beginning
at different epochs during the training phase. The first finding is
that the accuracy is lower if GBS rapidly increases at an early phase
of the training (epoch = 0 or 1). The second finding is that the impact
on the accuracy by GBS increment is relatively stable after the early
phase of training (epoch=2 onwards). These findings agree with
previous research [12, 40].

Based on these findings, the GBS controller adjusts GBS in two
phases: warm-up and speed-up. In the warm-up phase, GBS in-
creases in arithmetic progression (����+1 = ���� + ������� ).
GBS increment stops if GBS is greater than 1% of the total train-
ing data size in order to avoid a drop in accuracy based on the
first finding. In the speed-up phase, GBS increases in geometric
progression (����+1 = ���� ×�������� ). GBS increment stops if
GBS is greater than 10% of the total training data size according to
the existing study [40]. System parameters for the GBS controller
such as ������� , �������� , and duration of the two phases are
configurable.

Local batch size (LBS) controller. The LBS controller auto-
matically and dynamically determines LBS for each worker based
on their available computation capacity. More powerful workers
have larger LBS and less powerful workers have smaller LBS, and
��� =

∑�
�=1 ���� , where ���� is LBS of worker � .

The LBS controller uses a simple and intuitive way to measure
the available computation capacity of each worker. It is to find a re-
lationship between local batch sizes and elapsed times to execute an
iteration through a linear regression algorithm instead of collecting
hardware specs of each worker. LBS controller calculates relative
computation power (���� ) for each worker, a maximum local batch
size that worker � can process during a given unit time. After shar-
ing ���� with other workers, the LBS controller can determine a
final LBS for each worker based on Eq. 5.

���� = ���
����∑�
�=1 ��� �

(5)

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

230



Figure 7: Accuracy of Max N integrated with DLion with different N
values; model accuracy trained until being fully converged in CPU
cluster on homogeneous system environment

Figure 6 shows the local batch size changes for 6 workers, as
computed by GBS and LBS controllers in a heterogeneous com-
putation environment where the 6 workers have heterogeneous
CPU cores (24/24/12/12/4/4). As GBS is incremented by the GBS
controller, the LBS for each worker is automatically adjusted by the
LBS controller based on its available computation power.

Weightedmodel update module. Each worker 𝑗 computes its
gradients over its LBS at each iteration 𝑡 as follows:

𝑔
𝑗
𝑡 =

1
𝐿𝐵𝑆 𝑗

𝐿𝐵𝑆 𝑗∑
𝑖=1

▽𝑤 𝑓𝑖 (𝑥 ;𝑤𝑡 ) (6)

As Eq. 6 shows, the gradient calculation of individual workers is
based on different sample sizes (𝐿𝐵𝑆 𝑗 ). The sample size can have
an impact on the final weight computation, since larger sample
sizes typically provide more statistically robust mean values and a
smaller margin of error, while smaller sample sizes could skew the
mean values towards outliers. To account for the different sample
sizes, we introduce a new confidence coefficient 𝑑𝑏𝑘

𝑗
called dynamic

batching weight and a new weighted model update equation:

𝑤𝑘
𝑡+1 = 𝑤𝑘

𝑡 − 𝜂
1
𝑛

𝑛∑
𝑗=1

𝑑𝑏𝑘𝑗 𝑔
𝑗
𝑡 (7)

Each worker 𝑘 uses Eq. 7 to update its weights based on gradients
received from other workers. 𝑑𝑏𝑘

𝑗
= 𝐿𝐵𝑆 𝑗/𝐿𝐵𝑆𝑘 , a ratio of LBS of

workers 𝑗 and 𝑘 , and compensates for the relative LBS of each
worker. For example, whenworker𝑘 receives gradients fromworker
𝑗 where 𝐿𝐵𝑆 𝑗 > 𝐿𝐵𝑆𝑘 , it applies a dynamic batching weight greater
than 1 (𝑑𝑏𝑘

𝑗
> 1) to worker 𝑗 ’s gradients (𝑔 𝑗𝑡 ). If 𝐿𝐵𝑆 𝑗 < 𝐿𝐵𝑆𝑘 ,

then the worker 𝑘 applies a dynamic batching weight less than 1
(𝑑𝑏𝑘

𝑗
< 1) to worker 𝑗 ’s gradients (𝑔 𝑗𝑡 ). If all workers have a fixed LBS

like a traditional DL learning, then the dynamic batching weight is
equal to 1 (𝑑𝑏𝑘

𝑗
= 1), which makes the new weighted model update

equation (Eq. 7) equivalent to the original distributed DL model
update equation (Eq. 4).

3.3 Per-Link Prioritized Gradient Exchange
The goal of network capacity-aware techniques is to speed up
training and retain model accuracy by reducing communication
overhead and guarantee model convergence based on available
network bandwidth. Network bandwidth is an expensive resource
in DL training. When DL models are huge or computation units
are very powerful like GPUs, the network resource becomes more
expensive since the size of data and data generation speed increase.

We propose a per-link prioritized gradient exchange tech-
nique to exchange gradients between workers in the presence of

Figure 8: Different gradient size with different network bandwidth
per communication link (worker1 → worker3 and worker1 →
worker5). There is no dynamism on network bandwidth per link
for this experiment

network constraints. There is a tradeoff between reducing network
transmission cost and maintaining model accuracy. If a system
considers only network bandwidth constraints, it could shorten
training time by reducing the amount of data exchange, but could
have a high impact on model accuracy. On the other hand, if a
system takes into account only the data quality when exchanging
gradients, it may have poor performance due to network congestion
in environments with scarce network capacity. Therefore, DLion
uses two complementary modules to balance out these two fac-
tors in exchanging gradients: a data quality assurance module
to select a subset of gradients based on the importance of gra-
dient values, and a transmission speed assurance module to
dynamically determine the size of the partial gradients based on
the available network bandwidth at that moment.

Data quality assurance module. This module selects a subset
of important gradients to exchange with other workers, to mini-
mize the impact on model accuracy. It uses a simple but powerful
algorithm called Max N to identify the most statistically signifi-
cant gradient values. The Max N algorithm selects those partial
gradients whose absolute values are greater than or equal to N% of
the maximum absolute value. Each weight variable has their own
value distribution and convergence speed, so Max N is applied per
weight variable. The mechanism and purpose of Max N is similar to
the significance threshold S used in Gaia [18], except that Max N
only considers gradient values to determine their significance. As N
increases, the size of partial gradients increases. If N is 1, gradient
values within 1% of max are exchanged with workers, while if N is
100, it is equivalent to exchanging whole gradients with workers.
We next discuss how the value of N is determined automatically.

Transmission speed assurance module. Network hetero-
geneity and dynamism motivates the transmission speed assurance
module because different links may have different bandwidth and
the bandwidths are dynamically fluctuating over time. As the net-
work capacity for a worker can change over time, the parameter N
(0 < 𝑁 ≤ 100) of Max N is dynamically determined by the trans-
mission speed assurance module based on the currently available
network bandwidth.

Figure 7 shows themodel accuracywith different N values ofMax
N integrated with DLion. As seen from the figure, larger N values
lead to higher accuracy. With this finding, the key role of the trans-
mission speed assurance module is to automatically find the largest
N value for each communication link based on per-link network
capacity at each iteration. The maximum size of partial gradients
that worker 𝑖 sends to worker 𝑗 is computed as 𝐵𝑊 _𝑛𝑒𝑡 𝑗/𝐼𝑡𝑒𝑟_𝑐𝑜𝑚𝑖 ,

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

231



(a) When-to-send

(b) Whom-to-send (c) How-to-merge

Figure 9: Emperical study on the effectiveness of direct knowledge
transfer; Cipher models trained with CPUs until 70% accuracy for
(a), for 1500 seconds for (b) and (c)

where �� _��� � is the available network bandwidth of the commu-
nication link to worker � and ����_���� is the number of iterations
worker � can proceed during a unit time. Figure 8 shows the per-
link prioritized gradient exchange technique sends different size
of partial gradients to two communication links having different
network bandwidths.

3.4 Direct Knowledge Transfer
The techniques discussed above mainly focus on the reduction of
training time with minimal impact on accuracy. To further com-
pensate for potential accuracy loss due to these techniques, DLion
employs a technique of direct knowledge transfer through pe-
riodic weight exchange [41, 42] between workers. Unlike gradi-
ent exchange, weight exchange shares model weights of the best
worker having the smallest loss value at that moment, to directly
transfer the knowledge accumulated on local model to other work-
ers. All workers periodically share an average of last 
 losses with
each other, and send a request to the best worker to pull the best
weights. However, the effectiveness of direct knowledge transfer
(DKT) depends on several decisions: when-to-send: when to ex-
change the best weights,whom-to-send: whether to exchange the
best weights with all workers or a subset of workers, and how-to-
merge: how to merge new weights to the local model. We explore
them empirically.

Figure 9 shows exploratory results regarding the factors of direct
knowledge transfer technique. Figure 9a shows that periodic weight
exchange with a moderate period (every 100 iterations) has the
shortest training time. If the frequency of weight exchange is too
short, it consumes a large amount of network resource, so it has
rather longer training time. If the frequency is too long, it takes
longer training time since it does not take advantage of the use
of DKT. Interestingly, frequent weight exchange at early learning
phase has a comparable performance with the best one from which
we can infer it is important to share knowledge earlier rather than
late in learning.

Figure 9b shows three different variants of whom-to-send di-
rect knowledge transfer. We compare a model not using DKT
(No_DKT) with two other variants (DKT_Best2worst and
DKT_Best2all). The figure shows that transferring the best

Figure 10: Architecture of a DLion worker

knowledge to all workers leads to the best accuracy. The bene-
fit of model synchronization across all workers compensates the
cost of network resources used by sending model weights to all.

We also explore how to effectively merge the best knowledge
to local model. A recent work [41] has introduced a parameter
� indicating the ratio of the best knowledge to local knowledge
���
�� = ���
�� − �(���
�� − ����� ). If � = 0, workers are not
using DKT, which is the equivalent to No_DKT having the lowest
accuracy as shown in Figure 9b. If � = 1, the best weights are
replaced with local weights, which leads to the fastest training
progress at the early training phase, but does not have the best
result at the end. The best option for the direct knowledge transfer
technique may vary depending on individual application.

4 IMPLEMENTATION
DLion is built on top of TensorFlow and uses Redis for data and
control messages queues. We describe key components and opera-
tions of a DLion worker in Section 4.1 and implementation details
in Section 4.2.

4.1 Key Components and Operations
Key components of a DLion worker are presented in Figure 10. The
main training workflow (colored in grey) is to compute gradients,
generate/send partial gradients, and periodically update batch size.
Three other independent modules run in parallel in separate threads.
Model update module applies gradients of other workers to the local
model whenever it receives them. Model synchronization module
periodically gets the best model weights and merge them to the
local model. Network resource monitor returns available network
bandwidths of individual connections to neighbor workers upon
the request by the partial gradient generation module. Next we
present the operational details and workflow of these modules.
Batch size update module. Before starting model training, local
batch size (LBS) controller (§ 3.2) is invoked to profile the compute
capacity of workers at that moment. As a result of profiling, this
module determines LBS of a worker used for the next update. The
controller is invoked periodically and whenever global batch size
(GBS) is changed by GBS controller (§ 3.2).
Gradients computation module. Given the LBS, this module
calculates gradients, passes the gradients to the partial gradients
generation module, and updates local model every iteration. If it is
configured with synchronous strategy, it pauses proceeding next
iteration until getting a go-signal through control queue.

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

232



Table 1: Lines of code changes to emulate systems in DLion

APIs Baseline Hop Gaia Ako
generate_partial_gradients 1 1 1 23

synch_training 0 20 0 0

Partial gradients generation module. Upon a call to this mod-
ule with newly computed local gradients, it requests the current
available network bandwidth from the network resource monitor
and generates partial gradients for individual neighbor workers
based on per-link prioritized gradient exchange technique (§ 3.3).
The generated partial gradients are sent to each worker.
Model update module. Upon the arrival of partial gradients of
a neighbor worker, it executes weighted model update (§ 3.2) by
applying a dynamic batching weight to the partial gradients and
aggregates them to the local model.
Model synchronization module. Each worker periodically
shares its average of the last 𝑙 loss values with workers, sends
a direct knowledge transfer (DKT) request to the best worker hav-
ing the smallest loss (§ 3.4). Upon the receipt of DKT request, the
best worker sends its model weights to all workers sent the DKT
request. Once this module receives the best weights, it merges them
to the local model. The frequency and 𝜆 of DKT are configurable.

4.2 Generic and Flexible DLion
We implementDLion on top of TensorFlow. Gradient calculation and
model update are performed by TensorFlow core, and othermodules
are written in Python using TensorFlow APIs. Redis PUB/SUB and
Redis Lists, an in-memory data store, are used for data exchange in
DLion. There are two different message queues, control and data
queues. Control queue is used for signaling among workers for
training synchronization as well as signaling among threads in a
worker, and data queue is used to exchange gradients and weights
among workers. Since DLion modules and communication queues
are implemented separately from DL core, DLion can be easily
integrated with other cores like MXNet.

We have implemented DLion as a generic and flexible frame-
work. Modules are configurable and easy to plugin different algo-
rithms. With an API build_model, various DNN models can be
defined and trained in DLion. We use two different models, Cipher
and MobileNet, by simply calling the API with different model
name for our evaluation. With an API enqueue, DL core can send
local gradients to other workers. Internally, the enqueue calls
generate_partial_gradients and send_data APIs.
Users can easily implement their own algorithms to generate partial
gradients in the API generate_partial_gradients. In the
API send_data, the generated partial gradients are divided into
indices and data and separately sent to workers with unique keys
through data queue. The granularity of data transmission is not
the whole weight variables, but individual weight variables. Lastly,
DLion has an API synch_training where various configurable
synchronization mechanisms are implemented including synchro-
nous, asynchronous, and bounded synchronous training strategies.
It internally maintains each worker’s current iteration and received
weight variable ids. Based on the information, it can skip or proceed
to the next training iteration as well as identify straggler workers.

We have implemented four state-of-the-art distributed DL sys-
tems in the DLion framework for comparison: Baseline (send
all gradients to all workers), Hop [31], Gaia [18] and Ako [46].

Table 2: Actual network bandwidth between 6 Amazon regions

(Mbps) V O I M S1 S2
Virginia (V) - 190 181 53 58 56
Oregon (O) 187 - 91 41 93 84
Ireland (I) 171 92 - 73 30 41

Mumbai (M) 53 41 73 - 85 79
Seoul (S1) 58 88 40 85 - 79
Sydney (S2) 56 84 36 79 72 -

Table 1 shows the lines of code changes for their partial gradient se-
lection algorithms and synchronization mechanisms using the APIs.
The small code changes show how easily we have implemented
these other systems in our framework, illustrating its generality.

5 EVALUATION
We evaluate DLion by comparing it with four state-of-the-art decen-
tralized training systems on various heterogeneous environments.

5.1 Methodology
5.1.1 Applications and Datasets. We evaluate DLion on two
deep learning tasks for image classification; Cipher model over
CIFAR10 [26] and MobileNet, a well-known DNN model over Ima-
geNet [11]. CIFAR10 is 28x28 gray-scale handwriting digits, which
contains 60K training images and 10K testing images, and each
image is labeled as one of 10 classes. ImageNet consists of 1.2M
training images and 50K testing images, and each image is labeled
as one of 1000 classes. We pre-processed it to 256x256 RGB images
and randomly selected 100 classes to obtain faster convergence
time for experiments due to monetary cost incurred by using Ama-
zon GPU instances. Cipher model consists of 3 convolutional and
2 fully-connected layers with ReLU and Maxpooling applied. We
use 10, 20, 100 kernels and 200 neurons like Ako [46]. The size of
Cipher model is 5MB. MobileNet consists of 28 layers and its model
size is 17MB.

5.1.2 Experimental Platforms. We use two different platforms
to evaluate DLion.
CPU-based emulated micro-clouds. The CPU cluster is com-
posed of 6 machines in our local cluster. Each machine is equipped
with 24 CPU cores, 60GB memory, and 1Gbps network bandwidth
and runs on 64-bit Ubuntu 16.04 with TensorFlow 1.14, and Redis-
server 5.0.10. Linux command stress and tc are used to emulate
heterogeneous compute and network capacity environments, re-
spectively. We emulate network bandwidth for micro-clouds by
using actual measurement in 6 different Amazon regions shown in
Table 2. Cipher model is trained with CIFAR10 on CPU cluster.
GPU-based emulated micro-clouds. The GPU cluster is com-
posed of 6 GPU instances in Amazon. We use two different types
of GPU instances, p2.xlarge and p2.8xlarge. Instance p2.xlarge is
equipped with 1 GPU, 4 vCPUs, 61GB RAM and 1Gbps network
bandwidth, and instance p2.8xlarge is equipped with 8 GPUs, 32
vCPUs, 488GB RAM, and 1Gbps network bandwidth. We emulate
network capacity using command tc due to the high monetary
cost of training model in multiple regions. We train MobileNet with
ImageNet on the GPU cluster.

5.1.3 Performance Metrics. We use three performance metrics
to evaluate the effectiveness of distributed DL training systems.
•Model accuracy for a given training time in order to show how
fast systems train models for a given time.

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

233



Table 3: Emulation details for micro-cloud environments (* stands
for environments used in AWS GPU cluster)

Environments
Computation

(No.CPU cores or
AWS instance types*)

Network
(Mbps)

Homo A No emulation LAN
Homo B No emulation 50/50/50/50/50/50
Homo C* 6×p2.xlarge LAN

Hetero CPU A 24/24/12/12/6/6 LAN
Hetero CPU B 24/24/24/24/24/4 LAN
Hetero NET A No emulation 50/50/35/35/20/20
Hetero SYS A 24/24/12/12/6/6 50/50/35/35/20/20
Hetero SYS B 24/24/12/12/6/6 20/20/35/35/50/50

Hetero SYS C* 2×p2.8xlarge +
4×p2.xlarge 190/190/140/140/100/100

Dynamic SYS A Homo B→Hetero SYS A→Hetero SYS B
Dynamic SYS B Hetero SYS B→Hetero SYS A→Homo B

• Training (execution) time until a target model accuracy is reached,
with model accuracy being measured every 20 iterations during
training.
•Model accuracy trained until model is fully converged in order
to show the highest accuracy a model can obtain given infinite
training time.

The first two metrics measure the training speed, while the last
metric measures the best model accuracy achievable.

5.1.4 Comparison Systems. We evaluate the effectiveness of
DLion by comparing it with four state-of-the-art decentralized train-
ing systems implemented in our DLion framework (see Section 4):
(1) Baseline, exchanging whole gradients with all workers every
iteration, (2) Ako [46], partitioning gradients based on available
network capacity and computation power and sending a block of
the partitioned gradients in turn, (3) Gaia [18], exchanging only a
subset of gradients causing more than S% change on model weights,
and (4) Hop [31], exchanging whole gradients but advancing itera-
tions by not receiving gradients of stragglers called backup workers.
We set the threshold S to 1% for Gaia, and the number of backup
worker to 1 and a staleness bound to 5 for Hop like their evaluation
settings. We set the minimum N for max N algorithm to 0.85, the
period of direct knowledge transfer to 100 iterations and 𝜆 = 0.75
for DLion. Most numbers shown in figures are the average of three
runs and error bars mark 95% confidence interval.

5.1.5 Experimental Setup. The evaluation is performed in
different environments with various combinations of homoge-
neous/heterogeneous and computation/network capacities, as well
as dynamically changing resources over time. Table 3 shows the
details of all the emulated micro-cloud environments. The unit for
computation and network is the number of CPU cores and Mbps,
respectively. Homo C and Hetero SYS C are used for experiments
in the Amazon GPU cluster and the others are used in the CPU
cluster. Homo A and Homo C are homogeneous, best-case environ-
ments with no emulation and LAN, and are used as baseline for
comparison with other environments. For Dynamic SYS A and B,
each environment is applied for 500 seconds in the given order.

5.2 Evaluation Results
We now present the results of our evaluation for different envi-
ronments. We begin by evaluating DLion in heterogeneous system
(both CPU/GPU and network) environments (Sections 5.2.1 and

Figure 11: Handling homogeneous and heterogeneous system (com-
pute + network) environments in CPU cluster

Figure 12: Handling homogeneous and heterogeneous system (com-
pute + network) environments in GPU cluster; model accuracy of
MobileNet trained for 2 hours

5.2.2). We then evaluate DLion in the presence of CPU heterogene-
ity, network heterogeneity, and dynamism, in order to gain a better
understanding of the benefit of the various DLion techniques.

5.2.1 System Heterogeneity. We present the performance of
DLion in heterogeneous systems where both computation and net-
work capacities are heterogeneous. In Hetero SYS A, workers with
more computation power have more available network bandwidth,
whereas in Hetero SYS B, workers with more computation power
have less network bandwidth. We train Cipher model for 1500
seconds on CPU cluster those three environments.

Figure 11 shows the model accuracy achieved by each model
for the given training time (higher is better). DLion outperforms
the state-of-the-art decentralized deep learning systems both in ho-
mogeneous and heterogeneous system environments. Specifically,
accuracy improvement of DLion in Hetero SYS A and Hetero SYS B
respectively is 155% and 199% over Baseline, 90% and 84% over
Hop, 42% and 38% over Gaia, and 23% and 22% over Ako. DLion
performs much better in heterogeneous systems because it takes
into account not only the available computation power for better
data parallelism, but also available network bandwidth to reduce
communication cost while retaining high accuracy. Interestingly,
we see that DLion outperforms all other systems even for the homo-
geneous full CPU/network capacity environment Homo A by 32%
over Baseline, 23% over Hop, and 26% over Gaia, and 22% over
Ako. This is because DLion utilizes the direct knowledge transfer,
a supplementary technique to increase the maximum accuracy.

5.2.2 System Robustness in Heterogeneous GPU cluster. To
evaluate the robustness of DLion, we train a much bigger MobileNet
model over ImageNet, a much bigger dataset, on the Amazon GPU
cluster for 2 hours in homogeneous (Homo C) and heterogeneous
(Hetero SYS C) environments. A special characteristic of the envi-
ronments is that the gap between required network capacity and
available computation power is huge. In other words, GPU-based
powerful computation capacity and larger model size of MobileNet
generates a huge amount of data to exchange between workers,

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

234



Figure 13: Handling homogeneous and heterogeneous compute re-
source environments

Figure 14: Effect of dynamic batching (DB) based on GBS & LBS con-
trollers and weighted model updates (WU) in heterogeneous com-
pute capacity environments

which leads to a severe network bottleneck issue. Although Homo
C uses LANs, it suffers from the same network bottleneck issue. In
Hetero SYS C using WANs, the network bottleneck issue becomes
more serious.

Figure 12 shows that our design is robust for both GPU-based
and CPU-based DL systems. DLion achieves much higher model
accuracy both in homogeneous and heterogeneous system environ-
ments. Its accuracy improvement in Homo C is 3.4× over Hop, 4.2×
over Gaia, and 2.3× over Ako, and the improvement in Hetero
SYS is 2.5× over Hop, 4.2× over Gaia, and 3.1× over Ako. Direct
knowledge transfer technique in DLion plays a key role for faster
model convergence in such environments since it is a more direct
way to share learned knowledge among workers.

5.2.3 Heterogeneous Compute Resources. To better under-
stand the benefits of DLion’s CPU-aware techniques, we now eval-
uate the performance of DLion on heterogeneous compute capacity
environments while keeping the network capacity of workers ho-
mogeneous. Figure 13 shows accuracy of Cipher model trained
for 1500 seconds on the CPU cluster for three different compute
resource environments: Homo A, Hetero CPU A, and Hetero CPU
B. As mentioned before, Homo A is the best-case homogeneous
environment. In Hetero CPU A, different computation capacities
are evenly distributed across workers, whereas Hetero CPU B has a
distinct straggler in a cluster. The average of accuracy improvement
of DLion is 32% over Baseline, 21% over Hop, 26% over Gaia,
and 20% over Ako.

The first finding from the figure is that DLion outperforms other
systems both in homogeneous and heterogeneous computation
environments. This shows the benefit of the weighted dynamic
batching technique which results in better load balancing and par-
allelism across workers. Second, the difference in the amount of
available computation resource—the total number of CPU cores
used for Home A, Hetero CPU A, and Hetero CPU B are 144, 88, and
114, respectively—is not reflected on the accuracy, with each system
having almost the same accuracy in all three environments. This
indicates that system performance is bounded more by network
capacity than compute capacity.

Figure 15: Handling homogeneous and heterogeneous network re-
source environments

Figure 16: Max10 algorithm comparison with existing systems on
both homogeneous and heterogeneous system environments

To further understand the performance gain of the weighted
dynamic batching technique of DLion, we measure training time
until Cipher model reaches 70% accuracy with three variants of
DLion: (i) DLion-no-DBWU, which does not have dynamic batch-
ing based on GBS and LBS controllers nor weighted model update,
(ii) DLion-no-WU, which has dynamic batching but does not ap-
ply weighted model update, and (iii) DLion with both dynamic
batching and weighted model update enabled. All other features
and techniques are the same across the three.

Figure 14 (lower is better) shows a noticeable performance gain
by dynamic batching technique: 37%, 22%, and 25% training speed-
up in Homo A, Hetero CPU A, and Hetero CPU B environments,
respectively. The effect of weighted model update is clearly visible
in heterogeneous compute environments: a further 12% and 13%
training speed-up in Hetero CPU A and Hetero CPU B. There is no
statistically significant improvement due to weighted model update
in Homo A, since the weighted model update equation (Eq. 7) re-
duces to the general distributed DLmodel update equation (Eq. 4) in
homogeneous compute environments. Therefore, we conclude that
the combination of dynamic batching with weighted model update
achieves the best results both in homogeneous and heterogeneous
compute resource environments.

5.2.4 Heterogeneous Network Resources. We next evaluate
the performance of DLion on heterogeneous and constrained net-
work capacity environments while compute capacity of workers
remains homogeneous and identical. We train Cipher model for
1500 seconds on the CPU cluster with three different homogeneous
and heterogeneous network environments. Homo A uses LANs
while both Homo B and Hetero NET A are WAN environments.
Homo B has homogeneous network capacity across workers though
it is constrained, while the workers in Hetero NET A have different
network bandwidths.

First, Figure 15 shows that DLion outperforms all other systems
in all three cases, and especially performs much better in hetero-
geneous network environment. Accuracy improvement of DLion
in Homo B and Hetero NET A respectively is 132% and 202% over
Baseline, 78% and 94% for Hop, 36% and 44% over Gaia, and

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

235



Figure 17: The deviation of model accuracy among workers in vari-
ous heterogeneous environments

Figure 18: The highest accuracy of cipher model trained with dif-
ferent systems in dynamic heterogeneous environments where re-
sources are dynamically changing over time

16% and 19% over Ako. This shows the benefit of the network-aware
gradient and weight exchange techniques in DLion.

Second, we also see that system performance depends more on
the available network bandwidth, with the achieved accuracy in
LANs being much higher than the ones in WANs. This is because
distributed DL training in general spends more time for commu-
nication than computation. This is why systems sharing whole
gradients like Hop and Baseline have greater accuracy differ-
ence between LANs andWANs. Instead, the approach of exchanging
small gradients like Ako, Gaia, and DLion is more effective than
skipping slower workers like Hop in the environments of Homo B
and Hetero NET A like WANs.

In addition, to understand the sole benefit of max N algorithm,
we train Cipher model in the CPU cluster for 1500s without any
support from the other DLion techniques such as weighted dy-
namic batching, per-link prioritized gradient exchange, and direct
knowledge transfer. Figure 16 shows max N (N=10) outperforms
state-of-the-art distributed DL systems in both homogeneous and
heterogeneous system environments.

5.2.5 Deviation of Model Accuracy. One of the strengths of
DLion is its significantly small deviation of accuracy across workers.
Figure 17 shows the standard deviation of accuracy among workers
based on CPU-based experiments in three different heterogeneous
environments; Hetero SYS B, Hetero NET B, and Hetero CPU B.
DLion has much smaller accuracy deviation than other systems
because direct knowledge transfer technique periodically synchro-
nizes model weights across workers. Ako has the biggest accuracy
deviation among workers due to its asynchronous training strategy
where some workers advance training iterations without consid-
eration of slower workers’ progress. Similarly, Hop has second
highest accuracy deviation because it uses bounded synchronous
training strategy and backup worker technique ignoring updates
from stragglers. Lastly, Gaia is less sensitive than Ako and Hop
because it uses a kind of bounded synchronous training strategy
by blocking progress to the next iteration until important gradients
are delivered to all workers.

Figure 19: Dynamically adjusting local batch sizes of 6 workers
when available computation resources are changing

Figure 20: Change of partial gradient size (the number of gradi-
ents) adjusted by Per-link prioritized gradient exchange technique
in consideration of dynamically changing network bandwidth

5.2.6 Dynamic Resource Changes. We evaluate how effec-
tively DLion handles dynamically changing resources compared
to existing systems. As shown in Table 3, the combination of sub-
environments are the same between Dynamic SYS A and Dynamic
SYS B. However, Dynamic SYS A has more resource at early training
phase, whereas Dynamic SYS B has more capacity at later training
phase. Figure 18 shows DLion outperforms other systems in both
environments. Accuracy improvement of DLion in Dynamic SYS A
and Dynamic SYS B respectively is 209% and 216% over Baseline,
75% and 85% over Hop, 38% and 46% over Gaia, and 20% and 21%
over Ako. This shows thatDLion is able to handle dynamic resource
changes more effectively than the other systems.

Figure 19 shows how the LBS controller dynamically changes
LBS of 6 workers in a dynamic compute resource environment.
Here LBS is initialized to 32 and GBS is fixed to 192 (32 × 6). The
available number of CPU cores of workers changes: it is homo-
geneous (24/24/24/24/24/24 for 0-100s and 12/12/12/12/12/12 for
300-500s periods) and heterogeneous (24/24/12/12/4/4 for 100-300s
and 4/4/12/12/24/24 for 500-800s periods). The figure shows a dif-
ferent LBS is assigned to each worker based on their available
computation power at that moment.

Figure 20 shows the per-link prioritized gradient exchange tech-
nique handles dynamism of network bandwidth by changing par-
tial gradient size based on changing available network bandwidth
where available network bandwidths are set to 30 Mbps for 0-100s
and 600-1000s periods and to 100Mbps for the remaining periods.

5.2.7 Effect on Improving Model Accuracy. To understand
how well DLion accomplishes its accuracy improvement goal, we
train the Cipher model in Homo A until it is fully converged. Fig-
ure 21 shows the final model accuracy and required training time to
reach the accuracy of the systems. DLion reaches the highest model
accuracy among other systems because the direct knowledge trans-
fer technique directly propagates the best training knowledge to all
workers. DLion obtains 26% and 24% higher accuracy with 59% and
36% faster training time over Baseline and Hop, respectively,

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

236



Figure 21: The highest model accuracy and elapsed training time
until Cipher model is fully converged

and 25% and 18% higher accuracy with 11% and 21% slower training
time over Gaia and Ako, respectively. Even though Ako, Gaia
and Hop exchange partial gradients or skip gradients from strag-
glers, they have higher accuracy than Baseline sharing whole
gradients. We analyze the result that more errors are accumulated
on local model by sharing larger gradients since all those systems
do not synchronize model across workers unlike DLion using direct
knowledge transfer.

6 RELATEDWORK
Distributed Deep Learning Systems. General purpose dis-
tributed DL systems [1, 8] use parameter servers (PS) to provide
scalability. These systems have implicit assumption that machines
are identical and connected with high-speed network bandwidth. In
addition, recent research [16, 39, 51] has done great deal of work on
performance improvement on multi-GPU environments. However,
they also target homogeneous environments. Besides, the perfor-
mance can significantly vary depending on cluster configuration
related to PSs. In contrast, our work employs decentralized design
and focuses on handling heterogeneous resources.
Resource-aware Distributed DL Systems. There have been
many distributed DL systems considering heterogeneous resources.
AD-PSGD [29] and HetPipe [34] have addressed heterogeneous
computation environments by using a decentralized architecture
based on asynchronous parallel SGD. However, they mainly focus
on GPU clusters. Our work covers both CPU-based and GPU-based
environments because micro-clouds are composed of commodity
machines with CPUs/GPUs, connected over WANs/LANs.

Ako [46], Gaia [18], Hop [31], and Prague [30] consider dis-
tributed DL issues in heterogeneous system environments on CPU
and/or GPU cluster. While Gaia and Ako address the network bot-
tleneck issue by exchanging partial gradients, Hop and Prague
reduce the number of workers sending/receiving whole gradients
by excluding slow workers from training. Some research [3, 43]
specifically focuses on gradient compression problem, which is
complementary to our work, and their compression algorithms can
be placed in the data quality assurance module in DLion. None of
these approaches comprehensively consider all the challenges in
micro-cloud environments, as done by our work.
Federated Learning. Recently, federated learning [5, 7, 28] has
emerged as a new paradigm for distributed training on edges over
locally generated data driven by privacy concerns. While it focuses
on system and data heterogeneity to effectively select subset of
edge devices for training purposes, federated learning can only
train much smaller-scale models like traditional machine learning

algorithms due to limited resources of the edges. Our work, on the
other hand, is targeting DL training in micro-clouds.
Deep Learning Inference at Edges. One of the main streams in
DL research is fast prediction during inference. Recent research [2,
21, 45] has proposed algorithms to compact pre-trained models by
reducing precision or pruning model weights to speed up inference
in edge or micro-cloud environments. Our work, on the other hand,
is focused on the orthogonal stream of DL training.
General Parallel Computing. Many studies [9, 32, 48] take into
account resources of machines in cluster for better scheduling to
improve performance and resource efficiency. Our work also con-
siders computation resource to enable more powerful machines
to process more data for better performance, but is specific to DL,
which is a different application than considered in much of the
prior work.
Geo-Distributed Data Analytics. Data analytics with geograph-
ically distributed data has gained much attention in recent years.
Since a large amount of data are shuffled and processed over net-
works, previous research [17, 19, 22, 23, 27] has proposed techniques
such as minimizing the amount of intermediate data, merging mul-
tiple queries, or placing queries based on the available network
bandwidth. Similarly, a key factor affecting system performance in
our work is network bandwidth because DL training causes a huge
data transmission among machines over the network, but reducing
the impact on overall model accuracy is a key goal of our work.

7 CONCLUSION
In this paper, we proposed DLion, a new and generic decentralized
distributed deep learning system for fast learning and high accu-
racy in micro-clouds. DLion is designed to handle heterogeneous
and dynamically changing compute and network resources in such
environments, to reduce training time and improve model accu-
racy. We presented three key techniques in DLion: (1) Weighted
dynamic batching to maximize data parallelism, (2) Per-link priori-
tized gradient exchange to reduce communication overhead, and (3)
Direct knowledge transfer to improve model accuracy. We built a
prototype of DLion on top of TensorFlow and showed that DLion
achieves up to 4.2× speedup in an Amazon GPU cluster, and up to
2× speed up and 26% higher model accuracy in a CPU cluster over
four state-of-the-art distributed DL systems.

ACKNOWLEDGMENTS
This work is supported in part by NSF grant CNS-1717834.

REFERENCES
[1] M. Abadi et al. 2016. Tensorflow: a system for large-scale machine learning.. In

OSDI, Vol. 16. 265–283.
[2] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: machine

learning inference serving on serverless platforms with adaptive batching. In
2020 SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 972–986.

[3] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit
Khirirat, and Cédric Renggli. 2018. The convergence of sparsified gradient
methods. In Advances in Neural Information Processing Systems. 5973–5983.

[4] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U Khan. 2018. Potentials,
trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers. Computer Networks 130 (2018), 94–120.

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

237



H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[6] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and
Karteek Alahari. 2018. End-to-end incremental learning. In Proceedings of the
European Conference on Computer Vision (ECCV). 233–248.

[7] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. 2020. TiFL: A Tier-based
Federated Learning System. arXiv preprint arXiv:2001.09249 (2020).

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[9] Dazhao Cheng, Yuan Chen, Xiaobo Zhou, Daniel Gmach, and Dejan Milojicic.
2017. Adaptive scheduling of parallel jobs in spark streaming. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[11] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. (2009).

[12] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv preprint
arXiv:1712.02029 (2017).

[13] Yehia Elkhatib, Barry Porter, Heverson B Ribeiro, Mohamed Faten Zhani, Junaid
Qadir, and Etienne Rivière. 2017. On using micro-clouds to deliver the fog. IEEE
Internet Computing 21, 2 (2017), 8–15.

[14] Nelson Mimura Gonzalez, Walter Akio Goya, Rosangela de Fatima Pereira,
Karen Langona, Erico Augusto Silva, Tereza Cristina Melo de Brito Carvalho,
Charles Christian Miers, Jan-Erik Mångs, and Azimeh Sefidcon. 2016. Fog com-
puting: Data analytics and cloud distributed processing on the network edges. In
2016 35th International Conference of the Chilean Computer Science Society (SCCC).
IEEE, 1–9.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[16] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil
Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream: Fast and efficient
pipeline parallel dnn training. arXiv preprint arXiv:1806.03377 (2018).

[17] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. 2015. Optimizing
grouped aggregation in geo-distributed streaming analytics. In Proceedings of
the 24th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 133–144.

[18] K. Hsieh et al. 2017. Gaia: Geo-Distributed Machine Learning Approaching LAN
Speeds.. In NSDI. 629–647.

[19] Anand Padmanabha Iyer, Aurojit Panda, Mosharaf Chowdhury, Aditya Akella,
Scott Shenker, and Ion Stoica. 2018. Monarch: gaining command on geo-
distributed graph analytics. In 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 18).

[20] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and
Joseph Gonzalez. 2019. Scaling Video Analytics Systems to Large Camera De-
ployments. In Proceedings of the 20th International Workshop on Mobile Computing
Systems and Applications. ACM, 9–14.

[21] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. 2018.
IONN: Incremental offloading of neural network computations from mobile
devices to edge servers. In Proceedings of the ACM Symposium on Cloud Computing.
401–411.

[22] Rathinaraja Jeyaraj, VS Ananthanarayana, and Anand Paul. 2019. MapReduce
scheduler to minimize the size of intermediate data in shuffle phase. In 2019
IEEE/ACIS 18th International Conference on Computer and Information Science
(ICIS). IEEE, 30–34.

[23] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2018. Multi-Query
Optimization in Wide-Area Streaming Analytics. In Proceedings of the ACM
Symposium on Cloud Computing. ACM, 412–425.

[24] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 1725–1732.

[25] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

[26] A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from tiny
images. Technical Report. Citeseer.

[27] Dhruv Kumar, Jian Li, Abhishek Chandra, and Ramesh Sitaraman. 2019. A
ttl-based approach for data aggregation in geo-distributed streaming analytics.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 3, 2
(2019), 1–27.

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. 2018. Federated optimization in heterogeneous networks. arXiv

preprint arXiv:1812.06127 (2018).
[29] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous decentral-

ized parallel stochastic gradient descent. In International Conference on Machine
Learning. PMLR, 3043–3052.

[30] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague: High-
Performance Heterogeneity-Aware Asynchronous Decentralized Training. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 401–416.

[31] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian. 2019. Hop: Heterogeneity-
aware decentralized training. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 893–907.

[32] Vicent Sanz Marco, Ben Taylor, Barry Porter, and Zheng Wang. 2017. Improving
spark application throughput via memory aware task co-location: A mixture
of experts approach. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference. 95–108.

[33] Carlos Navarro-Racines, Jaime Tarapues, Philip Thornton, Andy Jarvis, and Julian
Ramirez-Villegas. 2020. High-resolution and bias-corrected CMIP5 projections
for climate change impact assessments. Scientific Data 7, 1 (2020), 1–14.

[34] Jay H Park, Gyeongchan Yun, Chang M Yi, Nguyen T Nguyen, Seungmin Lee,
Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. HetPipe: Enabling Large
DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of
Pipelined Model Parallelism and Data Parallelism. arXiv preprint arXiv:2005.14038
(2020).

[35] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. icarl: Incremental classifier and representation learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2001–
2010.

[36] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400–407.

[37] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. 2017. Online deep learn-
ing: Learning deep neural networks on the fly. arXiv preprint arXiv:1711.03705
(2017).

[38] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter,
and Padmanabhan Pillai. 2014. Cloudlets: at the leading edge of mobile-cloud
convergence. In 6th International Conference on Mobile Computing, Applications
and Services. IEEE, 1–9.

[39] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[40] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489
(2017).

[41] Yunfei Teng, Wenbo Gao, Francois Chalus, Anna E Choromanska, Donald Gold-
farb, and Adrian Weller. 2019. Leader Stochastic Gradient Descent for Distributed
Training of Deep Learning Models. In Advances in Neural Information Processing
Systems. 9824–9834.

[42] Jianyu Wang and Gauri Joshi. 2018. Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update SGD. arXiv preprint
arXiv:1810.08313 (2018).

[43] Linnan Wang, Wei Wu, Junyu Zhang, Hang Liu, George Bosilca, Maurice Herlihy,
and Rodrigo Fonseca. 2020. FFT-based Gradient Sparsification for the Distributed
Training of Deep Neural Networks. In Proceedings of the 29th International Sym-
posium on High-Performance Parallel and Distributed Computing. 113–124.

[44] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2018. When edge meets learning: Adaptive
control for resource-constrained distributed machine learning. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 63–71.

[45] Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang Yan, and Xu
Chen. 2020. Convergence of edge computing and deep learning: A comprehensive
survey. IEEE Communications Surveys & Tutorials 22, 2 (2020), 869–904.

[46] P. Watcharapichat et al. 2016. Ako: Decentralised deep learning with partial
gradient exchange. In Proceedings of the Seventh ACM Symposium on Cloud
Computing. ACM, 84–97.

[47] Christopher R Wren, Yuri A Ivanov, Darren Leigh, and Jonathan Westhues. 2007.
TheMERLmotion detector dataset. In Proceedings of the 2007 workshop on Massive
datasets. 10–14.

[48] Luna Xu, Ali R Butt, Seung-Hwan Lim, and Ramakrishnan Kannan. 2018. A
heterogeneity-aware task scheduler for spark. In 2018 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 245–256.

[49] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowl-
edge from the physical world. In Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 316–324.

[50] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2018. Deep learning in mobile
and wireless networking: A survey. arXiv preprint arXiv:1803.04311 (2018).

[51] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An efficient
communication architecture for distributed deep learning on GPU clusters. In
2017 USENIX Annual Technical Conference (ATC 17). 181–193.

Session: Resource Management HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

238


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Distributed Deep Learning
	2.2 Distributed Deep Learning Systems
	2.3 DL Learning in Micro-Clouds
	2.4 Challenges and Motivation

	3 Our approach: DLion
	3.1 Design Goals and Overview
	3.2 Weighted Dynamic Batching
	3.3 Per-Link Prioritized Gradient Exchange
	3.4 Direct Knowledge Transfer

	4 Implementation
	4.1 Key Components and Operations
	4.2 Generic and Flexible DLion

	5 Evaluation
	5.1 Methodology
	5.2 Evaluation Results

	6 Related Work
	7 Conclusion
	References



